Fully-Flexible Virtual Network Embedding in Elastic Optical Networks

Nashid Shahriar, Sepehr Taeb, Shihabur R. Chowdhury, Massimo Tornatore, Raouf Boutaba

Jeebak Mitra, Mahdi Hemmati

UNIVERSITY OF WATERLOO FACULTY OF MATHEMATICS David R. Cheriton School of Computer Science

Outline

Introduction

- Elastic optical networks (EONs)
- Virtual network (VN) embedding
- Related work and contribution
- Proposed solutions
 - Integer Linear Program (ILP) formulation
 - Heuristic algorithm for a VN
 - Dynamic programming (DP) algorithm for single virtual link

Evaluation

Summary and future work

Introduction

- Internet traffic is growing at a very fast rate
 - AT&T experienced 100000% increase in traffic between 2008 and 2016¹
- Optical backbone networks are evolving to keep pace
 - Fine-grained spectrum allocation using 12.5GHz slices as opposed to fixed 50 or 100GHz wavelength grids
 - Elasticity in tuning transmission parameters (e.g., data rate, modulation, and forward error correction (FEC))
- Network virtualization improves utilization
 Virtual network embedding (VNE) is a fundamental problem

1. L. Peterson et al. Central office re-architected as a data center. IEEE Communications Magazine, 54(10):96–101, 2016.

Elastic optical networks (EONs)

Traditional optical networks

Data Rate (Gbps)	Modulation	FEC (%)	Spectrum bandwidth (GHz)	Reach (km)	ID
100	QPSK	25%	50	2000	T1
200	QPSK	25%	100	1000	T2

Transmission

configuration

Elastic optical networks

\mathbf{n}	Data Rate (Gbps)	Modulation	FEC (%)	Spectrum bandwidth (GHz)	Reach (km)	ID
	100	QPSK	25%	50	2000	Tl
		16QAM	20%	25	1250	T2
	200	QPSK	25%	75	1000	ТЗ
		32QAM	20%	37.5	400	T4

Virtual network embedding (VNE)

Embed a VN on an EON

- A virtual node is hosted on a physical node
- A virtual link is mapped to a non-empty set of lightpaths
 - Each lightpath is assigned a transmission configuration and required spectrum
 - Spectrum contiguity and continuity constraint

Related work and contribution

- [1] studied route, spectrum, and modulation level assignment with demand splitting
- We allow virtual link to be mapped over multiple spectrum segments on the same path
- We consider full fledged VN as opposed to demands

1. A. Pages et al., "Optimal route, spectrum, and modulation level assignment in split-spectrum-enabled dynamic elastic optical networks," Journal of Optical Comm. and Net., vol. 6, no. 2, pp. 114–126, 2014.

Proposed solutions

- VNE problem is NP-hard in general
 - Node and link mapping are difficult even when solved independently
- A path based ILP formulation to optimally solve the VNE over EON problem inspired by the formulation of [1]
 - k-shortest paths between pairs of physical nodes are precomputed and given as input
 - ILP formulation can find solutions for small problem instances
- A heuristic algorithm to scale to large problem instances
 A DP based optimal algorithm to solve for a single virtual link

1.Y. Wang et al., "A study of the routing and spectrum allocation in spectrum-sliced elastic optical path networks," in Proceedings of INFOCOM, 2011, pp. 1503–1511.

ILP formulation

Objectives

- Minimize total spectrum resource allocation for a VN (Primary)
- Minimize total number of splits for all the virtual links of a VN (Secondary)

Link mapping constraints:

- The number of splits for a virtual link does not exceed an upper limit, q
- The slices assigned to each split are adjacent to each other
- One slice on a link can be allocated to only one lightpath
- Cannot allocate more than the available number of slices on a link
- Node mapping constraints
 - A physical node can host at most one virtual node of a VN
 - A virtual node is mapped to at most one physical node satisfying location constraint
- Coordination between link and node mapping
 - A non-linear constraint that we linearize

DP based optimal algorithm

- Solves the link mapping problem for a single virtual link with given mappings of the two virtual nodes of the link
 - Path selection
 - Transmission configuration selection
 - Spectrum slice allocation
- A path, a transmission configuration, and a slice allocation can appear more than once in a solution
 - □ (<P1, P1, P3, P3 >, <T1, T2, T2, T3>, <S2, S4, S3, S4>)
 - Each of them is a multi-set which further increases complexity

