
FSM-based Wi-Fi Power Estimation Method for

Smart Devices

Jian Li∗, Jin Xiao†, James Won-Ki Hong∗, Raouf Boutaba‡

∗Division of IT Convergence Engineering, POSTECH, Korea

email: {gunine, jwkhong}@postech.ac.kr
†IBM T. J. Watson Research Center, US

email: jinoaix@us.ibm.com
‡David R. Cheriton School of Computer Science, University of Waterloo, Canada

email: rboutaba@cs.uwaterloo.ca

Abstract—With the increased popularity of mobile data appli-
cations, Wi-Fi power consumption on smartphones is now a
significant portion of mobile energy expenditure. In their efforts
to develop more energy efficient applications, the applications
developers use energy estimation tools as a benchmark. Although
hardware based power meter has high estimation accuracy, it is
cumbersome to operate as it relies on physically attaching wires
to the battery, and moreover the price of hardware based power
meter is expensive. Therefore software based power estimation
tools such as PowerTutor are popular. In our prior research
using PowerTutor as power meter, we discovered that PowerTutor
has large Wi-Fi power estimation error (over 1000%) on post
2012 phones. In this work, we propose a new FSM-based Wi-Fi
power model based on IEEE 802.11 communication patterns and
Wi-Fi hardware configuration with significantly increased power
estimation accuracy. We designed and implemented our power
model as an estimation tool called PowerGuide. Our experiments
with PowerGuide in field operations showed that PowerGuide
can achieve an average estimation accuracy of 86% compared to
hardware power meters even with moderate polling period.
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I. INTRODUCTION

With the unstoppable growth of smartphones, mobile applica-
tions are popular more than ever. Among the overall mobile
applications, the networked mobile applications take the largest
proportion, and rely on Wi-Fi communication technology for
efficiency and economic reasons. Consequently, Wi-Fi power
consumption is contributing to a significant portion of mod-
ern smartphone energy usage [1]. Understanding this trend,
smartphone Wi-Fi standardization groups have made much
effort in providing tunable options for application developers
to design and implement their applications in more energy
efficient ways. Application developers often times use energy
profiling tools to benchmark their applications, unfortunately
many existing methods such as [2][3][4][5][6] only profile
the power usages per smartphone application, based on CPU
and/or display consumptions, not Wi-Fi or communication. In
this context, this paper studies the problem of accurate Wi-Fi
power monitoring for end users and application developers.
Hardware based power meters provide accurate power mea-
surement, but they are expensive and impractical for regular
use due to the need to physically attache wires to the battery.

Therefore, software based power estimators are becoming
popular. Existing software based power estimation tools (such
as the popular PowerTutor [7], and research work in [8][9][10])
have low measurement accuracy due to their simplified power
model assumptions and lack of consideration for modern
smartphone Wi-Fi hardware operation patterns. In general, Wi-
Fi power estimation tools rely on a specific power model
derived from a set of power states (e.g., Continuous Active
Mode: CAM and Power Saving Mode: PSM) under which the
power consumption rates are very different. The power states
are controlled by the Wi-Fi communication module based on
the near term packet rate. By identifying the different power
states of the Wi-Fi device, and measuring the total amount of
time that the Wi-Fi device spend in each power state, it is
feasible to calculate the overall Wi-Fi power consumption.

In this work, we found that 1) there are more than two power
states implemented by contemporary Wi-Fi communication
hardware; 2) the power state transition is not only triggered by
the packet rate, but also the packet inter-arrival time which the
existing power estimation tools do not consider; and 3) the up-
link and downlink power expenditure show asymmetric char-
acteristics while existing power estimation tools assume sym-
metric behavior. These discrepancies resulted in existing power
estimation tools showing low estimation accuracy especially
on contemporary smartphones. Accordingly, we proposed a
new power model and developed a new power estimation tool
called PowerGuide. To understand the key design elements of
our model, we first performed detailed experimental studies to
characterize the power patterns and evaluated the significance
of different network metrics on power consumption. Our
resulting Finite State Machine (FSM) based power model
considers new network metrics that are not considered in other
power estimation tools and is novel in capturing the different
Wi-Fi communication states and their transitional conditions.
We implemented the power model as a mobile application
for Android called PowerGuide. We validated PowerGuide by
deploying it on the latest Android smartphones, conducted
field experiments under diverse settings, and compared our
estimation result with both PowerTutor and hardware power
meter. Our results showed that PowerGuide can achieve an
average estimation accuracy of 86% compared to hardware
power meters even with moderate polling period, and is very
easy to use and versatile for 802.11n smartphones.978-3-901882-50-0 c© 2015 IFIP

