
pMeasure: A peer-to-peer measurement infrastructure for the internet

Wenli Liu*, Raouf Boutaba

School of Computer Science, University of Waterloo, 200 University Ave W, Waterloo, Ont., Canada N2L 3G1

Available online 7 September 2005

Abstract

While the Internet grows in size and complexity, its timely and fine-grained measurements are increasingly needed. Although, a lot of

efforts have been carried out in recent years to monitor the Internet, an united and systematic measurement infrastructure that is appropriate

for measuring the Internet has never been established. In this paper, we describe pMeasure, a peer-to-peer (p2p) system that is capable to

create a large number of measurement nodes on the Internet and to provide a synchronized and cooperative measurement system. The system

can accept measurement tasks, locate required measurement facilities and fulfill the tasks subsequently. A prototype of pMeasure has been

implemented, analyzed and tested on three operational networks. The experiments and further simulations indicate that measurement

resources can be located efficiently and p2p-based measurements are very promising.

q 2005 Elsevier B.V. All rights reserved.

Keywords: Peer-to-Peer (p2p) Systems; Service location; Active measurement; Passive measurement
1. Introduction

With decades of development, the Internet has evolved

into a complex network that interconnects millions of

heterogeneous computing devices and systems worldwide.

Yet the service provided at the time being is only the so called

best-effort service. The next generation Internet, however, is

envisioned to provide differentiated services and to support

emerging QoS sensitive applications such as VoIP and video

conferencing. A much more complex Internet in the near

future is indisputable. At the same time, mission-critical

applications that are increasingly deployed on the Internet

have reshaped almost all aspects of human life in business,

communication, education, and entertainment. The loss

would be priceless if the Internet degraded in performance

or stopped functioning even for a short period of time.

A lot of efforts have been made recently to ensure the

healthiness of the Internet via better network management

and traffic engineering approaches [1]. These approaches,

however, depend on timely, precise and fine-grained

measures of the Internet. Existing measurement facilities
0140-3664/$ - see front matter q 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2005.07.008

* Corresponding author

E-mail addresses: w7liu@bbcr.uwaterloo.ca (W. Liu), rboutaba@bbcr.

uwaterloo.ca (R. Boutaba).
appear limited in satisfying this need due to the following

reasons.

(i) The Internet is co-managed by multiple adminis-

trative organizations who usually measure their own

part and pay very little attention in cross domain

measurement. The acquired data are mostly unsyn-

chronized from one organization to another and are

of very limited importance to the evaluation of cross

domain trends.

(ii) The measurement facilities deployed in the Internet

backbone are few in numbers and are far from

providing fine-grained measurements [2].

(iii) Most of the measurement facilities are based on

Client/Server architecture wherein clients carry out

the actual measurements while the acquired raw data

are transferred to the server side for further

processing. Hence, these facilities are inevitably

plagued by problems like denial of service, central

point of failure, just to name a few.

(iv) Adding measurement capabilities such as keeping

the flow-based statistics in key Internet elements

(e.g. routers) will adversely affect the scalability of

the Internet.

As a consequence, what the Internet research commu-

nities and the industry face is mostly an unsynchronized,

limited and partial view of the Internet. This is far from
Computer Communications 29 (2006) 1665–1674
www.elsevier.com/locate/comcom

http://www.elsevier.com/locate/comcom


W. Liu, R. Boutaba / Computer Communications 29 (2006) 1665–16741666
satisfying the measurement needs and poses difficulties to

the already complicated task.

In this paper, we extend our earlier work published in [3]

and provide a more complete description and further

evaluations of pMeasure, a p2p system that is able to attract

millions of measurement nodes on the Internet. The system

can accept measurement tasks from member nodes, locate

and synchronize necessary measurement resources, and

fulfill measurement tasks, subsequently. The system also

manages node identification, authorization, accounting, and

trust, all of which ensure measurement tasks being carried

out in a organized, reliable and secure manner. Being a p2p

system itself, pMeasure can easily scale to tens of thousands

of nodes, a coverage that no existing measurement

infrastructure can compete with, thus paving the road for

providing fine-grained performance data of the Internet. In

addition, the same system can be applied to LANs and

WANs without any modification. We envision pMeasure as

a unique architecture that can satisfy measurement needs of

network management, traffic engineering and capacity

planning for LANs, WANs and the Internet.

