
Estimating Service Response Time for Elastic Cloud
Applications

Khaled Salah

Electrical and Computer Engineering Department
Khalifa University of Science, Technology and Research

(KUSTAR), UAE
Email: khaled.salah@kustar.ac.ae

Raouf Boutaba
 David R. Cheriton School of Computer Science,

University of Waterloo, Canada, and the Division of IT
Convergence Engineering, POSTECH, Pohang, Korea

Email: rboutaba@cs.uwaterloo.ca

Abstract-- This paper presents a Markovian analytical model to
estimate service response time for elastic cloud applications. Given the
expected application workload, the number of virtual machine (VM)
instances, and the capacity of each VM instance, the model can
approximate the mean service time. The mean service time is a
critical metric to estimate, and contributes to the SLA end-to-end
response time experienced by application users. The end-to-end
response time is an aggregated delay of the service time in addition to
delays incurred at the network nodes and links. Our analytical model
focuses on estimating the mean service time; however, the model is
sufficiently general and can be extremely useful in studying cloud
performance. Equations for key performance measures are derived.
These measures include mean response time, throughput, request loss,
queueing probability, and CPU utilization. The correctness of the
model has been verified using discrete-event simulation.

KEYWORDS: Cloud Computing, Elastic Applications, Service and
Network Delays, SLA, Queueing Theory, Performance Modeling and
Analysis

I. INTRODUCTION

In cloud computing, the response time is a key QoS performance
criterion for elastic cloud applications. The response time is one of
the major parameters that get specified in the SLA (Service Level
Agreement), and it must be satisfied by the cloud provider [1, 2].
Elastic cloud applications are scalable applications hosted by the
cloud. The elasticity of cloud applications is accomplished by
continuously monitoring the application workload and
provisioning (or auto-scaling) accordingly the needed cloud
nodes/resources (or VM instances). Examples of elastic
applications include web services, financial services, multimedia
systems, and HPC (High Performance Computing) applications
such as bioinformatics, astronomy, medical imaging, oil and gas
exploration, etc.

At the cloud datacenter, as depicted in Figure 1, elasticity is
typically performed by the Cloud Controller (CLC) or Fabric
Controller (FC) in coordination with the Load Balancer (LB). The
CLC or FC is responsible for managing, provisioning and de-
provisioning the underlying cloud resources. Cloud resources are
typically compute nodes which may require access to storage or
database servers. Each compute node hosts a single or multiple
computer instances or VM instances. The LB is responsible for
communicating continuously with the provisioned VM instances to
determine the load at each VM instance. The LB attempts to

dispatch requests equally among all VM instances. For example,
for web applications, the LB keeps track of the available web
worker threads on each VM instance, and it dispatches the requests
equally among those available threads [3,4]. In addition, the LB
monitors the health and the state of each VM instance and informs
the FC to provision (scale up) or de-provision (scale down) VM
instances in order to meet the SLA criteria.

�
��
��
�
�
��
��
	
�

�
�
��
�
�
�
�
�

Figure 1. A typical elastic application hosted on a cloud datacenter

The cloud provider has to predict accurately the minimum required
cloud resources to provision, especially those of compute or VM
instances. This is necessary so that SLA performance criteria can
be satisfied and resources can be utilized efficiently. Trial and
error or over provisioning of compute instances are not desirable,
as they may lead to SLA violation or result in a poor utilization of
cloud resources and high system cost. More importantly, under
heavy load and in the situation of encountering a violation of SLA
requirement, an individual or group VM instances get provisioned
and instantiated to satisfy the violated SLA criterion (as in
Amazon Auto Scale [3,4]). If the size of this group is not
accurately predicted, this may lead to huge incurred response times
due to the time it takes to provision and instantiate new VM
instances. Such instantiation time is estimated to be in the order of
minutes [5]. Therefore, accurate prediction of the size and the
number of compute instances for elastic applications becomes a
critical performance and resource management issue.

