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Abstract—A Content Delivery Network (CDN) employs edge-
servers caching content close to end-users to provide high Quality
of Service (QoS) in serving digital content. Attacks against edge-
servers are known to cause QoS degradation and disruption in
serving end-users. Protecting edge-servers is vital but represents
a complex task. Not only must the attack mitigation be immedi-
ately effective, but the corresponding overhead should also not
negatively affect the QoS of legitimate users.

We propose a software-based security system for CDN edge-
servers to mitigate various attacks. The approach is to auto-
matically react to threats by deploying and managing security
services. These security services are realized using virtualized
security function chains created, configured, and removed dy-
namically. The desired system behavior is governed by high-level
security policies dictated by a network operator. We demonstrate
how our system can be programmed using these policies to auto-
matically handle real-world attacks. Our performance evaluation
shows that our system is low-overhead, immediately responds to
threats, and quickly recovers legitimate traffic throughput.

I. INTRODUCTION

Delivering digital content (e.g., video, images, and Web-
pages) accounts for most of today’s Internet traffic [33], [38],
[28]. CDNs play a critical role in delivering digital content to
end-users. Open-Connect [5] carries part of Netflix’s content
accounting for 35.2% of all the traffic across North America,
and Akamai CDN daily delivers more than 30 Tbps of traffic
[10]. A CDN contains several servers known as edge-servers
distributed in various locations to cache content close to end-
users resulting in high Quality of Service (QoS).

Attacks against edge-servers can cause disruption and QoS
degradation in serving end-users, and loss in revenue for, and
reputation of, a CDN provider. The main attacks against CDN
edge-servers include Distributed Denial of Service (DDoS) and
application-layer attacks [29], [42], [1]. DDoS attacks exhaust
the resources of an edge-server. They range from network
flooding (e.g., UDP fragment, SYN flood) [7] to amplifica-
tion/reflection [39], and HTTP/S flooding [4]. Most CDNs
host Web services [2] and are therefore prone to application-
layer attacks. Common application-layer attacks include SQL
injection, cross site scripting (XSS), file inclusion, and remote
command execution. These attacks evolve quickly and are
becoming more sophisticated (e.g., by targeting multiple layers

of the protocol stack [29]). Moreover, new attacks are being
introduced every day (e.g., forwarding-loop attacks [24]).

Securing edge-servers against these main attack vectors
is a complex task. Security services must be immediate in
response to attacks to lessen possible damages (e.g., the later
the response to a denial of service attack, the more the
end-users churn). Security services affect QoS due to their
processing overhead. Further, they may consume resources that
are shared with CDN services. To reduce the impact of security
services on legitimate end-users while responding to attacks
quickly, these services must be deployed automatically and
dynamically in response to threats. When a threat is detected,
the relevant mitigation services must be instantiated, and these
services should be removed when the threat is gone. Security
services should process only relevant subsets of traffic (e.g.,
suspicious traffic flows). Moreover, to mitigate sophisticated
and novel attacks, the protection system should allow security
services to evolve (e.g., be extended with new detection or
mitigation mechanisms) and novel ones to be introduced and
employed.

Traditional security mechanisms do not completely meet the
above requirements. Defense using hardware, e.g., traditional
firewalls or IDSs, is expensive in terms of CAPEX and OPEX.
Security attacks evolve rapidly [43], while hardware-based se-
curity capabilities do not change as quickly. These mechanisms
are constrained to the resources and embedded functionality
in hardware. Further, security capabilities are constrained to
the limited number of available products. Protection using
scrubbing-centers is not always applicable. Scrubbing-centers
are over-provisioned cloud data-centers well-equipped with
security mechanisms to filter illegitimate traffic. Redirect-
ing to scrubbing-centers adds latency and may impact QoS.
Moreover, scrubbing-centers mostly employ proprietary mech-
anisms that limit the ability of a CDN provider to enforce their
custom security policies.

The growing movement towards network softwarization
is promising. Leveraging software defined networks (SDN),
Network Function Virtualization (NFV), and service func-
tion chaining, we can instantiate, modify, scale, and release
virtualized security functions on-demand. Such flexibility in
orchestration provides the means to achieve the desired protec-
tion. However, current software-defined security solutions are978-1-5386-4633-5/18/$31.00 © 2018 IEEE



insufficient. They are not tailored to the CDN environment and
its security requirements. Recent work [27], [31], [19] focuses
on DDoS attacks. Moreover, these solutions mainly provide
static DDoS mitigation mechanisms that rely on a network
operator to manually configure and provision. Finally, some
of these solutions require deep and complex modifications to
existing infrastructures.