The rest of this paper is organized as follows. Related

works are presented in Section 2. Section 3 concentrates

on the design of pMeasure, including its measurement

component, management component and Peer-to-Peer com-

ponent. We have implemented a prototype of pMeasure and

conducted a series of evaluations and experiments on the

prototype. Section 4 describes the prototype and presents the

evaluation and experiment results in detail. This paper

concludes with future improvements in Section 5.
2. Related work

AT&T began to monitor and analyze its ISP business,

namely WorldNet, from 1997, with both passive measure-

ment and active measurement components [2]. The passive

measurement facility consists primarily of PacketScope and

Cisco NetFlow. PacketScope is a proprietary tool developed

to capture IP packet headers for all the packets present on

the wire. A PacketScope node is usually equipped with a

10 GB striped disk array and a 140 GB tape robot. To our

best knowledge, PacketScope were only deployed at three

representative locations on WorldNet and each of them will

produce around 90 GB data per week. Meanwhile, Cisco

NetFlow is enabled on all border routers to provide flow-

based summaries. The active measurement component

consists of a group of dedicated machines at about 20

router centers, exchanging test traffic and measuring delay,

loss, and connectivity throughout the day. The acquired

data, as well as other configuration data, are then utilized to

reflect network usage, to design better web caching

strategies, to compute dial service prices and to study

peering traffic. Similar measurement infrastructures from

other backbone operators include IPMon from SPRINT,
the global internet backbone SLA performance statistics

from Cable and Wireless, etc.

In addition to backbone operators’ efforts, various

organizations have set up their own measurement facilities,

to either monitor the global Internet or large proprietary

networks. National Internet Measurement Infrastructure

(NIMI) by NLANR is one such facility built with the

scalability issue taken into consideration [5,6]. Three types

of nodes exist in NIMI, namely probes, Configuration Point

of Contact (CPOC) and the Measurement Clients (MC).

Probes are based on the Vern Paxson’s Network daemon

concept [7] and are capable of conducting various

measurements. The main role of CPOC is to provide the

initial policies for each NIMI probe, and to update these

policies over the time. MCs are the interfaces between users

and the NIMI measurement infrastructure. Upon the arrival

of a user’s measurement requirements, a MC assembles

these requirements and requests NIMI probes to actually

carry out the measurement. The involved NIMI probes then

schedule and execute the measurement requests and send

the results back to the MC, which then relays the results to

the user. Although NIMI was built with scalability taken

into consideration, the manual negotiation of measurement

sites is far behind the speed at which the Internet expands.

Up to date, NIMI has only attracted less than 200 sites.

Other similar measurement facilities include, but are not

limited to the following: the MOAT project from NLANR

[4], the CoralReef passive monitor from CAIDA [8],

Surveyor from Advanced Network & Services Inc. [8], etc.

Since the aforementioned measurement facilities are

mostly constructed with a central control in mind, they

hardly offer a coverage that is appropriate for providing

fine-grained performance data of the Internet. To this end,

the p2p measurement system proposed in [9] appears

promising in that volunteers can join the system at will and

contribute their computing resources to measurement tasks.

Once in the system, a volunteer can submit measurement

tasks and retrieve the results. At the same time, a volunteer

can help others accomplish measurement tasks. Since

volunteers have the potential to provide a much wider

coverage than the one obtained through the tedious and

manual negotiation process, an Internet scale measurement

overlay is technically and economically feasible.

The approach proposed in [9] is plagued with a number of

issues though. First, the measurement capabilities in [9] have

to rely on a p2p network for locating peers and executing

measurement tasks. However, [9] is vague in whether to

create its own p2p network or to utilize an existing p2p

network. In both cases, no description is given on how to

realize it. Secondly, each peer in [9] acquires an Area of

Responsibility (AOR) from another peer upon entering the

system and gives the AOR back to the original peer upon its

leave. Since peers can enter and leave the system at will, this

division and merge of AORs generates a considerable

amount of overhead. Thirdly, [9] estimates the path

characteristics between a source IP address



W. Liu, R. Boutaba / Computer Communications 29 (2006) 1665–1674 1667
and a destination IP address by measuring the path between

the peer whose AOR contains the source IP address and the

peer whose AOR contains the destination IP address.