In this paper, we present an analytical model that approximately
determines the minimum required cloud compute instances to

2012 IEEE 1st International Conference on Cloud Networking (CLOUDNET)

978-1-4673-2798-5/12/$31.00 ©2012 IEEE 12

satisfy the specified SLA response time. Specifically, for a known
or measured capacity (or service/processing rate) of VM instances
and a monitored incoming load (or arrival request rate), the model
can predict the overall service response time of an elastic
application hosted on a given number of VM instances. We refer to
the service response time as the sojourn time which includes
processing/execution time and queueing or waiting time at the
datacenter. This sojourn time is a part of the end-to-end response
time which can include other link and node network delays [6,7].

Prior related work reported in [6-12] employs general queueing
models (as those of M/M/1, M/G/1, M/M/m, M/G/m/K, or Erlang
formulas) to capture and analyze the behavior of cloud systems
and applications. None of these models is focused on determining
the number of VM instances required to meet the service response
time for elastic applications. Also, these models fall short of
capturing the real behavior of the elastic applications. Specifically,
all of these models ignore the role of the LB. As stated earlier, the
LB plays an important role in dispatching, monitoring, and
tracking the availability of compute instances at the cloud
datacenter. This processing time at the LB can be significant.
Hence, any analytical model should account for the role of LB in
order to accurately model behavior and performance.

Our proposed analytical model can be used to model other
similarly-behaving systems as those of elastic applications. For
example, the model can be used in auto-scaling algorithm (such
that of Amazon AWS) in which the capacity and number of
compute instances to be provisioned are determined based on the
measured response time and current load. Currently in Amazon
AWS, auto scaling is based on setting a lower and upper thresholds
for the overall CPU utilization. Also, our model can be used to
predict the number of Hadoop cluster nodes (of a certain size and
capacity) required to schedule and execute a MapReduce job.

The rest of the paper is organized as follows. Section II describes
our analytical model to capture the behavior of an elastic
application hosted on a cloud. Section III discusses the correctness
of our proposed analytical model. Section IV presents numerical
examples for two key performance measures of an elastic
application in terms of offered load. Finally, Section V concludes
the study and outlines future work.

II. ANALYTICAL MODEL
The handling of an incoming request for an elastic application
hosted on a cloud is illustrated in Figure 2. As shown, an arriving
request gets first queued in a finite buffer and then dequeued by
the LB with a mean service time r1 . The LB will dequeue the
request for processing if and only if one of the compute instances
is readily available to handle a new request. This could happen if
the compute instance has been newly launched or it has just
finished servicing a request. The compute instance has to notify
the LB upon the completion of a request. We assume each
compute instance can service and process dispatched requests from
the LB with a mean service time µ1 . We assume that the LB will
distribute the load evenly among all m provisioned compute
instances. In this way, if we assume the incoming request rate is

λ , the portion of incoming rate to each individual compute
instance will be mλ . The departure rate of all instances is
denoted by γ , which also represents the overall throughput of the
system.

λ

µ

r

µ

µ

γ

Figure 2. Finite queueing system model with a LB and m compute instances

In order to approximately model the behavior and performance of
the above system, we assume that incoming requests follow a
Poisson arrival λ , and all of the service times are independent and
exponentially distributed with means of r1 and µ1 . Requests
are serviced according to FCFS (First Come First Served)
discipline. We also assume that µmr ≥ . This is a reasonable
assumption; otherwise, the LB will be a performance bottleneck.
If µmr < , then the LB has to be re-sized and scaled up vertically
by adding more CPU processing power, or scaled out horizontally
by adding more LB instances.

Our analytical model uses the embedded Markov chain to
represent the behavior of the queueing system, shown in Figure 2,
with a state space }}1,0{,0),,({ ∈≤≤= nKknkS , where k
denotes the number of requests in the system and n denotes the
type of processing taking place by either the LB or one of the
compute instances. The queueing system has a buffer size of K-m.
State (0,0) represents the special case when the system is empty.
States (k,1) represent the states where the request is being handled
by the LB. States (k,0) represent the states where the request is
being handled by one of the compute instances. The rate transition
diagram is shown in Figure 3.

