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Abstract—Recent advances in virtualization technology have
made it possible to partition a network into multiple virtual
networks managed by different users. Although virtual networks
share the same physical infrastructure, they host diverse applica-
tions with different goals. Unfortunately, current virtual network
provisioning solutions have only focused on achieving a single
objective that may not be suited for all the applications deployed
across the network.

In this paper, we propose an adaptive provisioning framework
for virtualized networks that takes into consideration the charac-
teristics of multiple applications and their distinct performance
objectives. The proposed framework is based on the concept of
allocation paradigm, which is defined as a set of application-
driven provisioning policies that guide the resource allocation
process. To determine the efficiency of a particular paradigm,
we propose a virtual network performance computation model
based on data measured from existing benchmarks. Simulation
results show that our model helps network providers to select
the best allocation paradigms in terms of provisioning quality.

I. INTRODUCTION

Recent advances in virtualization technology have made it
possible to partition a physical network into multiple virtual
networks used and managed by different users. In a virtualized
environment, the Infrastructure Provider (InP) who owns and
manages the physical network offers resources to multiple
Service Providers (SPs) in the form of Virtual Networks
(VNs). Typically, a SP issues a VN request containing the
VN specification that includes its topology, the number and
capacity of its virtual nodes (e.g., CPU, memory, and disk)
and virtual links (e.g., bandwidth and delay). The InP runs
then an embedding algorithm aiming at allocating resources to
the requested VN. The request is whether accepted or rejected
depending on the availability of resources.

Traditionally, VN embedding algorithms try to find the best
mapping of VNs onto the physical infrastructure such that the
objectives of the InP and SPs are achieved [1], [2], [3], [4],
[5]. For instance, the InP’s goal is usually to maximize the
number of embedded VNs in order to increase its revenue,
while SPs require guaranteed and predictable performance for
their VNs. Despite extensive study on VN embedding problem,
there are common limitations shared by most proposals. First,
current schemes are static. That is, InPs cannot dynamically
change the goal of the embedding scheme and are not able

to support specific application requirements, such as fault-
tolerance or exclusivity usage of some resources. Second,
most VN embedding solutions map all virtual resources of
a VN request altogether, i.e., upon receiving a VN request,
the embedding algorithm generates as output the complete
mapping of all the VN’s virtual resources onto their physical
counterparts. This can lead to many requests being rejected
because it is not possible to embed few of their virtual re-
sources. However, in practice, when previously allocated VNs
expire, more resources are released. Therefore, it would be
interesting to provide the possibility to embed VNs gradually
as more resources may become available in the future.

Furthermore, current VN embedding schemes lack flexibil-
ity as they do not take into account possible changes of the
InP’s objectives, the characteristics of the applications running
on the VNs, and also potential changes that could occur to
the physical substrate. Consequently, there is a pressing need
to design more flexible VN embedding schemes where InP’s
objectives change over time and applications goals are taken
into account. Recent research on adaptive resource allocation
has considered the achievement of multiple objectives [6], [7].
However, these proposals are limited to capacity adjustment
of individual resources (e.g., virtual servers) and the reconfig-
uration of previously deployed VNs.

In our previous work, we introduced the concept of alloca-
tion paradigm to guide resource provisioning in virtualized
environments [8]. A paradigm encompasses a set of goals
representing the high-level objectives of the InP and the SPs.
Each objective is achieved through actions (e.g., allocation)
executed within a window (one per goal). The action is defined
at run-time according to the objectives and the current status of
the substrate network. This approach allows a quick adaptation
of the provisioning process to the dynamics of the substrate
and to the characteristics of the deployed applications. If some
of the targeted objectives are not satisfied or if applications
running on a particular VN exhibit poor performance, the cur-
rent allocation paradigm may need to be changed. Evaluating
the efficiency of an allocation paradigm and determining when
a it should be revised is a critical challenge that should be
addressed.

