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Abstract—This paper shows how to properly achieve elasticity
for network firewalls deployed in a cloud environment. Elasticity
is the ability to adapt to workload changes by provisioning
and de-provisioning resources in an autonomic manner, such
that at each point in time the available resources match the
current demand as closely as possible. Elasticity for cloud-based
firewalls aims to satisfy an agreed-upon performance measure
using only the minimal number of cloud firewall instances. Our
contribution lies in determining the number of firewall instances
that should be dynamically adjusted in accordance with the
incoming traffic load and the targeted rules within the firewall
rulebase. To do so, we develop an analytical model based on
the principles of Markov chains and queueing theory. The model
captures the behavior of a cloud-based firewall service comprising
a load balancer and a variable number of virtual firewalls.
From the analytical model, we then derive closed-form formulas
to determine the minimal number of virtual firewalls required
to meet the response time specified in the SLA (Service Level
Agreement). The model takes as input key system parameters
including workload, processing capacity of load balancer and
virtual machines, as well as the depth of the targeted firewall
rules. We validate our model using discrete-event simulation,
and real-world experiments conducted on Amazon Web Services
(AWS) cloud. We also provide numerical examples to show how
our model can be used in practice by cloud performance/security
engineers to achieve proper elasticity under fluctuating traffic
load and variable depth of targeted firewall rules.

Index Terms—Cloud Computing, Firewalls, Cloud Firewalls,
Scalability, Elasticity, Resource Management.

I. INTRODUCTION

In a cloud environment, and as in any enterprise network,
firewalls are typically used to filter traffic and enforce a given
security policy. Today’s cloud infrastructure and services offer
a customer the ability to provision a customizable “virtual
private cloud” (VPC) that comprises of many virtual machines
that can be logically isolated, networked and configured into
different subnets. A VPC provides higher control of the
infrastructure to the customer, and provides flexible options
to run isolated or single tenant hardware to support AWS
instances. The VPC subnets can host a wide range of private
and public services and applications, and a customer can
interconnect their VPC to a corporate data center that is located
at a different geographical site on the Internet.

The fact that the VPC is exposed with public IP addresses
(from Amazon’s public IP address pool), security becomes
a major concern and there is a need for a suitable design

when deploying the VPC so that it can securely handle
elastic customer traffic needs. More importantly, the VPC
has to remain operational under the threat of new cloud-
based attacks that are always emerging [1]–[3]. In most
cases, cloud service providers give minimal support towards
security or protection of a VPC; it is the responsibility of the
VPC customer to implement the proper performance scaling
and adequate security measures by deploying the appropriate
security appliances. As a consequence, the cloud customer has
to undertake majority of control for management of network
services i.e., the customer has to treat the VPC network as
no different from a traditional non-cloud enterprise network,
requiring the implementation of firewalls, load balancers, anti-
viruses as well as intrusion detection systems.

Figure 1 – Securing a VPC using a virtual firewall

To protect and secure a VPC deployment in a public cloud
platform, typically virtual firewalls (vFirewalls or vFWs) are
deployed as a first line of defense to filter lawful and unlawful
packets, as shown in Figure. 1. A virtual firewall is basically
a virtual machine that runs different software-based firewall
functions such as e.g., access control lists. Unlike traditional
firewalls, cloud-based firewalls need to be elastic in order
to seamlessly integrate with the other elastic services related
to e.g., compute (EC2), storage (S3) or service monitoring
(CloudWatch). Elasticity is a key characteristic of cloud-
hosted services and applications, whereby cloud resources are
allocated and de-allocated based on the presented workload in
order to satisfy given SLA (Service Level Agreement) perfor-
mance metrics which may include response time, throughput
and request loss ratio.
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Elasticity for cloud-hosted applications and services (such
as web, FTP, and email service, multimedia streaming, cus-
tomer relationship management (CRM), and many others) has
been investigated to a great extent in the literature. However,
the literature is lacking research work and investigation for
implementing proper elasticity of virtualized network services
residing in the cloud as those of routing, domain name ser-
vices, intrusion detection, firewalls, etc. This article focuses on
addressing the challenging issue of elasticity for a cloud-based
firewall service. The article proposes an architectural design
for an elastic scalable virtual firewall service to be deployed
at cloud datacenters that support VPC services. Specifically,
it focuses on how to tune elasticity to desired configurations
by developing an analytical model that estimates the number
of vFirewalls required to meet a certain SLA response time
expected from a cloud-based firewall service. The firewall
response time can be part of the overall end-to-end latency
for an application or service hosted within the VPC specified
in the SLA.

Figure 2 – An architecture of an elastic cloud-based firewall service

Figure 2 shows a typical architecture for an elastic cloud-
based firewall service that can be deployed at a cloud datacen-
ter. The firewall service comprises of a Load Balancer (LB)
which fronts a variable number of vFirewalls (a.k.a. vFWs)
that get allocated and de-allocated based on the received traffic
from the Internet. A vFirewall is basically a software-based
firewall running on a compute virtual machine (VM) of a
certain processing capacity. The primary function of the LB
is to distribute the incoming workload λ of arriving packets
evenly among M vFWs so that each vFW will receive λ/M
of the workload. In the figure, γj is the departure rate or
throughput of a vFWj .