Algorithm for single virtual link

Heuristic algorithm for a VN

- The DP based algorithm solves the problem for a virtual link
 How to extend it for VNs with more than one virtual link?
- Let's assume, a VN has E virtual links
 - An optimal solution requires to explore E! possible ordering
 - Computationally intractable for large VNs
- Our heuristic algorithm explores one of E! orderings chosen according to a criteria (e.g., decreasing order of demand)
 - Apply look-ahead techniques so that selecting a solution for one virtual link does not block the spectrum for remaining links

Running time analysis

invokes Algorithm 2 $\frac{(|\mathcal{D}_{\mathbb{P}_{\overline{e}}^{k}}|+q-1)!}{(|\mathcal{D}_{\mathbb{P}_{\overline{e}}^{k}}|-1)! \times \Pi_{d_{j} \in \mathcal{D}_{\mathbb{P}_{\overline{k}}^{k}}} m_{4}(d_{j})!} \text{ times to com-}$ pute $n(\mathbb{P}^k_{\bar{e}})$. The most expensive step of Algorithm 2 is the exploration of all the permutations of the paths in $\mathbb{P}^k_{\bar{e}}$ requiring $\frac{q!}{\prod_{p \in \mathcal{P}_{k}^{k}} m_{1}(p_{j})!}$ possibilities in the worst case. Therefore, to find $\mathcal{A}_{\bar{e}}$, Algorithm 1 enumerates $\left(\sum_{i=1}^{q} \binom{k+i-1}{i}\right) \times$ $\frac{(|\mathcal{D}_{\mathbb{P}^k_{\overline{e}}}|+q-1)!}{(|\mathcal{D}_{\mathbb{P}^k_{\overline{e}}}|-1)! \times \prod_{d_j \in \mathcal{D}_{\mathbb{P}^k_{\overline{e}}}} m_4(d_j)!} \times \frac{q!}{\prod_{p_j \in \mathcal{P}^k_{\overline{e}}} m_1(p_j)!} \text{ possibili-}$ ties. Typical values of k^{e} and q are small, therefore, the running time is dominated by the size of $\mathcal{D}_{\mathbb{P}^{\underline{k}}}$.

Evaluation – compared approaches

key questions

- How jointly considering all the flexible transmission parameters impact VNE?
- What is the gain of incrementally introducing flexibility?

Degrees of	Fixed	FEC	Variable FEC		
freedom	Fixed Modulation	ixed Modulation Variable Modulation		Variable Modulation	
Fixed grid	Fixed-fixmod- fixfec (FM-FF)	Fixged-varmod- fixfec (VM-FF)	Fixed-fixmod- varfec (FM-VF)	Fixed-varmod- varfec (VM-VF)	
Flex grid	Flex-fixmod-fixfec (FM-FF)	Flex-varmod- fixfec (VM-FF)	Flex-fixmod- varfec (FM-VF)	Flex-varmod- varfec (VM-VF)	

Evaluation – simulation settings

Small scale

- EON: Nobel Germany (17 nodes, 26 links)¹
- Number of spectrum grids/slices per physical link
 - Flex grid: 48 slices of 12.5GHz
 - □ Fixed grid: 12 grids of 50GHz
- VNs are generated synthetically
 - 8 virtual nodes with varying number of virtual links
 - Node mapping is given

Evaluation – simulation settings

Large scale

- EON: Germany50 network (50 nodes, 88 links)¹
- Number of spectrum grids/slices per physical link
 - □ Flex grid: 320 slices of 12.5GHz
 - □ Fixed grid: 80 grids of 50GHz
- VNs are generated synthetically
 - 50 virtual nodes with varying number of virtual links
 - Node mapping is given

Evaluation – spectrum saving gain

Evaluation – impact of varying q

Evaluation – impact of variable node mapping

Evaluation – running time

Evaluation – optimality of the heuristic

Evaluation – large scale results

Evaluation – large scale running time

Conclusion and future work

- We study the VNE over EON problem with full flexibility of all transmission parameters of an EON
 - An ILP based optimization model
 - A heuristic algorithm that obtains near optimal solutions while executing several orders of magnitude faster than ILP
 - Saves up to 60% spectrum compared to VNE with no flexibility
- What's next?
 - Extend the heuristic algorithm to compute node mappings
 - Analyze the performance of the heuristic
 - Explore alternate objective functions (e.g., load balancing)

Thank you