In this paper, we aim at evaluating the effectiveness of
allocation paradigms in terms of provisioning performance.978-1-4799-0913-1/14/$31.00 c© 2014 IEEE



We propose a VN computation model that measures the
performance of an allocation paradigm based on that of the
applications running on the embedded VNs. Our model is
based on three main metrics: paradigm quality, provisioning
time of VNs, and provisioning cost. These metrics allow to
evaluate the performance of paradigms so as to help InPs to
better define provisioning approaches.

The rest of this paper is organized as follows. The prob-
lem formulation and the computation model are provided in
Sections II and III, respectively. The proposed solution is
evaluated in Section IV. Finally, we conclude the paper and
follow up with future work in Section V.

II. PROBLEM FORMULATION

In this section we formally define allocation paradigms.
We first start by modeling the physical network and VN re-
quests. Next, we discuss the main design aspects of allocation
paradigms and provide the problem formulation.

A. Physical Network

We model the physical network as a weighted undirected
graph Np = (Mp, Rp, Lp, Op), where Mp is the set of
physical machines, RP is the set of physical network elements
(e.g., routers and switches), Lp is the set of physical links
used to connect physical machines and network elements, and
Op is the set of InP objectives that can be considered during
VN provisioning. Each physical machine mp ∈ Mp has an
associated CPU capacity c(mp) ∈ R+. Each physical link
lpij ∈ Lp connecting two physical nodes i, j ∈ Mp ∪ Rp has
an associated bandwidth b(lpij) ∈ R+. An objective ov ∈ Ov

is one of the objectives that can be chosen by the InP. Each
objective is associated with a target index t(ov) ∈ N. Possible
values that t(ov) can take are listed in Table I.

TABLE I
EXAMPLES OF INP’S OBJECTIVES

Target Property Description
0 Green Virtual nodes and links should be

mapped on the smallest set of phys-
ical nodes

1 Low latency Virtual links should be mapped on
physical paths with small hop num-
ber

2 Load balancing Virtual nodes and links should be
mapped in distinct locations and
cannot share the same physical re-
source

3 Low communication cost Virtual nodes with more capacity
should be placed close to each
other

B. Virtual Network Request

In our model, a VN request is defined as a weighted
undirected graph Nv = (Mv, Lv, P v), where Mv is the set
of virtual machines, Lv is the set of virtual links, and P v is
the set of properties desired for the applications running on
the VN. Unlike a physical network, our model does not define
intermediate routers and switches for a VN; virtual links are
requested, however, in order to allocate bandwidth between

virtual machines. Similar to the physical machine, each virtual
machine mv ∈ Mv requests an amount of CPU capacity
c(mv) ∈ R+, and each virtual link lvij ∈ Lv connecting
two virtual machines i, j ∈Mv has a bandwidth requirement
denoted by b(lvij) ∈ R+. A property pv ∈ P v is a non-
functional requirement defined by the applications running
on the VN. Each property has a corresponding target index
t(pv) ∈ N that is associated with a high-level requirement
requested for the VN. Values that t(pv) can take are listed in
Table II. These values are used as reference. The model can
be easily extended to include as many properties as required
by the InP.

TABLE II
VN PROPERTIES EXAMPLES

Target Property Description
0 Reliability Replicas of allocated resources

should be placed in different loca-
tions

1 Security A VM should not share the same
physical machine of another SP

2 Best-effort VM can be placed at any location

C. Paradigm Model
An allocation paradigm is a group of provisioning policies

that are considered when VNs are provisioned and defines
how VNs are allocated in the physical substrate. Each policy
is associated with a high-level goal defined by the InP, such as
“low latency” or “reliability”. Allocation paradigms have four
main design characteristics that make them suitable to guide
resource allocation in virtualized environments.

Application awareness - Because VNs are hosting appli-
cations, the InP needs to define the relationship between VNs
and the applications that ultimately run on them. A possible
approach is to simplify the problem by allowing only one
application per VN. The disadvantage of such approach is
the underutilization of resources when the application is not
active. On the other hand, deploying multiple applications over
a single VN can improve resource utilization at the cost of
more complex allocations.