In this article, we present an analytical model and provide
closed-form solutions and formulas that can be used to support
and enable elasticity for cloud-based firewalls. These formulas
provide an answer to the question on the number of vFWs

required for a given network workload. The answer to this key
question is at the heart of any proper elasticity implementation.
The answer to this key question is at the heart of any proper
elasticity implementation. In this article, we do not claim to
provide a full-fledge implementation to elasticity for vFWs,
but we focus on this key question. Our analytical formulas
and solutions can be an integral part to any elastic scaling

framework, design or implementation. The implementation of
a full-fledged elastic cloud-based firewall system is beyond the
scope of this article and is left as a future work.

Figure 3 shows the main design components for implement-
ing a cloud-based firewall system. The components and their
roles can be described briefly as follows:

Figure 3 – Key design components for an elastic cloud-based firewall
system

• Service Agents (SA). The measurements of the various
cloud node states and network load have to be performed
in real time by service agents which are placed in various
parts of the VPC network including LB, vFW, hypervi-
sors, and routers. Such agents will measure and monitor
various aspects of node system parameters and network
conditions. For example, the vFW agents will gather fine-
grained statistics on the highly frequent triggered rules
within the rulebase from each vFW.

• Elasticity Orchestrator (EO). The EO is responsible
for the provisioning (scaling out) and de-provisioning
(scaling in) of new vFWs. The EO carries out such func-
tionality by gathering information from the agents, and
subsequently deciding on the number of needed vFWs.
The orchestrator runs periodically an algorithm to ensure
the created vFWs are meeting the workload demand,
and would adjust the allocated vFWs accordingly, based
on the formulas and the analytic solutions given in this
article. The length of the adjustment period and other
parameters including the desirable SLA requirements are
included as part of the “elasticity policy”.

• Resource Manager (RM). The RM is the third key
component of elasticity. This node is also known in some
systems as the Virtual Infrastructure Manager (VIM)
which is responsible for monitoring, automation, and
management of cloud resourcesparticularly, in keeping
track of used and unused cloud resources. The EO
interacts with the Resource Manager at the time of
provisioning new vFWs, and also at the time of releasing
already allocated vFWs. As shown in Figure 3, the
RM interacts with the hypervisors deployed on physical
machines throughput the cloud datacenter, to manage and
allocate virtual resources.

There is also a number of design and management aspects to
consider for implementing and supporting elasticity for cloud-
based applications and services [38]–[40]. Many of these
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aspects need to be incorporated to implement a complete
elastic cloud-based firewall system.

This paper is a significant extension of our preliminary work
presented in [4]. Our main contributions of this paper can be
summarized as follows:

• We propose a mathematical model that captures the
behavior and dynamics of cloud-based firewalls. The
model can be used to study the performance of cloud-
based firewalls and also to determine the minimal number
of cloud firewalls needed to achieve elasticity.

• We derive important closed-form formulas and present a
complete algorithm to implement elasticity. Moreover, we
propose a deployment topology of a cloud-based firewall
service comprising LB and vFWs.

• We conduct a major experimental work and measure-
ments to validate our analytical model. The experiments
were conducted in a real-world VPC environment on the
popular Amazon Web Services cloud infrastructure.

• We provide several numerical examples to show how
proper elasticity can be achieved, and we offer guidelines
for researchers as well as cloud performance/security
engineers to be able to reproduce the results and conduct
the experiments, as well as to deploy and implement an
elastic cloud-based firewall service.

• Finally, and in general, our model, formulas, experiments,
and guidelines presented in this article can be used and
applied to implement and deploy other types of similarly-
behaving rule-based services, systems, and applications
to be deployed on the cloud. Such services may include
intrusion detection systems, spam email filters, anti-virus
appliances, etc.

The rest of the article is organized as follows. Section II
summarizes work related to cloud-based firewalls. Section III
presents our analytical model capturing the inner-working and
behavior of cloud-based firewalls. In particular, we derive
closed-form formulas to estimate the SLA response time
incurred at both LB and vFWs, and devise an algorithm for the
computation of these formulas. Section IV verifies and vali-
dates our model using simulation and an experimental testbed
deployed within an Amazon Web Services environment. We
also provide numerical examples and show how the model can
be used to achieve elasticity of cloud firewalls that satisfy a
given SLA response time. Finally, Section V concludes our
article.

II. RELATED WORK

To the best of our knowledge, there has been limited studies
of elastic cloud-based firewall services in the literature. In [5],
[6], a firewall framework of a cluster of firewalls was proposed
to protect cloud-hosted applications and services. The authors
used queuing theory to model and capture the behavior of the
firewalls in order to study performance. In [7], a cloud-based
firewall service is proposed to outsource firewall functionality
from an enterprise local network to the cloud platform. The
authors proposed a framework to preserve privacy and evaluate
different algorithms to study the service performance issues.

In [8], [9], cloud-based firewalling was advocated as a future
trend in which a traditional physical firewall can be outsourced

to the cloud. In [10], a hybrid cloud-based firewalling service
was proposed. The hybrid firewalling service is composed of a
physical server infrastructure part and a cloud-based part. As
the network traffic increases beyond a certain level, the traffic
is routed to the cloud firewalls to be handled at-scale. Such an
approach was proven to be potentially effective for mitigating
DDoS attacks [11], [12] by making a decision to create or not
to create virtual firewalls based on traffic demand.

