
INTERNATIONAL JOURNAL OF NETWORK MANAGEMENT
Int. J. Network Mgmt (2011)
Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/nem.804
FuzMet: a fuzzy-logic based alert prioritization engine for intrusion
detection systems
Khalid Alsubhi1,*†, Issam Aib2 and Raouf Boutaba1,3

1David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
2Softray Business Solutions

3Division of IT Convergence Engineering, POSTECH, Pohang, KB 790–784, Korea
SUMMARY

Intrusion detection systems (IDSs) are designed to monitor a networked environment and generate alerts
whenever abnormal activities are detected. The number of these alerts can be very large, making their eval-
uation by security analysts a difficult task. Management is complicated by the need to configure the different
components of alert evaluation systems. In addition, IDS alert management techniques, such as clustering
and correlation, suffer from involving unrelated alerts in their processes and consequently provide results
that are inaccurate and difficult to manage. Thus the tuning of an IDS alert management system in order
to provide optimal results remains a major challenge, which is further complicated by the large spectrum
of potential attacks the system can be subject to. This paper considers the specification and configuration
issues of FuzMet, a novel IDS alert management system which employs several metrics and a fuzzy-logic
based approach for scoring and prioritizing alerts. In addition, it features an alert rescoring technique that
leads to a further reduction in the number of alerts. Comparative results between SNORT scores and
FuzMet alert prioritization onto a real attack dataset are presented, along with a simulation-based investiga-
tion of the optimal configuration of FuzMet. The results prove the enhanced intrusion detection accuracy
brought by our system. Copyright © 2011 John Wiley & Sons, Ltd.

Received 6 September 2010; Revised 27 July 2011; Accepted 31 July 2011
1. INTRODUCTION

Network attacks are growing more serious, forcing system defenders to deploy more sophisticated
security software and devices including firewalls, antivirus tools, intrusion detection systems (IDSs),
and information protection systems (IPSs). An IDS can be host based or network based and is aimed
to inspect user and/or network activity looking for suspicious behavior and report it to security analysts
in the form of alerts. A signature-based IDS generates an alert when the traffic contains a pattern that
matches signatures of malicious or suspicious activities. An anomaly-based IDS examines ongoing
activity and detects attacks based on the degree of variation from normal past behavior. However, both
mechanismssuffer from the large number of alerts that they generate. These alerts need to be evaluated by
security analysts before any further investigation in order to take appropriate action against the attacks.
IDSs usually generate a large number of alerts whenever abnormal activities are detected. Inspecting

and investigating all reported alerts manually is a difficult, error-prone, and time-consuming task. In
addition, ignoring alerts may lead to successful attacks. To tackle this problem, low-level and high-
level alert management processes have been introduced. Low-level alert processing deals with each
alert individually to enrich its attributes or assign a score to it based on the potential threat it describes.
High-level alert management techniques, such as aggregation, clustering, correlation, and fusion, were
*Correspondence to: Khalid Alsubhi, David R. Cheriton School of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada.
†E-mail: kaalsubh@cs.uwaterloo.ca

Copyright © 2011 John Wiley & Sons, Ltd.

K. ALSUBHI, I. AIB AND R. BOUTABA
proposed to abstract the information gathered from sets of alerts. However, these high-level techniques
suffer from including alerts that are not significant, which often leads to inappropriate results. There-
fore, low-level evaluation techniques are needed to automatically (or semi-automatically) examine
large numbers of alerts and prioritize them, only allowing important alerts to receive further inspec-
tion. Accordingly, the reduced set of alerts leads to more precise, easier, and less resource-intensive
high-level alert analysis.
It is not sufficient to propose new IDS alert management systems without studying their degree of

efficiency in the presence of different configuration sets. The tuning of an IDS alert management
system in order to ensure optimal performance remains amajor challenge. This hurdle is further
complicated by the large spectrum of attacks that modern computer systems can be subject to. There
is also a need to consider whether there exists a unique optimal configuration which works all the time
or whether this optimal configuration changes depending on system state and administrative policies.
Building upon our previous work [1], this paper presents the specification and investigate configu-

ration issues of FuzMet, a network intrusion detection system (NIDS) alert management framework
which utilizes several metrics as well as a fuzzy-logic based approach for scoring and prioritizing
alerts. The metrics are related to the applicability of the attack against the configuration of the network,
the configuration status of the running IDSs, the importance of victim, and the relationship between the
alert under evaluation and previous alerts. Additionally, FuzMet features a rescoring technique to
dynamically rescore alerts based on the relationships between attacks. This leads to a further reduction
of the number of alerts and provides a concise set of alerts to the system administrator for further
investigation.
Of equal importance in the paper is the investigation of the impact of different configurations of the

proposed metrics on the accuracy and completeness of the alert scores generated by FuzMet. Our
approach is validated using the DARPA 2000 LLDOS 1.0 intrusion detection dataset. Comparative
results between SNORT NIDS [2] alert scoring and FuzMet alert prioritization are presented. A
considerable number of simulations were conducted in order to determine the optimal configuration
of FuzMet, if any, with selected results presented and analyzed.
The paper is organized as follows. Section 2 discusses related work on alert management. Section 3

describes the FuzMet alert prioritization system. Section 4 presents the alert prioritization metrics used
in FuzMet. Section 5 explains the fuzzy logic inference and its use in FuzMet. Section 6 explains the
algorithm used for alert rescoring. Section 7 tackles the optimal configuration issue of the proposed
metrics. Section 8 analyzes the complexity of FuzMet. Simulation results are presented and discussed
in Section 9. We present the implicit attack graph generation from the prioritized alerts in Section 10.
Finally, Section 11 concludes the paper.
The paper’s contributions can be summarized as follows:

• FuzMet, an alert evaluation and prioritization framework that addresses limitations of previous
works regarding alert ranking [3–6].

• Introduction of new metrics, such as sensor sensitivity, services stability, and alert relationship,
which allows for better alert evaluation accuracy.

• A rescoring technique that dynamically scores alerts based on the relationship between attacks or
the level of maliciousness of attackers.

• Application of fuzzy-logic reasoning to quantitatively score each alert based on metric values. To
the best of our knowledge, we are the first to use fuzzy-logic for evaluating IDS alerts.

• A comprehensive study of the impact of different configurations of the proposed metrics on the
accuracy and completeness of the alert scores generated by FuzMet.
2. RELATED WORK

It is common that an IDS generates a large number of alerts whenever suspicious activities are observed.
A large number of alerts overwhelms the most expert of security administrators and makes it difficult to
manually distinguish between realand false attacks. Two general approaches are used to deal with this
problem. The first focuses on the monitoring device itself by enhancing its detection mechanism,
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2011)
DOI: 10.1002/nem

FUZZY-LOGIC BASED ALERT PRIORITIZATION FOR IDS
eliminating the unnecessary rules, optimizing the signatures sets, and choosing the right location [7].
Although this solution promises to reduce the number of alerts, it requires prior in-depth knowledge
by the security administrator of the detection mechanism. The second solution focuses on the sensor
outputs. Several IDS alert management techniques fall into this category and include aggregation [8],
clustering [9], correlation [10–12], and fusion [13]. Reducing the number of alerts by prioritizing
critical attacks and discarding false alerts is the main objective of IDS alert management approaches.
These techniques assist the security administrators in better assessing the alerts revealed by the IDS.
Techniques to construct attack scenarios fall into three classes. The first includes correlating alerts

based on the similarity between their attributes, such as IP addresses and port numbers. Probabilistic
alert correlation [11] falls into this category. The second class is based on the specification of a known
sequence of attacks [14]. The third class is based on the exploration of dependencies between alerts by
matching the consequences of a successful attack(s) with the prerequisites of a next-stage attack(s)
[10]. The relationship metric we propose in Section 4.7 uses the similarity between alerts as well as
the probabilistic alert correction to define an overall relationship of the alert with a predefined alert
history window. This brings in the benefit of the ease of computation in addition to the detection of
attacks based on either known [14] or unknown scenarios [10], without the overhead of maintaining
a large knowledge base of attack graphs and/or prerequisite/consequence attack models. Our technique
does not generate attack graphs as we are not interested in building them.
There have been some efforts in previous works for evaluating IDS alerts using some metrics [3–6].

