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Abstract-- This paper presents a Markovian analytical model to 
estimate service response time for elastic cloud applications. Given the 
expected application workload, the number of virtual machine (VM) 
instances, and the capacity of each VM instance, the model can 
approximate the mean service time.  The mean service time is a 
critical metric to estimate, and contributes to the SLA end-to-end 
response time experienced by application users.  The end-to-end 
response time is an aggregated delay of the service time in addition to 
delays incurred at the network nodes and links.  Our analytical model 
focuses on estimating the mean service time; however, the model is 
sufficiently general and can be extremely useful in studying cloud 
performance.  Equations for key performance measures are derived.  
These measures include mean response time, throughput, request loss, 
queueing probability, and CPU utilization.  The correctness of the 
model has been verified using discrete-event simulation. 
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I. INTRODUCTION 

In cloud computing, the response time is a key QoS performance 
criterion for elastic cloud applications.  The response time is one of 
the major parameters that get specified in the SLA (Service Level 
Agreement), and it must be satisfied by the cloud provider [1, 2].  
Elastic cloud applications are scalable applications hosted by the 
cloud.  The elasticity of cloud applications is accomplished by 
continuously monitoring the application workload and 
provisioning (or auto-scaling) accordingly the needed cloud 
nodes/resources (or VM instances). Examples of elastic 
applications include web services, financial services, multimedia 
systems, and HPC (High Performance Computing) applications 
such as bioinformatics, astronomy, medical imaging, oil and gas 
exploration, etc.   

At the cloud datacenter, as depicted in Figure 1, elasticity is 
typically performed by the Cloud Controller (CLC) or Fabric 
Controller (FC) in coordination with the Load Balancer (LB). The 
CLC or FC is responsible for managing, provisioning and de-
provisioning the underlying cloud resources.  Cloud resources are 
typically compute nodes which may require access to storage or 
database servers.  Each compute node hosts a single or multiple 
computer instances or VM instances.  The LB is responsible for 
communicating continuously with the provisioned VM instances to 
determine the load at each VM instance. The LB attempts to 

dispatch requests equally among all VM instances.  For example, 
for web applications, the LB keeps track of the available web 
worker threads on each VM instance, and it dispatches the requests 
equally among those available threads [3,4].  In addition, the LB 
monitors the health and the state of each VM instance and informs 
the FC to provision (scale up) or de-provision (scale down) VM 
instances in order to meet the SLA criteria.   
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Figure 1.  A typical elastic application hosted on a cloud datacenter  

The cloud provider has to predict accurately the minimum required 
cloud resources to provision, especially those of compute or VM 
instances.   This is necessary so that SLA performance criteria can 
be satisfied and resources can be utilized efficiently. Trial and 
error or over provisioning of compute instances are not desirable, 
as they may lead to SLA violation or result in a poor utilization of 
cloud resources and high system cost.   More importantly, under 
heavy load and in the situation of encountering a violation of SLA 
requirement, an individual or group VM instances get provisioned 
and instantiated to satisfy the violated SLA criterion (as in 
Amazon Auto Scale [3,4]).   If the size of this group is not 
accurately predicted, this may lead to huge incurred response times 
due to the time it takes to provision and instantiate new VM 
instances.  Such instantiation time is estimated to be in the order of 
minutes [5]. Therefore, accurate prediction of the size and the 
number of compute instances for elastic applications becomes a 
critical performance and resource management issue.     

In this paper, we present an analytical model that approximately 
determines the minimum required cloud compute instances to 
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satisfy the specified SLA response time.  Specifically, for a known 
or measured capacity (or service/processing rate) of VM instances 
and a monitored incoming load (or arrival request rate), the model 
can predict the overall service response time of an elastic 
application hosted on a given number of VM instances. We refer to 
the service response time as the sojourn time which includes 
processing/execution time and queueing or waiting time at the 
datacenter.  This sojourn time is a part of the end-to-end response 
time which can include other link and node network delays [6,7].   

Prior related work reported in [6-12] employs general queueing 
models (as those of M/M/1, M/G/1, M/M/m, M/G/m/K, or Erlang 
formulas) to capture and analyze the behavior of cloud systems 
and applications.  None of these models is focused on determining 
the number of VM instances required to meet the service response 
time for elastic applications.  Also, these models fall short of 
capturing the real behavior of the elastic applications. Specifically,  
all of these models ignore the role of the LB.  As stated earlier, the 
LB plays an important role in dispatching, monitoring, and 
tracking the availability of compute instances at the cloud 
datacenter.  This processing time at the LB can be significant.  
Hence, any analytical model should account for the role of LB in 
order to accurately model behavior and performance.   

Our proposed analytical model can be used to model other 
similarly-behaving systems as those of elastic applications.  For 
example, the model can be used in auto-scaling algorithm (such 
that of Amazon AWS) in which the capacity and number of 
compute instances to be provisioned are determined based on the 
measured response time and current load.   Currently in Amazon 
AWS, auto scaling is based on setting a lower and upper thresholds 
for the overall CPU utilization.  Also, our model can be used to 
predict the number of Hadoop cluster nodes (of a certain size and 
capacity) required to schedule and execute a MapReduce job.  

