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Abstract—Vast majority of the services running on the smart
phone today are networked in that significant amount of com-
munication is required. Smart phone energy expenditure due
to Wi-Fi communications constitutes significant portion of the
battery discharge. In this paper, we first investigate the key
factors influencing Wi-Fi energy consumption, and propose three
energy management schemes: 1) Dynamic control of Wi-Fi on/off
interface; 2) improve communication efficiency via application
packing; and 3) elongation of Wi-Fi Power Save Mode (PSM)
via application alignment under mixed application workload. We
also design and test our solution as a device-side application
utilizing general system process scheduling and network firewall
techniques. As the result, our solution is easy to deploy, applicable
to most mobile devices, and we explicitly tackle the challenging
case of download management. Through extensive experimenta-
tion and solution prototyping, we show the effectiveness of device
side Wi-Fi energy management and the importance of considering
application characteristics.

Index Terms—smart phone, energy management, design and
experimentation

I. INTRODUCTION

Recently, the mobile device have proliferated as a common
communication and data service platform. Vast majority of
the services running on the smart phone today are networked
in that significant amount of communication is required.
Since 3G (i.e., HSPA+ and EVDO Rev B) and 4G (i.e.,
WiMAX and LTE) telecommunication networks charges data
communication at a premium rate, majority of the smart phone
users leverage the Wi-Fi data connectivity whenever possible.
Furthermore, most of the smart phone applications are relying
on continuous internet connectivity (i.e., social network ser-
vice and location based service). Consequently, smart phone
energy expenditure due to Wi-Fi communications constitutes
significant portion of the battery discharge, especially for the
download workload (see Figure 1). Therefore, it is important
to leverage energy saving hardware solutions coupled with
smart application level control as to facilitate effective Wi-Fi
energy management for smart phones. At the hardware level,
Power Save Mode (PSM) is explicitly designed to achieve
energy saving efficiency [1]. Vast majority of the energy saving
solutions in literature attempts to leverage the PSM feature, but
do so mostly at the network level, without good understanding
of the application requirements and characteristics. As a result,
the proposed schemes tend to be either too soft (i.e., do not
provide sufficient energy saving under a realistic workload) or

too hard (i.e., breaks user experience due to excessive delays).
Furthermore, to the best of our knowledge, there is no effective
device side solutions for Wi-Fi energy management.
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Fig. 1. Power consumption by smartphone for file downloading [2]

In this paper, we first investigate the key attributes that
affects Wi-Fi energy consumption during communications
including network RSSI, application throughput and applica-
tion workload characteristics. Based on our investigation, we
propose three device-side energy saving schemes that address
a number of key issues in Wi-Fi energy management today:
dynamic control of Wi-Fi on/off interface, extension of Wi-
Fi PSM mode for energy shaving, and scheduling of Wi-
Fi communication based on user application specifics and
user experience constraints. We also design and test device-
side operational control mechanisms that can realize our
management schemes, in particular we solve the difficult case
of down stream management at device side. By implementing
our solutions as an Android application, we show that we can
achieve significant Wi-Fi energy saving under different mix of
user applications and in non-trivial use cases.

The remainder of this paper is organized as follows. Sec-
tion II presents related works on energy measurement and
management in mobile device, and Section III presents a
detail experiment study on the key factors to consider for
Wi-Fi energy management. In Section IV, we present our
energy management schemes and in Section V, we present
two effective application management mechanisms. Section
VI reports on our experiment results based on a prototype
implementation. Section VII concludes the paper.



II. RELATED WORK

In [3], energy usage pattern are analyzed according to
hardware components in mobile device. Based on result,
the authors proposed an energy usage estimation model and
a methodology for optimize the energy consumption. The
hardware components they focused on are CPU and LCD.
On-Demand CPU Governor, which is originally included as a
CPU scheduler in Linux system, is used to dynamically change
the CPU frequency according to current CPU utilization rate.
The authors extended the On-Demand CPU Governor to not
only considers the CPU utilization rate when it performs
scaling, but also to monitor the status of LCD display. They
assume that background applications remain active, even when
the phone goes into the hibernate mode (display off). Since
maintaining the User eXperience (UX) is not important in
hibernation, energy saving can be obtained by lowering the
CPU frequency.