Adaptive provisioning - Typical VN embedding schemes
map the whole VN on the physical substrate at once upon
receiving a VN request. Mapping all resources of a VN in
a single operation is straightforward because the InP has the
complete view of the substrate network and the associated
capacities. However, some approaches assume that virtual
nodes of the same VN request cannot share the samw phys-
ical node and have to be mapped at distinct locations [1]
[9]. This limitation may reduce the chances of a successful
embedding. In addition, most VN embedding approaches do
not properly tackle the case where multiple VN requests arrive
simultaneously, which is the typical case in realistic scenarios.
Therefore, two or more ongoing VN requests can compete for
the same physical resource, increasing the chances of rejected
VN requests.

To overcome the aforementioned problems and allow rapid
adaptation of current provisioning approaches to the dynamics



of the physical substrate, we argue that a VN request should
be mapped in parts. To realize such concept, we propose the
use of allocation windows and rounds. One allocation window
encompasses a fixed number of individual allocation actions
defined in real-time by the current allocation paradigm, such as
virtual machine creation. The execution of the actions within
an allocation window is called a round. Several rounds may be
needed in order to complete the full allocation of a VN. In each
round, the corresponding window executes the appropriate
allocation actions defined by the active paradigm. Figure 1
illustrates how a VN would be mapped using the concepts
of windows and rounds. The numbers represent the order in
which the virtual resources are allocated. This is determined
by the policies defined by in the active paradigm.
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Fig. 1. Allocation windows and rounds

The benefits of this partial and multi-iteration mapping are
threefold. First, it allows multiple virtual resources of the
same VN request to be mapped on the same physical node.
Second, windows allow rapid adaptation to changing network
conditions. Two consecutive allocation rounds can result in
different mappings compared to mapping all resources at once.
For example, after the first round, the mapping of virtual
machines can be modified dynamically to select a physical
server that turned out to be a better mapping option for a given
objective (e.g., reduce number of active physical servers) and
that was not available at the first round. Finally, a window can
run actions from different VN requests making the problem
of managing multiple ongoing VN requests more tractable.

Paradigm operations - The InP manager may create,
remove, modify, or switch allocation paradigms. The active
allocation paradigm may need to be modified by adding
or removing policies from it, or another paradigm may be
activated to allow rapid adaptation of the provisioning service
to other types of VN requests or to changes in the physical
substrate (e.g., new resources that became available after VN
release). The decision to modify or switch to another allocation
paradigm depends on the effectiveness of the current active
one. The effectiveness of an allocation paradigm can be de-
fined in terms of the performance achieved by the applications
running on VMs.

An allocation paradigm P is defined by a set of goals
(G1, G2, ..., Gn) that are considered in VN provisioning. Each
goal Gi ∈ P reflects an InP objective or a characteristic
desired for an application running on the VN, having the same
meaning of an objective op ∈ Op supported by the InP or a
property pv ∈ P v defined in a VN request, respectively. An
individual goal Gi is realized by a set of allocation actions

(A1, A2, ..., An) executed sequentially within a window wi.
Each window wi has a size attribute s(wi) ∈ N+ correspond-
ing to the number of actions that are executed in each round.
An allocator entity Alloc is responsible to trigger each window
W . Each allocator is associated with one goal Gi and multiple
allocators can run in parallel to speed up the provisioning
process.

The provisioning of a VN is thus a function of the resources
(i.e., virtual machines and virtual links) that need to be allo-
cated for the requested VN, the number of allocators deployed,
and the maximum size of the window of each allocator, which
can be dynamically adjusted in each round. The maximum
number of rounds R required to provision a VN is given by:

R =

⌈∑
mv +

∑
lv∑a

i=1 s(wi)

⌉
(1)

where (
∑
mv +

∑
lv) is the total number of virtual re-

sources (i.e., machines and links) that need to be instantiated
per VN, (

∑a
i=1 s(wi)) is the maximum number of allocation

actions allowed per round, and a is the number of allocators
deployed.

