SPONGE : Software-Defined Traffic Engineering to Absorb Influx of Network Traffic

Benoit Henry, **Shihabur R. Chowdhury,** Abdelkader Lahmadi, Romain Azais, Jérôme François, and Raouf Boutaba

Traffic Engineering

The art of assigning (network) traffic to paths while optimizing certain objective(s) (*e.g.*, minimize congestion, maximize residual capacity)

Traffic Engineering

The art of assigning (network) traffic to paths while optimizing certain objective(s) (*e.g.*, minimize congestion, maximize residual capacity)

State-of-the-art: Birds eye view

Static & Load-unaware (pre-SDN era)	OSPF, MPLSE-TE, ECMP
Topology-specific (post-SDN era)	DC – Hedera ¹ , MicroTE ² WAN - B4 ³ , SWAN ⁴
Event specific	Congestion & Failure events; Attack events (<i>e.g.</i> , link-flooding attack)

¹M. Al-Fares, *et al.* "Hedera: dynamic flow scheduling for data center networks." In Proc. of NSDI 2010.
²T. Benson, *et al.* "MicroTE: Fine grained traffic engineering for data centers." In Proc. of ACM CoNeXT 2011.
³S. Jain, *et al.* "B4: Experience with a globally-deployed software defined WAN." In Proc. of ACM SIGCOMM 2013.
⁴C. Hong, *et al.* "Achieving high utilization with software-driven WAN." In Proc. of ACM SIGCOMM 2013.

Our Contribution: SPONGE

A traffic engineering mechanism not specific to any network topology, traffic pattern, objective function, and network events

SPONGE: Overview

Topology agnostic

Traffic matrix & network event agnostic Objective function agnostic The network is modeled as a graph with system of queues on link end-points

Network dynamics is characterized by a stochastic process on queues

A pluggable objective function supports different operational policies

SPONGE: Network Model

The network is modeled as a graph with a system of queues and a routing table at each node

SPONGE: Network Model

The network is modeled as a graph with a system of queues and a routing table at each node Result of optimization (bw, latency 10m. atend (bw, latency Routing Table Queue of packets at Next Dest. time t on node C А А (bw, latency) X_t^C ΄bw, latency` (bw, latency) F \square bw, latency Queue contains packet destinations Н А G ´bw. latei

Network dynamics is modeled as variation of the queues at network nodes

Network dynamics is modeled as variation of the queues at network nodes

 $\delta^+ X_t^C$ Positive variation of queue, *i.e.*, packets in (function of negative variation of C's neighbors)

Network dynamics is modeled as variation of the queues at network nodes

- $\delta^+ X_t^C$ Positive variation of queue, *i.e.*, packets in (function of negative variation of C's neighbors)
- $\delta^{-}X_{t}^{c}$ Negative variation of queue, *i.e.*, packets out (function of C's processing time)

Network dynamics is modeled as variation of the queues at network nodes

- $\delta^+ X_t^C$ Positive variation of queue, *i.e.*, packets in (function of negative variation of C's neighbors)
- $\delta^{-}X_{t}^{C}$ Negative variation of queue, *i.e.*, packets out (function of C's processing time)
- (I_k^C, D_k^C) Arrival time & destination of k-th new packet at C

Network dynamics is modeled as variation of the queues at network nodes

- $\delta^+ X_t^c$ Positive variation of queue, *i.e.*, packets in (function of negative variation of C's neighbors)
- $\delta^{-}X_{t}^{C}$ Negative variation of queue, *i.e.*, packets out (function of C's processing time)

 (I_k^C, D_k^C) Arrival time & destination of k-th new packet at C

Dynamics of X_t^c after time $t = f(\delta^+ X_t^c, \delta^- X_t^c, (I_k^c, D_k^c))$

SPONGE: Objective

Given a network graph and functions representing variations of queues, compute routing tables that bring the network to a *healthy state*

SPONGE: Objective

Given a network graph and functions representing variations of queues, compute routing tables that bring the network to a *healthy state*

How do we quantify *healthy network state*?

Healthy Network State: Example-I

Example-I: Direct routing potential (H_{route})

 \sum (distances of the packets in every queue from their destination)

Healthy Network State: Example-I

Example-I: Direct routing potential (H_{route})

 Σ (distances of the packets in every queue from their destination)

Healthy Network State: Example-I

Example-I: Direct routing potential (H_{route})

 Σ (distances of the packets in every queue from their destination)

<u>Our choice</u> Weighted sum of two potentials = $\alpha H_{route} + (I - \alpha)H_{load}$

(residual_queue_capacity_at_all_nodes)

SPONGE: Control Optimization

Any numerical optimization method can be used to compute a routing table that minimizes the potential function given the current network status

SPONGE: Control Optimization

Any numerical optimization method can be used to compute a routing table that minimizes the potential function given the current network status

Our choice: Simulated Annealing

Neighborhood Generation

Fitness Function

Metropolis-Hasting algorithm

Gibbs measure. It inherently prioritizes the low potential states, *i.e.*, healthier network states.

Evaluation

Use Cases

Network Topology

Traffic Pattern

Methodology

Link-flooding attack; Data-center congestion mitigation

ISP networks (Abilene, Bell Canada), Data center (leaf-spine)

Crossfire attack¹, Many-to-any aggregation traffic pattern in data centers

Matlab simulation; Mininet emulation

Successful packet delivery

~50% less packet drops on avg. with **SPONGE**

Bell Canada topology; Crossfire attack for 3 min

What's Next?

Consideration for differential traffic classes

Machine learning to automatically identify traffic classes (*e.g.*, malicious vs benign) and treat them accordingly

Packet delivery time

Impact of α