This paper presents a security system to secure CDN edge-
servers. Our system protects an edge-server where the security
and content-delivery services share the same computational
and networking resources. The overhead of security services
is dynamically modulated to offset their negative impact on
CDN services. Our system is governed by reactive high-level
security policies translated into executable security orchestra-
tion actions. Security services are implemented using service
function chaining. Orchestration actions dynamically create,
modify, manage, and remove security services. To realize
security chains, we employ general-purpose mechanisms and
tools that are widely accepted in industry standards.

Our main contributions are: i) the design of a dynamic and
automatic security orchestration system for protecting edge-
servers, ii) a proof of concept implementation of the system,
and iii) the demonstration of how our system can be flexibly
programmed to handle real world use-cases. Performance
evaluation results show that our system has a low overhead
and can immediately respond to threats and quickly recover the
throughput of legitimate traffic. In addition, using our system,
we can prioritize end-users and inspect only relevant subsets
of traffic.

The remainder of this paper is organized as follows. We
discuss related work in Section II. In Section III, we present
the design and implementation of our security orchestration
system. Section IV presents two use-case scenarios in which
our system dynamically manages security services. Section V
presents the evaluation of our system. Finally, we conclude
this paper in Section VI.

II. RELATED WORK

Traditional Security Mechanisms. Scrubbing-centers
are over-provisioned cloud data-centers that provide secu-
rity mechanisms for high traffic loads. Using DNS or BGP
mechanisms [3], traffic is redirected to scrubbing-centers to
be inspected. Illegitimate traffic will be scrubbed and the
remaining traffic will be forwarded to the original destination.
The primary motivation for delivering content by CDNs is
enhancing QoS by serving requests in the proximity of end-
users. Although scrubbing-centers can provide protection, redi-
recting traffic to these fixed and potentially remote locations
negatively impacts latency and throughput which results in
QoS degradation. In addition, security services are constrained
to proprietary security mechanisms offered by scrubbing-
centers. In contrast, using our system, any custom security
mechanism can be deployed. Also, traffic is processed locally
to avoid potential latency and throughput degradation.

Software Defined Security. DrawBridge [32] employs
end-hosts information to improve DDoS attack mitigation in

an SDN-operated ISP network. End-hosts can subscribe and
express their preferred traffic engineering rules. A DrawBridge
controller (an SDN controller) then installs these rules in its
SDN switches, or sends these rules to DrawBridge controllers
of upstream ISPs. Software Defined Security Service (SENSS)
[45] provides interfaces from ISPs that enable victims to
detect and mitigate attacks across multiple SDN-operated ISP
networks. However none of these proposals have seen any
major deployment in real ISPs where significant upgrades
have proven to be difficult or even impossible. As our system
uses standard mechanisms, it can be deployed in practice
without the need for major infrastructure upgrades. VFence
[31] proposes a platform which performs SYN flood mitigation
in a scalable manner by using dynamic allocation of virtual
functions. To mitigate DDoS attacks, Bohatei [27] deploys a
protection chain based on the attack types. The protection
workflow is as follows. Bohatei i) flags a suspicious flow,
ii) estimates the attack volume, iii) places defense functions
across multiple data-centers, and iv) steers traffic through
the chain. To mitigate SYN Flood attacks, Alharbi et al.
[19] presents an NFV based platform consisting of screening
and resource allocation modules. The former classifies and
redirects traffic to corresponding security chains, and the latter
allocates resources to chain functions. The application of these
systems is limited to DDoS attacks. In contrast, our system can
be used to mitigate different attacks against edge-servers.

Service Function Chaining Frameworks. CoMB [41]
consolidates chain deployment by placing all functions of
a chain in a single location (a CoMB-box). OpenBox [22]
separates the data plane and the control plane of network
functions and provides a northbound API for application
development. Slick [20] provides a control-plane to develop
applications composed of fine-grained elements performing
custom packet-processing. However, to orchestrate security
chains using these platforms, security functions have to be
significantly modified. In contrast, standard security functions
can be orchestrated using our system.