Obviously, the error in the estimation will be considerable

when there are only a few peers available in the system. Last

but not the least, free riding and security are usually major

issues in a p2p network, but no action is taken in [9].

Compared to [9], our approach combines seamlessly with the

underlying p2p network so that measurement tasks and their

results can be transmitted among nodes smoothly. Mean-

while, the node identification, authorization, accounting and

trust management in our approach can effectively alleviate

free riding and increase reliability and security in the system.
3. Design of pMeasure

A pMeasure system, as depicted in Fig. 1, consists of a

collection of nodes, each running pMeasure as a server and

as a client at the same time. When running as a server, a

pMeasure node receives measurement tasks from other

nodes and participates in the tasks cooperatively. A

pMeasure node running as a client can submit measurement

tasks and retrieve results from the system. It is the system’s

responsibility to automatically locate necessary and appro-

priate nodes for measurement tasks and to monitor and

facilitate the execution of the tasks closely. Since all the

nodes are equal in terms of functionalities and there is

no need for centralized servers or special support in
Fig. 1. pMeasure architecture.
the network infrastructure, pMeasure has the potential to

attract millions of nodes and provide a measurement

coverage that can satisfy the need for fine-grained, precise

and timely measures of the Internet.

The three functional components that each pMeasure

node has, i.e. the measurement component, the management

component and the Peer-To-Peer component, will be

described in detail in the following sections.
3.1. The Peer-to-Peer component

A pMeasure node depends on its p2p component for

submitting measurement tasks, receiving measurement

results, and locating others when needed. Thanks to the

plethora of research that has been conducted on p2p routing

and location, this component can be accomplished based on

any of the existing p2p networks. For the ease of

explanation, Pastry [10] is used as the representative p2p

network in this paper. Being a p2p network substrate, Pastry

implements peer identification and query handling, and

provides basic and important services on which other p2p

applications can be built. To avoid flooding queries across

the network, each peer in Pastry maintains a table of

peers and given a query, a Pastry peer locates in its table

the most closest peer and forwards the query to the peer

subsequently.

Upon entering the system, a pMeasure node discovers the

network interface cards(NIC) available on its host and

creates a Pastry peer for each of them. Fig. 2 depicts a p2p

component when four NICs are available on the host

machine. As in Pastry, each peer inside a pMeasure node is

identified by a 160 bit ID with the only difference that,

instead of being randomized, an ID in pMeasure now

consists of two meaningful parts. The first 80 bits house, the

IP network number with leading zeros and the remaining

80 bits contain the host number with leading zeros. As such,

IDs can be easily converted into IP addresses and vice versa.

From now on in this paper, ID(ip) is used to represent the

procedure that generates an ID from an IP address ip, while

NET(id) orNET(ip) is the procedure to retrieve the network

number from an ID id or an IP address ip, and HOST(id) or

HOST(ip) is the procedure to retrieve the host number from

an ID id or IP address ip. It worth noting that IDs in

pMeasure are used for identifying the Pastry peers that are
Fig. 2. The p2p component on a host with four NICs.



Fig. 4. The fulfillment of a measurement task.

Fig. 3. Message forwarding in pMeasure.

W. Liu, R. Boutaba / Computer Communications 29 (2006) 1665–16741668
housed in a pMeasure node. The unique identification of a

pMeasure node is done through the node’s public key. A

node is supposed to have its public/private key pair setup

properly before entering the overlay.

The messages routed in pMeasure are now the extended

messages from Pastry, each denoting a measurement task

to be carried out or a measurement result. Given a

measurement task to be carried out on a host with an IP

address dst, the source pMeasure node constructs a message

of the form (hID(dst)i, hmeasurement taski) and sends the

message via one of its Pastry peers. At the destination side,

the receiving Pastry peer delivers the message to the

pMeasure node for interpretation and execution. The result

will be embedded in a new message targeting the Pastry

peer at the source node and will be sent in a similar manner.

Fig. 3 depicts the process in detail.

3.2. The measurement component

pMeasure has two categories of measurement tasks,

namely the passive measurement tasks and the active

measurement tasks. A passive measurement task measures

the utilization of network resources and maintains statistics

about the network traffic present on the machine. Compared

with passive measurement tasks, an active measurement

task focuses on the characteristics of a path between two or

more participating nodes and cooperation among the

participating nodes are mandatory. Further more, active

measurement tasks are usually accomplished through

generating testing traffic onto the path at the source node

and observing the outcome at the destination node.