978-3-901882-76-0 @2015 IFIP 147



The remainder of this paper is organized as follows. Section
II presents related works on Wi-Fi power estimation. With
a hardware power monitoring tool, we study Wi-Fi power
consumption pattern under different network conditions in
Section III. In Section IV, we derive the FSM-based power
model, and present the implementation of PowerGuide in
Section V. Section VI reports the result of our field studies.
Section VII conclude the paper with a description of future
work.

II. RELATED WORK

Power modeling of smartphones in literature generally relies
on one of the two methods: 1) constructing power models
based on battery behavior or 2) constructing power models
based on external power meters.

The former power modeling method estimates power consump-
tion based on battery behavior within a certain time period.
This technique requires knowing the discharging current and
remaining battery capacity. Here, we summarize three repre-
sentative works following this technique. In [11], Dong et al.
proposed an automatic method that constructs the power model
using a smart battery interface. In [12], Gurun et al. proposed
an adaptive power estimation model based on the built-in Bat-
tery Monitor Unit (BMU). The method’s accuracy is strongly
influenced by the update rate of BMU, with low update rate
resulting in low power estimation accuracy. To alleviate this
limitation, Jung and Yoon et al. proposed DevScope [13] and
AppScope [14] in which hardware components are configured
based on the BMU update rate. Overall, battery behavior based
methods rely on accurate and frequent battery statistics which
are difficult to obtain in most smartphones.

The later method uses a hardware based power meter accom-
panied with software logging and visualizing tools. With this
technique, power model is constructed by correlating operating
system visible state variables with power consumption periodi-
cally obtained from power meter readout, profiled against a set
of mobile applications. In [15], Shye et al. proposed a system-
level power model for Android based smartphones, and in [16],
Sun et al. proposed a Wi-Fi power-throughput model based
on linear and non-linear statistic modeling. This technique in
general requires large training data set that can well capture the
relations between system visible state and power consumption.
The search space is also very large given the highly varied
types of mobile applications as well as communication chips
out on the market today.

To overcome above issues, in [7], Zhang et al. proposed
a power estimation tool named PowerTutor [17]. To date,
PowerTutor is perhaps the most popular power measurement
tools for Android platform. PowerTutor uses a power model
to estimate smartphone power consumption. The Wi-Fi power
model of PowerTutor includes a state transition model which
reflects the communication pattern, and the power consumption
rate in each state. To build the power model, they collected
several power metrics as well as communication metrics which
were easily obtainable from recent smartphones, correlated the
two types of metrics, and finally resulted a state transition
model. However the considered communication metrics are
restricted to packet rate and channel rate only, which cannot
correctly reflect the IEEE 802.11 communication pattern. We
summarize the three major issues of PowerTutor as follow:

• Symmetric Power Model for Uplink and Downlink:
PowerTutor adopted the identical power model for both
uplink and downlink cases. However, due to the discrepancy
of communication pattern of uplink and downlink, the
power model for each case is different.

• Non-consideration of Packet Inter-Arrival Time: Packet
inter-arrival time is a key metric in determining the Wi-Fi
communication pattern. By not considering packet inter-
arrival time, PowerTutor shows low accuracy in practice.

• Obsolete Power Model: The power model was derived in
stochastic manner rather than careful consideration of the
IEEE 802.11 communication pattern and behavior, therefore
it only supports the phones used in power model design
period. Since this research was conducted in 2009, as a
consequence, the power model only supports old fashion
phones such as HTC Dream and HTC Magic.

Our approach is similar to the PowerTutor except we take into
account more communication metrics including the transmis-
sion direction, packet size and packet inter-arrival time to better
capture the IEEE 802.11 communication pattern, and hence,
results higher Wi-Fi power estimation accuracy. Our power
model can tackle the issue of new smart device evolution at
the fundamental level, because the upcoming Wi-Fi devices
implement the IEEE 802.11 standard that our power model
captures. We are able to show that our model works for
new upcoming smart devices with simple parameter tuning. In
fact, we developed our model on Samsung Galaxy 3, and our
experiment show that the model is valid for the new Samsung
Galaxy 5 as well which used a different communication chip.