III. SYSTEM DESIGN AND IMPLEMENTATION

Our system orchestrates security services in an edge-server
environment. The edge-server can be a set of physical servers,
a collection of virtual machines, or a combination of these. We
refer to this environment as a virtual edge-server. Our goal
is to design a security orchestration system that automatically
and dynamically deploys and modifies security services under
various environment and attack conditions. To do so, our
system reacts to the dynamicity of the environment and attacks
by instantiating and re-configuring customized security ser-
vices. To minimize overhead on legitimate traffic, only relevant
traffic subsets (e.g., suspicious traffic) can be processed by the
security services. The security services are realized by security
chains composed of one or multiple virtual security functions.
The behavior of the system is regulated by security policies
that an operator (e.g., a content provider or a CDN provider)
specifies to achieve the desired security. As follows, we first
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introduce the system architecture, then describe in detail each
component of the system.

A. Architecture

ETSI developed monitoring and management use-cases in
the context of NFV security [12]. Our system architecture
adapts some of the definitions from the ETSI use cases. As
depicted in Fig. 1, it consists of three components as follows.

1) Orchestrator: Interacting with other components, the
orchestrator reacts to various environment states and attack
scenarios. This reactive behavior is governed by security
policies specified by the network security administrator. The
orchestrator translates these high level policies into executable
operations, including deploying, modifying, and removing
security chains as needed. We require policies to be simple
enough for the network security administrator to specify, as
well as to be independent of the underlying infrastructure
and technology (e.g., independent from whether the security
function is deployed in a container or a virtual machine)

2) Virtual Infrastructure Manager: According to NFV-
MANO [11], the Virtual Infrastructure Manager (VIM) man-
ages and controls infrastructure resources. In our design, this
module controls the resources of a virtual edge-server and
manages security chains. More specifically, it is responsible
for creating, updating, querying, and deleting security chains.
VIM provides a north-bound API, used by the other system
components, to manage and query information about security
chains. We require this north-bound API to be independent
from underlying implementation mechanisms.

3) Security Monitoring Analytic System: The Security
Monitoring Analytic System (SMAS) monitors and analyzes
data collected across the system. This module queries VIM re-
garding deployed security services, monitors host’s resources,
and retrieves the logs of security functions. Analyzing the
collected data, SMAS feeds the orchestrator with alerts that
may trigger security actions. We require SMAS to have a small
footprint in terms of resources utilization.

B. Orchestrator

We express security policies in a language articulated
around the notion of events that can be associated to security
alerts (e.g., high-CPU load). The occurrence of an event
is then associated to performing a set of actions (e.g., the

deployment of specific security services). Further, the cur-
rent state of the environment must be considered to decide
whether an action should be performed. This almost naturally
leads us to adapt the Event-Condition-Action (ECA) paradigm
[26]. Accordingly, if a certain event happens, provided that
particular conditions hold, a specific sequence of actions is
executed. Compared to the Condition-Action (CA) paradigm
in which events are implicit and limited in scope [30], [37],
in ECA, events are separated from actions and conditions.
This explicit separation enables us to define custom events
to capture various attacks and environment states.

We adapt Lactive [21], an ECA language, for the specifica-
tion of our security policies. Here, first we list useful types of
ECA rules, then we define the components of these rules.

1) ECA Rules: The following propositions are defined.
Active-rule. The occurrence of event e triggers the execu-

tion of action a if conditions c1, . . . , cn (n ≥ 1) hold:

e initiates a if c1, . . . , cn

Causality. If conditions c1, . . . , cn (n ≥ 1) hold, the
complete execution of action a makes p1, . . . , pm (m ≥ 1)
to be true:

a causes p1, . . . , pm if c1, . . . , cn

pi is either a condition (the same as a cj) or a predefined
procedure. In the latter case, the predefined procedure is run
(e.g., timer(t) that starts a timer counting t units of time).

Event. Event e occurs after the execution of action a if
conditions c1, . . . , cn (n ≥ 1) hold:

e after a if c1, . . . , cn

2) Rule Components: The event in an ECA rule speci-
fies the signal that invokes this rule. An event may carry
parameters providing more information regarding the event
occurrence. We consider two types of events: i) security alerts
generated by SMAS, and ii) internal events that happen as a
result of executing an action. An example of a security alert is
cpu_high denoting that CPU utilization is higher than a given
threshold. An example of internal events is timeout meaning
that a certain timer has expired. The orchestrator listens on
a selected TCP port to receive external events. Running an
action, the orchestrator may fire internal events.