All measurement tasks in pMeasure are accomplished in

two phases, the negotiation phase and the actual measure-

ment phase. Fig. 4 describes these two phases in detail.

During the negotiation phase, the source pMeasure node

sends the task to the required pMeasure nodes and tries to

find enough participating nodes for the task. For a passive

measurement task involving IP address dst, the message will

always be sent to a Pastry peer identified by ID(dst). The

passive measurement task fails when the required Pastry

peer does not exist in the system. For an active measurement

task involving IP address dst, the message will be sent to a

Pastry peer whose identifier id equals to ID(dst) or satisfies

NET(id)ZNET(dst). The receiving pMeasure node notifies
the source node its decision, either to participate or not, and

the source node can keep sending the task to other candidate

pMeasure nodes until enough participating nodes have

agreed to participate in the task or the source node itself has

abandoned the task. A more detailed explanation on finding

participating nodes for active measurement tasks will be

presented in Section 3.2.2.

The second phase carries out the actual measurement and

can start as specified by the task after a sufficient number of

participating nodes have been negotiated. The details on the

measurement will be presented in the next two subsections.

Once a task has been fulfilled, the result is shipped back to

the source node for further processing.
3.2.1. The passive measurement

The passive measurement functionalities are designed as

such that a pMeasure node can be utilized to monitor the

network traffic on the host. Specifically, each pMeasure node

is equipped with a build-in passive measurement task, which

maintains statistics about the network traffic present on the

host for every 15 min. The current 15 min statistics are

updated in real-time and saved on a secondary storage for

future reference. In each 15 min statistics, a series of detailed

counters are maintained, e.g. the number of packets and bytes

from a port, the number of packets and bytes through a NIC,



W. Liu, R. Boutaba / Computer Communications 29 (2006) 1665–1674 1669
etc. These statistics can be rendered to the host users and can

be delivered to other pMeasure nodes when requested.

To request the statistics from a pMeasure node, other

pMeasure nodes have to send passive measurement tasks to

the pMeasure node. The message that denotes a passive

measurement task is of format: (hstart_timei, hend_timei,

hnici, hporti, hdirectioni, hclient_idi). The start_time and

end_time specifies the time the task should be started and

the task should be stopped. The next three fields serve as

three filters in a row. The captured traffic is applied to the

three filters in order and the portion coming out of the last

filter is the traffic to be reported for this task. In particular,

the nic field specifies a NIC and only traffic that has gone

through this NIC will be reported. Similarly, the port field

specifies the port and only traffic that uses the port will be

reported. The direction field limits the traffic further to

incoming or outgoing traffic only. The client_id field

specifies the identifier of the Pastry peer to whom the

measurement results should be sent once the task is done.

Fig. 5 depicts the internal design of this component. The

packet capture engine is responsible for capturing packets

from all the NICs. Details regarding the engine can be found

in [11]. The captured packets, and more precisely the header

information, are processed by the build-in passive measure-

ment task. The current 15 min statistics are updated and

saved on a secondary storage for future reference. The

passive measurement tasks received from other pMeasure

nodes are managed by the task pool, which accepts inputs

from the build-in passive measurement task, filters the

incoming packets and keeps statistics for each received task.

When a task is done, the pool will send the results to the

requesting node through the p2p component and then

remove the task from the pool afterwards.
3.2.2. The active measurement

Unlike passive measurement tasks, active measurement

tasks are carried out cooperatively among the participating
Fig. 5. Design of the passive component.
pMeasure nodes and the source node. During the measure-

ment phase, a pMeasure node, which is either a participating

node or the source node, sends probes to a second node. The

second node processes each received probe and echoes back

a new probe to the first node. By observing the outcomes of

the probes shuttling back and forth between the two nodes,

characteristics, such as one-way delay, round trip delay,

connectivity, etc. regarding the path can be obtained.