III. WI-FI POWER EXPENDITURE CHARACTERIZATION

In this section, we identify important Wi-Fi network metrics
that affect the Wi-Fi power consumption, from a set of relevant
network metrics: Received Signal Strength Indicator (RSSI),
transmission direction (e.g., uplink and downlink), packet size,
packet rate and packet inter-arrival time. Our methodology
is to conduct sets of controlled experiments varying each of
the considered network metric. Variability in measurement
noise are smoothed out by conducting each experiment setting
repeatedly until a statistical significant central value can be
observed, or correlation is ruled out in case no central value
is present.

A. Experiment Setup

As shown in Figure 1, our experimental environment is com-
prised of three main components:

• Smart Device: This componet works as Wi-Fi client. We
choose the Samsung Galaxy S3 LTE as a Wi-Fi client and
the smartphone is running the latest version of Android
Jellybean 4.3. The device is equipped with Exynos 4 Quad
Core 1.4 GHz CPU, 2 GB RAM and Broadcom’s Wi-
Fi communication module which uses BCM4334 Wi-Fi
chipset [18] operated in 802.11n mode. A Li-Ion battery
with 2,100 mAh capacity is equipped inside the smart-
phone. For experiment control purpose, an UDP packet
sender/receiver application with a set of configurable pa-
rameters is developed and installed on the smartphone.
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Fig. 1. Experiment setup for studying the relations between network metrics
and power consumption

• Power Monitor: We acquired a hardware based power
meter - Monsoon [19] to perform power measurement.
Monsoon has two sub-components: the power monitor
(hardware) and a power tool (software). Power monitor
has red and black terminals which are connected to the
voltage (+) battery terminal and ground (-) battery terminal
respectively. The power monitor periodically monitors the
current draw of smartphone, and the monitored results
are constantly reported to power tool using proprietary
protocol through USB serial communication. Power tool is
installed into a commodity computer (measurement server)
for logging and visualization purpose.

• Measurement Server: This component provides three
functions: 1) read the measured result from power monitor
using power tool, log the measured result into the files
and visualize it; 2) behave as a wireless Access Point
(AP) which accepts the wireless connection from the smart
devices through IEEE 802.11 protocol. Connectify-Me [20]
is used to turn the server into a virtual wireless AP; 3)
send/receive the UDP packet to/from smart devices.

The measurement result obtained by power meter represents
the total power consumption of the smartphone. It is nontrivial
to accurately obtain the Wi-Fi power consumption portion only.
We used the following two-step process to extract the Wi-Fi
power consumption portion that is reported in this paper.

1) Measure the overall power consumption: Since the bat-
tery current flows as the smart device consumes the power,
by periodically monitoring the current flow from battery,
the meter can very accurately obtain power consumption
information.

2) Filter out power consumption by other hardwares: The
obtained power consumption is the total power consump-
tion. We eliminate the power consumption of non Wi-Fi
hardware components in the following ways: 1) we fix the
CPU power consumption to a certain amount by under-
clocking CPU frequency down to 200 MHz using SetCPU
app [21], and then subtract it from the total energy amount;
2) we turn off hardware modules (e.g., sensors, display,
GPS, bluetooth, etc.); and 3) we adopt a process manager to
terminate all irrelevant background processes which would
possibly contaminate the measurement result. Finally, the

leftover power consumption can largely be attributed to
Wi-Fi with minor noise.

The above process is used to conduct sets of experiments
by varying the investigated network metrics and experiment
multiple times to achieve statistical significance.