In all of this prior work, the scalability and elasticity issues
of a cloud-based firewall service for critical services such as
VPC were not addressed. Also, all of this prior work did not
consider the role of a load balancer and its critical impact
on the performance. In general, these existing models do not
capture the inner-working details and dynamics of the elastic
services–which makes it difficult to derive proper guidelines
for handling the tradeoffs inherent to cloud-based firewall
elasticity design. As we noted, the LB can play a key role
in creating, monitoring, managing, and orchestrating vFW
instances in the cloud. All of this may result in a significant
processing overhead at the LB, especially when the incoming
workload is high. Hence, any analytical model should account
for the role of LB in order to accurately model behavior and
performance. Accordingly, this article develops an analytical
model used to determine the efficient number of needed vFWs
to meet a given SLA response time taking into account many
key design parameters including, the LB as well as vFW
processing capacity, workload, and depth of firewall rulebase.

III. ANALYTICAL MODEL

In this section, we develop an analytical model to capture
the service behavior within a vFW, and then we derive
formulas to estimate the response time. Typically, for a PC-
based or virtual firewall, and as shown in Figure 4, incoming
packets are queued into a Rx DMA ring and then go into three
stages of service. In Stage 1, packet pre-processing takes place
whereby the packet is removed from the queue, header fields
are checked for errors, and packet is prepared for delivery
to upper layers. Firewall rulebase interrogation takes place at
Stage 2 in which rule conditions are checked sequentially one
by one until a match occurs. Stage 3 executes the rule in which
an action to drop, log, or pass the packet takes places. In our
model, a new packet only gets forwarded to Stage 1 after
the previous packet has left Stage 3 completely, i.e., it has
departed from the entire queuing system. We also assume that
the execution of the three stages is mutually exclusive. More
specifically, if the CPU is executing one of the stages, the other
two stages are halted. This is realistic considering vFWs are
all based on an x86 architecture with a virtual CPU executing
one task at a time.

The behavior of firewall processing of incoming packets
can be modeled as a finite queueing system size with three
stages of service. As shown in Figure 5, an incoming network
packet gets first queued in a buffer of size K-1 and then gets
served sequentially in three stages with each stage having a
different mean service rate, i.e., µ1, µ2, µ3. We assume that
incoming packets follow a Poisson arrival λ. Also, the stage
service times are independent with exponential distribution.
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Figure 4 – Processing sequence of packets within a single vFirewall

The service discipline of packets is FCFS (First Come First
Served). At Stage 2, the mean processing rate µ2 depends
on the service time to interrogate a rule and how many rules
need to be interrogated before a match occurs, i.e., a rule is
triggered. On average, 1/µ2 can be expressed as follows

1/µ2 = L · TR,

where L is the average number of rules to be interrogated
for an incoming traffic, and TR is the average interrogation
time per rule.

Figure 5 – A model to capture vFirewall processing of a packet

In our analysis, we assume the packet arrivals are Poisson
with fixed packet sizes, and the service times are all expo-
nentially distributed. For some other traffic types, the size of
network packets are not fixed, and arrival rates do not always
follow a Poisson process, but in many cases are classified to be
bursty [13]–[15]. Also, the service times are not necessarily
exponential. However, for specific types of network traffic,
assuming Poisson arrivals can be sufficient [16]. Moreover,
it was demonstrated in [17] that analytical solutions based on
these assumptions do indeed offer adequate approximation and
close results to real experimental results and measurements.
An analytical solution becomes infeasible to solve, and in
fact, intractable when assuming network packets with variable
sizes and incoming rates that follow a non-Poisson process,
or with general service times. Moreover, the assumptions, we
undertake in this article, have been widely adopted in the
literature, and do, in fact, provide acceptable approximation
of real-world systems as reported in [5], [6], [18], [20],
[21]. More importantly, we show in Section 4.2 that our
analytical results are valid and in good agreement with those
measurements taken from real-world experiments conducted
in the popular AWS public cloud environment. It is worth
noting that there is also some work reported in the literature,
as in [19], where the authors presented a performance model
and analysis of a cloud datacenter using a Poisson arrival but
with a generally distributed service times. As demonstrated
in [19], such models do not provide closed-form solutions and
formulas that can be easily used by a cloud controller node
in a cloud environment, and can in fact be computationally

expensive to implement. The authors in [19] have used a
software package Maple 13 to solve numerically the balance
equations, as closed-form solution was not attainable.

Our analytical model is built on the principles of the
embedded Markov chain with a finite state space. The model
captures the behavior of the vFirewall processing with a state
space S = {(k, n), 0 ≤ k ≤ K, 0 ≤ n ≤ 3}, where k denotes
the number of packets in the entire system, and n denotes
the service stage number being performed by the CPU. The
queuing system has a buffer size of K-1. In other words, state
(0,0) represents the special case when the system is empty or
idle, i.e. the state of system idleness. States (k,n) represent the
states where the CPU is busy executing service of stage n with
k packets in the system. The state rate transition diagram is
shown in Figure 6.

Figure 6 – State transition rate diagram with three stages of service

We start first by expressing the steady-state balance equa-
tions for each state (k,n). If we have pk,n denote the steady-
state probabilities at state (k,n).