The conditions of an ECA rule are predicates evaluated and
if satisfied, the rule actions are performed. Examples include
time-related conditions, such as date(d) holding if the current
date is d; service related ones, e.g. chain(x) and function(y)
holding if a chain x and function y are deployed, respectively;
traffic-related, for instance steered(t, x) indicating if traffic
flow t, identified by a 5-tuple, is being processed by chain x.

The actions of an ECA rule constitute the security service
logic performed if the conditions are satisfied. An action is
a sequence of operations applied to security services. Actions
must be defined carefully to avoid redundancy and ease policy
consistency verification. As security services in our system
are implemented using virtualized security function chains, we
define the following elementary actions:



• create_chain(x : t, {y1:k1, . . . , yn:kn}) deploys a chain
named x to process traffic flow t with the ordered
sequence of functions. yi:ki denotes a function named
yi of type ki (n ≥ 0 where n = 0 means the empty
sequence of functions).

• delete_chain(x) deletes deployed chain named x.
• insert(x, y:k) inserts a function named y of type k into

existing chain named x.
• run(y, c) runs command c in function named y.
• delete(x, y) deletes function named y from chain named
x.

Traffic flow t in action create_chain(.) is defined by
tuple <f, i, j>. In this tuple, f is a Berkeley packet filter
expression [34] (e.g., “ip” to filter IP traffic). A chain and
traffic traversing through this chain create a virtual network.
i and j are the symbolic ingress and egress of traffic in this
network. We will discuss this further in Section III-C1.

3) ECA Rule Examples: Fig. 2 shows security policies that
automatically deploy and remove a security chain. Rule 1
instructs that upon receiving the event high_cpu meaning
high CPU usage, the orchestrator deploys the chain named x,
containing an IDS function named y, and steers all traffic
coming from symbolic ingress 1 through this chain, then
forwards traffic to symbolic egress 2. Rule 2 fires event conf
after create_chain(.) action if condition function(y) is valid
showing that y has been installed. Rule 3 runs command
“conf.sh” to configure function y. Rule 4 instructs that after
the chain is created, a timer named tx is set for 10 time units.
Rule 5 deletes the chain upon a timeout event for a timer tx,
if condition chain(x) is true, meaning that chain x exists.

high_cpu initiates create_chain(x:_, 1, 2, {y:IDS})
if not chain(x) (1)

conf after create_chain(x)
if function(y) (2)

conf initiates run(y, “conf.sh”)
if true (3)

create_chain(x) causes timer(tx, 10)

if true (4)
timeout(tx) initiates delete_chain(x)

if chain(x) (5)

Fig. 2: ECA Security Policy Examples

4) Rule Execution: The run-time behavior of the system
depends on how ECA rules are executed. More specifically,
(i) how conditions are monitored and evaluated; (ii) what is
the relative timing of executing the components of an ECA
rule; and (iii) how rules are scheduled when an event triggers
multiple rules, multiple events occur simultaneously, or a rule
triggers other events that invoke other rules. For (i), a process
checks the validity of a defined condition. Coupling modes
[35] describe different timing strategies to deal with (ii). For
(iii), the orchestrator maintains the list of fired events ordered
based on their priorities and occurrence time. For more details,

we refer the reader to existing work on active databases
[35], [23], [21]. Finally, to execute actions introduced in
Section III-B2, the orchestrator translates these declarations
to actual VIM API calls discussed in Section III-C3.

C. Virtual Infrastructure Manager

Virtual Infrastructure Manager (VIM) is responsible to
manage host resources, deploy, and manage security func-
tion chains. VIM provides an API to create/delete a chain,
insert/delete a function to/from a chain, and query information
about deployed chains. This API is used by the orchestrator
to manage security services, and by SMAS to query about
deployed functions. We leverage the following general purpose
mechanisms and tools in the implementation of VIM:

Docker. Containers have a low resource overhead and are
fast to create and destroy. VIM utilizes Docker [36] to manage
container-based functions.

Network Service Header (NSH). NSH is a modern service
plane protocol for dynamic service function chaining [40].
NSH specifies a sequence of functions through which packets
are steered before reaching the destination address. NSH is
independent of the underlying transport protocol. Further, it
can carry metadata that can be exploited for more sophisticated
chain operations. NSH is a widely accepted industry standard.

Open Virtual Switch. VIM implements the networking
aspect of service function chaining using Open Virtual Switch
(OVS) [6]. OVS operates at the kernel level and achieves fast,
and constant-time traffic forwarding with very low overhead.
We use NSH rules to forward traffic between functions.