B. RSSI

RSSI quantifies the power level present in a received radio
signal. RSSI typically has inverse relation with the distance
between Wi-Fi client and AP. With low RSSI value, the data
loss and error rate increase. Therefore, with large distance,
the Wi-Fi client tries to increase the transmission power in
order to lower down the data loss, which in turn increases
Wi-Fi power consumption in smart devices. To figure out the
specific impact of RSSI on power consumption, we varied the
RSSI value by placing the smart device in different location,
and measured the Wi-Fi power consumption using Monsoon.
Figure 2 shows the observed results between RSSI and power
consumption. The scatters represent the power consumption,
while the solid line denotes the fitting curve. We do not
observe significant correlation between RSSI and Wi-Fi power
consumption within typical RSSI range (-10 dBm ∼ -70 dBm).
Therefore, it is infeasible to use RSSI network metric to deduce
the Wi-Fi power consumption correctly. Similar result has also
been reported in the literature [16].
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Fig. 2. Power consumption within different RSSI range

C. Packet Transmission Direction and Inter-arrival Time

Figure 3 shows power consumption pattern in both data upload
and download cases with relatively long packet inter-arrival
time. Packet inter-arrival time is a metric representing the time
elapsed between two consecutively transmitted packets. In this
experiment, we try to send a single packet with 400 ms inter-
arrival time from AP to mobile client and vice versa. As we
can observe from experiment result, with large value of packet
inter-arrival time regardless of data transmission direction, the
power consumption pattern is almost identical. In Deep Sleep
(DS) state, the Wi-Fi device spends the least amount of energy,
moreover, since the device is not ready for data transmission, it
has to wait until the reception of next beacon message. DS state
transits to IDLE state through either Packet Reception (PR)
state or Packet Transmission (PT) state. Both PR and PT states
last only 1 ms for transmitting one packet, and the power state
immediately transits to IDLE state. In IDLE state, more energy
is required compared to DS state to preserve the transmission
readiness. It also means that in IDLE state, regardless of the
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(b) Power consumption of uplink case with large packet inter-arrival time

Fig. 3. Power consumption with large packet inter-arrival time

existence of beacon message, if the device has any data in its
buffer space, it will immediately transmit the data.

With large packet inter-arrival time, the state transition behav-
iors are quite similar in both uplink and downlink cases as
shown in Figure 3. However, when packet inter-arrival time
is smaller, we observe very different behaviors between the
uplink and downlink cases. In the second experiment set,
we use the same input parameters as the first experiment
set, by varying the packet inter-arrival time. In the downlink
case, no matter what inter-arrival times are choosen, the two
consecutive packets from AP always generate two surge spikes
(PR state), and the PR state transits to IDLE state. With our
experiment setup, we found that for single packet transmission,
the IDLE state lasts 205 ms, and we use notation TIDLE

to denote the duration of IDLE state. The overall transition
procedure is depicted in Figure 4(a).

In the case of uplink transmission, we observe that upon
transmission of the first packet, regardless when the subsequent
packet is sent, the time gap between second transmission to
the start point of “DS” state is constant (approx. 65 ms). We
deduce that this constant time gap represents another power
state, which we termed it Light Sleep (LS) state. PowerTutor
observed similar occurrence which they termed “ltransmit” [7].

Our observed LS state transition conditions are as follows:
for uplink, the second packet triggers LS state and the power
consumption in LS state is much less than in IDLE state. The
duration of the visible LS state varies according to packet inter-
arrival time, whereas the length of the total LS state is the
same. We illustrate this relationship in Figure 5. From the
figure, we see that part of the LS state duration is masked by
the IDLE state (power measurements indicate that IDLE state
is the active state). To figure out the total duration of LS state,
we let the device transmit the second packet right after the
IDLE state is terminating. To do so, we observed that LS state
lasts 65 ms, and we use notation TLS to denote the duration of
LS state (see Figure 4(b)). Therefore, the duration of exclusive
IDLE state is in the range TIDLE ≥ t ≥ TIDLE−TLS , and in
order to transit to the visible LS state, the device has to send
the second packet no later than TIDLE − TLS which is 140
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Fig. 4. Power consumption with 200 ms inter-arrival time
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Fig. 5. IDLE and LS state illustration