At state (0,0):

0 = −λp0,0 + µ3p1,3 (1)

At state (1,3):

0 = −(λ+ µ3)p1,3 + µ2p1,2 (2)

At state (1,2):

0 = −(λ+ µ2)p1,2 + µ1p1,1 (3)

At state (1,1):

0 = −(λ+ µ1)p1,1 + λp0,0 + µ3p2,3 (4)

At state (k,3):

0 = −(λ+µ3)pk,3 + λpk−1,3 +µ2pk,2(2 ≤ k ≤ K − 1) (5)

At state (k,2):

0 = −(λ+µ2)pk,2 + λpk−1,2 +µ1pk,1(2 ≤ k ≤ K − 1) (6)

At state (k,1):

0 = −(λ+µ1)pk,1+λpk−1,1+µ3pk+1,3(2 ≤ k ≤ K−1) (7)

At state (K,3):

0 = −µ3PK,3 + λpK−1,3 + µ2pK,2 (8)

At state (K,2):

0 = −µ2PK,2 + λpK−1,2 + µ1pK,1 (9)
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At state (K,1):

0 = −µ1pK,1 + λpK−1,1 (10)

Therefore pk,n can be recursively written in terms of p0,0
as follows:

From Equation (1)

p1,3 =
λ

µ3
p0,0 (11)

From Equation (2)

p1,2 =

(
λ+ µ3

µ2

)
p1,3 (12)

From Equation (3)

p1,1 =

(
λ+ µ2

µ1

)
p1,2 (13)

From Equation (4)

p2,3 =

(
λ+ µ1

µ3

)
p1,1 −

(
λ

µ3

)
p0,0 (14)

From Equation (5)

pk,2 =

(
λ+ µ3

µ2

)
pk,3−

(
λ

µ2

)
pk−1,3(2 ≤ k ≤ K−1) (15)

From Equation (6)

pk,1 =

(
λ+ µ2

µ1

)
pk,2−

(
λ

µ1

)
pk−1,2(2 ≤ k ≤ K−1) (16)

From Equation (7)

pk+1,3 =

(
λ+ µ1

µ3

)
pk,1 −

(
λ

µ3

)
pk−1,1(2 ≤ k ≤ K − 1)

(17)
From Equation (8)

pK,2 =

(
µ3

µ2

)
pK,3 −

(
λ

µ2

)
pK−1,3 (18)

From Equation (9)

pK,1 =

(
µ2

µ1

)
pK,2 −

(
λ

µ1

)
pK−1,2 (19)

And from Equation (10)

pK,1 =

(
λ

µ1

)
pK−1,1. (20)

Please note that pK,1 can be derived from either Equa-
tion (19) or (20). Both of these equations are numerically
equivalent. Now, p0,0 can be obtained using the normalization
condition in the following form:

p0 = p0,0 =
1

1 +
K∑

k=1

3∑
n=1

pk,n

p0,0

. (21)

All state probabilities {pk,n; 1 ≤ k ≤ K, 1 ≤ n ≤ 3} can
be computed recursively using Equations (11-19), as shown in
Algorithm 1, which can be converted easily to a MATLAB or
another similar package script. As shown, the algorithm first
computes the loop invariants (C1 to C8) in Line 05, and then
uses the Equations (11-19) to determine all state probabilities.

Algorithm 1 Computing steady-state probabilities

1: Input: λ, µ1, µ2, µ3,K
2: Output: p0, Matrix P [1..K, 1..3]
3: p0 = 1
4: P [i, j] = 0 for i=1 to K and for j=1 to 3
5: C1 = λ/µ3;C2 = (λ+ µ3)/µ2;C3 = (λ+ µ2)/µ1;C4 =

(λ+ µ1)/µ3;C5 = λ/µ2;C6 = λ/µ1;C7 = µ3/µ2;C8 =
µ2/µ1

6: P [1, 3] = C1

7: P [1, 2] = C2 × P [1, 3]
8: P [1, 1] = C3 × P [1, 2]
9: P [2, 3] = C4 × P [1, 1]− C1

10: for i=2 to K − 1 do
11: P [i, 2] = C2 × P [i, 3]− C5 × P [i− 1, 3]
12: P [i, 1] = C3 × P [i, 2]− C6 × P [i− 1, 3]
13: P [i+ 1, 3] = C4 × P [i, 1]− C1 × P [i− 1, 1]
14: end for
15: P [K, 2] = C7 × P [K, 3]− C5 × P [K − 1, 3]
16: P [K, 1] = C8 × P [K, 2]− C6 × P [K − 1, 2]
17: p0 = 1/(1 + sum(P))
18: P = p0 × P
19: return p0 and P

Now, we show how to derive formulas for important per-
formance metrics of the system. First, the metric for the mean
system throughput γ is fundamentally the departure rate, i.e.,
the rate at which packets leave Stage 3, that is

γ = µ
K∑

k=1

pk,3. (22)

The mean system throughput γ can equivalently be ex-
pressed as

γ = (1− p0)/X̄,

where p0 is given by Equations (21), and X̄ is the mean
service time. X̄ is actually the sum of the mean service time
for the three stages, and hence, X̄ can be written as

X̄ =
3∑

n=1

1/µn. (23)

The departure rate γ can also be expressed as the effective
arrival rate λ’ which is λ(1− Ploss). Therefore,

γ = (1− p0)/X̄ = λ(1− Ploss), (24)

where Ploss is the loss (or blocking) probability. Ploss can
be expressed from (24) as

Ploss = pK = 1− 1− p0
ρ

=
p0 + ρ− 1

ρ
, (25)

where ρ = λX̄ is referred to as the offered load, and also
known as the traffic intensity. We can also express Ploss as
the probability of being in states (K,1), (K,2) or (K,3), that is

Ploss =
3∑

n=1

pK,n. (26)
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Both of Equations (25) and (26) are equivalent.
The mean number of packets that can be found in the entire

system can be written as

E [K] =
K∑

k=1

3∑
n=1

kpk,n. (27)

The mean number of packets in the queue can be expressed
as

E [Kq] =
K∑

k=1

3∑
n=1

(k − 1)pk,n = E [K]− (1− p0). (28)

Note that the term (1− p0) is the mean number of packets
in service.