Let nkq , be the steady-state probabilities at state (k,n). A system
of difference equations can be written as follows. At states (0,0),
(1,0), and (1,1), we have

00,10,0 =+− qq µλ ,

0)(1,10,1 =++− rqqµλ ,
and

02)(0,20,01,1 =+++− qqqr µλλ ,

respectively.

2012 IEEE 1st International Conference on Cloud Networking (CLOUDNET)

13

 Figure 3. State transition diagram to capture handling requests for elastic applications

Therefore, the probabilities of 0,1q , 1,1q , and 0,2q can be

expressed as follows in terms of 0,0q , i.e.,

0,00,1 qq
µ
λ= ,

0,01,1 q
r

q ��
�

�
��
�

�
�
�

�
�
�

� +=
µ
λµλ

,

0,01,10,2 22
qq

r
q ��

�

�
��
�

�
−��

�

�
��
�

� +=
µ

λ
µ

λ
.

(1)

At each state (k,1), the difference equation is expressed as
0)1()(0,11,11, =++++− +− kkk qkqqr µλλ ,

12 −≤≤ mk
0)(0,11,11, =+++− +− kkk qmqqr µλλ ,

mk ≥ .

(2)

At each state (k,0), the difference equation is expressed as
0)(0,11,0, =+++− −kkk qrqqk λµλ ,

 12 −≤≤ mk
0)(0,11,0, =+++− −kkk qrqqm λµλ ,

 mk ≥ .

(3)

Equation (3) can be rewritten as

�
�

�

�
�

	

≥�
�

�
�
�

�−�
�

�
�
�

� +

−≤≤�
�

�
�
�

�−�
�

�
�
�

� +

=

−

−

mkq
r

q
r
m

mkq
r

q
r
k

q

kk

kk

k

0,10,

0,10,

1,

12

λµλ

λµλ

(4)

Equation (4) can be rewritten as

�
�

�

�
�

	

≥��
�

�
��
�

�
−��

�

�
��
�

� +

−≤≤��
�

�
��
�

�
−��

�

�
��
�

� +

=

−−

−−

mkq
m

q
m

r

mkq
k

q
k

r

q

kk

kk

k

1,21,1

1,21,1

0,

13

µ
λ

µ
λ

µ
λ

µ
λ

(5)

The boundary probabilities at states (K, 1) and (K, 0) are as
follows

01,11, =+− −KK qrq λ ,
and

01,0,10, =++− − KKK rqqqm λµ ,
respectively.

Therefore,

�
�
�

��
	

=

>
=

−

1

1

0,0

1,1

1,

Kq
r

Kq
rq

K

K λ

λ

[]

�
�

�

�
�

	

=

>+
=

−−

1

1

0,0

1,10,1

0,

Kq

Kqq
m

q
KK

K

µ
λ

µ
λ

(6)

To solve for 0,0q , we first solve for the normalized variables

0,0, qq mk using Equation (1) to derive ,0,00,1 qq 0,01,1 qq ,

0,00,2 qq . The terms 0,01, qqk and 0,00,1 qqk+ can be
determined recursively from Equations (4) and (5). An algorithm
can be developed to determine 0,00,3 qq and substitute it to

determine 0,01,3 qq , and then successively determine

0,00,4 qq , 0,01,4 qq ,…, 0,00, qqK and 0,01, qqK .

Subsequently, 0,0q can be found using the normalization
condition

��
==

�
�

�

�

�
�

�

�
++

=

�
�

�

�

�
�

�

�
+

==
K

k

kk
K

k

kk

q

q

q

q

q

q

q

q
qp

1 0,0

1,

0,0

0,

0 0,0

1,

0,0

0,
0,00

1

11
.

(7)

Obtaining 0,0q can be used to find all other state probabilities

}1,0,1;{ , =≤≤ nKkq nk . Note that 0,0q denotes the probability

that the system is empty, i.e., 0p .