D. Packet Size

In Wi-Fi network, the size of a packet is varied depending
on the type of application. For example, packets of VoIP
applications are typically small, while file transfer applications
(e.g., FTP) has large packet size. Therefore, it is important to
investigate whether packet size has non-negligible impact on
Wi-Fi power consumption. In order to correctly control the
packet size, we need to ensure that each packet size should not
exceed the Maximum Transmission Unit (MTU), otherwise the
packet would be divided into several IP fragments, this in turn
alters the packet size. To avoid IP fragmentation, we configure
the MTU to a rather large size, 1400 bytes in following
experiments. The experiment is conducted by varying the size
of packet from 10 bytes to 1024 bytes for both uplink and
downlink traffic. Two sets of experiments are conducted for
both uplink and downlink workload, and the results are shown
in Figure 6. In downlink case, there is no strong correlation
between packet size to power consumption. Regardless of
packet size, the power consumption rate is all around 240
mW. In uplink case, the power consumption linearly increases
according to the packet size. Such discrepancy is caused by
the transmission chain. In downlink case, all received signals
go through Low Noise Amplifier (LNA) which is very power
light. Whereas, in uplink case, all transmitted signals must go
through the Power Amplifier (PA), which consumes power in
per bit manner, therefore, uplink traffic consumes more power
compared to downlink traffic [22].
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E. Packet Rate

Lastly, we performed a set of experiments to understand how
the packet rates affect the Wi-Fi power consumption. We
varied the packet rate from 1 pkt/s to 1024 pkt/s, and the
data transmission lasts 60 seconds in each packet rate. Each
packet is configured to have fixed size and the inter-arrival time
is equal to the transmission duration divided by the packet
rate. From Figure 7 we can observe that the average power
consumption increases rapidly within packet rate 1 pkt/s to 5
pkt/s, while the slope is much gentler when the packet rate
is over 5 pkt/s. We believe this happens because for small
packet rate the Wi-Fi module can still go back to the DS state
periodically, while for large packet rate, the Wi-Fi module does
not go to DS state at all. Consequentially, although power
consumption increases proportionally to the packet rate, we
see the two different slopes.
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Fig. 7. Power consumption for uplink and downlink traffic with different
packet rate

IV. FSM-BASED WI-FI POWER MODEL

Our experiments as reported in Section III taught us two
lessons. Lesson 1, direction of transmission, packet inter-
arrival rate, packet size and packet rate are important factors
to consider when modeling Wi-Fi power consumption. Lesson
2, the specific state the communication module is in (i.e.,
PT, IDLE, DS, LS and PR) and the transition conditions
between each state, are important modeling considerations.
Accordingly, in this section we present the design of our
Finite State Machine (FSM) based Wi-Fi power model. Our
power model is comprised of two sub-models: 1) the power

TABLE I. POWER CONSUMPTION AND DURATION IN POWER STATE

State Power (mW) Duration (ms)

PT 0.069× packet size+ 286 1

PR 240.0 1

IDLE 200.0 205

LS 80.0 inter arrival time− 140

DS 10.0 N/A

consumption rate and duration model for each power state; and
2) the power state transition model.

We derive the power consumption rate and duration model
by using the experimental observations from Section III. The
detailed model design has been shown in Table I. We observe
that except the power expenditure ratio in PT state and the time
duration in LS state, all other factors have constant parameters.

We design our power state transition model as a FSM shown
in Figure 8. t1 denotes the total duration of the IDLE state
(e.g., 205 ms), whereas t2 denotes the duration of exclusive
IDLE state (e.g., 140 ms). E denotes the time spent in IDLE
state and α denotes a binary variable used to check whether
a packet has been transmitted after t2. Note that, in Figure 8,
we use notation “=” to denote the equality, use “←” to denote
a value assignment.

PT IDLE

LS PR

DS

α= F, E < t2

α= F, t1 >E≥ t2, then α←T or

α← T

α=T, E= t1

α= F,

E = t1

E− t2

Fig. 8. Power state transition model

The most complex transition is the one from IDLE state to
other states. There are four potential transitions from IDLE
state. The first transition is from IDLE to PT. The value of
E cannot exceed t1. Therefore, no matter what value that E
has, as long as α is FALSE, IDLE state always transits to
PT. The second transition is from IDLE to DS. This transition
occurs when E equals to t1 while α is FALSE. The third
transition is from IDLE to LS. This transition only occurs when
α is TRUE and E reaches the IDLE state timeout duration.
The last transition is from IDLE to PR when it receives an
incoming packet from AP. There are two ways to transit from
LS to PT. One goes through the DS state in which α will
be reset to FALSE, while the other one directly goes to PT in
which α will still preserve TRUE value. By default, the Wi-Fi
communication module is in DS state.