1) Specifications: The following are used in calling the
VIM’s API.

Chain Specification. VIM uses the specification depicted
in Fig. 3 where chain_name specifies ch to be the unique
name of this chain. As mentioned in Section III-B2, traffic
traverses a virtual network connecting functions. ingress
and egress respectively denote from which point in this
network traffic enters the chain and to which point the traffic
is forwarded after the chain process completes. A point in the
network can be the Network Interface Cards (NICs) of a virtual
edge-server, an explicit OVS port, or a deployed function’s
ingress or egress NICs. In Section IV, we use this power-
ful notation to compose chains. classification_rules
serves as a traffic filter applied on the ingress. This field
specifies which traffic subset from ingress is forwarded to
the chain. Two chains cannot have the same ingress and
classification_rules. Field functions denote the
sequence of functions in the chain.

Function Specification. VIM instantiates a function based
on three fields as follows. function_image specifies the
Docker image. function_name is a unique name for the
function. Each function in a chain or across chains must
have a unique function_name. Referring to this field, a
function can be shared among multiple chains. Finally, field
nsh_aware is used for compatibility with legacy functions
and states whether the function can parse NSH header.



{
"chain_name": "ch",
"ingress": "1",
"egress": "2",
"classification_rules": "ip",
"functions": [
{

"function_image": "Firewall",
"function_name": "firewall",
"nsh_aware": false

},
{

"function_image": "IDS",
"function_name": "ids",
"nsh_aware": false

}
]

}

Fig. 3: The Specification of a Chain and its Functions
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2) Service Function Chaining: Functions are deployed
based on the function specification using Docker. VIM creates
and configures an OVS bridge which acts as the networking
medium between functions. VIM connects each function to
the OVS bridge by creating a veth-pair. One side of this
veth-pair is attached to the OVS bridge, and the other side
is connected to the container. Fig. 4a illustrates the deployment
of the chain defined in Fig. 3.

Three sets of rules are inserted to steer traffic through
the chain. i) Classification rules filter incoming packets from
ingress based on classification_rules and attach
NSH header to these packets. ii) Forwarding rules are NSH-
based match/action rules that forward packets between func-
tions. In packet forwarding based on NSH, functions have to
participate in forwarding by modifying the NSH header. In
the case of NSH-unaware functions, a function-proxy parses
and performs NSH-based forwarding actions. VIM implements
this proxying using a third set of rules as shown in Fig. 4b.
iii) Proxy rules match and remove the NSH header before for-
warding packets to an NSH-unaware function. After receiving
from the NSH-unaware function, the appropriate NSH header
will be reattached to packets by proxy rules.

3) Northbound API: VIM provides the API shown in Fig. 5.
Arguments chain_sp and func_sp are respectively the
specifications of a chain and a function and must follow the
specifications presented in Section III-C1. The first 5 methods
correspond to actions defined in Section III-B2. The others

1 def create_chain(chain_sp)
2 def delete_chain(chain_name)
3 def insert(chain_name, func_sp)
4 def delete(chain_name, func_name)
5 def run(func_name,cmd)
6 def chains()
7 def chain(chain_name)
8 def chain_functions(chain_name)
9 def functions()

10 def function(func_name)
11 def steered(bpf,chain_name)

Fig. 5: VIM API

TABLE I: Resource Statistics

Bandwidth CPU Memory Storage

Per-NIC util.
Bytes rec./sent
Packets rec./sent
Packet drops

Total util.
Per-core util.
Sys./user modes util.
Context switches
Interrupts and IOs

Pages-ins/outs
Swap-ins/outs

Free space
Transfer per sec.
Read/write per sec.

are query methods about chains, functions, and traffic used by
SMAS and the orchestrator.

D. Security Monitoring Analytics System

Security Monitoring Analytics System (SMAS) is respon-
sible for monitoring the logs of deployed functions and re-
sources of a virtual edge-server to collect important metrics,
analyzing these monitored data, and generating security alerts
to inform the orchestrator. In the current implementation of our
system, we focus on monitoring and analyzing the resources
of the virtual edge-server to handle misuse attacks.

SMAS periodically monitors and collects statistics on
network-bandwidth, CPU, memory, and storage resources.
Our implementation relies on Linux standard tools, such as
/proc/stat file, free command, and iostat command
for data collection. Typically, when the value of a relevant
metric passes some predefined threshold, SMAS generates an
alert indicating that this value is either over or under the
threshold. For instance, if the power utilization is above a
predefined threshold or is under another predefined threshold,
SMAS generates high_cpu or low_cpu, respectively.