The characteristics of the path between two networks can

be measured as long as there is at least one participating

pMeasure node running in each of the networks. In case

multiple such nodes are present, each of them can

potentially participate in the measurement. A random

approach is taken in pMeasure to find a potential node

from a network to balance the numbers of tasks that

pMeasure nodes receive, i.e., the load, and to decrease cost,

i.e. the number of attempts before a participating node can

be found. To find some participating nodes from a network,

the source pMeasure node randomly chooses an integer

from the host space of the network and generates an IP

address ip by concatenating the network number and the

integer. An ID is then created using ID(ip). By targeting the

encoded measurement task to this ID, the p2p component

will always find a peer identified by id where idZID(ip) or

jidKID(ip)j is the smallest number within the system [10].

However, chances are that the receiving node resides in a

network other than the target network, i.e. NET(ip)sNE-

T(id), or the receiving node refuses to participate. In either

case, the source node generates another random number

from the remaining host space and repeats the process. This

process is paused until enough participating nodes have

been negotiated and is resumed when some participating

nodes have departed or left the task. Fig. 6 details the

procedure in finding one participating node from a network,

and Fig. 7 illustrates the entire process.

Active measurement tasks are specified in extended

Pastry messages as well. Depending on the nature of the

task, the format of the message varies from one task to

another. For tasks that measure one-way delay, round-trip

delay, or loss ratio, the message is of the format (hop_codei,

hstart_timei, hend_yimei, hfrequencyi, hpacket_sizei). For

tasks that measure connectivity or route information, the

format of the message is (hop_codei, hstart_timei,

hend_yimei, hfrequencyi). In these messages, op_code

specifies the type of the task, start_time and end_time

specify the time the task should be started and the time to be

ended, frequency specifies the time in seconds between two

adjacent measurements, and packet_size specifies the length

of the IP packets that should be used in the measurement.
3.3. The management component

Like other p2p applications, pMeasure faces issues such

as trust [12], free riding [13], etc. The design of pMeasure

mitigates the effect of these issues by resorting to peer



Fig. 6. Finding a participating node from an IP network.

Fig. 7. Finding participating nodes.

W. Liu, R. Boutaba / Computer Communications 29 (2006) 1665–16741670
identification, authorization and accounting, which are all

provided by the management component.

3.3.1. Node identification

Since a pMeasure node can have more than one Pastry

peers and IP addresses can change from time to time, it is

infeasible to identify a pMeasure node using one of its

Pastry peer’s ID or simply an IP address. Instead, pMeasure

nodes are identified by their public keys. Before entering the

system, a pMeasure node is required to have its

public/private key pair setup and signed by a trusted

authority.

The public/private key pairs are used to encrypt and

decrypt all the messages in pMeasure as well. In pMeasure,

a source node encrypts a measurement task using its private

key before distributing the task to other nodes. The

receiving node, on the other hand, validates the source

node’s certificate and decrypts the measurement task

subsequently using the source node’s public key. In case

of any false information, the receiving node can simply

reject the measurement task. With encryption, node

accountability and message integrity can be improved.

3.3.2. Authorization

In an Internet-scale measurement system, such as

pMeasure, nodes cooperate with each other to smoothly

accomplish measurement tasks. However, malicious nodes

do exist. At the same time, a node may also want to restrict

accesses to its measurement facilities to only a group of

nodes. All these can be accomplished through authorization

provided by the management component.

With authorization, a node can enable or disable any of

its measurement functionalities and specify a list of non-

authorized nodes for each enabled functionality. After

having received a measurement task from a source node, the

node checks whether the requested measurement function-

ality is enabled and whether the source node is in the

corresponding non-authorized node list. In case that the

requested functionality is disabled or the source node is in

the list, the node can simply refuse to participate in the task.

3.3.3. Accounting

In pMeasure, a source node issues a credential to each

participating node upon the accomplishment of a measure-

ment task. A credential in pMeasure serves as a proof that a

node once participated in a measurement task. A credential

contains information such as the source node’s public key,

the participating node’s public key, the description of the

task accomplished, the time when the task is initiated and

the source node’s signature, etc. The management of all the

credentials issued to a node in pMeasure is defined as

accounting.