Consequently, we can calculate the overall Wi-Fi power con-
sumption by using the Equation 1.
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TABLE II. VARIABLE USED IN POWER ESTIMATION ALGORITHM

Var. Name Variable Description

Γ The granularity of reading the network metrics

NΓ The number of packets sent/received during Γ

δ The duration required to send one packet

ΨPT The power spent in the Packet Transmission state

ΨPR The power spent in the Packet Received state

ΨIDLE The power spent in the IDLE state

ΨLS The power spent in the Light Sleep state

ΨDS The power spent in the Deep Sleep state

τWAKE The time spent in the PT/PR/IDLE states

AwakeF lag A flag denotes whether it is in PT/PR/IDLE state

LSFlag A flag denotes whether it is in LS state

DLS A duration of LS state

TLS Elapsed time in LS state

cnt Number of granularity units elapsed from the last

estimation

Ψavg =

∑

s∈S′

Ψs ×Ts + (σ × γ +Ψ
′

PT )×TPT

T
(1)

where S
′ = {PR, IDLE,LS,DS}, S = S

′ ∪ {PT},
σ is power increasing constant with packet size γ,
T =

∑

s∈S Ts, Ψ′PT is the base power consumption in PT.

Based on our power model, we designed a Wi-Fi power esti-
mation algorithm, as shown by the pseudo code in Algorithm
1. The algorithm takes the number of transmitted/received
packets, each state’s power expenditure rate combined with
duration constants, and the estimation granularity Γ as input.
The output is the amount of estimated power during Γ. The
detailed description of the variables is shown in Table II. Note
that, with finer granularity Γ, we can obtain more accurate
power estimation result.

V. DESIGN AND IMPLEMENTATION OF POWERGUIDE

We designed and implemented our Wi-Fi power model and
power estimation algorithm in a smartphone application called
PowerGuide. In order to implement our power model, the
input network metrics should be available to PowerGuide
which runs in user space. However, some network metrics
such as packet size, packet inter-arrival time can only be
accessible from the kernel space, and moreover those metrics
are not exposed by default in the newer Android OS versions.
Hence, we implemented a set of kernel modules to make the
network metrics available to the application via “/sys” interface
[23]. “/sys” is a special virtual filesystem, which stores the
information and statistics about kernel subsystems and physical
devices including Wi-Fi communication module. The detailed
implementation architecture is depicted in Figure 9.

• User Interface: Through this component, the user can
configure the granularity of monitoring network metrics,
and also can view the Wi-Fi power consumption pattern in
real time.

• Customizer: This component is in charge of quantifying
the user input signal such as monitoring granularity, and
delivering the quantified value to Power Estimator and
Metric Aggregator.

Algorithm 1: Power Estimation Algorithm

input : Γ, NΓ, δ, ΨPT ,ΨPR, ΨIDLE , ΨLS , ΨDS , τWAKE

output: Estimated power consumption Ψ

1 while TRUE do
2 if NΓ 6= 0 then
3 if transmitted packets? then
4 Ψ← {ΨPT ×NΓ×δ+ΨIDLE×(Γ−NΓ×δ)};
5 if AwakeFlag = TRUE then
6 LSFlag← TRUE;
7 TLS ← DLS ;

8 else
9 Ψ← {ΨPR×NΓ×δ+ΨIDLE×(Γ−NΓ×δ)};

10 AwakeFlag← TRUE;
11 increment cnt by one;

12 else
13 if cnt < τWAKE/Γ and AwakeFlag then
14 Ψ← ΨIDLE ;
15 increment cnt by one;
16 decrement TLS by Γ;

17 else
18 if LSFlag = TRUE and TLS ≥ 0 then
19 Ψ← ΨLS ;
20 decrement TLS by Γ;

21 else
22 Ψ← ΨDS ;

23 AwakeFlag← FLASE;
24 cnt← 0;

25 wait Γ;

Android OS

PowerGuide

User Interface

Customizer
Wi-Fi Power 

Estimator
Visualizer

Application

Kernel
Wi-Fi Metric 

Monitor

Wi-Fi Metric 

Aggregator

Wi-Fi Metric 

Reporter

Software

Hardware
Wi-Fi Communication Module

Other 

Apps.