The statistics collected for each resource are listed in
Table I. To decide which statistic to collect, we carefully select
the metrics that do not require high monitoring overhead.
We also select metrics that provide immediate and rewarding
information. For instance, SMAS does not monitor the average
file size, since it is an expensive process; in turn SMAS
monitors page-ins and page-outs whose high rates mean that
the memory is short, or the system is spending more resources
moving pages than running actual applications.

IV. USE-CASE SCENARIOS

A. Rate Limiting Use-case

Rate limiting is a common practice [13], [18], [15] that
CDNs use against threats ranging from network layer attacks,
e.g. DDoS, to application layer attacks, e.g. brute-force login
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attempts. Various rate-limiting mechanisms exist, such as
limiting traffic-rate per user, geography, or server. In this
use-case, traffic is rate-limited per-user. Fig. 6 illustrates this
scenario, and Fig. 7 lists the applicable security policies.

Monitoring Stage. Fig. 6a shows the initial system deploy-
ment. At the beginning, SMAS performs light resource mon-
itoring of the virtual edge-server. Large traffic volume causes
high bandwidth and CPU consumption. SMAS identifies this
suspicious behavior as bandwidth and CPU are consumed
beyond certain thresholds. SMAS raises an alert, high_rate,
to notify the orchestrator regarding this suspicious traffic.

Rate Limiting Stage. Based on Rules 6-8, upon receiving
the alert high_rate, if no rate-limiting service exists, the
system deploys chain r containing a Rate-limit to limit the
traffic-rate per IP (representing per end-user traffic). A white-
list of IP addresses are exempted from rate-limiting. Fig. 6b
shows this chain. To enforce Rule 9, a timer starts after the
installation of the chain for the predefined period of time d.
Upon the expiry of this timer, a timeout event is generated
with a parameter tr. Finally, upon receiving the timeout event
carrying tr parameter, Rules 10 and 11 are matched. First,
executing Rule 10, chain n with no function is deployed. As
chain n connects ports 1 and 2, traffic is forwarded to the Web-
server. Then, Rule 11 is matched, and chain r is removed.

B. Mitigating HTTPS DDoS Use-case

HTTPS DDoS attacks exploit HTTP and HTTPS and target
Web applications running on a server [25], [44]. Such attacks
usually generate less traffic and use seamingly legitimate
requests, and are, therefore, harder to detect. CDNs commonly
utilize Web Application Firewalls (WAFs) to mitigate these
attacks [14], [17]. Inspection at the application layer is a heavy
process that can affect the application response time [9]. In this
use-case, our system deploys a security service to mitigate
HTTPS DDoS attacks. This service inspects the content of
suspicious traffic to mitigate the attack, while legitimate traffic
is served directly without inspection. Fig. 8 depicts this use-
case scenario, and Fig. 9 lists ECA policies enforced.

high_rate initiates create_chain(r:
<“not src net 129.97.124.0/24”, 1, 2>,
{f :Rate-limit})
if not chain(r) (6)

lim after create_chain(r)
if true (7)

lim initiates run(f, “rate_limit.sh”)

if true (8)
create_chain(r) causes timer(tr, d)

if true (9)
timeout(tr) initiates create_chain(n:<_, 1, 2>, {})

if true (10)
timeout(tr) initiates delete_chain(r)

if chain(r) (11)

Fig. 7: Rate Limiting Policies
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cpu_high initiates create_chain(u:<“ip”, 1, 2>,
{f :Firewall})
if not chain(u) (12)

block after create_chain(u)
if true (13)

block initiates run(f, “block.sh”)

if true (14)
create_chain(u) causes timer(td, d)

if true (15)
timeout(td) initiates create_chain(l:

“not src net 99.231.0.0/16”, f, 2,
{t : TLS-Term,w : WAF})
if not chain(l) and chain(u) (16)

cpu_low initiates create_chain(n:<_, 1, 2>, {})
if true (17)

cpu_low initiates delete_chain(u)
if chain(u) (18)

cpu_low initiates delete_chain(l)
if chain(l) (19)

Fig. 9: HTTPS DDoS Mitigation Policies



L3 Mitigation Stage. An HTTPS DDoS attack exhausts
the CPU power of the virtual edge-server. SMAS generates
cpu_high alert to notify the orchestrator that CPU is consumed
beyond a predefined threshold. Upon reception of this alert to
enforce Rule 12, the system instantiates chain u composed of a
Firewall named f , as shown in Fig. 8a. Chain u processes IP
traffic coming from port 1, going to 2 (the ingress of the Web-
server). This chain starts to filter non-HTTPS traffic (Rules 13
and 14); however, since the attack targets the application layer,
CPU load is still high.