And finally, the mean time spent in a single vFW TvFW

can be written, using Little’s formula, as

TvFW =
E [K]

γ
=

1

γ

K∑
k=1

3∑
n=1

kpk,n. (29)

We can now estimate the overall response time TCloudFW

for a cloud-based firewall system considering multiple M
vFirewalls with a load balancer (LB) as shown in Figure 2. The
LB system can be modeled as a simple finite queuing system
M/M/1/K with a service rate of µLB . Basically, TCloudFW is
composed of the service time incurred at the LB and the vFW,
that is:

TCloudFW = TvFW + TLB , (30)

where TLB formula is given in [22], and TvFW is given
in Equation (29) but with substituting λ with λ/M .

IV. RESULTS AND DISCUSSION

In this section, we validate our analytical model and show
how it can be used to provide elasticity and efficient design
for cloud-based network firewalls. Validation is done using
simulation, as well as real experiments conducted in an AWS
cloud environment. The section also provides a practical
example to show how elasticity of cloud firewalls can be
accomplished according to the mean incoming workload and
the mean depth of triggered rules of a firewall rulebase.

A. Validation through Simulation

To validate our analytical model, we report and compare
numerical results obtained from analysis and simulation. The
analytical curves were obtained by MATLAB implementation
of the equations derived from the analytical models. The sim-
ulation results were obtained using a discrete-event simulation
written in C. Details on how to develop a DES simulator in
C can be found in [23]. There are a number of publically
and commercially available network simulation tools. Some
of these simulators are designed specifically for cloud envi-
ronments (e.g., CloudSim, iCanCloud, EMUSIM, MDCSim),
and some are generic in natures (e.g., OPNET, NS, OMNeT,
J-Sim, JMT). All of these available simulators did not have

the capabilities to capture accurately the internal behavior and
dynamics of the firewall-particularly, the processing of packets
in three stages of services in a mutually exclusive manner
and with the middle stage interrogating rules sequentially.
Our simulation code was verified carefully and checked to
give correct output for pseudorandom number generator, and
also to give correct results for known queueing cases as that
for a service of single stage (i.e. M/M/1/K). Moreover, the
simulation followed carefully the principles and recommenda-
tions outlined in [23]. To validate our analytical model, we
considered the same assumptions for our analysis model as
that for simulation. We then compared the analytical results
with the simulation results. As depicted in Figures 7 and 8,
red circles represent the simulation results, and the solid blue
curves represent the analysis results. Clearly, both figures show
that the results obtained from both analysis and simulation
are in good agreement-thus, implying the correctness of the
analytical model. For our numerical examples, we have chosen
K=300 packets, 1/µ1 = 5.3µs, 1/µ3 = 200µs, TR = 0.1µs
and 1/µLB = 100µs . These values for the processing time
are realistic and roughly twice as much as the experimental
measurements reported in [17] for a high-end quad core
physical machine. In the cloud, we approximately doubled
the processing time to account for the overhead introduced
by the virtualization of the underlying network and compute
infrastructure.

Figure 7 – Impact of vFWs and incoming rate on response time

Figure 7 illustrates the impact of incoming traffic λ on the
TCloudFW which is the mean response time incurred at both
the load balancer and vFWs. Incoming traffic λ is expressed in
packets per seconds (pps). In the figure, we fixed the average
number of interrogated rules L to 2500. The figure illustrates
how the response time is affected by both incoming traffic rate
as well as the number of allocated vFWs. The figure shows
the response time curves increase under high traffic load, and
also are highly impacted by the number of vFWs used. More
importantly, the figure illustrates how to determine the minimal
number of vFWs required to meet a given mean response time
so that the end-to-end SLA latency of a hosted application
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or service can be achieved. For Example, the SLA latency
threshold for a firewall service, shown in the red horizontal
dashed line, is 1.0 ms and given an incoming arrival rate of
4000 pps, the figure shows that a total of 5 vFWs is required
to keep the mean SLA firewall latency under 1.0 ms. Another
important observation to be made is that the number of vFWs
does not need to change as the workload changes within a
certain range. For example, a single vFW would suffice for a
workload ranging from 0 to 1000 pps. Also, two vFWs would
suffice for a workload ranging from 1000 to 2000 pps, and
three vFWs would suffice for a workload ranging from 2000
to 3000 pps.