The size of allocation windows can vary according to the
current provisioning status of the requested VNs. If a VN is
already deployed and no changes are expected in the short
run, the size of the allocation window for that VN is zero.
On the other hand, if the VN provisioning has just started
or modifications on a previously allocated VN are scheduled,
then the size of the window is greater than zero. The size of
an allocation window can also be adjusted to prioritize one
goal over the others. The higher is the priority of a goal,
the larger is the size of its corresponding allocation window.
There is a clear tradeoff between the size of the allocation
windows and the provisioning time. A large paradigm window
requires fewer rounds to allocate a whole VN, but it will not
take advantage of a better allocation option that may become
available. On the other hand, a small paradigm window is
more adaptable to dynamic environments at the price of higher
overhead, which can result in larger provisioning times.

Paradigm policies - Paradigm policies are used to guide
VN allocation according to a specific goal. Several policies can
be applied simultaneously during VN allocation. The general
format of a paradigm policy is depicted below (more details
can be found in our previous work [8]):

objective <name> := <list-of-actions>
<window>

action <name> := <conditions>
<operation>

window := <size> <order>

An action is triggered when a set of associated conditions is
satisfied. The action is then realized by low-level operations
(e.g., create a VM) supported by the substrate. The window
defines the size of allocation windows and the order that the
actions of a policy are evaluated.



III. DETERMINING THE EFFICIENCY OF ALLOCATION
PARADIGMS

A. Applications

In our model, we consider three basic types of applications:
Mail, Web 2.0, and E-commerce. Such applications represent
typical workloads of virtualized environments [10] [11]. The
Mail application is a typical mail server running on a virtual
machine. The Web 2.0 application simulates a social network
and is structured in two tiers (Web and database) running on
separate virtual machines. The E-commerce application is a
multi-tiered system composed of four virtual machines (three
Web servers and one database server).

The performance of each application is defined by a par-
ticular metric. We use the same definitions of the metrics as
adopted in measurements using the VMmark benchmark [10].
For each application, VMmark defines a reference value for
each metric. Table III summarizes the characteristics of the
applications considered in our model.

TABLE III
APPLICATION PERFORMANCE METRICS

Application VMs Metric Reference value
Mail 1 Actions/minute 330.25 actions/minute
Web 2.0 2 Operations/minute 4641.43 operations/minute
E-commerce-A 4 Transactions/minute 2199.18 Transactions/minute
E-commerce-B 4 Transactions/minute 1518.55 Transactions/minute
E-commerce-C 4 Transactions/minute 1058.05 Transactions/minute

B. VN Scoring Methodology

The VN computation model is based on the concepts of
tiles and scores, typically found in benchmarking systems [10]
[11]. A tile is a fixed-size group of virtual machines running
multiple applications. In our case, a tile is composed by seven
VMs belonging to the Mail (1), Web 2.0 (2), and E-commerce
(4) applications, respectively. The score is a numerical value
attributed to the VN reflecting the combined performance of
all tiles (and applications). Our score calculation is adapted
from the VMMark benchmarking system [10] [12], used to
measure the performance of applications running on virtual-
ized environments. The score metric S for a VN is calculated
as follows:

S =

m∑
i=1

Ti (2)

where Ti is the performance of the tile i and m is the total
number of tiles a VN supports. The total score of a VN is thus
the sum of the performance of all its tiles. The performance
of a individual tile T is defined by:

T = (

n∏
j=1

Appj
Refj

)
1
n (3)

where Appj refers to the performance achieved by the jth
application in terms of the metrics defined in Table III, Refj
is a reference value for the application Appj , and n is the

total number of applications of the tile. The T value is thus
the geometric mean of the normalized performance of all
applications of a tile.