The mean system throughput γ is basically the departure rate, or
equivalently the rate at which the requests finish being processed
successfully by the compute instances, i.e.,

�
=

=
K

k
kq

1
0,µγ . (8)

2012 IEEE 1st International Conference on Cloud Networking (CLOUDNET)

14

The probability lossP is the loss or blocking probability. lossP
can be expressed as the probability of being in either state (K,0)
or state (K,1), that is

1,0, KKloss qqP += .

The mean number of requests K in the system can be expressed
as

��
===

+==
K

k
kk

K

nk
nk qqkkqK

1
1,0,

1,0,0
,)(.

Using Little's result, the mean time spent in the system by a
request succeeding in entering the queue can be expressed as

)()(
1

1,0,

1

0
1,0, KK

K

k
kk qq

K
qqk

K
W +++== �

−

= γγγ
.

The CPU utilization (known also as the carried or working load)
of each VM instance can be expressed as follows

µ
γ

m
U util = ,

where γ is expressed in Equation (8).

III. VERIFICATION
To verify the correctness of our analytical model, we have
developed a discrete-event simulation of a finite queueing system
with an LB and multiple servers taking into account the same
assumptions as those in the analysis. The simulation was written
in C language, and the code followed closely and carefully the
guidelines given in [19]. We used the PMMLCG as our random
number generator [19]. The simulation was automated to produce
independent replications with different initial seeds that were ten
million apart. During the simulation run, we checked for
overlapping in the random number streams and ascertained that
such a condition did not exist. The simulation was terminated

when achieving a precision of no more than 10% of the mean
with a confidence of 95%. We employed and implemented
dynamically the replication/deletion approach for means
discussed in [19]. We computed the length of the initial transient
period using the MCR (Marginal Confidence Rule) heuristic
developed by White [20]. Each replication run lasts for five times
of the length of the initial transient period.

IV. NUMERICAL EXAMPLES

In this section, we report numerical results obtained by using both
analytical model and simulation. The analytical curves were
obtained by MATLAB implementation of the equations derived
from the analytical models. The simulation results were obtained
using a discrete-event simulation described in Section III. In
Figure 4, the results obtained from simulation are represented by
the red circles, whereas the curves represented by lines are those
of analysis. The figure shows that both simulation and analysis
results are in agreement, and thus implying that our analytical
model is correct.For this numerical example, we use a typical web
workload as reported in [12,21,22]. We fix the system size K to
100 requests. We fix s2.01 mr = and s101 m=µ . The mean
service rate µ is realistic and consistent with the reported
experimental rates in [12,21,22], and this service includes CPU
processing in addition to any required disk I/O or database access.

To show how the model estimates the service time, and also to
illustrate how the model can estimate the number of required VM
instances (or compute nodes) needed to satisfy a given response
time, we plot the mean system delay and CPU utilization with
respect to offered load λ . Figure 4 exhibits the impact of
varying the number of VM instances on the mean system latency
and its corresponding CPU utilization. We focus on the area of
interest, in which the latency starts increasing, that is, when the
arrival rate λ is between 1400 and 2000 Req/s.

1400 1500 1600 1700 1800 1900 2000
10

15

20

25

30

35

40

45

50

55

60

Offered Load (Req/s)

M
ea

n
S

er
vi

ce
 R

es
po

ns
e

Ti
m

e
(m

s)

VM Instances = 20
VM Instances = 19
VM Instances = 18
VM Instances = 17
Simulation Results

1400 1500 1600 1700 1800 1900 2000
70

75

80

85

90

95

100

Offered Load (Req/s)

C
P

U
 U

til
iz

at
io

n
(%

)

VM Instances = 20
VM Instances = 19
VM Instances = 18
VM Instances = 17
Simulation Results

 (a) (b)

Figure 4. Impact of provisioning multiple VMs on response times and its corresponding CPU utilizations

