

On Satisfying Green SLAs in Distributed Clouds


<u>Ahmed Amokrane</u>¹, M.Faten Zhani², Qi Zhang², Rami Langar¹, Raouf Boutaba², Guy Pujolle ¹

¹ LIP6, Pierre and Marie Curie University, Paris 6, France

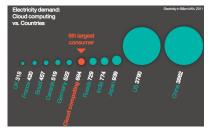
² University of Waterloo, Ontario, Canada

CNSM 2014, Rio de Janeiro, Brazil

Environmental Impact of Cloud

Source: Greenpeace

Source: Greenscroll.org


< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

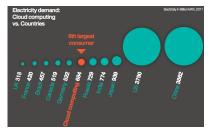
Carbon dioxide (CO2) emissions as % of world

Emissions from data centers

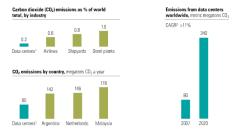
Environmental Impact of Cloud

Source: Greenpeace

total, by industry worldwide, metric megatons CO₂ CAGR² >11% 1.0 n R 340 Data centers1 Airlines Shipyards Steel plants CO2 emissions by country, megatons CO2 a year 178 80 80 Data centers1 Amentina Netherlands Malaysia 2007 2020


Source: Greenscroll.org

(日) (同) (三) (三)


Energy Reduction = Cost Reduction

э

Environmental Impact of Cloud

Source: Greenpeace

Source: Greenscroll.org

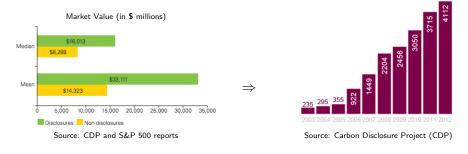
Energy Reduction = Cost Reduction

Carbon Reduction = ?

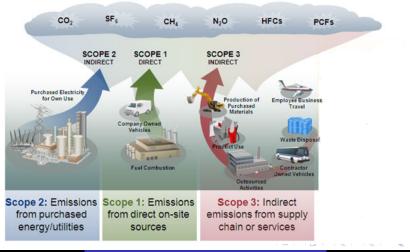
(日) (同) (三) (三)

Why Do Carbon Emissions Matter for Companies?

• The amount of generated carbon impacts the company's value [KPMG]


Why Do Carbon Emissions Matter for Companies?

- The amount of generated carbon impacts the company's value [KPMG]
- Carbon disclosure has an impact on the company's value as well


Why Do Carbon Emissions Matter for Companies?

- The amount of generated carbon impacts the company's value [KPMG]
- Carbon disclosure has an impact on the company's value as well

Carbon Emissions Scopes

Carbon emissions is everyone's responsibility, directly or indirectly

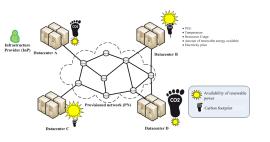
Explicit Specification of the Green Requirements

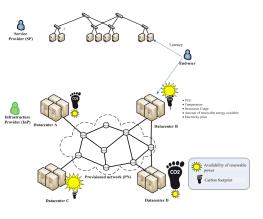
- In a Cloud environment
 - Cloud Providers (CPs): own and lease the infrastructure
 - Service Providers (SPs): use the infrastructure to offer services

Explicit Specification of the Green Requirements

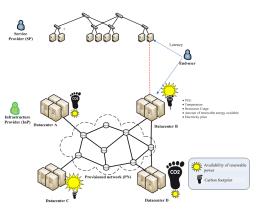
- In a Cloud environment
 - Cloud Providers (CPs): own and lease the infrastructure
 - Service Providers (SPs): use the infrastructure to offer services
- A move towards explicit definition of the green targets by SPs
 - Limits in the carbon emission for the hosted services [1-5]
 - Minimum renewable energy to use [6]
- [1] Cloud Selected Industry Group, Service Level Agreements expert subgroup, April 2013
- [2] G. Laszewski et al. GreenIT Service Level Agreements,
- [3] C. Bunse et al. GreenSLAs: Supporting Energy-Efficiency through Contracts,
- [4] A. Galati et al. Designing an SLA Protocol with Renegotiation to Maximize Revenues for the CMAC Platform,
- [5] C. Atkinson et al. Facilitating greener it through green specifications,
- [6] M. Haque et al. Providing green SLAs in high performance computing clouds,