Accounting serves two purposes in pMeasure. First, it

provides a clear knowledge of the nodes that a node has

served and which measurement tasks the node once

participated in. Secondly, accounting facilitates pMeasure



W. Liu, R. Boutaba / Computer Communications 29 (2006) 1665–1674 1671
nodes in deciding whether to participate a measurement task

or not. When making the decision, a node can always check

the source node’s contribution. In case that the source

node’s contribution is high, the receiving node can consider

participating in the task. Otherwise, the receiving node may

deny the task. pMeasure computes a node’s contribution

using the weighted sum of the number of different nodes the

node has served and the number of tasks the node has

participated in, as indicated in Eq. (1), where a1 and a2 are

weights and a1Ca2Z1.

a1!The number of tasks servedCa2

!The number of nodes served: (1)
3.3.4. Trustworthiness

Trust is a vital aspect that every Internet application has to

deal with. The solution to this problem varies from one

application to another [12]. This is particularly the case in

pMeasure. Unlike themanually negotiatedmeasurement sites,

nodes in pMeasure have very limited knowledge about each

other. The cultivation of trust in pMeasure, consequently, is

difficult. However, we do believe that as nodes cooperate with

each other over the time, smaller measurement communities

will form as in other p2p applications and a full trustworthi-

ness can be established inside a community afterwards.

In addition, pMeasure provides a source node with the

capability to validate whether a measurement result is

trustable. In a passive measurement task, the source node

can instruct a third node to send testing packets to the

participating node. The participating node is deemed as

trustable if the testing packets are reported, while it is deemed

as un-trustable otherwise. In an active measurement task, the

source node can always instruct more than one node from a

network to conduct the same task. While the minimum and

the maximum results are discarded, the average of the

remaining ones can be considered the final result.
4. Evaluation and experiments

Two problems are formulated to evaluate the efficiency

of the algorithm in identifying participating nodes, as

depicted in Fig. 6, in terms of cost and load balancing. First,

suppose n pMeasure nodes are uniformly distributed in a

host number space [o, p], and each with the probability prob

to participate in a measurement task. What is the average

number of attempts required to find a cooperative node or to

explore the entire host number space [o, p]? With this

problem solved, we will be able to understand the overhead

produced by the pMeasure system in locating participating

nodes. Second, we distribute m measurement tasks to these

pMeasure nodes and node i receives loadi tasks. What is the

maximum load difference among all the nodes on average?

i.e. what is the value for the following formula:

Avg(Max(load1, load2,.,loadn))-Min(load1, load2,.,
loadn))? Apparently, the smaller the value of the formula,

the more balanced the load across pMeasure system will be.

Fig. 8 depicts our simulation results in terms of the

cost with various combinations of the acceptance
Fig. 8. Cost: the number of queries required.



W. Liu, R. Boutaba / Computer Communications 29 (2006) 1665–16741672
probability, the number of nodes and the host number

space(i.e. [0, 232-NetworkBits]. All nodes accept tasks with the

same acceptance probabilities in each of the first three

simulations and the probabilities are 0.5, 0.75 and 1,

respectively. The fourth simulation no longer uses a fixed

acceptance probability for all the nodes. Instead, each node

accepts tasks according to the uniform distribution. Clearly,

the cost decreases as the acceptance probability increases

from 0.5 to 1. So does the cost as the number of nodes

decreases and as the host space decreases. In addition, the

cost decreases linearly with the host space in all the

probability settings if the number of nodes is zero. Further

more, only two queries are needed to traverse any host space

when there is at least one node and all the nodes accept tasks

with the probability of 1.

Fig. 9 presents our simulation results regarding the load

distribution among pMeasure nodes. In our simulation, we

uniformly allocate a certain number of pMeasure nodes in a

host space and distribute 1000 tasks to the host space for 100

times. We record the maximum difference in the number of

tasks received by nodes in each run and the average is used

to produce the plots. In the first plot, each node accepts tasks
Fig. 9. Load distribution.
with probability 1, and the acceptance probability is

uniformly distributed in the second plot. As indicated in

Fig. 9, the load tends to be more balanced when the number

of nodes increases. The worst case happens when there are

only two nodes available from a host space, with the

maximum load difference being 34. Compared with the

1000 tasks we have distributed, this is negligible.

We have implemented a prototype pMeasure system

using Java SDK 1.4 on Windows XP. With its passive

measurement component, the prototype is able to capture

frames present on Ethernet interface cards and to retrieve IP

header, TCP header and UDP header information sub-

sequently. The current 15 min statistics are then updated

based on the captured information. In the prototype, each

15 min statistics maintains two entries for each active port,

one for incoming traffic and another for outgoing traffic.