C. VN Performance Computation Model

In order to evaluate the efficiency of an allocation paradigm
in terms of application performance, the InP needs to mon-
itor the performance of the applications running on a VN.
However, such evaluation may diminish the performance of
the applications of ongoing VN requests and result in exces-
sive monitoring traffic in complex environments. Therefore,
computing the performance of the applications to be deployed
over a VN and evaluating allocation paradigms in advance can
improve VN provisioning. As a first step towards the definition
of a VN performance model, we analyze the relation between
the number of tiles and the total score of a VN by analyzing
data submitted to the VMmark web site. Figure 2 depicts
a scattered plot showing the VN score as a function of the
number of tiles.
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Fig. 2. Score vs. number of tiles

From Figure 2, it is possible to observe that the overall
score of a VN grows linearly with the number of tiles. We
thus propose a simple linear regression model to compute the
performance of a VN given the number of tiles used. Using the
R statistical package [13] we found that the computed score
S ′ of a VN can be defined by:

S ′ = 0.1573 + τ × 1.0206 (4)

where τ is the number of tiles. The adjusted R-squared is
0.973.

D. Efficiency of an Allocation Paradigm

The efficiency of an allocation paradigm is influenced by
two main factors: the number of rounds required to complete
the provisioning of a VN and the score of the allocated VNs.
The number of rounds directly impacts the provisioning time
of the VN. The score, in turn, reflects the quality of the
allocation paradigm. The quality of an allocation paradigm
Q is thus given by:



Q =
S′

U
(5)

where U is the performance of the system obtained when
applying Equations 2 and 3 to the reference values of Table
III.

The ultimate goal of an allocation paradigm is to reduce the
number of necessary rounds to allocate a VN, which impacts
VN deployment time, and avoid excessive paradigm changes,
which is related to the stability of the provisioning system.
A paradigm change occurs when the score of the provisioned
VNs are below a threshold defined by the InP. Therefore, the
main objective of our paradigm-based provisioning framework
is to:

minimize
∑
R+

∑
(1−Q) (6)

subject to:

0 <
∑
w∈P

s(w) ≤
∑

mv +
∑

lv (7)

∀mv ∈Mv,∀lv ∈ Lv

τ > 0 (8)

The objective is to minimize the number of rounds R
required to provision a VN and at the same time improve
the quality Q of the allocated VNs. Constraint 7 assures that
the number of rounds is bounded by the sum of the required
virtual resources of a VN. Constraint 8 guarantees that at least
one tile is allocated.

E. Resource Allocation Algorithm

We propose an algorithm to guide resource allocation in
virtualized environments using the concept of paradigms.
The algorithm is triggered upon receiving of a VN request.
The algorithm checks each goal of the paradigm and the
corresponding policy set (lines 10-12). For each policy, the
algorithm verifies its set of conditions following the order
predefined in the policy (lines 16 and 17). If a condition is
met (line 18), the associated allocation action is added to the
next allocation window (line 19) until the window reaches
its maximum size defined in the policy. The algorithm then
executes the allocation windows for each goal of the paradigm
(lines 22-25).

In order to avoid that a request waits indefinitely for re-
sources that may not be available in the subsequent rounds we
define a parameter called maxrounds, which is the maximum
number of waiting rounds for an ongoing request. If such
number is reached then the request must be “rolled-back”,
that is, the actions executed previously must be reverted.

After each execution, the algorithm calculates the efficiency
of the active paradigm. The number of used tiles is obtained
from the VN request (line 29) and the score S ′ is calculated
(line 30). The quality Q is also calculated (line 31). If Q is
below a certain threshold defined by the InP, then the active

Algorithm 1 Paradigm-Based Allocation Algorithm
1: W : window of the paradigm P
2: LR←Mv ∪ Lv

3: NLR : size of LR
4: maxrounds : maximum number of rounds
5: nrounds : round number
6: nrounds← 0
7: while NLR > 0 and nrounds <= maxrounds do
8: W ← ∅
9: for all G ∈ P do

10: LP ← policy set of the paradigm P
11: for each p ∈ LP do
12: C ← conditions of the policy p
13: A← actions of the policy p
14: repeat
15: check next condition c ∈ C
16: until c = true
17: Add action a ∈ A triggered by c to W
18: end for
19: for i← 1 to s(W ) do
20: Execute action W (i)
21: NLR← NLR− 1
22: end for
23: end for
24: nrounds← nrounds+ 1
25: determine the number of tiles m
26: calculate the performance S′

27: calculate the quality Q of the current paradigm
28: if Q < threshold then
29: Update current paradigm P
30: end if
31: end while

paradigm is updated by adding or removing goals, or switching
to another paradigm (lines 32-34).