However, these metrics have not been used all together, as proposed in this paper. Jinqiao Yu et al. [6]
use an expert system to score alerts based on two criteria. First, the expert system checks whether an
alert corresponds to a known attack in the vulnerability knowledge base. In the case of failure, the alert
is considered as a new attack and gets prioritized for further investigation. In the other case, the alert
corresponds to a known attack, in which case it receives a high score if it is applicable against the
protected network, or a low score otherwise. Offering only two levels of alert scores is limited. FuzMet
remedies this by allowing alert scores to belong to a continuous interval of values (from zero to ten).
Similar to Jinqiao Yu et al., Qin and Lee [5] compute the alert score based on the severity of the attack
and its relevance (applicability). Porras et al. propose the M-Correlator [4] alert ranking technique, in
which alerts are ranked based on the likelihood of the attack to succeed (applicability), the importance
of the targeted asset, and the amount of interest in the type of attack. Although these techniques are
promising in the evaluation of alerts generated by signature-based IDSs, they cannot evaluate alerts
raised by anomaly-based IDSs, since they rely heavily on the vulnerability knowledge base. FuzMet
extends on these works by offering an alert scoring that works with both signature-based and
anomaly-based IDSs and uses additional criteria, such as the sensor sensitivity, relationship between
alerts, and service stability for more accurate evaluation of the alerts. Furthermore, the FuzMet
approach differs from previous ones by providing a rescoring function of early non-critical attacks that
prepare for later critical attacks. This way, the early steps of the attack will be prioritized for further
analysis, such as correlation.

3. FuzMet ARCHITECTURE

As shown in the doted areas of Figure 1, the FuzMet alert management architecture involves three
components: (a) data collection, (b) alert scoring metrics and inference, and (c) alert analysis.

3.1. Data collection

The data collection component includes the alert database, environment parameters, security adminis-
trator parameters and the vulnerability knowledge base. Alert attributes consist of several fields that
provide information about the attack. This information varies from one IDS product to another. How-
ever, we assume that the alert structure is compatible with the Intrusion Detection Message Exchange
Format (IDMEF) [15]. IDMEF is a standard data format for reporting alerts about suspicious events.
Compared to other proposed formats for representing and exchanging IDS alert information, such as
CIDF [16] and IDXP [17], IDMEF has the advantage of being XML based, and hence it provides
flexibility for future extensions.
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2011)
DOI: 10.1002/nem

Figure 1. FuzMet alert scoring architecture

K. ALSUBHI, I. AIB AND R. BOUTABA
The security administrator can specify the environment configuration parameters to involve in the
evaluation process. These can include, for instance, information about running services, applications,
operating systems (plus versions), and existingvulnerabilities. Furthermore, the security administrator
can specify further configuration parameters such as the importance of each host in the network,
including the IDSs. Public vulnerability knowledge bases, such as the National Vulnerability Database
(NVD) [18] and Bugtraq [19], contain detailed information about known attacks. The availability of
such databases can help in the alert evaluation process. The data collection component makes the
above resources available to the alert scoring metrics and inference component.
3.2. Alert scoring metrics and inference

The alert scoring metrics and inference component is a key element of the FuzMet architecture. Based
on the information received from the data collection component, several metrics are computed and
used as indicators to accurately evaluate the alerts. In this perspective, the computed metric values
are passed to the fuzzy logic inference engine to calculate the overall alert score.
3.3. Alert analysis

The alert analysis component provides an additional evaluation of the IDS alert. This component hosts
the functions of alert rescoring, measurement of distance to known attacks, occurrence time, and
response plans.
As can be deduced from Figure 1, the alert evaluation process is carried out as follows. When a new

alert is received, the associated scoring metrics are computed based on the available security
parameters, the environmental parameters and the vulnerability knowledge base. Fuzzy logic inference
is then employed in order to assign a score to the alert based on the metrics values. After that, the alert
is stored in the alert database with its score. The alert is also passed to the alert analysis component for
further investigation. The analysis component measures the distance of the current attack from its
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2011)
DOI: 10.1002/nem

FUZZY-LOGIC BASED ALERT PRIORITIZATION FOR IDS
possible goals. It rescores the alerts that are suspicious to be a preparation step for later attacks. It also
detects suspicious activities which violate predefined system usage (such as using a port number which
is only allowed during working hours). Finally, it provides a response plan to the intercepted attacks
and makes it available to the system administrator for further investigation.
4. ALERT PRIORITIZATION METRICS

The alert scoring metrics of Figure 1 are used to evaluate the criticality of alerts. Although some of
these metrics have been individually used in previous works [3–6], they have not been used all
together as proposed in this paper. Additionally, we define new metrics that help in accurately evalu-
ating IDS alerts. The FuzMet scoring technique does not require all the metrics to be available during
the evaluation. Intuitively, the presence of a large number of indicators will definitely increase the
accuracy of the alert score. However, most of the metrics are easy to obtain, especially those that deal
with protected environments and the vulnerability knowledge base. In the following, the alert scoring
metrics presented in Figure 1 are detailed.
4.1. Applicability

The applicability process checks whether an attack that raised an alert is applicable to the current
environment. Alert attributes are used by the vulnerability knowledge to determine target services.
If at the time of the alert generation at least one of the target services is running on the machine with
the destination IP/port of the alert, the target service is vulnerable to the attack, and there has been no
installed patch to protect against it, then the alert is applicable.
In the case that the above conditions are satisfied except that the service is not running at the time of

alert generation (e.g. machine off or service halted), a corresponding warning is generated to the
security administrator.
4.2. Importance of victim

This metric indicates the criticality of the target machine reported in the alert. Several elements will
participate in deciding the importance of the system in the environment including services, applica-
tions, and accounts. The goal of this metric is to increase the score of alerts related to suspicious
activities that target critical system components, such as a main server. Before introducing the function
that calculates the criticality of the target machine, we will present a general weighted equation that is
used in this metric and the rest of the paper:

w′ að Þ ¼ w að Þ � a (1)

w að Þ¼
(
low if 0≤ a < th1
med if thl ≤ a < thh
high if thh ≤ a<1

(2)

where th_l and th_h represent a low and high threshold respectively. Equation (1) aims to compute
the value of any element a based on its weight. A high weight is chosen if the object is critical
and vice versa. In this metric, the criticality of a machine is calculated based on the running services/
applications and the account associated with them. Different services have different weights according
to their importance to the environment I(s) as well as the accounts I(Ac). Equation (3) gives the formula
used for the importance metric:

I mð Þ ¼

P
s runs on m

w′ I sð Þ � I Ac sð Þð Þð ÞP
s runs on m

w I sð Þ � I Ac sð Þð Þð Þ
(3)
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2011)
DOI: 10.1002/nem

K. ALSUBHI, I. AIB AND R. BOUTABA
Importance describes the significance of the victim machine that is running in the protected environ-
ment. The value of the importance is calculated on a scale from zero to one. A zero indicates that the
victim machine reported in the alert does not include any important host, service, application, account,
or directory. Scores closer to one indicate that the attack is targeting a critical system component.
4.3. Sensor status

This metric measures the attack detection efficiency of each IDS in the network. The basic counters
used for that are as follows:

• Tcþ : number of successful alerts (true positives)
• Fþ

c : number of unsuccessful alerts (false positives)
• Tc� : number of successful no alerts (true negatives)
• Fc� : number of unsuccessful no alerts (false negatives)
• Sb: number of benign sessions
• Sm: number of malicious sessions

Let I denote the occurrence of an attack (intrusion) and ¬I that of benign traffic. Similarly, let A (¬A)
denote the generation (absence) of an alert by the IDS. The efficiency of an IDS can be measured by two
metrics:

1. P(A/I), which is the conditional probability of generating an alert at the occurrence of an attack;
2. P(A/¬I), which represents the false detection rate; i.e. the probability that the IDS generates

alerts in the absence of an attack.