Figure 8 – Impact of vFWs and the number of interrogated rules
on response time

The impact of L, which is the average number of rules to
be interrogated for an incoming traffic, on the mean response
time is shown in Figure 8. For all performance curves shown
in the figure, we fixed the incoming traffic rate to 2000 pps.
The shows how the response time increases as the average
number of interrogated rules increases. This is expected since
the deeper the interrogation of the firewall rulebase, the more
processing and interrogation the vFW has to undertake. The
figure also shows that as the interrogation and processing gets
distributed among multiple vFWs, the response time is reduced
significantly. The figure also shows how we can determine the
minimal number of vFWs required to satisfy a given SLA
latency. At a rate of 2000 pps, only three vFWs are needed
to satisfy an SLA latency of 1.0 ms. It can be seen from the
figure that there is no change required in the number of vFWs
if the average number of interrogated rules lies between 2500
to 3500. Similarly, we can see that only four vFWs are needed
if the average number of interrogated rules lies between 3500
to 4000.

B. Experimental Validation

To validate further our analytical model, we compare our
analytical results against measurements collected from an
experimental testbed deployed in an AWS cloud environment

shown in Figure 9. Our experiments are comprised of different
sizes of EC2 VMs with an ELB (Elastic Load Balancer)
that auto-scales its processing capacity according to incom-
ing workload and traffic [29]. We selected EC2 VMs that
are optimized for networking and processing power capacity
that would meet our requirements. For that, we specifically
used two large size EC2 Linux instances for generating and
receiving network traffic using the open-source D-ITG 2.8.1
traffic generator [31], [32]. D-ITG has two major components.
ITGSend for sending traffic, and ITGRecv for receiving it.
For our vFWs, we used small size EC2 Linux instances
with Netfilter firewall installed. Small size Linux firewall was
sufficient to process thousands of rules with acceptable delay.
The ELB was configured to distribute equally (in a round
robin manner) incoming network packets to all running vFW
instances. The aforementioned cloud instances were all hosted
in the same AWS VPC [33] to provide logical isolation from
other tenants VMs. For all of these instances, we used Ubuntu
Linux Server 13.10 as the base operating system.

Figure 9 – Experimental setup using Amazon AWS Cloud

As shown in Figure 9, D-ITG traffic generator had to
be configured to have ITGSend EC2 instance generate a
single unidirectional flow to ITGRecv instance [31] , [32]
where packets are received, and statistics are collected. NTP
(Network Timing Protocol) service was used for time syn-
chronization between the two instances required for precise
computation of statistics. This notably ensures accurate mea-
surements for the one-way packet delay calculation. For our
measurements, the CPU utilization was measured by the sar
Linux utility, whereas the throughput and one-way response
time were measured by D-ITG. It is worth noting that we
configured ITG-Send to send the smallest packet size of 64
bytes for UDP flows in order to generate high traffic rates.
More importantly, we used the popular Puppet automation
software [34] to configure, coordinate, and execute the various
commands and tasks for D-ITG, NTP, and sar. Puppet ran on
a different small size Linux instance in our testbed setup.

We followed the guidelines in the experiment described in
[35] to set up a Linux Netfilter firewall. We constructed a
ruleset of 5,000 rules using iptables commands. We also added
specific rules for D-ITG traffic being generated from ITGSend
instance. For this type of D-ITG traffic, we set up Netfilter to
accept, log and pass D-ITG traffic so that it can be received and
recorded by ITGRecv. Other traffic types would be dropped.
In the dummy rules, we added matching conditions for source
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MAC addresses to add noticeable processing overhead for
each rule. According to [30], the matching of MAC address
conditional was found to be computationally more expensive
when compared to other header fields.

To measure the average service times for 1/µ1, 1/µ3 and
TR, we instrumented the Linux code at different positions to
measure the difference in time using rdtscl macro which
uses the machine instruction rdtsc (read time stamp counter)
to return the number of CPU cycles accumulated since system
bootup. For example, for measuring the mean kernels pre-
processing time 1/µ1 of Stage 1, we instrumented the Linux
code with rdtsc at the start of function tg3 interrupt() found
in tg3.c file (the start of receiving a packet in the device
driver) until the entry point of delivery to Netfilter processing
(specifically, in ip local deliver finish() found in ip input.c
file). For TR, we instrumented the Linux code with rdtsc at
the start and finish points of Netfilter processing, specifically
in the Linux kernel function ip local deliver finish() found in
ip input.c file as discussed in [31]. As for 1/µ3 , we measured
the difference in time between ip local deliver finish() and
the point before sending the packet to the NIC in tg3 tx() in
tg3.c file. Since this instrumentation requires the modification
of Linux kernel and tg3 driver, we had to create a customized
Amazon Machine Image (AMI) for Linux with instrumenta-
tion embedded. This required to first create a VMware Linux
image with these instrumentations embedded into the Linux
kernel, and then export it to Amazons AMI image [36] in
order to perform the real measurements using Amazon small
size EC2 Linux instances.

