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1. INTRODUCTION
With the growing adoption of Software Defined Network-

ing (SDN) technology, there is a compelling need for an SDN
emulator that can facilitate experimenting with new SDN
solutions. In this context, Mininet [1] has been proposed as
an emulator for prototyping a network on a single machine.
It allows users to create, control, and customize an emulated
network on which they can run and test new control applica-
tions like routing, tra�c engineering, etc. However, Mininet
cannot scale for large networks and high tra�c volumes [3].

To address these limitations, we developed Distributed
OpenFlow Testbed (DOT), a highly scalable emulator for
SDN. DOT distributes the emulated network across multi-
ple physical machines to scale with network size and tra�c
volume. It also provides guaranteed compute and network
resources for the emulated components (i.e., switches, hosts
and links). Moreover, DOT can emulate a wider range of
network services compared to other publicly available SDN
emulators and simulators.

Our demonstration will illustrate several features of DOT
including: (i) how easy it is to setup the emulator, (ii) how
to deploy a topology using a single configuration file, (iii)
how to run a connectivity test to ensure that the emulated
network is properly deployed, and (iv) how to control and
monitor the emulated components from a centralized loca-
tion. We will also showcase DOT by emulating two ap-
plications: (i) policy based tra�c steering through middle-
boxes [2] and (ii) tra�c monitoring [5]. Our goal is to en-
courage researchers to use DOT for their SDN-related ex-
periments and gather feedback to further improve its design
and performance.

2. DESIGN
DOT provisions an emulated topology across a cluster of

physical machines (Fig. 1(c)). One of these machines orches-
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trates the whole emulation process. We call this physical
machine the DOT Manager. The other machines are called
DOT Nodes. These machines contain virtual switches and
hosts used to build the emulated topology.

Our embedding algorithm (detailed in [4]) considers the
resource capacity of each DOT node and finds an embedding
that minimizes physical bandwidth usage and the number of
physical machines. The embedding algorithm partitions the
emulated network and maps each partition to a particular
physical machine. When the algorithm embeds virtual links,
two cases may arise due to partitioning. First, if the virtual
link connects two virtual switches embedded in the same
physical machine, then this link is provisioned inside that
machine (link b in Fig. 1(a)), and hence we call it an intra-
host virtual link. Second, a virtual link connecting two vir-
tual switches residing at di↵erent physical machines (here-
after called a cross-host virtual link) is mapped onto a path
passing through the physical network (link e in Fig. 1(a)).

An intra-host virtual link is emulated by instantiating two
virtual Ethernet interfaces (veth(s)) within the same physi-
cal machine (using Linux add ip link command). The vir-
tual link bandwidth and delay are emulated using the tc

and netem commands, respectively.
To forward tra�c passing through a cross-host virtual

link, we create a specialized switch called theGateway Switch
(GS) in each physical machine (GS1 and GS2 in Fig. 1(b)).
GSs are connected through pair-wise GRE tunnels. Then we
create two segments (using Linux add ip link command)
for a cross-host link in each physical machine where its end
points reside (in Fig. 1(b), e has two segments e0 and e00).
Each segment connects one of its end points to the GS in
the physical machine. A unique identifier is assigned to each
cross-host link, i.e., both segments have the same identifier.

Whenever a GS receives a packet from one of the seg-
ments, it encapsulates the packet within a GRE header, tags
this packet with the identifier of the segment, and unicasts
it to the destination physical machine. The receiving GS
(at the other end of the tunnel) decapsulates the packet,
inspects the tag, and forwards the packet to the correspond-
ing segment. We pre-install forwarding rules in the GSs to
enable this mechanism. It is worth noting that GSs are com-
pletely transparent to the DOT users and are used to hide
the fact that di↵erent portions of the emulated network are
distributed across a cluster of physical machines. Moreover,
DOT does not install any forwarding rules in the virtual
switches of the emulated topology.

For emulating the end hosts, DOT supports both OS level
(Linux Container) and full virtualization (Kernel Virtual
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Figure 1: Emulated network embedding and tra�c forwarding in DOT

Machine (KVM)). Moreover, tiny core Linux (a minimalis-
tic flavor of Linux) is used as guest OS to minimize resource
footprint of the Virtual Machines (VMs).

An emulated network in DOT also includes a separate
(out-of-band) management network. Each VM/container
is equipped with a virtual management interface. This in-
terface is attached to a management switch (MS1 and MS2

in Fig. 1(b)) of the respective physical host. The man-
agement network allows direct access (using ssh) to the
VMs/containers and ensures that management tra�c does
not interfere with emulation tra�c in any way to a↵ect the
outcome of an experiment.

3. FEATURES
The key features of DOT are as follows:

• Scalability: DOT can be deployed across multiple
physical machines. It can be scaled to meet the re-
quirements of the emulated topology. This feature pro-
vides DOT an edge over other emulators.

• Transparency: The specialized components required
for distributed deployment are kept hidden from the
users’ controller(s). As a result, intra-host and cross-
host links appear indistinguishable to the controller(s).

• Guaranteed performance: Our embedding algo-
rithm provides resource guarantee for all emulated com-
ponents (i.e., switches, links, and hosts). Thus, the
performance of the emulated network is close to that
of a real network.

• Flexibility: DOT supports both OS-level and full vir-
tualization. Full virtualization enables DOT to use
heterogeneous (di↵erent versions of kernel) end hosts.
It also provides opportunities to emulate a larger class
of network services, e.g., managing middleboxes [2].

• Multi-tenancy: DOT can be easily extended to pro-
vide access to multiple users to run simultaneously
their emulations on the same physical infrastructure.

• Hybrid networks: Non-OpenFlow switches can be
deployed in DOT. A user can use DOT for emulat-
ing a network that includes both OpenFlow and non-
OpenFlow switches.

• Physical switch integration: Physical switches can
be included in an emulated network in DOT. This fea-
ture enables flexible experimental setup to aid gradual
rollout of SDN technology in the production network
by emulating one part of the network in DOT while
keeping the other parts running on actual hardware.

4. IMPLEMENTATION
DOT is available as an open source software at www.dothub.org.

We have deployed networks with di↵erent sizes and resource
requirements to test our current implementation. Almost
all publicly available OpenFlow controller can be used with
DOT. We have tested DOT with Floodlight, OpenDaylight,
NOX, and POX.
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