We adapt the method proposed by Axelsson [20] to compute the probability P(I/A) that the raised
alert A was that of an actual intrusion. Taking into consideration that the probability of intrusion
P(I) is very low, as attack flows are only a tiny fraction of the total number of flows, we denote P(I)
by E; then P(I/A) can be expressed as follows:

P IjAð Þ ¼ PðAjIÞ
P AjIÞ þ 1 j�E

E P Aj�jIð Þ
� (4)

This equation shows that the impact of the rate of false positives P(A| 6¼ I) is important and the
system has a good predictability of correct alert generation only if P(A|¬I) is small enough to cancel
the effect of 1/e.
From the alert prioritization perspective, P(A/I) is the rate of correct alerts that scored high over the

total number of observed attacks. This can be calculated as the ratio of correct alerts to the total number
of attacks, i.e.

P Að jIÞ ¼ Tþ
c

Sm
(5)

The false detection rate P(A/¬I) is computed as follows:

P Að j�jIÞ ¼ Fþ
c

Sb
(6)

The efficiency of the sensor is affected by a number of parameters including the sensor configura-
tion, rule set version, software release version, and the set of installed patches.
4.4. Sensor placement

The importance of the placement of an IDS in a network is related to the importance of the machines and
services running in the sub-network it protects. For example, an IDS protecting a demilitarized zone
(DMZ) containing the companyweb and mail servers has a critical (high) placement compared to another
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2011)
DOI: 10.1002/nem

FUZZY-LOGIC BASED ALERT PRIORITIZATION FOR IDS
IDS protecting a cluster of low-grade staff machines. The process of alert prioritization will give prece-
dence to high score alerts coming from the first IDS over high scorealerts registered by the latter.
4.5. Severity

The severity score metric SS(a) measures the risk level posed by a particular vulnerability a. There are
several knowledge base sources which provide severity scores for known attacks, including MITRE
CVE, NIST, Secunia, and OSVDB, as well as software-developer specific severity score databases.
The severity score value may vary from one organization to another. For instance, the FileZilla
unspecified format string vulnerability has been reported in NIST as a very severe vulnerability scored
10 out of 10, while Secunia reported this vulnerability to be moderately critical. In order to emphasize
an attack when at least one source classifies it as high, the weight functions w and w′ are used
equations (1) and (2). A confidence factor d(i, a) is used to reflect the measure of trust given to a se-
verity score SSi(a) based on the source i of the score as well as the victim machine/services associated
with alert a. For example, if attack a targets a Microsoft SQL server, then the severity score of a which
is provided by Microsoft is given a higher trust than the severity scores provided by other sources.
Based on this, the formula for the severity score of an attack a is given by

SS að Þ ¼
Pn

i¼1w
′ SSi að Þð Þ � d i; að ÞPn
i¼1w SSi að Þð Þ (7)

4.6. Service vulnerability

We adapt the method proposed by Abedin et al. [21] to analyze only the service that the attacker is
targeting. This method is used to calculate a unified score representing the strength or weakness of
the targeted service. The result is then used in the overall alert scoring.
It is possible to measure the vulnerability score V(s) of a service s which appears in alert a based on

the current vulnerability score Ve(s), the past vulnerability score Vh(s), and the release time T(s) of the
service (e.g. number of months).
A raised alert a explicitly mentions the targeted service s (e.g. OS or service/application) that the

attacker is trying to violate. In most cases, the targeted service can be determined from the information
on port numbers.The set of all vulnerabilities of a service can be divided into historical vulnerabilities
Vh(s), which are past flaws that have been removed either through patching or new software releases,
or existing vulnerabilities, which are the currently known security flaws to which no solution has yet
been provided or the corresponding patch has not yet been applied.
Ve is computed as follows:

Ve sð Þ ¼

P
v2Ve sð Þ

w′ SS vð Þð Þ

P
v2Ve sð Þ

w SS vð Þð Þ
(8)

where SS(v) is the severity score of vulnerability v.
For the historical vulnerability score Vh(s) of service s, vulnerability knowledge bases, such as

MITRE CVE, are consulted to measure how stable the service was in the past. We use a decaying
factor to give less weight to older vulnerabilities. Equation 9 shows how Vh(s) is computed:

Vh sð Þ ¼

P
v2Vh sð Þ

w′ SS vð Þð Þ � l�age vð Þ

P
v2Vh sð Þ

w SS vð Þð Þ (9)

Finally, the overall vulnerability score V(s) of a service s is computed as follows:

V sð Þ ¼ T sð Þ � Ve sð Þ þ Vh sð Þ
1þ T sð Þ (10)
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2011)
DOI: 10.1002/nem

K. ALSUBHI, I. AIB AND R. BOUTABA
This formula ensures that the older the last release time of the service, the more weight is given to
the score of existing vulnerabilities. Conversely, the more recent it is, the more confidence is given to
historical vulnerabilities.
4.7. Alert relationship

Usually attackers use multiple steps in order to achieve their final goal. Computing the final score of an
alert therefore needs to involve the relationship it has with previous ones. We increase the score of an
alert if we find that it has a strong relationship with other stored alerts. In order to avoid lengthy
computations, we restrict the search to those alerts that occurred within a defined history window
RW. This restriction helps in discarding very old alerts and focusing on recent ones. We assume this
approach is valid based on the observation that attackers typically try to achieve their goal as soon as
possible before they can be identified.
The relationship between two alerts ai and aj is based on computing the similarity between their

respective source IP addresses (Simsip), destination IP addresses (Simdip), source ports (Simspt), and
destination ports (Simdpt). The source IP addresses similarity Simsip is computed based on equation
11. A similar formula exists for Simdip. Simspt and Simdpt produce one if the port numbers match
and zero otherwise:

Simsip a1; a2ð Þ ¼
P

similar bits SIP a1ð Þ; SIP a2ð Þð ÞP
all bits SIP a1ð Þ; SIP a2ð Þð Þ (11)

The overall similarity is a weighted sum of the four similarities mentioned above, with the highest
weight given to the source IP address similarity and the lowest to the source port number.
The relationship between two alerts equation (12) is then computed by taking into account the

follow-up probability, which is a measure of the probability that an attack of type T(aj) is followed
by an attack of type T(ai). The values of these are taken from the statistical analysis made by Valdes
et al. [11]:

R ai; aj
� � ¼ P T aj

� �
; T aið Þ� �� Sim ai; aj

� �
(12)

Finally, the relationship score of an alert ai (equation 13) is equal to the maximum relationship score
it has with the alerts that occurred at most RW time units before ai (i.e. 0< ts(ai)� ts(aj)<RW):

R að Þ ¼ max
0<ts aið Þ�ts ajð Þ<RW

R ai; aj
� �

(13)

5. FUZZY LOGIC INFERENCE

A fuzzy logic system reasons about the data by using a collection of fuzzy membership functions and
rules. It makes clear conclusions possible to derive from imprecise information. In this regard, it
resembles human decision making because of its ability to work with approximate data and find
precise results. Fuzzy logic differs from classical logic in that it does not require a deep understanding
of the system, exact equations, or precise numeric values. It incorporates an alternative way of
thinking, which allows for complex modeling of systems using a high level of abstraction of gained
knowledge and experience. Fuzzy logic allows the expression of qualitative knowledge, including
phrases such as ‘too hot’ and ‘not bad’, which aremapped to exact numeric ranges [22,23].
There are a number of steps that the fuzzy logic inference is composed of. Figure 2 illustrates these

steps using a numerical example. The steps can be summarized as follow. First, the fuzzy logic
inference system receives input values that represents themeasurement of the parameters to be
analyzed and evaluated. Then, these values are subjected to fuzzy rules in order to obtain output values
for each individual rule. These outputs will then be weighted and averaged in order to have one single
output value. Finally, the averaged value will be defuzzified in order to map the fuzzy decision value
into a crisp value.
Because of its ability to work with approximate data, we use a fuzzy logic engine to reason about