In [4], the authors proposed an energy measurement model
for monitoring the energy usage of various hardware compo-
nents, including CPU, LCD, GPS, Audio, Wi-Fi and 3G in
real time. They provided two views of energy consumption:
1) per application view and 2) overall energy consumption.
The proposed energy usage model is evaluated by exploiting
an external energy measurement device. The authors also
implemented an Android application called PowerTutor [5]
based on the proposed measurement model that is shown to
provide good energy measurement of Wi-Fi component. We
leverages PowerTutor for our energy studies by extending their
measurements to include down streaming.

In [6], the authors proposed Catnap, which exploits the
bandwidth discrepancy between wireless Access Point (AP)
(low) and mobile phone (high) to perform the energy reduction
in down streaming case. The slow speed between AP and
server may enforce the client to be always in active mode, so
that large amount of energy is wasted. The authors introduced
a proxy-based modification to access point which serves as an
external data buffer to leverage the slow link speed between
AP and server. The main drawback of this approach is that it
requires proxy to be deployed at access point, stores and may
expose user data at shared public locations, and assumes that
wireless channel has higher speed than wired part which is
not always true around the world (e.g., South Korea).

III. ANALYSIS OF WI-FI ENERGY CONSUMPTION

In this section, we will present a number of key experi-
mental observations concerning Wi-Fi energy consumption in
Android: the relation between RSSI and energy, the effect of
application throughput on energy, and the application char-
acteristics that affects energy management. Based on these
observations, we present three energy management schemes
in Section IV. For energy measurement, we use PowerTutor
deployed on HTC Rider [7] smart phone running Android
Gingerbread 2.3.7. HTC Rider is designed with the BCM4329
[8] Wi-Fi communication module. From our experiment re-
sults, we find that energy consumption patterns for data
uploading and downloading are generally identical. Since data

downloading is by far the majority of Wi-Fi data access on
smart phones today, we present our observations based on
experiments conducted on data downloading in this section.
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Fig. 2. Correlation between RSSI and Energy in Two Data Rates

A. RSSI and energy consumption

Received Signal Strength Indicator (RSSI) is a metric that
quantifies the power level present in a received radio signal.
The measurement unit is dBm. The RSSI value of the associ-
ated Wi-Fi interface is readily obtainable from Android kernel.
In general, the RSSI value (in dBM) is inversely related to
Euclidean distance, meaning that RSSI decreases linearly with
respect to increasing distance from the transmitter. RSSI is also
inversely related to environmental noise, but the exact relation
is uncertain. In summary, a higher RSSI value denotes better
signal reception strength and therefore higher channel capacity.
Channel capacity is a indicator if the rate at which digital
binary bits are transmitted or received across the underlying
physical communication channel (the air medium in this case).
When RSSI is low, data loss and error rate increases. To
compensate, the transmitter must lower the data rate and
therefore the overall channel capacity is reduced.

Figure 2 shows total energy consumption of downloading
a fixed amount of data (i.e., 60MB) under varying RSSI
values. Two sets of experiments are conducted. In the first
set, the file is downloaded from a server with serving capacity
of 1Mbps. In the second set, the file is downloaded from
a server with serving capacity of 400kbps. We observe a
clear threshold based relationship between RSSI and energy
consumption. When the RSSI is above threshold (e.g., around
-85dBm), the amount of energy expenditure is similar across
different RSSI values. This indicates that the channel capacity
above RSSI threshold is at maximum and is consistent. On
the other hand, when the RSSI value is below threshold, we
see exponential increase in energy expenditure due to the
exponential decrease in channel capacity. Furthermore, we
observe that this threshold value is independent of applica-
tion throughput. Therefore, if we can ascertain the threshold
RSSI value accurately in practice, we can achieve significant
energy savings. However, this threshold value is subject to



the particularities of the underlying communication channel
conditions and the environment, and therefore there is not a
single fixed threshold value that can be set. Accordingly, we
define a mechanism to facilitate Wi-Fi control in Section IV-A,
and provide an energy efficient Wi-Fi control mechanism.
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Fig. 3. Correlation between RSSI and Transmission Time in Two Data Rates