To perform the measurements, we had ITGSend instance
send traffic directly (i.e., without passing through the ELB)
to the vFW Linux instance which will forward it further to
ITGRecv instance. We had ITGSend send a low constant
UDP traffic rate λ of 1000 pps for a duration of one full
second, targeting rule number 5000, with a log and pass
actions. We took 1000 reads of the difference between the
start and finish timestamps. All of these differences were then
added up in memory into a single variable, and then the
mean value was obtained by dividing this total value by 1000.
This gives us the mean values for 1/µ1 and 1/µ3 as 12µs
and 342µs, respectively. We note that 1/µ3 is relatively large
when compared with 1/µ1 . This is due to the extra overhead
involved in logging and then passing the packets. The mean
value 1/µ2 of interrogating 5000 rules was 700, or 0.14 µs
per rule, i.e., TR = 0.14 µs. Finally, we set the default buffer
size K to 512 packets, which is the same value defined for Rx
DMA Ring in header file definition /net/drivers/tg3.h

For measuring TLB , which is the mean delay attributed to
the ELB, we first had ITGSend send 1000 UDP packets at a
low constant rate directly (without passing through the ELB) to
ITGRecv. Second, we repeated the same but with ELB placed
in the middle between the ITGSend instance and ITGRecv
instance. We then computed the differences between the two
averages to determine the true delay TLB attributed to ELB.
TLB was approximately 121 µs. Lastly, all generated traffic
flows by ITGSend were designed to target rule number 3500,
i.e., L = 3500.

Table I provides comparative results from real-world exper-

iments and analysis, for the three key performance metrics
of response time, throughput, and CPU utilization. For the
experimental results, we record the minimum, maximum, and
average values of five runs, with each run having traffic flows
being generated for a duration of 15 minutes. Adding more
experimental runs than five would yield little difference, and
we found that five runs are adequate and yield acceptable
results. All of these runs were carried out approximately at
midnight GST time in an AWS zone located in Ireland. We
believe this time might corresponds to the lightest workload
in the Amazon cluster. We opted to run the traffic flows
for 15 minutes to offset the variability and fluctuation that
occur within the cloud environment as a result of network and
workload activities induced by co-tenant machines or cloud-
hosted services and apps.

In our experiment, we measured the performance with
different incoming traffic rates and with different numbers
of vFWs. A few observations can be made from Table 1.
First, the average experimental measurements, in general, are
in line with those of the analysis results-which further validates
our analytical model. Second, the response times obtained
from experimental measurement, for the most part, are slightly
bigger (by approximately 1.6 ms) than those in the analysis
results. This is due to the fact that the average response time in
the analysis does not consider the additional processing delays
encountered by ITGSend or ITGRecv, since both of these
programs run as applications in the user space (not in the ker-
nel). Third, the experimental results for throughput are slightly
smaller than their analysis counterparts. This can be attributed
to the processing capacity of the various cloud instances, and
the ability of ITGSend to accurately send the specified traffic
rate. Finally, in general, the experimental measurements have
large standard deviations examining the difference between
the min and max values. The reason for such large deviations
can be attributed to the considerable fluctuation and variability
encountered in the cloud environment, including: the over-
heads introduced by the underlying virtualization technology;
the activities and workload generated by co-tenant instances
and cloud-hosted applications and services co-existing on the
same cloud infrastructure. If complete isolation in a VPC
environment with the cloud-based firewall is required to obtain
fully predictable network delay and performance, the more
expensive option of running the testbed instances on single-
tenant dedicated hardware within AWS can be used.

C. Achieving Proper Elasticity
In this section, we give a numerical example to illustrate

how to achieve elasticity for cloud-based firewalls. Figure 10
illustrates how the analytical model can be used to determine
the minimal number of vFWs required to satisfy a given
SLA latency, taking into account the fluctuation of incoming
workload and the depth of triggered rules. For our example,
we selected to perform auto-scaling every minute, i.e., the
adjustment period to be 1 minute. At the end of this period,
the mean workload λ, and the mean depth of triggered firewall
rules L are calculated and used as input to Algorithm 1 and
Equation (30) in order to determine the minimal number of
vFWs required to satisfy an SLA latency of 1 ms.
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TABLE I – Comparative results from analysis and experiments

Response Time (ms) Throughput (pps) CPU Utilization (%)
Analysis Experiment Analysis Experiment Analysis Experiment

Avg Avg Min Max Avg Avg Min Max Avg Avg Min Max
1 vFW at a rate
of 500 pps 1.62 2.12 1.01 6.22 500 495 461 500 42 44 38 47

2 vFWs at a rate
of 1200 pps 1.85 3.44 2.35 6.81 1200 1182 1110 1200 51 53 44 59

3 vFWs at a rate
of 2500 pps 3.02 4.58 2.89 9.21 2500 2479 2463 2500 70 74 64 81

4 vFWs at a rate
of 2500 pps 1.96 3.61 2.11 677 2500 2482 2468 2500 53 58 49 68

4 vFWs at a rate
of 4000 pps 5.64 7.12 4.27 10.89 4000 3901 3821 4000 84 86 74 91

6 vFWs at a rate
of 6000 pps 5.85 7.42 4.11 11.02 6000 5867 5701 6000 84 87 71 94

10 vFWs at a rate
of 10,000 pps 4.83 6.36 3.19 12.92 10,000 9879 9711 10,000 84 89 77 98