IDS alerts. As illustrated in Figure 2, results coming from the metrics presented in the previous section
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2011)
DOI: 10.1002/nem

Figure 2. Example of fuzzy logic inference in FuzMet

FUZZY-LOGIC BASED ALERT PRIORITIZATION FOR IDS
are used as input to the fuzzy logic inference engine in order to investigate the seriousness of the IDS
alerts and assign a single score for each alert.
To develop the fuzzy logic inference, we need to define two main components. The first one is the

definition of the membership functions of all input and output parameters. The second component is
the design of the fuzzy rules which formulate the conditional statements of the input values of the
parameters and determine their affect on the outputs.
5.1. Membership functions

The membership function represents the contribution level of each input parameter graphically. It
associates a weighting with each of the inputs, defines functional overlap between inputs, and
determines an output response. The membership function is often represented by a triangular,
Gaussian, trapezoidal, sigmoidal, or polynomial function. We use a Gaussian membership function
to graphically describe the three fuzzy sets (i.e. Low, Med, and High) for each input parameter. The
Gaussian membership function is chosen for specifying fuzzy sets because of its smoothness and
concise notation in designing linguistic variables [24]. For each output parameter, four triangular
membership functions were designed (i.e. VeryHigh, High, Med, and Low) and distributed in the
range [1.0, 10.0].
5.2. Fuzzy rules

Fuzzy rules determine the influence of the input membership values on the output sets. Rules in a
fuzzy expert system are usually extracted based on leveraging the domain expert knowledge, which
can be in the following form:

if applicability is High and severity is Average
then set alert score to High

where applicability and severity are the input variables, score is the output variable, High is a member-
ship function (fuzzy subset) defined on applicability, Average is a membership function defined on
severity, and High is a membership function defined on the alert score. Table 1 gives the set of fuzzy
rules which we used in the experiments.
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2011)
DOI: 10.1002/nem

Table 1. Fuzzy rules set

Rule Applicability Severity Importance Relationship Output

1 High High High High V. high
2 High Med High Med V. high
3 Low Low Low Low Low
4 Low Low Med Med Low
5 Med Med High High Med
6 Med Med High High Med
7 Low High Low Low Low
8 High Low Low Low Low
9 Low Med Low Low Low
10 Low Med Low Med Low
11 Low Med Low High Low
12 Low Low Low High Med
13 Low None None None Low
14 High Med High Med Low

K. ALSUBHI, I. AIB AND R. BOUTABA
In FuzMet, fuzzy logic is used to score alerts generated by the different IDSs. As shown in Figure 2,
the fuzzy logic inference engine first takes the input values from the different metrics (e.g. applicabil-
ity, severity, importance, and relationship metrics), then fuzzifies them using the membership
functions. The fuzzy rules are then triggered to generate the output sets. The outputs are then averaged
into a single fuzzy value which will be defuzzified in order to give a crisp value that represents the
seriousness of the alert.
6. ALERT RESCORING

Alert management techniques such as aggregation, grouping, scoring, filtering, clustering, correlation,
and fusion were proposed to deal with and abstract large numbers of alerts. First, alerts are aggregated
from multiple IDSs, then similaralerts are grouped together into meta-alerts [12]. The scoring function
evaluates the meta-alerts and assigns a score to each one according to its importance. Low-scored
alerts are usually discarded and do not get involved in any further analysis. Correlation functions
may then be applied to present the attack scenarios.
The goal of the alert rescoring algorithm we propose is to rescore alerts that have already been

scored based on their relationship with a given new alert. One of the reasons for rescoring alerts is
to notify security administrators of the early steps of the attack, which may have received low scores.
This will emphasize preliminary activities of an attacker which may help in predicting the forthcoming
steps of the attack. Scoring alerts only once limits the identification of the non-critical early steps of an
attack, especially if a threshold mechanism is employed to filter out low-scored alerts. Also, high-level
alert management techniques, such as correlation and clustering, can benefit from the rescoring and
thus provide more accurate results.
As an example, consider the case of an attacker who first scans a victim machine using an IPSweep.

This probing activity is likely to receive a low score. Later, if the attacker launches a SadmindBuffer-
Overflow attack based on the vulnerabilities discovered in one of the previously scanned machines,
this new attack is likely to receive a high score because of its seriousness. The security administrator
will not be able to see the early steps of the attack if a filtering operation is applied. On one hand,
involving only critical alerts in the high-level operations, such as correlation, prevents the non-critical
early steps of the attack from being considered. On the other hand, involving all alerts in the high-level
operation leads to an overwhelming number of correlated alerts that are difficult to manage. Hence it is
important to highlight only the critical alerts and those related to them.
The rescoring of alerts which we propose is based on the prepare-for relationship [11]. The

prepare-for relationship checks if there is any relationship between the currently evaluated alert and
the previous alerts in the alerts log. Security analysts can apply the rescoring function periodically
(e.g. every night or weekly) or just prior to applying the high-level management techniques.
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2011)
DOI: 10.1002/nem

FUZZY-LOGIC BASED ALERT PRIORITIZATION FOR IDS
The alert rescoring algorithm takes as input the alerts log, the score threshold for prioritizing alerts
ths, and the relationship time window interval Wr. The algorithm scans from the last alert down to the
first one or to some predefined rescoring depth Rdepth. For each high-scored alert ai in the log, we
calculate its relationship Section 4.7 with each low-scored and applicable Section 4.1 alert aj which
preceded ai with at mostWr time units. If the relationship is strong then aj is rescored to a higher value
according to the strength of the relationship, based on the following formula:

Score aj
� � ¼ max

0<ts aið Þ�ts ajð Þ<RW
ths;R ai; aj

� �� Score aj
� �� �

(14)

7. FuzMet configuration issues

FuzMet uses a number of metrics, fuzzy inference rules, and alert rescoring mechanisms, all of which
have several configurable parameters that influence the precision of intrusion detection and alert
prioritization. The security administrator has a number of parameters that can be configured, while
others are not. Non-configurable parameters include the severity score values SSi(a) gathered from
security expert organizations, the sensor update status and accuracy, and the attack follow-up
probability matrix P equation (12). The set of configurable parameters includes the five parameters
of the weight function w (equation 2), which in turn influence the machine importance metric I(m)
equation (3), the severity score metric SS equation (7), the existing vulnerability metric VSe equation
(8), and the historical vulnerability metric VSh equation (9). The importance I(s) of each service s and
the importance of each user account I(a) needs also to be configured in order to reflect the criticality of
each service, user account, and machine. The sensor status metric has four configurable weight
parameters. The severity score metric equation (7) requires the definition of d(i, v(a)) for each severity
score provider i and targeted victim v(a) tuple. This parameter can be made into a more static form di if
only a single trust value is given to a severity score provider independent of the target victim. The
service vulnerability metric equation (10) has an additional four parameters including the decay
coefficient l as well as the three �i weights. The relationship metric equation (13) has also four
additional parameters. Adding to the parameters relatedto the rescoring process, the overall number
of configurable parameters of FuzMet becomes

Ncfgp ¼ 6þ servicesj j þ jaccountsj þ jscoresourcesj � jvictimsj (15)

Besides metric configuration, there is a need to define the appropriate fuzzy inference rules which
help in capturing the severity of each attack. As can be noticed, providing an optimal configuration
of the FuzMet system is not trivial, to say the least.
8. COMPLEXITY ANALYSIS