B. Application throughput and energy consumption

Wi-Fi communication module provides some means of
dealing with varied application throughput. In the most simple
case, when there are no applications requiring data communi-
cation, the Wi-Fi module can be put into off mode whereby the
energy consumption is practically zero. However, this scheme
is not very efficient in practice as when application requires
communication, which may occur at any given time, there is
a significant overhead for the Wi-Fi module to turn itself back
on and to scan and associate with an access point. This lag
time is in the range of 4 seconds or more, which is considered
intolerable with respect to satisfactory user experience.

Fortunately, today’s Wi-Fi radio module of a smart phone
also provides multiple communication mode during the on
state explicitly designed with energy conservation in mind. For
instance, the widely used BCM4329 communication module
in the on state has a Constantly Awake Mode (CAM) which
consumes 1120mW or more and a Power Save Mode (PSM)
which consumes 20mW. The caveat of PSM is that the
application throughput must be extremely low (approx. 8 or
less packets per second [4]) for the device to remain in PSM.
In literature, one of the common strategies to employ for Wi-
Fi energy saving is to keep the device in PSM mode for
as long as possible. However, it is still an open question
concerning the relation between application throughput and
energy consumption rate in CAM mode. Or in another word,
is there an energy efficient optimal throughput rate in CAM
mode? and if so, is this rate RSSI dependent?

To answer these questions, we’ve conducted a series of
experiments as shown in Figure 3. We conducted two sets of
experiments downloading from two data servers with varied
serving capacity as before. And we’ve isolated our experiment
in the regions of RSSI above threshold values such that we
can ensure constant channel capacity. The left of Figure 3

shows the total transmission time it takes to download a
fixed data from the servers. It is clear and intuitive to see
that downloading the same file at higher serving capacity
requires longer time and hence more energy expenditure. This
is independent of the RSSI values at above threshold. The
right of Figure 3 shows the energy consumption rate (J/s) of
the two experiment sets. Interestingly, the energy consumption
rates in CAM do not differ significantly under extremely
varied application throughput. And again, this is independent
of RSSI values above threshold. It is then logical to see that
the total energy consumption of data communication is strictly
dependent on the total time of transmission. Therefore, to
achieve good energy saving, we should always aim to perform
data transmission at maximum throughput whenever possible.
According to this observation, we have designed data packing
scheme in Section IV-B that not only leverage the energy
saving of PSM but also the maximum bursting characteristics
of CAM.

C. Understanding the applications

To date, vast majority of the energy saving solutions in
literature manage the Wi-Fi traffic purely at the network
level, without understanding the application requirements and
characteristics. As a result, the proposed schemes tend to be
either too soft (i.e., do not provide sufficient energy saving
under a realistic workload) or too hard (i.e., breaks user
experience due to excessive delays).

Therefore it is important to understand what are the critical
application characteristics and how they impact and constrain
the design of energy saving mechanisms. Figure 4 showcases
the workloads of different application types: AndFTP [9]
is a data transfer application; WhatsApp [10] is an instant
messaging application; Facebook [11] is a web based social
networking service application; PPSTV [12] is a P2P-based
video streaming application; DropBox [13] is a file synchro-
nization service application; Remote Desktop [14] is a graph-
ical desktop sharing service application. After analyzing most
of the common application types used on smart phone today,
we summarize below a number of important characteristics
that affects energy saving designs.