The rest of the paper is organized as follows.  Section II describes 
our analytical model to capture the behavior of an elastic 
application hosted on a cloud.  Section III discusses the correctness 
of our proposed analytical model.  Section IV presents numerical 
examples for two key performance measures of an elastic 
application in terms of offered load.  Finally, Section V concludes 
the study and outlines future work. 

II. ANALYTICAL MODEL 
The handling of an incoming request for an elastic application 
hosted on a cloud is illustrated in Figure 2.  As shown, an arriving 
request gets first queued in a finite buffer and then dequeued by 
the LB with a mean service time r1 .  The LB will dequeue the 
request for processing if and only if one of the compute instances 
is readily available to handle a new request.  This could happen if 
the compute instance has been newly launched or it has just 
finished servicing a request.  The compute instance has to notify 
the LB upon the completion of a request.  We assume each 
compute instance can service and process dispatched requests from 
the LB with a mean service time µ1 .  We assume that the LB will 
distribute the load evenly among all m provisioned compute 
instances.  In this way, if we assume the incoming request rate is 

λ , the portion of incoming rate to each individual compute 
instance will be mλ . The departure rate of all instances is 
denoted by γ , which also represents the overall throughput of the 
system.  
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Figure 2.  Finite queueing system model with a LB and m compute instances 

In order to approximately model the behavior and performance of 
the above system, we assume that incoming requests follow a 
Poisson arrival λ , and all of the service times are independent and 
exponentially distributed with means of  r1  and µ1 .  Requests 
are serviced according to FCFS (First Come First Served) 
discipline.  We also assume that µmr ≥ .  This is a reasonable 
assumption; otherwise, the LB will be a performance bottleneck.  
If µmr < , then the LB has to be re-sized and scaled up vertically 
by adding more CPU processing power, or scaled out horizontally 
by adding more LB instances. 

Our analytical model uses the embedded Markov chain to 
represent the behavior of the queueing system, shown in Figure 2, 
with a state space }}1,0{,0),,({ ∈≤≤= nKknkS , where k 
denotes the number of requests in the system and n denotes the 
type of processing taking place by either the LB or one of the 
compute instances.  The queueing system has a buffer size of K-m.  
State (0,0) represents the special case when the system is empty.  
States (k,1) represent the states where the request is being handled 
by the LB. States (k,0) represent the states where the request is 
being handled by one of the compute instances.  The rate transition 
diagram is shown in Figure 3. 

Let nkq ,  be the steady-state probabilities at state (k,n).  A system 
of difference equations can be written as follows. At states (0,0), 
(1,0), and (1,1), we have 

00,10,0 =+− qq µλ , 

0)( 1,10,1 =++− rqqµλ , 
and 

02)( 0,20,01,1 =+++− qqqr µλλ ,  

respectively. 
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 Figure 3.  State transition diagram to capture handling requests for elastic applications 

 
Therefore, the probabilities of 0,1q , 1,1q , and 0,2q can be 

expressed as follows in terms of 0,0q , i.e.,   
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(1) 

At each state (k,1), the difference equation is expressed as  
0)1()( 0,11,11, =++++− +− kkk qkqqr µλλ , 

12 −≤≤ mk  
0)( 0,11,11, =+++− +− kkk qmqqr µλλ , 

mk ≥ . 

(2) 

At each state (k,0), the difference equation is expressed as 
0)( 0,11,0, =+++− −kkk qrqqk λµλ , 

              12 −≤≤ mk  
0)( 0,11,0, =+++− −kkk qrqqm λµλ , 

               mk ≥ . 

 
 
(3) 

Equation (3) can be rewritten as 
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Equation (4) can be rewritten as 
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(5) 

 
The boundary probabilities at states (K, 1) and (K, 0) are as 
follows 

01,11, =+− −KK qrq λ , 
and 

01,0,10, =++− − KKK rqqqm λµ ,  
respectively. 

Therefore,  
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(6) 

To solve for 0,0q , we first solve for the normalized variables 

0,0, qq mk  using Equation (1) to derive ,0,00,1 qq 0,01,1 qq , 

0,00,2 qq . The terms 0,01, qqk  and 0,00,1 qqk+  can be 
determined recursively from Equations (4) and (5).  An algorithm 
can be developed to determine 0,00,3 qq and substitute it to 

determine 0,01,3 qq , and then successively determine 

0,00,4 qq , 0,01,4 qq ,…, 0,00, qqK and 0,01, qqK .   

Subsequently, 0,0q  can be found using the normalization 
condition 
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(7) 

Obtaining 0,0q  can be used to find all other state probabilities 

}1,0,1;{ , =≤≤ nKkq nk .  Note that 0,0q  denotes the probability 

that the system is empty, i.e., 0p . 

The mean system throughput γ  is basically the departure rate, or 
equivalently the rate at which the requests finish being processed 
successfully by the compute instances, i.e., 

�
=

=
K

k
kq

1
0,µγ . (8) 
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The probability lossP  is the  loss or blocking probability.  lossP  
can be expressed as the probability of being in either state (K,0) 
or state (K,1), that is   

1,0, KKloss qqP += .  