In this section we investigate the complexity generated from using FuzMet alert prioritization as it is
important for an alert prioritization mechanism to have a light overhead. Studying the complexity
analysis for calculating the values of each metrics as well as for the fuzzy-logic reasoning is important
to guarantee the real-time alert evaluation capability. However, real-time alert evaluation is not
essential in IDSs, unlike IPSs, which require real-time alert evaluation and a prioritization mechanism
for immediate response.
Let N be the current number of generated alerts and M the number of machines in the protected

network. For the DARPA 2000 dataset, N is equal to 3502 and M to 23.
The applicability metric Section 4.1 checks whether an attack is applicable or not to the target

machine/service. This requires one access to the services database using the attack destination IP/port
to get the target service, one accessto the vulnerability knowledge base, and possibly a third access to
check whether there are patches against the attack in case the service is recorded as vulnerable in the
vulnerability knowledge base. Hence the applicability metric induces 2sN to 3�N database accesses.
This number can be further reduced to 1�N if the system maintains a local vulnerability knowledge

base, which contains a table of all <IP, port, service, alert type, applicable> tuples. If a service s is
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2011)
DOI: 10.1002/nem

K. ALSUBHI, I. AIB AND R. BOUTABA
patched against a given vulnerability v then the entry will have 0 for the applicability, and 1 otherwise.
The local vulnerability knowledge base can be created beforehand (negligible overhead) or as new
alert types are detected. It then needs to be updated each time a change occurs in the list/configuration
of installed services/patches.
The importance of victim metric equation (3) computes the criticality of a given machine in the

protected network. Once computed, the importance of some machine m can be cached (or stored back
to the system structure database). Hence there is no need to compute a second time except for the low-
frequency case where the set of active services/accounts for m changes, in which case I(m) is
invalidated and needs to be recomputed. Overall the complexity induced by I is O(N+M), where M
is the number of machines in the protected network.
The severity score metric equation (7) requires, for each alert, the retrieval for each severity score

provider i, of the confidence factor d(i, a) and the severity score SSi(a). If I is the number of informa-
tion sources (assumed small), then the overhead induced by the severity score metric is 3I�N=O(N).
The actual overhead can be further reduced if caching is used to exploit the redundancy of alert types.
For example, for the DARPA2000 dataset this number is equal to 14 compared to a total number of
alerts of 3502; thus a ratio of 1/265 = 0.4%. Note also that the overhead due to multiplication is
(2IN), summation (2(I� 1)N), and division (N) is negligible compared to database access operations.
The service vulnerability score (equation 10) is only related to the set of currently running services

in the system, which is independent of the number of generated alerts. Hence it it does not incur an
overhead at runtime as it can be computed offline.
The alert relationship metric equation (13) checks for each alert the set of all alerts that preceded it

within the RW interval. This can induce a considerable overhead when a burst of alerts is generated.
This explains the peaks in the alert processing times Figure 3 in the conducted experiments. The peaks
in metric computation are, however, still small (maximum peak in the experiment is 16 0ms). In prac-
tice, we limit the number of alerts to be checked by the relationship metric to a maximum value to
avoid the case when an overwhelming number of alerts is generated in a small time interval or in
the case that a wrong configuration sets RW to a very large value.
The rescoring process suffers from the same peak problem as the relationship metric. However, it is

less of an issue because this process is conducted offline.
From the previous analysis, it can be noted that FuzMet has an overall small complexity and hence

can be used without concern as a runtime alert prioritization engine.
9. EXPERIMENTAL RESULTS

In order to validate the effectiveness of the FuzMet approach for alert prioritization, we conducted a
number of experiments. We installed SONORT to scan the DARPA 2000 LLDOS dataset 1.0 [25]
and stored the generated alerts in a MySQL database. Java was used to compute the different metrics
related to the alerts. These metrics were then input to the fuzzy rule set of Table 1 in order to generate
FuzMet alert scores. The fuzzy rules used in our experiment are written based on the information
provided regarding the DARPA dataset. The goal of designing these fuzzy rules is that they should
prioritize the critical alerts among a large number of alerts mixed with a high rate of false positives.
Because the used dataset does not come with full information regarding the protected environment,
we design the fuzzy rule set based on the knowledge of detecting the documented attacks and the
relationship of the metrics used to detect these attacks. Matlab Fuzzy Logic toolbox [26] wasused
for the fuzzy rules specification and experiments. We compared our results to the alert scores
generated by SNORT.
In fact, the lack of other appropriate datasets that satisfies the common research requirements makes

the DARPA dataset one of the major contributions in evaluating IDSs. The datasets have been used
extensively by researchers to evaluate various types of IDS algorithms. The DARPA dataset has been
criticized for the way it was designed and its obsolescence and incapability of including new sorts of
network attacks. Despite the criticisms, we argue that it is still useful for evaluating IDS alert manage-
ment techniques, such as alert correlation, clustering, and merging. The use of the DARPA dataset in
our work was not for detection purposes but to evaluate the output of the detection approach (SNORT
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2011)
DOI: 10.1002/nem

Figure 3. Alert processing time

FUZZY-LOGIC BASED ALERT PRIORITIZATION FOR IDS
in our case) for the sake of assisting the security administrator in quickly and easily discovering impor-
tant and relevant alerts.
The DARPA LLDOS 1.0 dataset contains traffic collected from two network zones: ‘DMZ’ and

‘inside’. The series of attacks in the dataset are carried over multiple sessions or phases, the interval
times of which are shown in Table 2. The first phase scans the network in order to launch a distributed
denial-of-service (DDoS) attack against an off-site server. The second phase looks for the Sadmind
daemon of live IPs. The third phase exploits a Sadmind vulnerability. The fourth phase proceeds by
Table 2. Prioritized alerts of the DARPA 2000 LLDOS 1.0 dataset using FuzMet

Phase From To Length Alert name

Non-grouped Grouped

Alerts
High
scores Avg # Alerts

High
scores Avg.

Phase 1 9:51:36 9:52:00 0:00:24 ICMP Echo Request 786 0 �2 29 0 �2
ICMP Echo Reply 30 0 �1.5 12 0 �1.5

Phase 2 10:08:0710:17:10 0:09:03 RPC portmap sadmind
request UDP

250 79 �8 46 28 �8

RPC sadmind UDP
PING

9 6 �5 4 3 �5

Phase 3 10:33:1010:35:01 0:01:51 RPC sadmind with root
attempt UDP

46 28 �9 40 29 �9

RPC sadmind UDP
NETMGT_PROC
_SERVICE

46 6 �9 3 3 �9

Phase 5 11:26:1511:41:19 0:15:04 BAD-TRAFFIC
loopback
traffic

141 141 �9 1 1 �9

False alerts NETBIOS NT NULL
session

2 0 �1 1 0 �1

ATTACK_RESPONSES
Invalid URL

4 0 �1 1 0 �1

SNMP request udp 12 0 �6 9 0 �6
SNMP public access udp 6 0 �5 6 0 �5
ATTACK-RESPONSES
403 Forbidden

10 0 �1 3 0 �1

MS-SQL version
overflow attempt

1 0 �1 1 0 �1

ICMP redirect host 2159 0 �1 26 0 �1
Total 3502 260 182 64

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2011)
DOI: 10.1002/nem

K. ALSUBHI, I. AIB AND R. BOUTABA
installing an mstream Trojan on the compromised machine. Finally, the last phase launches the DDoS
attack against the remote site.
This section is divided into four parts. The first part shows the output of SNORT and FuzMet for

one configuration set and details the comparison between them. The second shows the results of the
rescoring technique. The third part studies the impact of FuzMet on the accuracy of the IDS. Finally,
the fourth one focuses on the optimal configuration problem and presents the result of a selected set of
results from among a set of 200 conducted simulations.
9.1. Alert scoring results