Delay sensitivity: some applications are very delay sensitive
while others are more delay tolerant. For instance, Facebook,
PPSTV and Remote Desktop are delay sensitive in that the
user interactivity and experience is strongly affected by delay.
Other applications may have different degree of tolerance to
delay. For instance WhatsApp can tolerate a few seconds of
delay while AndFTP and Dropbox are generally very delay
tolerant. Delay tolerant applications can be delayed for finite
duration in order to better coordinate data transmissions for
energy saving. However, when there is a mix of delay sensitive
applications and delay tolerant applications, the transmission
behavior of delay sensitive applications can be used to “cue
in” packing schedules of the delay tolerant applications. We
call this process alignment and is presented in Section IV-C.

Expected throughput: understanding the expected peak
throughput of applications helps to better schedule application
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Fig. 4. Workload of Example Application Types

transmissions. Generally, different types of applications have
different level of expected peak throughput. For instance,
WhatsApp has very low expected peak throughput, while PP-
STV is much higher. Yet other applications such as Facebook
has more varied peak throughput depending on the actual page
content.

Burst cycle: data transfers are bursty. We observe that
majority of the applications have distinct burst cycles due to
the existence of “data units”. A data unit is an atomic set
of data and/or transactions that must be completed for the
application to deliver its function. For instance, WhatsApp’s
data unit is the delivery of a message; Facebook’s data unit
is the loading of a page; PPSTV’s transmission is related to
video frame grouping and encoding, etc. Knowing the burst
cycle of an application helps to better determine the expected
throughput of the application and the required monitoring
period for estimating true throughput (Section IV-A).

Session preservation: TCP flows are largely session based,
which is by far the most used transport protocol for smart
phone applications [15]. Even for UDP based transmissions
such as video streaming and online gaming, there is often the
concept of a session that is re-enforced by an application level
protocol such as RTP. It is then important to understand, how
long can a transmission be delayed without breaking a session,
as failure to do so result in service unavailability and/or wasted
work to the user. The exact requirement of session preservation
also affects the choice of management mechanisms as we will
discuss in Section V.

IV. ENERGY SAVING DESIGNS FOR WI-FI
TRANSMISSIONS

In this section, we present three energy saving designs for
Wi-Fi transmissions based on the analysis results we have
discussed in Section III.

A. Dynamic Wi-Fi on-off control

The goal of Wi-Fi on-off control is to turn off Wi-Fi com-
munication when the RSSI value is below threshold. However,

as we have discussed in Section III-A, the threshold RSSI
value is environment dependent. Furthermore, even at low
RSSI values, applications that has low expected throughput
(e.g., WhatsApp) are not adversely affected. Therefore, we
establish the control parameter for when to turn off Wi-Fi as
α = Th

ETh
where Th is the true throughput of the application

at current RSSI value and ETh is the expected throughput of
the application. For delay sensitive applications, α should be
large (e.g., 0.8), while for very delay tolerant applications such
as AndFTP α may be very small.

It follows then that we require a measure of true throughput
of the wireless channel. Since RSSI value is related to trans-
mission rate, can we determine true throughput from RSSI?
The top left of Figure 5 shows the relation as measured in our
experiments based on a simple one phone to one access point
topology. We observe that although there is a strong correlation
between RSSI and link speed in such simple scenario, the
relation is not nearly precise enough for decision making.
For instance, link speed fluctuates significantly within RSSI
value range -70dBm and -85dBm. To make matter worse, link
speed is a measure of the physical channel raw data rate,
not the actual application level throughput which is dependent
on both the protocol overhead, error re-transmission rate, as
well as the medium contention rate. None of the above values
are particularly easy to obtain from the device side without
significant monitoring overhead. These discoveries forced us
to examine an alternative solution: to deduce the application’s
true peak throughput against its expected peak throughput by
passive listening. In essence, when the application is commu-
nicating via Wi-Fi, we sample the observed peak throughput
within a sampling window. To determine the correct sampling
window size, we run a series of experiments under 1 second, 3
seconds, 5 seconds, 10 seconds and 20 seconds window sizes
as shown in Figure 5. Intuitively, we see that the accuracy
of the true throughput determination increases with larger
sampling window size. In investigating the correct window size
setting, we find that it is directly tied to the burst cycle length
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Fig. 5. Relation between RSSI, Linkspeed and Throughput

