PolicyCop: An Autonomic QoS Policy Enforcement Framework for Software Defined Networks

Md. Faizul Bari, Shihabur Rahman Chowdhury, Reaz Ahmed, and Raouf Boutaba David R. Cheriton School of Computer Science, University of Waterloo [mfbari|sr2chowdhury|r5ahmed|rboutaba]@uwaterloo.ca

- Motivation
- Our Contribution
- Our Approach
- Simulation Results
- Conclusion & Future Work

Motivation

- Network management systems are being continuously challenged to satisfy application QoS requirements
- Policy based management can tackle these challenges
- Recently emerging field of Software Define Networking (SDN) can provide features like:
 - Per flow control
 - Dynamic flow aggregation
 - Dynamic traffic classes
 - Avoid protocol clutter problem
 - Ease of deployment
- Policy based management can be coupled together with SDN to provide autonomic policy based management

- Motivation
- Our Contribution
- Our Approach
- Simulation Results
- Conclusion & Future Work

Our Contribution

- We have designed and implemented a prototype of an autonomic QoS policy enforcement framework, PolicyCop that:
 - Leverages the programmability offered by SDN for
 - Dynamic traffic steering
 - Flexible Flow level control
 - Dynamic traffic classes
 - Custom flow aggregation levels
 - Monitors the network to detect policy violations
 - Reconfigures the network to reinforce the violated policy

- Motivation
- Our Contribution
- Our Approach
- Simulation Results
- Conclusion & Future Work

Our Approach

PolicyCop: Control Plane

PolicyCop: Management Plane

PolicyCop

Our Approach (Workflow)

- Motivation
- Our Contribution
- Our Approach
- Simulation Results
- Conclusion & Future Work

Experimental Setup

- 5 Open vSwitches (OVSs) & 4 hosts
- OVSs' interconnected with GRE tunnels to simulate bandwidth and latency
- One floodlight controller
- Used iperf to generate traffic

Use Case 1: Link Failure

Use Case 2: Throughput Violation

- Motivation
- Our Contribution
- Our Approach
- Simulation Results
- Conclusion & Future Work

Conclusion & Future Work

- We have
 - Presented the design of PolicyCop, an autonomic QoS policy enforcement framework for SDN
 - Demonstrated the effectiveness of PolicyCop through a working prototype
- Our next step
 - Implement all component of PolicyCop
 - Interface with existing policy specification languages (*e.g.*, Ponder)
 - Provide a collection of controller applications for other network management function

Questions?