2012 IEEE 1st International Conference on Cloud Networking (CLOUDNET)

15

As shown, and as expected, smaller latencies (and lower CPU
utilizations) are exhibited with larger number of VM instances.
Given a measured offered load, the minimum number of VM
instances can be determined to satisfy a given response time. For
example, if the SLA service response time to satisfy (excluding
network delays) is 15 ms, and the expected offered load (set at the
start for the elastic application or measured later by the LB) is
1500 Req/s, then the needed VM instances will be 17, as shown in
Figure 4(a). However, if the offered load grows to 1600 Req/s, the
needed VM instances will be 18, and so on. Figure 4(b) shows the
corresponding CPU utilizations of a slightly over 90% for 17 and
18 VM instances at an offered load of 1500 and 1600 Req/s,
respectively. In Amazon auto-scaling, a threshold of 85% (set
arbitrary by the user) is typically recommended to trigger scaling
out (i.e. adding more VM instances) so that a service response time
can be met [4]. However, and as shown, this arbitrary threshold is
not appropriate in determining the needed number of VM instances
to guarantee a given service response time. As shown in Figure
4(b), with 85% CPU utilization, 20 VM instances are needed to
maintain the response time below 15 ms. This leads to
unnecessary over-provisioning and poor utilization of cloud
resources, and thereby resulting in a higher system cost for the
cloud customer. In conclusion, the VM instances should be sized
based on the given response time

V. CONCLUSION
We have presented a Markovian analytical model to estimate the
service response time for an elastic cloud application. The model
estimates the service time based on the number of provisioned VM
instances, the capacity of each VM instance, and the expected load.
Simulation results show that our analytical model is correct.
Numerical examples have been given to illustrate how the model
can predict accurately the minimum number of VM instances to
satisfy the response time. We have demonstrated that today’s
practice of using an arbitrary threshold for CPU utilization to auto-
scale resources is not an accurate measure and can lead to high
cost and poor utilization of resources. As a future study, we plan
to validate our model experimentally by measuring the
performance of popular elastic applications hosted on Amazon
cloud, and also compare our experimental results with those of our
analytical model. To date, no experimental results have been
reported in the literature on gauging the processing capacity of VM
instances (in Req/s) or on measuring the performance of elastic
applications in terms of response time and required VM instances
when subjected to different loads.

REFERENCES

[1] W. Iqbal, M. Dailey, D. Carrera, and P. Janecek, “Adaptive Resource
Provisioning for Read Intensive Multi-tier Applications in the Cloud”, Journal
of Future Generation Computer Systems, Eslevier Science, Vol. 27, No. 6,
June 2011, pp. 871-879.

[2] H. Liu and S. Wee, “Web Server Farm in the Cloud: Performance Evaluation
and Dynamic Architecture,” Proceedings of the 1st 2009 International
Conference on Cloud Computing, Springer-Verlag, 2009, pp. 369-380.

[3] A. Azeez, “Auto-scaling Web Services on Amazon EC2”, 2012. Available at
http://people.apache.org/~azeez/autoscaling-web-services-azeez.pdf

[4] Amazon Inc., “Amazon Web Services Auto Scaling,” 2012. Available at
http://aws.amazon.com/autoscaling

[5] H. Lagar-Cavilla, J. Whitney, A. Scannell, P. Patchin, S. Rumble, E. Lara, M.
Brudno, M. Satyanarayanan, “SnowFlock: Rapid Virtual Machine Cloning for
Cloud Computing,” Proceedings of the 4th ACM European Conference on
Computer Systems, EuroSys’09, Nuremberg, Germany, March 2009, pp. 1-
12.

[6] Z. Wang, Y. Chen, D. Gmach, S. Singhal, B. Watson, W. Rivera, X. Zhu, and
C. Hyser, “AppRAISE: Application-Level Performance Management in
Virtualized Server Environments,” IEEE Transactions on Network and
Service Management, Vol. 6, No. 4, December 2008, pp. 240-254.