Local Procedure Invocation

Interaction through “/sys”

Fig. 9. Implementation Architecture of PowerGuide

• Power Estimator: Power Estimator obtains the monitoring
granularity as well as the Wi-Fi metric information as input,
and calculate the estimated Wi-Fi power consumption by
using the Wi-Fi power model proposed in Section IV. Note
that, the Wi-Fi metrics get polled periodically by the Power
Estimator from “/sys”, and therefore, more frequent polling
generates more accurate estimation result.

• Visualizer: This component fetches the estimated power
consumption from Power Estimator, and visualizes it into
2D graph. Visualizer component is embedded into the User
Interface to visualize the Wi-Fi power consumption pattern.
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• Kernel Modules: There are three Kernel Modules devel-
oped to assist with the components in application level, and
those are Metric Monitor, Metric Aggregator and Metric Re-
porter. Metric Monitor directly reads the Wi-Fi metrics from
the Wi-Fi communication module, and periodically transfers
the metrics to the Metric Aggregator. Metric Aggregator
aggregates the Wi-Fi metrics with a certain periodicity pre-
configured by user. Finally the aggregated Wi-Fi metrics are
reported to Wi-Fi Power Estimator through “/sys” interface.
With current implementation, the Kernel Modules cannot
spontaneously report the fresh Wi-Fi metrics to application
components, hence, the application components might use
the out-of-date metric for a while.

VI. EVALUATION

Metered Power 

Logging Software

Monsoon Power Meter

Samsung Galaxy S3 LTE

with Exynos 4 

Quad-core chipset

Fig. 10. Wi-Fi power consumption measurement testbed using Monsoon

To test our power model and PowerGuide application in
practice, we deployed the PowerGuide and PowerTutor into
the Galaxy S3 LTE to estimate the Wi-Fi power consumption.
We re-utilized the physical setup shown in Section III, and used
Monsoon to accurately measure the Wi-Fi power consumption.
We adopted the resulting value from Monsoon as the ground
truth, while the estimated power consumption from Power-
Tutor as a comparison point. So the power estimation tool,
whose results are more proximate to the result of Monsoon,
will be evaluated to have higher estimation accuracy. In order
to better evaluate our power model under specific network
conditions, we used UDP traffic in the experiments. We note
that PowerGuide works equally well with TCP traffic in
practice. But from evaluation point of view, the results obtained
under TCP are difficult to interpret/illustrate since the various
TCP protocol specifics (ACK messages, transmission window,
etc.) introduce variations in key network parameters that drive
power state transitions and impacts power consumption. The
overall testbed is shown in Figure 10. Four sets of experiments
are carried out. In each experiment, the Wi-Fi power consump-
tion is reported by Monsoon, PowerGuide and PowerTutor.
Since the PowerTutor only relies on the packet rate in which
8 pkt/s is the PSM and CAM modes’ switching threshold,
we sent the packets from mobile devices with 9 pkt/s and
4 pkt/s packet rate in the first and the second experiment
sets respectively, while we configured the mobile devices to
received the packets which had 9 pkt/s and 5 pkt/s packet
rate in the third and the forth set of experiments. Due to
the trade-off between power estimation accuracy and power
conservation, we used the value of 50 ms as the estimation
granularity Γ in all experiments.

Figure 11(a) shows the power estimation result with 9 pkt/s

packet rate and 6 ms packet inter-arrival time on uplink traffic.
With considering the IDLE state duration (e.g., 205 ms), the
device worked in active state (IDLE + PT) around 259 ms per
second. However, PowerTutor only took into account packet
rate for power estimation, hence, it assumed that the device was
almost fully working in CAM. Whereas, PowerGuide was able
to estimate the power consumption more accurately. Overall,
the estimation error rate of PowerTutor was around 1,067%,
while that of PowerGuide was around 15%.

Figure 11(b) shows the power estimation result with 4 pkt/s
packet rate and 250 ms packet inter-arrival time. With this
parameter setup, we observed evenly spread packet transmis-
sion pattern, and each packet induced around 205 ms IDLE
state and 45 ms DS state. Since 45 ms is quite short, the
Wi-Fi device could not find much opportunity to go back
to the DS state, thus, we cannot observe clear DS state in
this experiment. PowerTutor underestimated the power con-
sumption, as it assumed that the device was fully working
in PSM (DS state). Overall, the error rate of PowerTutor
was around 74%, while that of PowerGuide was 23% that is
around 3.5 times more accurate compared to the result obtained
from PowerTutor. The error rate of estimated power on uplink
traffic is depicted in Figure 11(c), PowerGuide significantly
outperforms PowerTutor in all cases.