SNORT was used with the maximum detection capability to scan and detect intrusions within the
binary tcpdump file of both of the ‘inside’ and ‘DMZ’ traffic. SNORT reported 3502 alerts (321 inside,
and 3181 DMZ).
In order to filter out redundant alerts, we employed a grouping of alerts based on exact similarity

within a specific window of time. This resulted in a new total of 156 alerts Table 2 and thus a gain
of 95.5%.
The FuzMet scoring technique was applied to the alerts generated by SNORT. For each alert,

we compute the value of all the metrics we defined earlier, except for the sensor status and
service vulnerability metrics, because the used dataset does not provide knowledge about the
status of the targeted services and applications running over the evaluation network. However,
the other metrics were good enough to prioritize the most critical alerts. The attacker in the first
phase tries to scan the networkby employing the Internet Control Message Protocol (ICMP) echo
request, looking for ‘up’ hosts. SNORT generates 816 alerts as a response to attacker’s ICMP
requests and the hosts ICMP replies. FuzMet evaluated these incidents and scored them aslow
(1.2–2.3), as shown in Table 2. In the second phase, we received 259 alerts from the traffic of
both the DMZ and inside parts, which represents the attacker’s attempts to probe the discovered
live hosts from the previous phase to determine which hosts are running the Sadmind remote
administration tool. We scored these alerts differently based on the context in which they
occurred. For instance, the ‘RPC portmap Sadmind request UDP’ alert that was triggered by
the activity targeting the inside firewall interface is scored low. However, this alert is scored high
when the target host is running a Sadmind service. The remote-to-root exploit has been tried
several times in the third phase and SNORT raised 92 alerts, of which FuzMet prioritized 34.
Since we focus on evaluating alerts generated by network IDSs, we did not involve the audit data
from the hosts in the network, and therefore phase 4 was not included. The DDoS attacks in
phase 5 triggered 141 alerts which FuzMet prioritized as critical events.
Table 2 summarizes the results of the FuzMet alert scoring (with and without the grouping function)

technique on the DARPA dataset. FuzMet alert prioritization was effective in identifying the false
positive alerts which SNORT failed to detect. For example, SNORT generates an ‘MS-SQL version
overflow attempt’ alert with the highest priority, but we scored this alert low based on our criteria since
the target address is running a Mac operating system and this attack is impossible to succeed in this
context. Figure 4 shows that after we score the alert a security administrator can be provided with
the most important alerts, unlike the result of SNORT, which assigns a level-two priority (out of three)
to most of the alerts.
9.2. Alert rescoring results

We applied FuzMet rescoring to the stored alerts that were previously scored. As we discussed earlier,
in Section 6, a simple alert grouping technique was applied to the alert log to remove redundancy
(similar alerts which are close in time). This technique groups together the alerts that are similar in
their IP addresses, port numbers, and attack type. The grouped alerts represent all the attacker steps
used to launch the DDoS attack. Since the LLDOS 1.0 dataset consists of only one complete attack
scenario, the first phase, which contains non-critical attacks (regular scanning), is a good candidate
for rescoring, for two reasons: first, because it is a preparation step for later attacks; second, FuzMet
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2011)
DOI: 10.1002/nem

Figure 4. FuzzMet versus SNORT scores. SNORT scores most alerts as medium, whereas FuzMet
manages to filter out unnecessary alerts, emphasize the important ones, and implicitly identify the

different phases of the compound attack

FUZZY-LOGIC BASED ALERT PRIORITIZATION FOR IDS
and SNORT score the alerts generated by this phase as low. Therefore we focused our analysis on the
alerts related to the first phase to check the usefulness of our rescoring approach.
In phase 1, the attacker starts to scan the network at 09:51:36 until 09:52:02 by performing a

scripted IPsweep of multiple class C subnets on the victim network. Previously, this phase was scored
low by FuzMet (as well as SNORT) according to its seriousness and impact. FuzMet successfully
rescored this phase to be attached with the other phases of the DDoS attack. As shown in Figure 5,
the alerts related to phase 1 were scored between 1.35 and 4.38 but after applying the rescoring
function their scores increased to 8. The rescoring values was chosen to be 8 to ensure that the rescored
alerts would be included in the prioritized alert set (assuming that the score threshold for prioritizing
alerts ST is 7). As a result, all thecritical alerts as well as the preparation steps have been prioritized and
presented to the security analyst.
9.3. Impact on sensor accuracy

The studied dataset contains 70 228 sessions (34 890 inside and 35 338 DMZ), of which there were 33
885 malicious sessions for the inside part and 34 833 malicious sessions for the DMZ part.
Figure 5. Alert rescoring results. FuzMet rescoring manages to identify the first phase of the compound
attack, which both SNORT and FuzMet initial scoring missed.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2011)
DOI: 10.1002/nem

Figure 6. Enhancement of detection accuracy using FuzMet and rescoring

K. ALSUBHI, I. AIB AND R. BOUTABA
As can be seen from Figure 6, the rate of true positives P(A|I) for the inside traffic changes from
7.39% using SNORT to 86.96% after using FuzMet scoring, and goes up to 96.09% after applying
the rescoring algorithm. This implies the considerable enhancement of 1200%. The enhancement rate
for the the DMZ traffic part reaches 245% for FuzMet with rescoring.
The rate of true negatives P(¬A|¬I) also improves for the inside part by 0.53% using FuzMet and

0.6% with rescoring. For the DMZ traffic, the rate of true negatives makes the slight improvement
of 0.25% and 0.29% with rescoring.
The above results are quite important and prove that using FuzMet with rescoring can lead to

considerable enhancement in the accuracy of a sensor.
It may appear, based on the studied dataset, that the difference of enhancement between the use of

FuzMet and that of adding the rescoring mechanism is not much. However, the rescoring always
provides an additional enhancement which may be considerable for other datasets.
9.4. FuzMet configuration issue

As discussed in Section 7, the parametrization of the FuzMet alert scoring system can be critical to
its effectiveness. Misconfiguration leads to imprecise outcomes, which consequently results in
missed attacks. The objective is therefore todetermine a good configuration of the FuzMet set of
parameters.
Because the used dataset does not come with information about network topology, the set of

running services, and the different user accounts, a number of FuzMet metrics could not be
involved in the experiments. These include the sensor status, sensor placement, and service vul-
nerability metrics. The metrics which were used are the applicability, importance, severity, and
relationship metrics. For simplicity, all severity score sources were given equal confidence
(d(i, v(a)) = 1) equation (7).
Two hundred simulations have been conducted with different configuration parameters in order to

determine the best configuration set. A good configuration set is one which makes FuzMet prioritize
all and only those alerts which actually belong to theDDoS attack phases. Owing to space limitations,
and because it is not possible to aggregate simulation results, only four representative simulations will
be shown in this section. The goal in choosing these four simulations is to show the impact ofthe
parameter configuration on the effectiveness of FuzMet. Intuitively, the parametrization of the FuzMet
alert scoring system determines its effectiveness. Misconfiguration can easily lead to imprecise
outcomes, which consequently result in missed attacks. These four simulations demonstrate how
misconfiguring FuzMet can severely affect its performance.
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2011)
DOI: 10.1002/nem

FUZZY-LOGIC BASED ALERT PRIORITIZATION FOR IDS
Table 3 shows the parameters of the severity and relationship metrics for the selected simulations.
The weight group contains the configuration parameters for the weight function which directly affects
the severity score metric equation (7). Table 4 shows the configuration parameters related to the impor-
tance metric. A value of 1 indicates lower importance, while a value of 3 indicates the highest impor-
tance. A zero value indicates the case where the target machine is unknown or that the value has not
yet been configured.
Simulation S1 generated the worst result among the 200 simulations, with only one single alert given

high priority Figure 7a. The result can be explained by the fact that the machines running the Sadmind
service, core to the DDoS attack, have been assigned a null importance (172.16.112.10,
172.16.112.50, and 172.16.115.20). In S2 (Figure 7(b)), 31 alerts have been assigned high priority.
S2 differs from S1 mainly in the importance metrics where the machines running Sadmind have been
assigned non-zero importance in S2.
S3 gives a high priority to 11 alerts only (Figure 7(c)). However, if the high-priority threshold is

lowered from 8 down to 7, S3 records a number of 66 high-priority alerts, hence equaling those
generated by S4 (Figure 7(d)). S4manages to generate the best result among the 200 simulations with
a number of 66 high-score alerts and the highest average score of 4.02. S3 and S4 have the same
importance configuration and differ in the weight and relationship parameters.
Table 3. Metric parameters