Each entry in the statistics is of the following format: (hPort

numberi, hTotal number of packetsi, hTotal number of bytesi,

hTotal number of TCP packetsi, hTotal number of TCP

bytesi, hTotal number of UDP packetsi, hTotal number of

UDP bytesi, hNIC usedi). The active measurement aspect of

the prototype is able to synchronize pMeasure nodes using

Network Time Protocol (NTP) to an Internet time server and

is able to measure round-trip delay, the number of hops and

the connectivity between two pMeasure nodes. In addition,

a user-friendly interface is created to facilitate task creation

and management. The acquired measurements are rendered

via the interface as well.

Compared with manually negotiated measurement facili-

ties, Pastry peers in pMeasure have to probe the 600 peers that

appear in their state table every 15 min in order to detect

failed or departed peers. This systematic probing of others

forms a considerable amount of overhead in a pMeasure

system. However, the overhead is tolerable according to the

following calculation. A probe message in a pMeasure

system has a length of 32 b. Adding the overhead introduced

at the transport layer, the IP layer and the link layer, a frame

of size 74 b is transmitted for each probe message. Given a

pMeasure system with 1 million nodes, each having one

Pastry peer, the bandwidth consumed by a single pMeasure

node is about 400 bps and the total bandwidth consumed by

the entire system is about 400 Mbps. A pMeasure node

consumes secondary storages for historical 15 min statistics

as well. In the prototype, two entries are designated to each

active port and each entry has a length of 31 b. The length of a

15 min statistics is thus dependent on the number of distinct

ports used in the 15 min period. Our computation demon-

strates that the secondary storage consumption is trivial as

well. For a pMeasure node running continuously for 30 days,

the secondary storage consumption is about 170 Mb for

every 1000 distinct ports.

The performance of a pMeasure node is further evaluated

in terms of the CPU time consumed and the main memory

allocated. In the experiment, a number of tasks are sent to a

pMeasure node and the total CPU time and the total main

memory consumed by the node to accomplish these tasks



Fig. 10. CPU time consumption.

Table 1

Number of hops between nodes

From To Number of hops

Node 1 Node 3 16

Node 3 Node 1 12

Node 2 Node 4 15

Node 4 Node 2 11

W. Liu, R. Boutaba / Computer Communications 29 (2006) 1665–1674 1673
are captured. We conduct these experiments on a Dell

Inspiron notebook with a 2.8 GHz CPU and 512 Mb RAM.

The tasks are designed as such that the pMeasure node

measures the round trip delay every 5 min between itself

and another pMeasure node and for a duration of 10 min. As

Fig. 10 depicts, the CPU time consumption increases

linearly as the number of tasks increases, at a speed of

about 4000 ms for every 10 tasks. The main memory

allocation, which is illustrated in Fig. 11, increases linearly

as well, but at a speed of about 60 kb for every 10 tasks.

The prototype pMeasure system has been deployed in

three different real world networks. In UWNET, two

pMeasure nodes, named node 1 and node 2, are installed

and connected to the Internet via a 100 Mbit Ethernet LAN.

Node 3 is installed in Rogers-CAB-8 and node 4 is installed

in SYMG021804-CA. Both nodes 3 and 4 are connected to

the Internet using ADSL. A series of experiments have been

conducted with the deployed pMeasure system. In the first
Fig. 11. Main memory allocation.
experiment, node 1 sends 1000 active measurement tasks to

Rogers-CAB-8 and node 2 sends another 1000 active

measurement tasks to SYMG021804-CA. Nodes 3 and 4,

who accepts tasks with probability 1, are found successfully

for all the tasks. In the second experiment, node 1 sends

1000 active measurement tasks to UWNET and all the two

nodes in UWNET record the number of tasks they have

received. We conduct the second experiment for a hundred

times and the result is very similar to the one obtained from

simulation.

In the third experiment, node 1 sends an active

measurement task to node 3. The active measurement task

is designed as such that node 1 measures the round trip delay
Fig. 12. Round trip delay between nodes.