For example, using a Paradigm Management Subsystem
(PMS) [8] the InP initially defines that the allocation paradigm
is composed of the Green goal only. Since the paradigm is
composed by only one goal, there will be only one policy in
LP . However, it is possible to have as many policies as there
are goals in the allocation paradigm. The policy related to
the Green goal has a condition regarding node allocation that
states that if there are nodes to be allocated for a given request,
the correspondent action is to select the node with lowest
residual capacity (CPU, memory, disk) satisfying the request
to host the virtual one (the Load Balancing goal policy on the
other hand chooses the node with highest residual capacity
instead). If such condition is met, the action (select the node
with lowest residual capacity) is included in the allocation
window to be executed until there are no action to be included
or the window reaches its maximum size s(W).

The actions of an allocation window are executed sequen-
tially until the window is empty, which completes a round.
Next, the system calculates the efficiency of the allocation
paradigm by comparing the paradigm quality with a threshold



that was manually defined by the InP. If the quality is below
this threshold then the system notifies the InP, which, in turn,
using the PMS, has the option to change the current allocation
paradigm by adding or removing goals, modifying the policies,
or switching to another paradigm.

IV. EVALUATION

In this section we evaluate our paradigm-based provisioning
framework. We aim to measure the efficiency of allocation
paradigms in terms of provisioning quality, number of rounds,
acceptance ratio, and cost of provisioning.

A. Scenario

We have used the ViNE-Yard simulator developed by
Chowdhury et al. [14] [15]. We have extended the simulator
to include our paradigm efficiency calculation and to allow
paradigm changes on the fly. The scenario we consider in the
simulations is of a virtualized data center network [16].

We used the VL2 topology [17] as the physical substrate.
The network is composed of 24 servers, 22 switches, and 72
links. Each Server is connected to one of the Top-of-Rack
switches with a 1-Gbps link whereas switches are connected
to each other with 10-Gbps links. Server CPU capacities are
uniformly distributed between 1 and 4 cores. For the sake of
simplicity we do not consider other resources (e.g., memory,
storage) in the evaluation.

VN requests are received according to a Poisson process
with an average rate of 4 VNs per 100 time units and an
exponentially distributed duration with an average of 1000
time units. The number of VMs of each VN request is ran-
domly generated between 2 and 10. CPU requirements of VMs
are uniformly distributed between 1 to 4, and the bandwidth
requirements of virtual links are uniformly distributed between
1 to 50 Mbps.

For each experiment, we vary the size of the allocation
windows from 1 to 3 and evaluate two allocation paradigms
composed of a single InP goal: Green and Load Balancing
(LB) as defined in Table II. We also investigate the impact of
switching from one paradigm (Green) to another (LB) during
the simulation. The maximum number of rounds for each
request is defined as the number of requested resources over
the size of the allocation window. The number of tiles of each
request is calculated by dividing the number of request nodes
(Mv) by the size of one tile (Section III-B). Each experiment
was repeated 30 times with a confidence level of 95%

B. Metrics

We defined three metrics in our evaluation: (1) Paradigm
quality reflects the quality of an allocation paradigm in terms
of the score computed for the provisioned VNs, (2) Number
of rounds is the number of allocation rounds necessary to
complete the provisioning of a VN as defined in Section II,
(3) Acceptance ratio is the number of VN requests that are
accepted over the total number of requests. Furthermore, we
define the Provisioning cost which depends on the amount of
allocated resources, and is computed as suggested in [14].