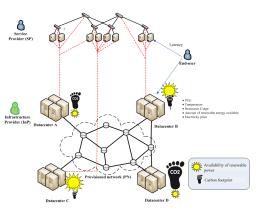
Context	Problem Formulation	Greenslater	Conclusion
Outline			

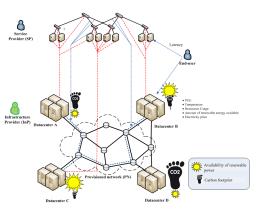

- Context: VDC Allocation in Distributed Clouds with Green SLAs
- 2 Problem Formulation
- 3 Our Proposal: GreenSLAter
- Performance Evaluation


Context	Problem Formulation	Greenslater	Conclusion
Outline			

Context: VDC Allocation in Distributed Clouds with Green SLAs


- 2 Problem Formulation
- 3 Our Proposal: GreenSLAter
- 4 Performance Evaluation
- 5 Conclusion


- Multiple data centers:
 - Different geographic locations
 - Different characteristics, e.g., Power Usage Effectiveness (PUE)
 - Difference in electricity price, carbon footprint for grid power, availability of onsite renewables


- Multiple data centers:
 - Different geographic locations
 - Different characteristics, e.g., Power Usage Effectiveness (PUE)
 - Difference in electricity price, carbon footprint for grid power, availability of onsite renewables
- VDC requests:
 - VMs (CPU, memory, disk), virtual links (bandwidth,
 - delay)
 - Green SLA terms

- Multiple data centers:
 - Different geographic locations
 - Different characteristics, e.g., Power Usage Effectiveness (PUE)
 - Difference in electricity price, carbon footprint for grid power, availability of onsite renewables
- VDC requests:
 - VMs (CPU, memory, disk), virtual links (bandwidth,
 - delay)
 - Green SLA terms

- Multiple data centers:
 - Different geographic locations
 - Different characteristics, e.g., Power Usage Effectiveness (PUE)
 - Difference in electricity price, carbon footprint for grid power, availability of onsite renewables
- VDC requests:
 - VMs (CPU, memory, disk), virtual links (bandwidth,
 - delay)
 - Green SLA terms

- Multiple data centers:
 - Different geographic locations
 - Different characteristics, e.g., Power Usage Effectiveness (PUE)
 - Difference in electricity price, carbon footprint for grid power, availability of onsite renewables
- VDC requests:
 - VMs (CPU, memory, disk), virtual links (bandwidth,
 - delay)
 - Green SLA terms

- Green SLA Specification: 2 components
 - SP specifies the upper limit of the carbon emission
 - The Carbon emissions due to the VDC should not exceed \boldsymbol{x} tons for a period of time
 - Agreement on the reporting period
 - Periodically: week, month, every billing period (c.f. Open Data Center Alliance)
 - CPs should report to every SP the amount of carbon generated on his behalf

- Green SLA Specification: 2 components
 - SP specifies the upper limit of the carbon emission
 - The Carbon emissions due to the VDC should not exceed \boldsymbol{x} tons for a period of time
 - Agreement on the reporting period
 - Periodically: week, month, every billing period (c.f. Open Data Center Alliance)
 - CPs should report to every SP the amount of carbon generated on his behalf
- At the end of the reporting period, a CP reports:
 - The total Carbon Emissions
 - Carbon Emission per unit of resource e.g., tonsCO2/Gbps (Akamai), kgCO2/TB (Verizon), gCO2/search and gCO2/user per month (Google)
 - Carbon Emission per VDC