L4 Mitigation Stage. Upon creating chain u, a timer starts
to count (Rule 15). When this timer expires, another chain l
comprising a TLS-Term (a TLS termination) and a WAF
is instantiated to perform mitigation at the application layer
(Rule 16). Fig. 8b depicts this deployment. Chain l processes
a subset of traffic coming out of function f , going to the
Web-server. Note that legitimate traffic, i.e. originating from
a white-list of source IP-addresses in range 99.231.0.0/16,
is still directly steered to the Web-server, while the rest of
the traffic, i.e. suspicious traffic, is steered through chain l.
TLS-Term decrypts suspicious traffic, and WAF inspects
plain-text traffic to mitigate application layer attacks including
HTTPS DDoS. If the CPU utilization drops under a predefined
threshold, the traffic is directly forwarded to the Web-server,
and both chains u and l are deleted (Rules 17-19).

V. PERFORMANCE EVALUATION

A. Experimental Platform

Testbed. We use a cluster of machines (16GB RAM, 8-
cores 3.30GHz Xeon CPUs) connected with 10 Gbps NICs.
The servers run Ubuntu 14.04 with Linux kernel version 3.16.
We use 1 to 4 servers as load generators, a server as the Device
under Test (DuT) to host chains, and a server as the traffic sink.
An active daemon of our system runs on DuT.

Traffic generation. We use iperf and Apache
benchmark (ab) to generate line-rate TCP and Web traffic,
respectively. iperf clients and ab run on the load generator
servers, and iperf server runs on the traffic sink server.

Service functions. We use two service functions. Function
fwd passes traffic from a virtual interface to another. We
intentionally use this function in experiments in which we
benchmark the overhead of our service function chaining
platform independent from the complex functionality of a
service function. The other function is Rate-limit which
limits the rate of the incoming traffic.

B. System in Action

We measure the overhead of deploying chains using our
system, and the overhead of our chaining mechanisms in terms
of latency and throughput.

1) Chain Deployment Time: This experiment measures the
time it takes to deploy a chain using our system. We vary the
chain length (the number of functions in a chain) from 1 to 7
and repeat each experiment 5 times. In the process of creating
a chain, instantiating functions and connecting them to OVS
are the two most time-consuming procedures. As shown in
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Fig. 11: Traffic Round Trip Time

Fig. 10, the chain of length 1 has the lowest deployment time
of 1.06 s, and the chain of length 7 has the highest deployment
time of 6.13 s. The VM-based platforms (e.g. Bohatei [27])
have a chain creation time in the order of minutes, while it
is evident from this experiment that our system is capable of
deploying service function chains in less than 7 seconds.

2) Round Trip Time: In this experiment, we measure the
Round Trip Time (RTT) of traffic steered through chains
deployed by our system. We use ping for the RTT measure-
ments, and repeat each experiment 5 times. As depicted in
Fig. 11, we vary the chain length from 1 to 7 fwd functions,
and report the RTT average and standard-deviation for each
chain-length. As expected, the chains of length 1 and 7 have
the lowest RTT (405.13 µs) and the highest RTT (495.04 µs),
respectively. Although the longer the chain, the higher the
RTT, the delay introduced by our routing mechanism is small.
As shown, the RTT of the chain of length 7 is only 89.91 µs
more than that of the chain of length 1.

3) Resource Utilization and Throughput: In this experi-
ment, we measure the maximum throughput of chains com-
posed of 1 to 7 fwd functions using iperf. We repeat each
experiment 5 times. All functions of a chain are instantiated
in a single server. As shown in Fig. 12, the chain-length has a
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direct impact on the chain throughput. The chains of length 1
and 7 have respectively the highest throughput (7272 Mbps)
and the lowest throughput (2818 Mbps) on average. All cycles
of CPU-cores are utilized during this experiment. We observe
that fwd functions consume a negligible amount of the CPU
power, while the process softirq consumes the most of
CPU power meaning that the packet reception in the Linux
kernel of the host becomes the bottleneck. The workflow of
the packet reception in the Linux kernel (version 2.5.7 and
above) is as follows. The NIC transfers a packet from the
ring buffer to the main memory via direct memory access and
notifies the CPU with input queue interrupt request (IRQ). This
IRQ is mapped to a CPU core which runs Interrupt Service
Routine (ISR) [8] to handle this interrupt. At the end, ISR
raises a softirq to defer the reception of the packet from
the interrupt context to the process context. Packet reception is
an expensive process. In a chain, each function generates IRQs
by forwarding packets. Making the chain longer increases the
number of IRQs, thus doing so decreases the throughput.