In the third experiment, we performed Wi-Fi power estimation
on downlink traffic with 9 pkt/s packet rate and 6 ms packet
inter-arrival time parameter setup, and the result is reported
in Figure 11(d). Similar to the trend in Figure 11(a), Power-
Tutor has very high error rate due to the deficiencies in its
power model, while PowerGuide using our FSM-based power
model is able to accurately capture the state transitions of
the communication module. As a result, PowerGuide showed
around 17% error rate compared to PowerTutor’s 1,186% in
this experiment.

In the fourth experiment, we performed Wi-Fi power estima-
tion on downlink traffic with 5 pkt/s packet rate and 200 ms
packet inter-arrival time, and Figure 11(e) shows the result.
Again, PowerGuide achieved very high estimation accuracy
compared to PowerTutor. We observed small estimation miss
match on power state using PowerGuide at around 2,000 ms
and 4,000 ms, and this is attributed to our chosen estimation
granularity (50 ms) missed out on the short transitions.

Interestingly, we observe that the error rate of the second
experiment is much higher than that of the fourth experiment.
This is because in the fourth experiment, we chose a smaller
packet inter-arrival time of 200 ms, which forced the Wi-Fi
device to be awake more frequently compared to the case
when we chose the packet inter-arrival time to be 250 ms.
So with smaller packet inter-arrival time of 200 ms, the power
state was interchangeable only among AWAKE (e.g., PT, PR
or IDLE) states and the power state transition frequency was
relatively large. As a consequence, even with the relatively
coarse estimation granularity of 50 ms, PowerGuide can more
accurately detect the power state of Wi-Fi device, and this in
turn increases the power estimation accuracy.

The overall error rate of PowerGuide was around 15%, and
was mainly due to the polling frequency. In our current im-
plementation of PowerGuide, the Power Estimator periodically
polls the latest Wi-Fi metrics stored in “/sys”, therefore, even
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Fig. 11. Uplink and downlink estimated Wi-Fi power consumption using PowerGuide and PowerTutor
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Fig. 12. The uplink and downlink Wi-Fi power consumption of Galaxy S3 and S5 using Monsoon

if we have fresher Wi-Fi values reported in the kernel, before
the next polling period, we cannot obtain it in the application,
and this reduces estimation accuracy. We are investigating a
way to inform and deliver updated values to application more
rapidly from the kernel space. And in doing so, we can further
improve accuracy. We intent to investigate this direction in a
future work.

Although the current implementation of PowerGuide was only
targeted to BCM4334 Wi-Fi chipset, we want to ascertain that
our FSM-based power model is a viable general approach,
which will not be rendered obsolete with newer generation of
smartphones. We reasoned that existing and near future Wi-Fi
chipsets all follow IEEE 802.11 standard protocol which is in
essence what our FSM captures. To validate this reasoning, we
performed the power measurement for Samsung Galaxy 3 LTE
(SHV-E210S) and Samsung Galaxy 5 LTE-A (SM-G900K)
smartphones using Monsoon power meter. The S5 is equipped
with BCM4354 Wi-Fi chipset [24], and it runs the latest
version of Android Kitkat 4.4.2. We conducted experiments
with the same parameter settings as before, and the results are

reported in Figure 12. We observe that the power consumption
patterns of S5’s Wi-Fi device is very similar to what we have
observed in S3. By tuning the specific parameters for S5, we
are now confident that PowerGuide can work equally well on
the S5, as well as many other Wi-Fi chipsets based on 802.11n
protocol.

VII. CONCLUSION

In this paper, we presented a FSM-based power estimation
model for Wi-Fi communication on smartphones, and have
implemented the model and its power estimation algorithm as
an Android application called PowerGuide. Our experimental
studies clearly showed the accuracy of PowerGuide compared
to the popular power estimation tool PowerTutor. Furthermore,
we have shown the appropriateness of our power model to the
new generation of smartphones. As future work, we will tune
PowerGuide to work with newest generation of smartphones
and release PowerGuide to the research community. Moreover,
we will conduct field tests with TCP flows and popular mobile
applications.
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