Context	Problem Formulation	Greenslater	Conclusion
Outline			

Context: VDC Allocation in Distributed Clouds with Green SLAs

2 Problem Formulation

3 Our Proposal: GreenSLAter

Performance Evaluation

5 Conclusion

Context	Problem Formulation	Greenslater	Conclusion
Context			

- From the Cloud Provider standpoint
- Multiple data centers: Heterogenous data centers (PUE, renewables, electricity price)
- Dynamic arrival and departure of VDCs
- $\bullet\,$ Green SLA terms of VDCs are defined for reporting periods of duration T^k
- A reporting period ${\cal T}^k$ is divided into time slots
 - Data centers characteristics fixed during a time slot

Context	Problem Formulation	Greenslater	Conclusion
Mathen	natical Formulatio	n	

- Physical infrastructure: $G(V \cup W, E)$
 - V: data centers, W: backbone network nodes, E: phy. links
- VDC Request $j: G^j(V^j, E^j)$ $V^j:$ VMs, $E^j:$ virtual links
- A reporting period T^k is divided into time slots
- Decision variables:

$$x_{ik}^{j,t} = \begin{cases} 1 & \text{If the VM } k \text{ of the VDC } j \text{ is assigned} \\ & \text{to data center } i \text{ during time slot } t \\ 0 & \text{Otherwise.} \end{cases}$$

 $f_{e,e'}^t = \begin{cases} 1 & \text{If the backbone link } e \text{ is used to embed} \\ & \text{the virtual link } e' \text{ during time slot } t \\ 0 & \text{Otherwise.} \end{cases}$

• For every reporting period T^k :

Maximize $\mathcal{R}_k - (\mathcal{D}_k + \mathcal{B}_k + \mathcal{M}_k + \mathcal{P}_k)$

- \mathcal{R}_k : the revenue during the reporting period T^k
- \mathcal{D}_k : the embedding cost in data centers
- \mathcal{B}_k : the embedding cost in the backbone network
- \mathcal{M}_k : the migration cost
- \mathcal{P}_k : the penalty cost

Subject to:

- Capacity constraints in the physical infrastructure (data centers and backbone network)
- Location constraints of some VMs
- Migration restrictions: e.g., service disruption

Mathematical Formulation

• Optimization problem formulation (ILP)

- Computation time-wise inefficient
- Too frequently changing (every single time slot)

Context	Problem Formulation	Greenslater	Conclusion
Outline			

Context: VDC Allocation in Distributed Clouds with Green SLAs

- Problem Formulation
- 3 Our Proposal: GreenSLAter
- Performance Evaluation

5 Conclusion

Context	Problem Formulation	Greenslater	Conclusion
Overview			

- At the time of request arrival:
 - VDC partitioning¹:
 - Group the VMs with high bandwidth demand into the same partition
 - Minimize the bandwidth in the backbone network
 - Reuse the Louvain Algorithm
 - Partition Embedding based on the estimation of available renewables in different data centers
 - Admission Control: Reject requests whose profit is negative

¹A.Amokrane, M.F. Zhani, R. Langar, R. Boutaba, G. Pujolle: "Greenhead: Virtual Data Center Embedding Across Distributed Infrastructures". Transactions on Cloud Computing, 2013

Amokrane et al.

Context	Problem Formulation	Greenslater	Conclusion
Overview			

- At the time of request arrival:
 - VDC partitioning¹:
 - Group the VMs with high bandwidth demand into the same partition
 - Minimize the bandwidth in the backbone network
 - Reuse the Louvain Algorithm
 - Partition Embedding based on the estimation of available renewables in different data centers
 - Admission Control: Reject requests whose profit is negative
- Periodic Reconfiguration: Follow the renewables

¹A.Amokrane, M.F. Zhani, R. Langar, R. Boutaba, G. Pujolle: "Greenhead: Virtual Data Center Embedding Across Distributed Infrastructures". Transactions on Cloud Computing, 2013

Amokrane et al.