of the application. In the particular instance shown Figure 5,
AndFTP is the example application, which has an average
burst cycle length of around 10 seconds. Hence it appears that
approximately two times the burst cycle length is necessary
to obtain a good estimate of the true application throughput.
Accordingly, we are then able to cheaply compute α to be
used as the Wi-Fi on-off control parameter. We further note
that when a decision is made for Wi-Fi to be turned off. We
do not actually turn the Wi-Fi off at the hardware level, but
instead cuts off the application’s ability to communicate. The
reason for not turning Wi-Fi physically off is two fold: 1) we
want to still be able to monitor the Wi-Fi channel such that the
transmission may resume when channel condition improves;
and 2) the cost of channel scan and re-association is very
energy consuming (nearly 5 times the energy consumption of
CAM [16]). We present the mechanisms for application control
in Section V.
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Fig. 6. Example of Packing

B. Packing for delay tolerant applications

For delay tolerant applications, we can deliberately delay
its transmission for certain amount of time (determined by an

application’s session preservation) in hope to allow multiple
applications to transmit at the same time. We term this
“packing” mechanism. The goal of packing is to extend the
Wi-Fi module’s PSM time and to achieve maximum bursting
when transmitting.

The procedure for packing is as follows: when a delay-
tolerant application requires communication, its transmission
is delayed for fixed amount of time if its expected throughput
is below the true channel capacity. This delay is terminated
whenever the total expected throughput of the applications
exceeds the true channel capacity (i.e., the pack is full) or
when an application cannot be delayed any further (as to
preserve session integrity).

In the following example, three delay tolerant applications
intend to transmit at varied times each with a delay deadline of
10 seconds and true throughput of 500kbps (see Figure 6). Top
of Figure 6 shows the transmission sequence without packing.
The Wi-Fi module spends 5 seconds in PSM and the rest of
the time in CAM. The bottom of Figure 6 shows the result of
packing. When APP1 intends to communicate, it is delayed
until the arrival of APP2’s request for communication. Both
use the channel at this point since APP1 cannot be delayed any
further. After APP1 finishes, APP2 is delayed for 10 seconds
after which it again starts to communicate. APP3 arrives and is
not delayed since the overall expected throughput of APP1 and
APP2 has already exceeded the pre-defined true throughput.
Overall, the Wi-Fi module spent 20 seconds in PSM.

C. Alignment for mixed application types

When there is a mixture of delay sensitive and delay
tolerant applications, we do not delay the communication of
delay sensitive applications. But rather, we try to affix the
communication of delay tolerant applications as to “align”
them into the communication patterns of the delay sensitive
applications.

Figure 7 shows an example. APP1 is delay sensitive and
APP2 is delay tolerant. Instead of having them each communi-
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cate independently (top of Figure 7), we delay the transmission
of APP2 intermittently such that APP2 is in-sync with the
communication of APP1. Due to the delay introduced, APP2
will take longer to finish than the un-managed case.

V. ENABLING APPLICATION COMMUNICATION
MANAGEMENT IN ANDROID

In this section, we discuss how application communications
can be delayed and scheduled in practice. We focus our
discussion on downloading by the smart phones because 1)
downloading is by far the pre-dominate communication of
smart phones; 2) mechanism for enabling download man-
agement at device side is much harder to achieve than for
upload management from device. The same technique used
for managing download is readily applicable for managing
upload. We have developed two mechanisms for application
management: manipulation of the process life-cycle (kernel
space) and traffic shaping via firewall (network space):

• Manipulation of process life-cycle: processes can be
suspended and resumed in kernel space. This mecha-
nism is designed for efficient CPU resource sharing and
scheduling. We exploit this mechanism for our applica-
tion control purpose. It works because once the process is
suspended, it will no longer receive or transfer the data.
And the TCP flow control mechanism ensures that no
further data traffic will be sent from the server.