Two important observations can be made from Figure 10.
First, the example shows that the latency specified in the SLA
is always satisfied with a mean response time less than the
required 1 ms. In some cases, the response time is close to 1
ms, and in some other cases (at adjustment periods of 0, 2, 6,
and 8 minutes), the mean response time is between 0.5 and 0.8
ms. This all depends on the processing capacity of each vFW
in relationship to the processing need presented in terms of
workload and rule interrogation overhead. Second, the figure
shows that required VMs to satisfy a response latency of 1
ms is clearly impacted by both incoming workload as well as
depth of triggered rules. For example, at 3 minute adjustment
period, the required number of vFWs increased from 1 to 3 to
meet the increase of the processing overhead attributed to the
increase of the depth of triggered rules from 2000 to 4000. At
this period, there was no change in the mean workload from
the previous adjustment period. Also, at 4 minute adjustment
period, the required number of vFWs increased from 3 vFWs
to 10 in response to the noticeable sharp increase of workload
from 1000 pps to 4000 pps. Similarly, there was no change
at this adjustment period for the mean depth of triggered
firewall rules. Conversely, at adjustment periods of 2 and 6
minutes, the number of required vFWs is decreased when the
average workload or depth of triggered rules decreases. At
adjustment period of 2 minutes, a decrease in the workload
results in reducing the required number of vFWs from 3 to
1. At adjustment period of 6 minutes, a decrease in the depth
of triggered rules results in reducing the required number of
vFWs from 5 to 3. It is also observed, when both of the
workload and the depth increase, as is the case at adjustment
period of 7 minutes, the required number of vFWs sharply
increases.

From the figure, it can also be noted that the largest required
number of vFWs needed to satisfy an SLA latency of 1 ms
happens at adjustment period of 4 minutes, with a relatively
high mean workload of 4000 pps and mean rule depth of 4000.
Also, the least required minimal needed number of vFWs
occurs at adjustment period of 2 minutes, with a relatively light
mean workload of 1000 and a mean rule depth of 2000. As
the figure shows, an increase or decrease in either workload or
rule depth does impact the required number of needed vFWs,

as depicted for other adjustment periods.

Figure 10 – Impact of incoming workload and depth of interrogated
rules on required vFWs

It is worth noting that the adjustment period can be a key
design factor for achieving proper elasticity for cloud-based
network firewalls. In reality, the elasticity or adjustment period
for determining the required vFWs has a minimum bound
which is governed by a VM provisioning time. That is, this
period has to be at least larger than the provisioning time for a
vFW instance. Provisioning (or spin-up time) includes the time
to allocate, configure, launch, reboot, and connect the vFW
with the LB. According to measurements performed by [24]-
[25], the provisioning time of one VM takes in the order of
30 seconds to 100 seconds. For our numerical example, we
chose a realistic adjustment period of 1 minute, which is in
line with these reported measurements, and also in line with
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our experimental findings when using AWS cloud–whereby
the provisioning time for a Linux-based small instance vFW
takes on average less than 50 seconds.

The adjustment period can be chosen to be larger than this
minimal period in order to reduce the amount of elasticity
overhead attributed to computing the average workload and
that of the depth of triggered rules. However, selecting large
adjustment period can result in SLA latency violation or
improper provisioning (i.e. over or under provisioning) as
workload or rule depth may have sharp increase or decrease
during large adjustment periods. Hence, we argue that the
adjustment period should be slightly larger (i.e., a few or
ten seconds more) than the minimum provisioning time. Even
though, SLA violation can still happen when the system is sub-
jected to an abrupt and sharp increase of incoming workload
or depth for rule interrogation. If these abrupt conditions are
very frequent, a possible solution is to slightly overprovision
vFWs (by one or two instances) beyond the required minimal
vFWs.

The computation of the average workload as well as the
provisioning or de-provisioning of vFWs can be implemented
as a specific agent within the LB or at the edge router of
the VPC. However, the computation of the average depth of
triggered rules has to be computed locally at each running
vFW through agents and this individual average must be
relayed back through the deployed agents to the Elasticity
Orchestrator where the average of the received averages is
computed. Since the number of firewall rules and the number
of received packets by each firewall are the same for all
individual vFWs (as workload gets evenly distributed), the
overall average depth L for the triggered rules of the individual
averages Lj of N vFWs can be calculated as follows

L =

N∑
j=1

Lj

N
(31)

Both of the average workload and the average of rule depth
are moving averages that are calculated over the adjustment
period. The average workload can be computed in multiple
ways. In [26] - [28], authors show how to estimate the mean
workload λ using moving average techniques.

V. CONCLUSION

In this article, we showed how elasticity can best be
achieved for cloud-based firewalls. To do so, we developed an
analytical model useful for the efficient design of cloud-based
firewalls, which are essential in VPC services. Given the of-
fered means for workload, depth of targeted rules, and the pro-
cessing capacity of each firewall and load balancer instances,
the model can estimate accurately the minimal number of
VMs needed to meet a specific SLA criterion such as response
time, delay or throughput. We validated our analytical model
by comparing analytical results with results obtained through
discrete-event simulation and real-world measurements taken
from an experimental testbed deployed in Amazon AWS cloud
environment. Although, an obvious degree of fluctuation was
exhibited in the experimental measurements, the overall mean

recorded measurements were in good agreement with results
obtained from analysis. The fluctuation in measurements was
attributed to the overhead from virtualizing and sharing of
the various cloud physical infrastructure elements of compute,
storage, and network resources, and also attributed to the
workload generated from the various activities of other co-
located cloud-hosted services and applications. As a final
remark, we believe that using our derived analytical formulas,
algorithm, and guidelines presented in this artcile, an elastic
cloud-based firewall system can be designed, implemented,
and deployed efficiently in any cloud environment with VPC
configuration.
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