 
The mean number of requests K in the system can be expressed 
as 
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Using Little's result, the mean time spent in the system by a 
request succeeding in entering the queue can be expressed as 
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The CPU utilization (known also as the carried or working load) 
of each VM instance can be expressed as follows 

µ
γ

m
U util = ,  

where γ is expressed in Equation (8).   

III. VERIFICATION 
To verify the correctness of our analytical model, we have 
developed a discrete-event simulation of a finite queueing system 
with an LB and multiple servers taking into account the same 
assumptions as those in the analysis. The simulation was written 
in C language, and the code followed closely and carefully the 
guidelines given in [19].  We used the PMMLCG as our random 
number generator [19].  The simulation was automated to produce 
independent replications with different initial seeds that were ten 
million apart.  During the simulation run, we checked for 
overlapping in the random number streams and ascertained that 
such a condition did not exist.  The simulation was terminated 

when achieving a precision of no more than 10% of the mean 
with a confidence of 95%.  We employed and implemented 
dynamically the replication/deletion approach for means 
discussed in [19].   We computed the length of the initial transient 
period using the MCR (Marginal Confidence Rule) heuristic 
developed by White [20].  Each replication run lasts for five times 
of the length of the initial transient period.  
 

IV. NUMERICAL EXAMPLES 

In this section, we report numerical results obtained by using both 
analytical model and simulation. The analytical curves were 
obtained by MATLAB implementation of the equations derived 
from the analytical models.  The simulation results were obtained 
using a discrete-event simulation described in Section III.  In 
Figure 4, the results obtained from simulation are represented by 
the red circles, whereas the curves represented by lines are those 
of analysis.  The figure shows that both simulation and analysis 
results are in agreement, and thus implying that our analytical 
model is correct.For this numerical example, we use a typical web 
workload as reported in [12,21,22].  We fix the system size K  to 
100 requests.  We fix s2.01 mr =  and s101 m=µ .  The mean 
service rate µ is realistic and consistent with the reported 
experimental rates in [12,21,22], and this service includes CPU 
processing in addition to any required disk I/O or database access.   

To show how the model estimates the service time, and also to 
illustrate how the model can estimate the number of required VM 
instances (or compute nodes) needed to satisfy a given response 
time, we plot the mean system delay and CPU utilization with 
respect to offered load λ .  Figure 4 exhibits the impact of 
varying the number of VM instances on the mean system latency 
and its corresponding CPU utilization.  We focus on the area of 
interest, in which the latency starts increasing, that is, when the 
arrival rate λ  is between 1400 and 2000 Req/s.   
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Figure 4.  Impact of provisioning multiple VMs on response times and its corresponding CPU utilizations 
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As shown, and as expected, smaller latencies (and lower CPU 
utilizations) are exhibited with larger number of VM instances.  
Given a measured offered load, the minimum number of VM 
instances can be determined to satisfy a given response time.  For 
example, if the SLA service response time to satisfy (excluding 
network delays) is 15 ms, and the expected offered load (set at the 
start for the elastic application or measured later by the LB) is 
1500 Req/s, then the needed VM instances will be 17, as shown in 
Figure 4(a).  However, if the offered load grows to 1600 Req/s, the 
needed VM instances will be 18, and so on.  Figure 4(b) shows the 
corresponding CPU utilizations of a slightly over 90% for 17 and 
18 VM instances at an offered load of 1500 and 1600 Req/s, 
respectively.  In Amazon auto-scaling, a threshold of 85% (set 
arbitrary by the user) is typically recommended to trigger scaling 
out (i.e. adding more VM instances) so that a service response time 
can be met [4].  However, and as shown, this arbitrary threshold is 
not appropriate in determining the needed number of VM instances 
to guarantee a given service response time.  As shown in Figure 
4(b), with 85% CPU utilization, 20 VM instances are needed to 
maintain the response time below 15 ms.  This leads to 
unnecessary over-provisioning and poor utilization of cloud 
resources, and thereby resulting in a higher system cost for the 
cloud customer.  In conclusion, the VM instances should be sized 
based on the given response time 
 

V. CONCLUSION 
We have presented a Markovian analytical model to estimate the 
service response time for an elastic cloud application.  The model 
estimates the service time based on the number of provisioned VM 
instances, the capacity of each VM instance, and the expected load.    
Simulation results show that our analytical model is correct.  
Numerical examples have been given to illustrate how the model 
can predict accurately the minimum number of VM instances to 
satisfy the response time.  We have demonstrated that today’s 
practice of using an arbitrary threshold for CPU utilization to auto-
scale resources is not an accurate measure and can lead to high 
cost and poor utilization of resources.   As a future study, we plan 
to validate our model experimentally by measuring the 
performance of popular elastic applications hosted on Amazon 
cloud, and also compare our experimental results with those of our 
analytical model.  To date, no experimental results have been 
reported in the literature on gauging the processing capacity of VM 
instances (in Req/s) or on measuring the performance of elastic 
applications in terms of response time and required VM instances 
when subjected to different loads.  
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