C. Responsiveness

In this experiment, we evaluate the effectiveness of our
system in performing traffic engineering actions similar to
the use-case scenario presented in Section IV-A. We use our
system to recover the QoS of legitimate traffic in the case
of a flooding attack. To emulate such a scenario, we perform
a five-stage experiment summarized in Table II. As shown in
Fig. 13, we start by sending only legitimate traffic (8.39 Gbps)
in the first stage. In the next three stages, the flooding traffic
is gradually increased to drain the network bandwidth and
decrease the legitimate traffic throughput. During these stages,
the legitimate traffic experiences the throughput of ∼ 8.4 Gbps
down to ∼ 2 Gbps. In the last stage, in response to the gener-
ated alert, our system deploys a mitigation chain consisting of
a Rate-limit function through which the flooding traffic
is steered. The flooding traffic is limited to two different rates
(1 Gbps and 3 Gbps). In the case of 1 Gbps rate-limit, the
legitimate throughput is almost fully recovered (8.02 Gbps).
We observe a recovered throughput of 6 Gbps in the case
of 3 Gbps rate-limit. In both cases, we achieve immediate
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TABLE II: The Stages of Responsiveness Experiment

Stage Duration (s) Flooding traffic share

1 0-30 0%

2 30-60 50%

3 60-90 66.6%

4 90-120 75%

5 120-170 Limited to 1 Gpbs / 3 Gbps

recovery (in less than 1 second) after deploying the mitigation
chain. These results demonstrate that our system provides fast
and effective recovery of the legitimate traffic throughput.

D. Static vs. Dynamic Security Service

Our system allows agile deployment of security services
and the ability to redirect subsets of traffic on-the-fly. These
features make it easy to deploy security chains to process
a subset of traffic. In this experiment, we compare a static
service with a dynamic one securing a Web-server. These
security services perform deep inspection of incoming HTTPS
traffic. The traffic passes through a TLS termination (decrypt-
ing HTTPS to HTTP) and a WAF (deep inspection of HTTP
traffic matching OWASP core-rules-set [16]). In addition to
security functions, a Web-server is installed in the DuT.

In this experiment, we measure the time to download 400
Web-pages concurrently. The static security service (Static)
corresponds to the manual deployment of the security chain
through which all requests are steered. In the dynamic security
service (Dynamic), 300 legitimate requests are directly served
without any inspection, while 100 suspicious requests are
analyzed in the security chain. As shown in Fig. 14, all pages
are retrieved within 104.205 ms in the case of Static. In
the case of Dynamic, the legitimate requests are retrieved in
less than 43.09 ms, and others are served within 110.309 ms.
The dynamic security service serves the legitimate requests
2.4× faster. To further evaluate the overhead introduced by
security services, we measure the completion time of requests
when all requests are directly served (Baseline). In the
case of Baseline, all Web-pages are downloaded within
10.496 ms. One would think that legitimate requests in the case
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of Dynamic should be served with the same latency as in the
case of Baseline. However, there is an overhead of 32.6 ms
explained by the high CPU utilization (mostly consumed by
the WAF) when security chains inspect traffic. Consequently,
the Web-server is deprived of some of the CPU resources.

VI. CONCLUSION

In this work, we designed and implemented a policy-based
security system that automatically and dynamically deploys
security function chains. We illustrated how our system can
be flexibly programmed to handle real world use-cases. The
evaluation results demonstrated that our system has low
overhead in terms of chain deployment time and latency
of traffic passing through a chain. This system is able to
immediately respond to threats and quickly recover legitimate
traffic throughput (∼1 second). Further, our system is capable
of on-the-fly traffic redirection. Using our system, legitimate
traffic can be exempted from the high overhead imposed by
heavy security services. To do so, security policies should
dictate redirecting only suspicious traffic to security chains
while legitimate traffic is directly served without inspection.
Using this capability, we have shown that legitimate requests
are served 2.4× faster than than in the case of static security
services.
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