C. Results

The quality of the Green allocation paradigm is depicted
in Figure 3(a). It is easy to see that the paradigm quality is
better for small-sized paradigm windows and it gets worse
when the paradigm window size is large. This happens because
mapping a high number of resources in a single round reduces
the adaptability of VN provisioning. This is due to the fact that
the effect of VN arrivals and departures will only be perceived
in the next round, which happens when the actions of the
current one are completed. As a consequence, the chances of
taking advantage of better mapping alternatives are smaller for
paradigms having large windows.

Figure 3(b) shows the average number of rounds required
to complete the allocation of a VN with varying window sizes
for the Green goal. In order to improve readability, we have
decided to select 25 samples (spaced equally from each other)
from all the requests. When the size of the paradigm window
s(W) is equal to 1, the number of rounds to complete the
allocation is the exact number of virtual nodes of the VN
request. For s(W) = 2, the number of rounds is static because
most of the virtual nodes were allocated in only two rounds. As
expected, when s(W) = 3 most VN requests are completed in
two rounds and some (the smallest ones) in just one round. The
number of rounds influences the time needed to allocate a VN.
VNs allocated in few rounds (i.e., large paradigm windows)
are rapidly available to SPs, while VN requests that need many
rounds to be deployed have larger provisioning times.

The acceptance ratio for the Green goal is illustrated in
Figure 3(c). For s(W) = 1, acceptance ratio remains above 40%
for the whole simulation time. When s(W) = 2, the acceptance
ratio rapidly decreases after 2000 time units and stays between
55% and 27% for the rest of the simulation. The situation is
even worse for s(W) = 3, when acceptance ratio is no higher
than 25%, indicating that similar to paradigm quality, there is
a clear association between the size of the window and the
acceptance ratio of VN requests. VN requests allocated using
paradigms with small windows are more adaptable and less
unlikely to be rejected. Furthermore, larger windows result in
a higher number of rejected requests because the Green goal
attempts to select the physical node having the highest residual
capacity. If the paradigm window is large, the node will run
out of capacity fast, because it will be selected more times in
a single round, which explains the low acceptance ratio for
s(W) = 2 and s(W) = 3.

Figure 3(d) presents the average cost of provisioning a VN.
During most of the simulation (time <36000), the cost of
allocated VNs is higher when s(W) = 1 compared to s(W)
= 2, which, in turn, results is higher costs compared to s(W)
= 3. This can be explained by the fact that the acceptance ratio
is higher for s(W) = 1, which means that more resources are
allocated and the overall cost for the InP increases. However,
after 36000 time units, the cost of allocated VNs converge
regardless of the size of the paradigm window.

Figure 4(a) shows the quality of the allocation paradigm us-
ing the Load Balancing goal. The paradigm quality is slightly
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Fig. 3. Simulation results (Green objective): (a) Paradigm quality. (b) Number of rounds. (c) Acceptance ratio. (d) Provisioning cost.
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Fig. 4. Simulation results (Load balancing objective): (a) Paradigm quality. (b) Number of rounds. (c) Acceptance ratio. (d) Provisioning cost.

superior when LB is deployed compared to the paradigm using
the Green goal. This happens because LB always searches for
the physical node with the highest residual capacity. Since
the initial configuration (i.e., capacity) of physical nodes is
the same, LB selects a different node in each turn, thus
increasing the number of allocated tiles and, consequently, the
paradigm quality. Regarding paradigm windows sizes, similar
to the Green goal, s(W) = 1 presents higher performance
when compared to s(W) = 2 and s(W) = 3 because small
paradigm windows allows rapid adaptation of VN provisioning
to changes in the substrate.

The number of rounds used by the LB goal to provision

VNs are the same of the Green goal, which can be easily
explained by the fact that the number of rounds depends only
on s(W) and not on the goal employed in the paradigm.