Parameter S1 S2 S3 S4

Weight low 0.10 0.34 0.35 0.16
med 0.49 0.53 0.40 0.45
high 0.83 0.56 0.45 0.60
thl 0.30 0.30 0.30 0.30
thh 0.60 0.60 0.60 0.60

Relationship sip 0.92 0.73 0.25 0.84
dip 0.65 0.59 0.25 0.63
spt 0.10 0.29 0.10 0.19
dpt 0.22 0.29 0.10 0.11
RW 10 10 5 20

Table 4. Importance configurations

Dest. IP Target S1 S2 S3 S4

131.84.1.31 Unknown interface 2 2 1 1
172.16.112.1 Unknown interface 3 1 2 2
172.16.112.10 Sun Solaris 2.6 0 1 3 3
172.16.112.100 Windows NT 4.0 3 0 2 2
172.16.112.105 unknown 1 3 1 1
172.16.112.194 Sun Solaris 2.5.1 1 1 2 2
172.16.112.50 Sun Solaris 2.5.1 0 3 3 3
172.16.113.148 Linux Redhat 5.0 1 3 2 2
172.16.113.204 Sun Solaris 2.5.1 0 0 2 2
172.16.113.84 SunOS 4.1.4 0 1 2 2
172.16.114.10 Sun Solaris 2.6 3 1 3 3
172.16.114.2 Sidewinder 0 1 1 1
172.16.114.20 Sun Solaris 2.7 1 2 3 3
172.16.114.30 Sun Solaris 2.7 2 0 1 1
172.16.114.50 Linux Redhat 4.2 1 0 2 2
172.16.115.1 Firewall interface 2 1 1 1
172.16.115.20 Sun Solaris 2.7 0 2 3 3
172.16.115.87 Windows 95 0 1 2 2
172.16.116.44 Windows 3.1 3 3 2 2
172.16.117.103 MacOS 2 3 2 2
172.16.117.111 Mac OS 1 1 2 2

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2011)
DOI: 10.1002/nem

Figure 7. FuzMet configuration results

K. ALSUBHI, I. AIB AND R. BOUTABA
Of the four identifiable phases of the DDoS attack, only S4 manages to detect all of them with
a strong precision for phases 2 and 3 and a high-to-medium precision for phases 1 and 5 (phase 4
is only detectable by a host IDS and as such isexcluded from the evaluation). In contrast,
SNORT manages to identify only phase 2. Figure 7(e) plots the results of S4 based on time rather
than on the number of alerts and shows the concentration of high-score alerts for phases 2 and 3,
which last 09:03 and 01:51 minutes respectively. S4 records 58 high-score alerts for phase 3,
within an interval of 01:49 minutes. This interval is almost equal to the exact duration of phase
3 of the attack, which corresponds to the exploitation ofthe Sadmind vulnerability. It is also to be
noted that while S1 manages to generate only one high-score alert for phase 3, SNORT misses
that phase completely and only detects phase 2 out of the four detectable phases. Overall, and
based on the discovered results, S4 represents the best configuration set.
However, it is difficult judge the optimal configuration set owing to the number of parameters,

which may vary from one environment to another. Therefore we can use the discovered parameter
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2011)
DOI: 10.1002/nem

FUZZY-LOGIC BASED ALERT PRIORITIZATION FOR IDS
set which led to the best results as a default configuration set.Because of the high number of config-
uration parameters required by the different metrics and fuzzy logic engine, this paper particularly
emphasizes the problem of best configuration set for FuzMet with respect to the chosen dataset. In
fact, the divergent behavior of FuzMet depending on how it is configured helped in identifying
the configuration which led to best performance wherein all attack phases were identified.
10. IMPLICIT ATTACK GRAPH GENERATION

The attack graph represents the scenario that the attacker has taken from the first step until achieving the
final goal. There have been some efforts in building the attack graph through correlating the alerts gener-
ated by the IDSs [5,10,27,28]. The attack graph provides the security analyst with a high-level represen-
tation of the attacker strategies. This is useful for the security analyst in order to figure out the steps of an
attack from its first step to its final goal. Another advantage is related to the automatic exclusion of false
positive alerts during attack graph construction since they are rarely correlated with the real attacks.
In this section, we show that our technique in computing the relationship metric is equivalent to an

implicit construction of an attack graph. The relationship between alerts is used to generate the attack
graph of Figure 8 for the studied dataset. The nodes represent the alert name as used by SNORT and
the arrows represent the relationship between the alerts. Figure 8(a) shows the attack graph result in
setting the time window parameter (RW) to 10 min. As we discussed earlier, this time interval
parameter has a direct implication on the number of alerts investigated per each alert by the
relationship metric. In Figure 8(a), the attack relationship threshold Thr is set to 0.75, which means that
a link exists from attack ai to aj only if R(ai, aj)≥ 0.75. As can be seen, the first phase of the attack
(scanning) has been isolated from the rest ofthe steps. The reason behind this is that the period between
the end of the first phase and the beginning of the second phase exceeds the time limit interval of 10
min. The relationship between the second and third phases is, however, successfully detected.
Figure 8. Implicit Attack Graph Generation

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2011)
DOI: 10.1002/nem

K. ALSUBHI, I. AIB AND R. BOUTABA
Figure 8(b) shows the generated attack graph for an RW=30 min with Thr= 0.75. The first phase is
still isolated from the second one due to the low follow-up probability (probe followed by a different
probe). However, the second and third phases now have a stronger link.
Due to the high threshold value of the relationship score (Thr = 0.75), most of the false positive

alerts did not appear in the first and second attack graphs. In addition, those which appeared are
isolated from the rest of the graph such as ‘SNMP_request_udp’ and ‘SNMP_public_access_udp’.
In Figure 8(c), Thr is lowered to 0.5 and RW is kept at 30 min. The generated graph includes a larger

number of false alerts and links. However, the relationship between the first and the second phases is
now captured, which can be valuable to the security analyst.
In summary, larger RW values help in better detecting relationships between alerts at the expense of

longer computation times, while lower values of Thr help in better detecting the actual relationships
between all attack phases at the expense of a higher noise of false relationships. The security analyst
can tune these parameters depending on the attack circumstances as no single values can fit all possible
attack graph scenarios. However, since the attacks in an attack graph are definitely related, there are
always ranges of values for RW and Thr which will capture the actual attack graph, although with
some expected noise of false positives.