• Traffic shaping via firewall: exploiting the firewall pol-
icy to shape the traffic is one of the well know technique
for controlling traffic.

We experimented the process manipulations scheme on
PPSTV. Process suspension is performed during video playing
back. Once PPSTV was suspended, there was no incoming
traffic to the phone, but a few outgoing traffic from the phone
is made for sustaining the TCP session. After 3 minutes of
delay, we resume PPSTV at the process level and find that the
down stream service resumed successfully with little delay.
Such recovery is possible, because PPSTV uses video buffer
to store arriving packets. On resume, it is able to continue
its data downloading immediately since the TCP session is
preserved. We had similar success with other types of delay
tolerant applications such as DropBox, AndFTP, etc.

This behavior highlights some interesting properties re-
garding TCP which is used by most of the smart phone

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11

G
a

p
 B

e
tw

e
e

n
 M

e
s
s
a

g
e

s
 (

S
) 

TCP Message No. 

TCP  
Window Full 

TCP Keep-Alive 

TCP Window Update 

(a) Process manipulation scheme

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9

G
a

p
 B

e
tw

e
e

n
 M

e
s
s
a

g
e

s
 (

S
) 

TCP Message No. 

TCP Retransmission 

(b) Traffic shaping scheme

Fig. 8. Issued TCP messages in two controlling schemes

applications today. TCP traffic control involves two types of
control scheme, 1) Congestion control and 2) Flow control.

In the process manipulation scheme, the TCP flow control
scheme is exploited for controlling traffic. Once the process
resides in the receiver is suspended, it cannot consume any
newly arriving packets, so that the receiver buffer becomes full
immediately. Consequently, the receiver starts to issue TCP
Window Full message along with TCP Zero Window to inform
the sender to stop sending data. In Figure 8, left figure shows
the overall TCP messages yielded while the Android appli-
cation process is suspended. The TCP Window Full message
is issued one second after the process is suspended, and this
message indicates there is no available buffer space for storing
incoming packet in receiver perspective. The TCP Keep-Alive
message follows the TCP Window Full message, and this
message is for informing the sender that the receiver was not
terminated and was keeping processing the received data. Note
that TCP Zero Window message is also issued to the sender
along with TCP Keep-Alive message, to inform the sender
to stop sending data. However, such event message definitely
yields another overhead to the network. In order to mitigate
such overhead, TCP uses the build-in exponential back-off
time scheme. According to this scheme the event message such
as TCP Keep-Alive is issued in exponentially increased time
frame. Once the process is resumed, the receiver automatically
detects the state, and issues TCP Window Update message
spontaneously to the sender to inform that the receiver is ready
to receive data.

In the traffic shaping scheme, the TCP congestion control
scheme is exploited for traffic controlling purpose. Once traffic
shaper starts to constrain all the incoming and outgoing traffic
for one application via policy rule, all the ACK messages
generated by receiver are blocked out by traffic shaper. The
sender assumes that the receiver is failed to receive the
data for some reasons, so that it starts to perform the data
re-transmission. In Figure 8, right figure shows the overall
TCP messages yielded when the traffic shaping scheme is
enabled. Similar to the TCP Keep-Alive message in process
manipulation scheme, the TCP Retransmission message is also
issued in exponentially increased time frame. Note that in this
scheme, even if the traffic shaping is disabled at some points,
the receiver can only receive the data until the arrival of the
next TCP Retransmission message.
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Fig. 9. Traffic pattern of process manipulation scheme on AndFTP
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Fig. 10. Traffic pattern of traffic shaping scheme on AndFTP

To validate our analysis result and compare the two
schemes, we conducted experiments using AndFTP. The first
experiment was performed by using process manipulation
scheme (see Figure 9), and the second experiment was per-
formed by using traffic shaping scheme (see Figure 10). In the
first experiment, we set the suspend period as 3 minutes, while
for the second experiment, we suspended for 90 seconds. With
process manipulation scheme, we did not observe any recovery
lag, while in traffic shaping scheme, it incurred lag of around
17 seconds before resuming, and as we increased the length
of suspend, the time required for recovering increased as well.