Acceptance ratio for the LB goal is shown in Figure 4(b).
For s(W) = 1, all VNs are successfully allocated. This can
be explained by the fact that LB tends to select a different
node with high residual capacity in each round, increasing the
chances of accepting the VN request. For s(W) = 2 and 3,
the acceptance ratio is between 30% and 55%, close to the
results of the Green goal. This indicates that the performance
of different allocation paradigms tends to be similar as the
window size increases, regardless of the goal employed.
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Fig. 5. Simulation results (Paradigm Switching): (a) Paradigm quality. (b) Number of rounds. (c) Acceptance ratio. (d) Provisioning cost.

The cost of VN provisioning for the LB goal is presented in
Figure 4(c). Unlike Green goal, the cost of VNs provisioned
with the LB goal when s(W) = 1 is higher than s(W) = 2
and s(W) = 3 for most of the simulation. This reflects the fact
that more VNs are allocated when s(W) = 1. Furthermore, the
average cost of allocated VNs for s(W) = 2 and s(W) = 3
converge after 36000 time units and is comparable to the cost
obtained by the Green goal.

Figure 5(a) shows the paradigm quality when the goal of a
current allocation paradigm is switched during the simulation.
In our experiments, the used thresholds to switch between
paradigms were defined manually (half of the simulation time).
However, our approach is still valid even if we consider
more sophisticated techniques to estimate these thresholds.
The quality of the allocation in the first half of the simulation
remains between 1.2 and 4.2, which reflects the performance
of the Green goal (see Figure 3(a)). After that, the quality
increases and remains between 4.5 and 4.7, which are close
to the values obtained by the LB goal. This shows that
changing between goals can improve paradigm quality. Again,
the number of rounds for paradigm switching is the same of
all previous scenarios since it does not depend on the goals
employed in the paradigm.

The acceptance ratio for paradigm switching is shown in
Figure 5(b). The impact of paradigm switching is more evident
for s(W) = 1. After paradigm switching, the acceptance ratio
starts to increase because LB offers very high acceptance ratio
(Figure 4(b)).

The cost of provisioning when paradigms are switched is
depicted in Figure 5(c). Again, for s(W) = 1 the cost does
not reduce as in Green goal (see Figure 3(d)) after paradigm
switching. Instead, the average provisioning cost stays higher
than s(W) = 2 and s(W) = 3, confirming the impact of changing
between goals during VN provisioning on the InP revenue.

D. Summary

In general, the LB paradigm provides better performance
in terms of paradigm quality when compared to the Green
paradigm. This happens because LB tries to spread VN
requests over a high number of physical resources, thus
increasing the acceptance ratio, which reflects in the quality of

the provisioned VNs. However, this comes at the cost of more
expensive VNs because more resources are allocated by LB
compared to Green. When the window size is 1, the number
of rounds required to provision VN is higher, which means
that VNs will take longer time to be fully allocated.

When s(W) is set to 2, the quality of the provisioned VNs
decreases. This in turn leads to the drop of the acceptance ratio.
The lower quality of the allocated VNs when the window size
is high is due to simultaneous mapping of multiple resources,
which increases the number of rejected requests.

The benefit of switching between paradigms is more clear
in Figure 5(b) when the allocation window size is 1. After
time instant 16900 the acceptance ratio starts to increase. This
paradigm switching feature is useful when the InP needs to
adapt its provisioning strategy to support different application
profiles that arrive dynamically in the substrate.

V. CONCLUSION

In this paper we have proposed an adaptive provisioning
framework that considers specific application characteristics
and performance objectives. Our proposal is based on the con-
cept of allocation paradigms, which are groups of application-
related policies that guide resource allocation. In addition,
we also proposed a virtual network performance computation
model to evaluate the efficiency of paradigm-based allocations.

We also illustrated the tradeoff between the size of the
allocation window and the provisioning quality. We found that
small windows produce high quality VNs at the cost of higher
provisioning times and increased provisioning costs. Larger
windows allow rapid VN deployment at the expense of quality.

Future work includes investigating other application perfor-
mance models, such as queuing models and autoregressive
models. We also plan to implement a VN provisioning scheme
based on the concept of allocation paradigm.
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