11. CONCLUSIONS AND FUTURE WORK

This paper presented the specification and configuration issues of FuzMet, a system that uses fuzzy logic
inference to evaluate and prioritize IDS alerts based on several metrics. We defined six metrics related to
the applicability of the alert, importance of the target, sensor status, alert severity score, service vulner-
ability, and alerts static relationships. Because of the high number of configuration parameters required
by the different metrics and fuzzy logic engine, the problem ofgood configuration for FuzMet was em-
phasized. The simulations were specifically conducted in order to determine such a configuration.
In the experimentation, the FuzMet approach has been applied to the alerts generated by SNORT

with its maximum detection capability and using the DARPA 2000 LLDOS 1.0 dataset. The dataset
features a DDoS attack on a remote site. Two hundred simulations were conducted and selected results
were presented. While SNORT detected only one phase of the four detectable phases of the attack, the
best found configuration of FuzMet managed to detect all of those phases with a good precision for
two of the phasesand a very good precision for the others. Unexpectedly, even the worst case config-
uration of FuzMet also did well, in the sense that it managed to raise one single high score alert for a
phase which SNORT did not detect at all.
The conducted simulations showed the viability of the FuzMet approach, at least for the selected

intrusion scenario. In addition, the divergent behavior of FuzMet depending on how it is configured
helped in identifying the configuration which leads tobest performance wherein all attack phases are
identified. Overall, FuzMet proved to bring a concrete enhancement to the intrusion detection accuracy
of SNORT, which is further enhanced when rescoring is applied.
However, even with the obtained results, we did not completely solve the configuration problem of

FuzMet. In fact, many of the metrics were not configurable owing to the absence of their related data
from the chosen scenario dataset. In addition, it is not possible to prove that the identified best
simulation is the actual optimal configuration; or even whether it is the best just for that particular
dataset. The search space involves a considerable number of parameters and further analytical analysis
is required. As a future work, we plan to consider the use of FuzMet for real attack scenarios, investigate
its usefulness for anomaly-based IDS alerts, and provide more analytical study of the configuration
problem of the identified metrics as well as that of the fuzzy logic rules and inference engine.
ACKNOWLEDGEMENTS

This research was partially supported by the Natural Science and Engineering Council of Canada
(NSERC) under its discovery program and partially by WCU (World Class University) program
through the Korea Science and Engineering Foundation funded by the Ministry of Education, Science
and Technology (Project No. R31-2008-000-10100-0).
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2011)
DOI: 10.1002/nem

FUZZY-LOGIC BASED ALERT PRIORITIZATION FOR IDS
REFERENCES

1. Alsubhi K, Al-Shaer E, Boutaba R. Alert prioritization in intrusion detection systems. In IEEE Network Operations and
Management Symposium, 2008; 33–40.

2. Snort. Available: http://www.snort.org [27 August 2011].
3. Li W, Zhi-tang L, Jie L, Yao L. A novel algorithm SF for mining attack scenarios model. In Proceedings of the IEEE

International Conference on e-Business Engineering, 2006; 55–61.
4. Porras PA, Fong MW, Valdes A. A mission-impact-based approach to infosec alarm correlation. In RAID 2002: Recent

Advances in Intrusion Detection: 5th International Symposium, Zurich, Switzerland, 2002.
5. Qin X, Lee W. Statistical Causality Analysis of INFOSEC Alert Data. Springer: Berlin, 2003.
6. Yu J, Reddy YVR, Selliah S, Kankanahalli S, Reddy S, Bharadwaj V. TRINETR: An Intrusion Detection Alert Management

System. IEEE Computer Society: Washington, DC, 2004; 235–240.
7. Ranum MJ. False Positives: A Users Guide to Making Sense of IDS Alarms. ICSA Labs: Mechanicsburg, PA, 2003.
8. Debar H, Wespi A. R&D, Aggregation and Correlation of Intrusion-Detection Alerts. Springer: Berlin, 2001.
9. Julisch K. Clustering intrusion detection alarms to support root cause analysis. ACM Transactions on Information and

System Security 2003; 6: 443–471.
10. Ning P, Cui Y, Reeves DS. Constructing attack scenarios through correlation of intrusion alerts. In Proceedings of the 9th

ACM Conference on Computer and Communications Security, 2002; 245–254.
11. Valdes A, Skinner K. Probabilistic alert correlation. In RAID 2001: Recent Advances in Intrusion Detection: 4th Interna-

tional Symposium, Davis, CA, 2001.
12. Valeur F, Vigna G, Kruegel C, Kemmerer R. Comprehensive approach to intrusion detection alert correlation. IEEE Trans-

actions on Dependable and Secure Computing 2004; 1(3): 146–169.
13. Li Z, Chen Y, Beach A. Towards Scalable and Robust Distributed Intrusion Alert Fusion with Good Load Balancing. ACM

Press: New York, 2006; 115–122.
14. Cuppens F, Ortalo R. LAMBDA: a language to model a database for detection of attacks. In Recent Advances in Intrusion

Detection: Third International Workshop. Springer-Verlag London, UK, 2000.
15. Curry D, Debar H. Intrusion detection message exchange format (IDMEF). RFC 4765, 2007.
16. Staniford-Chen S, Tung B, Schnackenberg D. The common intrusion detection framework (CIDF). Information Survivabil-

ity Workshop, Orlando, FL, 1998.
17. Feinstein B, Matthews G. The intrusion detection exchange protocol (IDXP). RFC 4767, 2007.
18. National Vulnerability Database. National Institute of Standards and Technology: Gaithersburg, MD.
19. Bugtraq. Available: http://www.securityfocus.com/archive/1 [27 August 2011].
20. Axelsson S. The base-Rate fallacy and the difficulty of intrusion detection. ACM Transactions on Information and System

Security 2000; 3(3): 186–205.
21. Abedin M, Nessa S, Al-Shaer E, Khan L. Vulnerability analysis for evaluating quality of protection of security policies. In

QoP ’06: Proceedings of the 2nd ACM workshop on Quality of protection, 2006.
22. Nguyen HT, Walker E. A First Course in Fuzzy Logic. CRC Press: Boca Raton, FL, 2006.
23. Yager RR, Zadeh LA. An Introduction to Fuzzy Logic Applications in Intelligent Systems. Kluwer: Norwell, MA, 1992.
24. Wang LX, Mendel JM. Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans-

actions on Neural Networks 1992; 3(5): 807–814.
25. 2000 darpa intrusion detection scenario specific datasets. Lincoln Laboratory, MIT, Cambridge, MA, 2000.
26. Fuzzy Logic Toolbox. Available: http://www.mathworks.com/products/fuzzylogic [27 August 2011].
27. Ning P, Cui Y, Reeves DS, Xu D. Techniques and tools for analyzing intrusion alerts. ACM Transactions on Information

and System Security 2004; 7(2): 274–318.
28. Noel S, Robertson E, Jajodia S. Correlating intrusion events and building attack scenarios through attack graph distances. In

20th Annual Computer Security Applications Conference, 2004; 350–359.
AUTHORS’ BIOGRAPHIES

Khalid Alsubhi received the bachelor degree with a first honor degree from the faculty of Computing and Infor-
mation Technology at King Abdulaziz University in 2003. He received the Masters degree (MMath) in Computer
Science from the University of Waterloo in 2008. He is currently a PhD student in David R. Cheriton School of
Computer Science at the University of Waterloo.

Issam Aib received the MSc. and PhD. degrees in Computer Science from the University of Pierre & Marie Curie,
Paris, France, in 2002 and 2007 respectively. He is currently a Postdoctoral fellow at the school of computer
science of the University of Waterloo (Canada) where he is conducting research on policy-based and businessdri-
ven management of networks and distributed systems since 2005. He is the recipient of the best student-paper
award of the tenth IFIP/IEEE International Symposium on Integrated Network Management (IM 2007) for his
work on the optimization of policy-based management.
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2011)
DOI: 10.1002/nem

http://www.snort.org
http://www.securityfocus.com/archive/1
http://www.mathworks.com/products/fuzzylogic

K. ALSUBHI, I. AIB AND R. BOUTABA
Raouf Boutaba received the MSc and PhD degrees in computer science from the University Pierre & Marie
Curie, Paris, in 1990 and 1994, respectively. He is currently a professor of computer science at the University
of Waterloo. His research interests include network, resource and service management in wired, and wireless net-
works. He served as the founding editor in chief of the IEEE Transactions on Network and Service Management
(2007–2010) and on the editorial boards of several other journals. He has received several best paper awards and
other recognitions such as the Premiers Research Excellence Award, the IEEE Hal Sobol Award in 2007, the Fred
W. Ellersick Prize in 2008, the Joe LociCero award and the Dan Stokesbury in 2009.
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2011)
DOI: 10.1002/nem