We conclude that process manipulation scheme is effective
for delay tolerant applications which typically have back-
ground synchronization and buffering functionalities. But for
user interactive applications (even if they are somewhat delay
tolerant such as WhatsApp), traffic shaping is more appropriate
even though it is less efficient, because process suspense
will render the application unresponsive to the users and
significantly disrupt user experience.
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Fig. 11. Throughput comparison in different signal strength zone

VI. EXPERIMENT STUDIES

In this section, we evaluate the effectiveness of our energy
saving mechanisms in practice. To do so, we have imple-
mented the management schemes in an application called Au-
tomated Application-Aware Battery Manager (AAA BattMan).
Current implementation of AAA BattMan is targeted for
Android platform and it uses network monitor implemented
as a kernel module. Since the current version of Android
(Gingerbread 2.3.7) does not provide any information on
packet transmission by each application, we customized the
kernel source(2.6.35.14) from htcdev [17] to add the network
monitoring capability.
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Fig. 12. Throughput comparison of the second experiment

Three experiments are performed, and each of which corre-
sponds to the that of proposed energy management schemes. In
each case, we compare the result of not running AAA BattMan
(uncontrolled) with running AAA BattMan (controlled).

In the first experiment, we examine the effect of dynamic
Wi-Fi on-off control. We let the smart phone download a fixed
size file from server using AndFTP while moving to and from
a good signal reception zone and a bad signal reception zone.
We set the α = 0.016 which is very generous (i.e. Wi-Fi cuts
off when true throughput is 1.6% of the expected throughput).
We see that when AAA BattMan is enabled, the Wi-Fi
is indeed cut off (controlled period) when α becomes too
low. In the uncontrolled case, two AP dissociations occurred
in the bad reception zone (disassociation period), when the
controlled case avoided these dissociations. In comparison, the
uncontrolled case took 5 minutes and 8 seconds to obtain the
file while our controlled case took 5 minutes and 28 seconds.
The throughput comparison has been made for the two cases
and the result is depicted in Figure 11. We also compare the
total energy expenditures, and we achieve round 28% energy
reduction.
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Fig. 13. Throughput comparison of the third experiment
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Fig. 14. The comparison on energy consumption for the third experiment

In the second experiment, we performed packing on de-
lay tolerant applications using the example scenario shown
in Figure 6. Three different applications are used each of
which requires 300kbps, 200kbps and 500kbps throughput
respectively, and delay deadline of 10 seconds. The overall
throughput of this experiment is shown in Figure 12. In the
controlled case, we have 20 seconds PSM duration and we
achieved 23% energy reduction by using AAA BattMan.

In the third experiment, we have a mix of delay sensitive
and delay tolerant applications as depicted in example 7. In the
controlled case, APP2 is delayed intermittently in order to sync
with APP1’s transmission. The overall throughput by the APP1
and APP2 is shown in Figure 13, and for this example, we
show the energy expenditure result as captured by PowerTutor
in Figure 14. In the controlled case, we have 30s PSM duration
(notice the drop in energy consumption in PSM), while we
have zero PSM duration in the uncontrolled case. Overall,
AAA BattMan saved us 22.6% energy this experiment.

VII. CONCLUSION

In this paper, we investigate the key factors influencing
Wi-Fi energy consumption: RSSI, throughput and applica-
tion characteristics. We propose effective energy management
schemes for dynamic Wi-Fi on-off control, packing for delay
tolerant applications, and alignment for mix of different ap-
plication types. We also present device-side mechanisms for
realizing our designs. Through extensive experimentation and
solution prototyping, we show the effectiveness of device side
Wi-Fi energy management and the importance of considering
application characteristics. As future work, we will further
mature our design and conduct more extensive experiments.
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