W. Liu, R. Boutaba / Computer Communications 29 (2006) 1665–16741674
and the number of hops to node 3 in every 5 min and node 3

measures the round trip delay and the number of hops to

node 1 in very 5 min as well. At the same time, node 2 sends

a similar active measurement task to node 4 so that nodes 2

and 4 measure the round trip delay and the number of hops

to each other in every 5 min. In both cases, the tasks are kept

running for 10 h.

Table 1 describes the number of hops from one node to

another. From the result, we found that for each pair of

nodes, the number of hops from the source node to the

participating node is different from the number of hops from

the participating node to the source node. In addition, the

number of hops in all the paths remained unchanged during

the time period of the experiment. An interesting aspect

revealed by Table 1 is that both paths to the ADSL nodes

have a few more hops than that of the reverse path.

Fig. 12 describes the round-trip delay obtained from each

pair of nodes for the duration of 10 h. Similar to the number

of hops, the round trip delays between a pair of nodes are

asymmetric as well, with the round trip delay from the

participating node to the source node slightly shorter

than that from the source node to the participating node.

In addition, the round trip delay varies from time to time.
5. Conclusion

In this paper, we described pMeasure, a p2p measure-

ment infrastructure that can attract a large number of

measurement nodes on the Internet. pMeasure can accept

both passive and active measurement tasks from member

nodes, locate and synchronize participating nodes for the

task, and fulfill the tasks accordingly. Being a p2p system,

pMeasure is able to self-organize into a large scale

measurement infrastructure, thus satisfying various

measurement needs.

We have implemented a prototype of pMeasure on top of

Pastry, a p2p network substrate. We validated the efficiency

of pMeasure in identifying participating nodes and

evaluated it in terms of the introduced overhead, the

required secondary storage, the consumed CPU cycles
and the allocated main memory. In addition, the prototype

was experimented on three real-world operational networks

and the results are very promising. We will continue our

efforts in improving the prototype system and in evaluating

its performance via larger scale real-world deployment.

Tools such as RRDTool will be employed to generate

graphical representations of the measurement results and

other popular platforms such as Linux and Solaris will be

supported as well.
References

[1] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, X. Xiao, RFC3272:

Overview and Principles of Internet Traffic Engineering, 2002.

[2] R. Caceres, N. Duffield, et al., Measurement and analysis of IP

network usage and behavior, IEEE Communications Magazine

(2000).

[3] Wenli Liu, Raouf Boutaba, James Won Ki Hong, pMeasure: A tool

for measuring the Internet, The 2nd Workshop on End-to-End

Monitoring Techniques and Services (E2EMON), 2004.

[4] A.J. McGregor, H.-W. Braun, J.A. Brown, The NLANR network

analysis infrastructure, IEEE Communications Magazine (2000).

[5] V. Paxson, J. Mahdavi, A. Adams and M. Mathis, An Architecture

for Large Scale Internet Measurement, IEEE Communications.

36 (8).

[6] V. Paxson, A.K. Adams, M. Mathis, Experiences with NIMI, The

Symposium on Applications and the Internet, 2002.

[7] V. Paxson, End-to-end routing behavior in the Internet, SIGCOMM,

1996.

[8] M. Murray, K.C. Claffy, Measuring the immeasurable: global internet

measurement infrastructure, The Passive and Active Measurement

Workshop, 2001.

[9] S. Srinivasan, E. Zegura, Network measurement as a cooperative

enterprise, First International Workshop on Peer-to-Peer Systems

(IPTPS ‘01), 2002.

[10] A. Rowstron, P. Druschel, Pastry: scalable, distributed object location

and routing for large-scale peer-to-peer systems, IFIP/ACM Inter-

national Conference on Distributed Systems Platforms (Middleware),

2001.

[11] V. Jacobson, V. Paxson and C. Leres, Libpcap: the Library for Packet

Capture, Available from http://www.tcpdump.org.

[12] T. Grandison, M. Sloman, A survey of trust in internet applications,

IEEE Communication Surveys (2000).

[13] E. Adar, B.A. Huberman, Free Riding on Gnutella, First Monday,

5 (10).

http://www.tcpdump.org

	pMeasure: A peer-to-peer measurement infrastructure for the internet
	Introduction
	Related work
	Design of pMeasure
	The Peer-to-Peer component
	The measurement component
	The management component

	Evaluation and experiments
	Conclusion
	References