[7] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood, “Agile
Dynamic Provisioning of Mult-tier Internet Applications,” ACM Transactions
on Autonomous and Adaptive Systems, Vol. 3, 2008, pp. 1-39.

[8] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, A. Tantawi, “An
Analytical Model for Multi-tier Internet Services and its Applications,”
Proceedings of the 2005 ACM SIGMETRICS International Conference, Vol.
33, Alberta, Canada, pp. 291-302.

[9] H. Khazaei, J. Misic, and V. Misic, “Performance Analysis of Cloud
Computing Centers Using M/G/m/m+r Queueing Systems,” IEEE
Transactions on Parallel and Distributed Systems, Vol. 23, No. 5, May 2012,
pp. 936-943.

[10] S. Kikuchi and Y. Matsumoto, “Performance Modeling of Concurrent Live
Migration Operations in Cloud Computing Systems using PRISM
Probabilistic Model Checker,” Proceedings of the 4th IEEE International
Conference on Cloud Computing, 2011, Melbourne, Australia, pp. 49-56.

[11] M. Firdhous, O. Ghazali, and S. Hassan, “Modeling of Cloud System using
Erlang Formulas,” Proceedings of the 2011 7th Asia-Pacific Conference on
Communications (APCC), Saba, Malaysia, October, 2011, pp. 411-416.

[12] K. Xiong and H. Perros, “Service Performance and Analysis in Cloud
Computing,” Proceedings of the 2009 IEEE Congress on Services, July 2009,
Los Angeles, Californian, pp. 693-700.

[13] W. Leland, M. Taqqu, W. Willinger, D. Wilson, "On the Self-Similar Nature
of Ethernet Traffic", IEEE/ACM Transaction on Networking, vol. 2, no. 1,
February 1994, pp. 1-15

[14] V. Paxson and S. Floyd, “Wide-Area Traffic: The Failure of Poisson
Modeling,” IEEE/ACM Transactions on Networking, vol. 3, no. 3, June 1995,
pp. 226-244

[15] W. Willinger, M. Taqqu, R. Sherman, and D. Wilson, “Self-Similarity
Through High-Variability: Statistical Analysis of Ethernet LAN Traffic at the
Source Level,” Proceedings of ACM SIGCOMM, Cambridge, Massachusetts,
August 1995, pp. 100-113.

[16] K. Salah, K. Elbadawi, and R. Boutaba, “Performance Modeling and Analysis
of Network Firewalls” IEEE Transactions on Network and Service
Management, Elsevier Science, vol. 9, no. 1, March 2012, pp. 12-21

[17] R. D. Van Der Mei, R. Hariharan, and P. K. Reeser, "Web Server
Performance Modeling," Journal of Telecommunication Systems, vol. 16, no.
3-4, 2001, pp. 361-378.

[18] K. M. Chandy and C. H. Sauer, “Approximate methods for analyzing
queueing network models of computing systems,” Journal of ACM
Computing Surveys, vol. 10, no. 3, September 1978, pp. 281-317.

[19] A. Law and W. Kelton, Simulation Modeling and Analysis, McGraw-Hill, 2nd
Edition, 1991.

[20] J. White, “An Effective Truncation Heuristic for Bias Reduction in Simulation
Output,” Simulation Journal, vol. 69, no. 6, December 1997, pp. 323-334

[21] J. Bi, Z. Zhu, R. Tian, and Q. Wang, “Dynamic Provisioning for Virtualized
Multi-tier Applications in Cloud Data Center,” Proceedings of the 2010 IEEE
International Conference on Cloud Computing, Miami, Florida, July 2010, pp.
370-377.

[22] J. Dejun, G. Pierre, and C.-H. Chi, “EC2 Performance Analysis for Resource
Provisioning of Service-Oriented Applications,” Proceedings of the 3rd
Workshop on Non-Functional Properties and SLA Management in Service-
Oriented Computing, November 2009.

2012 IEEE 1st International Conference on Cloud Networking (CLOUDNET)

16