Admission Control Algorithm

- Try embedding and detect violations
- Use worst case estimation of energy consumption of the VDC
- Infer an estimation of the carbon rate for the VDC
- Reject the request if the profit is negative

Alg	orithm 1 Admission Control Algorithm
1:	IN: predictionWdW // the prediction window
2:	IN: reconfigInterval // the reconfiguration interval
3:	IN: vdc // the VDC to embed
4:	$wdw \leftarrow min(predictionWdw, reconfigInterval)$
5:	$possible \leftarrow possibleToEmbed(vdc)$
6:	if possible then
7:	$carbonRate \leftarrow getEstimationCarbonRate(wdw)$
8:	$carbonLimitRate \leftarrow vdc.carbonLimit/wdw$
9:	if carbonRate \leq carbonLimitRate then
10:	Accept vdc
11:	else
12:	//Verify if profit can be made
13:	$estimatedCost \leftarrow estimatePowerCost(vdc)$
14:	if $revenue(vdc) \times (1 - refundFactor)$ -
	estimatedCost > 0 then
15:	Accept vdc
16:	else
17:	Reject vdc
18:	end if
19:	end if
20:	else
21:	Reject vdc
22:	end if

Partition Embedding Algorithm

- Greedy embedding of partitions
- Dijkstra's algorithm with backbone cost as a metric

```
Algorithm 2 Greedy VDC Partitions Embedding Across Data Centers
```

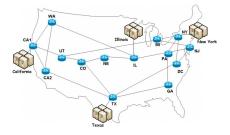
1: IN: $G(V \cup W, E)$, $G^{j}_{M}(V^{j}_{M}, E^{j}_{M})$ 2: for all $i \in V$ do $ToDC[i] \leftarrow \{\}$ 4: end for for all $v \in V_M^j$ do $S_v \leftarrow \{i \in V \mid i \text{ satisfies the location constraint}\}$ 7: end for for all $v \in V_M^j$ do $\leftarrow s \in S_v$ with the smallest cost qetCost(s, v), and LinksEmbedPossible(s, v) = trueif no data center is found then 10. 11: return FAIL 12: end if 13: $ToDC[i] \leftarrow ToDC[i] \cup \{v\}$ for all $k \in N(v)$ do 14: 15: if $k \in ToDC[i]$ then $ToDC[i] \leftarrow ToDC[i] \cup \{e_{vk}\}$ 16 else if $\exists l \neq i \in V / k \in ToDC[l]$ then 18: 19: Embed e_{nk} in G using the shortest path 20: end if 21: end if 22: end for 23: end for 24: return ToDC

< /₽ > < E > <

Dynamic Reconfiguration Algorithm

- Idea: Offload VMs to data centers where renewables are available
- Hints:
 - Use the actual power consumption in data centers
 - Estimate the available renewables (prediction window of around 4 hours)
 - Classify the partitions in increasing order of migration costs
 - Migrate in the increasing order of costs
 - Destination choice: reduce the bandwidth in the backbone network

Alg	orithm 3 Greedy Partition Migration Across Data Centers
1:	IN: predictionWdW // the prediction window
2:	IN: reconfigInterval // the reconfiguration interval
3:	$wdw \leftarrow min(predictionWdW, reconfigInterval)$
4:	for all $i \in V$ do
5:	$Diff[i] \leftarrow EstimateRenewables(wdw, i) -$
	FutureConsumption(wdw, i)
6:	if $Diff[i] < 0$ then
7:	$part[i] \leftarrow list of partitions in i sorted by migration cost$
8:	end if
9:	end for
10:	for all $i \in V$, $Diff[i] < 0$ do
11:	while $\ni k \in V$, $Diff[k] > 0$ do
12:	$p \leftarrow part[i].first$
13:	$D \leftarrow \{k \in V, Diff[k] > 0\}$
14:	$done \leftarrow false$
15:	while $!done \&\& D \neq \phi do$
16:	//Take the data center with the minimum cost in the
	backbone network after migration
17:	$dest \leftarrow minBackboneCost(D)$
18:	Migrate(p, dest)
19:	if successful migration then
20:	$done \leftarrow true$
21:	Update $Diff[dest]$ and $Diff[i]$
22:	else
23:	$D \leftarrow D \setminus \{dest\}$
24:	end if
25:	end while
26:	end while
27:	end for

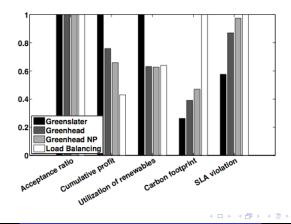

Context	Problem Formulation	Greenslater	Evaluation	Conclusion
Outline				

- Context: VDC Allocation in Distributed Clouds with Green SLAs
- Problem Formulation
- 3 Our Proposal: GreenSLAter
- 4 Performance Evaluation

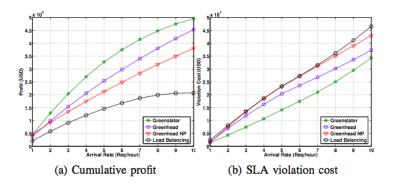
5 Conclusion

Simulation Settings: Parameters

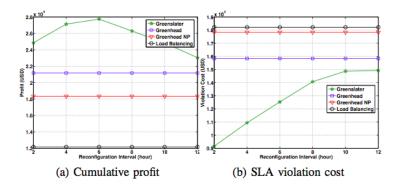
- Physical Topology
 - 4 Data centers connected through NSFNet
 - Traces for renewable power and carbon emissions
- VDC Requests
 - Poisson Arrivals, Exponential lifetime (24 hours)
 - U(10, 50) VMs, U(1, 4) cores, virtual links U(10, 50Mbps)
 - Carbon constraints U(5,20kg) CO $_2$ / 24 hours
- $\bullet\,$ SLA violation: the CP pays back 50% of the bill


Simulation Settings: Baselines

Greenhead.


- Same partitioning, Greedy VDC embedding
- Objective: Reduce operational costs and carbon emissions
- No dynamic reconfiguration. No explicit Green SLA consideration
- Greenhead No Partitioning (NP):
 - Greedy VDC embedding
 - Objective: Reduce operational costs and carbon emissions
 - No Partitioning, No dynamic reconfiguration, No explicit Green SI A consideration
- Load Balancing:
 - Load balance the VDCs across the data centers
 - No dynamic reconfiguration. No Green SLA consideration

- Higher profit and higher utilization of renewables
- Reduced SLA violations and reduced carbon footprint


Higher profit and reduced SLA violation costs

∃ ▶ ∢

э

- Higher profit and reduced SLA violation costs
- Optimal reconfiguration interval around 6 hours

.⊒ . ►

Context	Problem Formulation	Greenslater	Conclusion
Outline			

- Context: VDC Allocation in Distributed Clouds with Green SLAs
- 2 Problem Formulation
- 3 Our Proposal: GreenSLAter
- 4 Performance Evaluation

- Green SLAs in clouds
- Greenslater:
 - Partitioning, Admission Control, Embedding
 - Dynamic reconfiguration to follow the renewables
 - Satisfying Green SLAs
 - Higher profit
- Future work:
 - Consider proportional violations costs
 - Study the pricing model Green SLA vs. traditional SLA
 - Consider re-negotiation instead of rejecting requests

Context	Problem Formulation	Greenslater	Conclusion

Amokrane et al.

On Satisfying Green SLAs in Distributed Clouds

CNSM 2014

イロン イヨン イヨン イヨン

26

э.