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Abstract. Associative Models were created and used for pattern recognition tasks, 

but recently such models have shown good forecasting capabilities; by a pre-

processing of a time series and some fit of the Model. In this paper, the Gamma 

Classifier is used as a novel alternative for currency exchange rate forecasting, 

where experimental results indicate that the proposed method can be effective in the 

Exchange Rate Time Series Prediction, compared to classical Machine Learning 

Models (ANN, SVM, MLP) and well known for the Financial and Economy Fields 

Box-Jenkins Models (AR, ARMA, ARIMA). 

Keywords: Associative models, Gamma classifier, forecasting, exchange rate, time 
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1   Introduction 

The exchange rate forecasting is one of the most difficult and important tasks in modern 

study of time series prediction. Several factors influence in the value of a currency, such 

as oil prices, the rise or fall of imports of goods and services, inflation, consumer price 

index, interest rate, among others [1]. There exists a debate about what are the real factors 

that are affecting the currency value [2], this kind of problem with many variables, most 

of the times unknown, is usually treated as a stochastic and univariable problem [3, 4]. 

The Exchange rate as a critical issue of Financial Time Series Study has led into 

several forecasting models development for accurate and timely decision making, by the 

Economy, Financial and Statistical fields. For the analysis of financial time series, from 

economy perspective, the regression techniques are widely used and popular for their 

statistical properties [6]. Some of these models are AR, Ma, ARMA, and the more general 

ARIMA [4 -6]. 
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On the other hand, Computer Science has various techniques for time series analysis 

and forecasting, some of these techniques are:  

 

 Artificial Neural Networks [7]. 

 Support Vector Machines [8]. 

 Support Vector Regression [9]. 

 Fuzzy Logic [10]. 

 Associative Models [11, 18]. 

 

Another approach that has been rising for the financial time series forecasting is the 

combination of different models; this concept is based on the idea of improving the 

weaknesses of certain models with the strengths of others. These are called hybrid models 

and are the most prolific approach for financial time series forecasting in the actual 

literature. In 2010 Huang, Chuang, Wu and Lai create a Chaos-based support vector 

regressions model for Exchange rate forecasting [12], Khashei, Bijari and Ardali work on 

financial time series forecasting using an ARIMA with probabilistic neural networks [13] 

model, in 2013 Kazem, Sharifi, Khadeer, Morteza, and Khadeer used a Support vector 

regression with bio-inspired algorithm [14], in 2014 Wei, Cheng, and  Wu, present a 

hybrid ANFIS ( Adaptive Network-Based Fuzzy Inference System) based on n-period 

moving average model [15], also in 2014 Gharleghi, Shaariy and Shafighi did exchange 

rates forecasting using a  Cointegration Based  Neuro-Fuzzy System [16] and Minakhi, 

Majhi Babita, Majhi Ritanjali and Panda created a forecasting model for currency 

exchange rates using an adaptive ARMA model with differential evolution based training 

[17].  

These sophisticated hybrid models are inherently difficult to implement, in addition 

to being computationally expensive. In this paper we study a simple and computationally 

efficient way to forecast currency exchange rates using an Associative Model, given the 

competitive results that the Associative Model Gamma Classifier has shown on previous 

works of Time Series Forecasting [18].  

2   Gamma Classifier 

As mentioned before, we use the Associative Model Gamma Classifier (GC). This work is 

strongly based on [18], however, the steps of the Gamma Classifier for exchange rate 

forecasting are a modification of the Algorithm shown in [18], described in section 3. For 

the forecasting of several points we used the separation method taken directly from [18]. 
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The Gamma Classifier Algorithm for the forecasting task uses 3 important 

definitions, mentioned below; also it must do a pre-processing of the time series data, a 

codification of the time series, so the GC can treat the forecasting problem as a 

classification problem. This codification is named Modified Johnson-Möbius (MJM) see 

[18] for specific codification algorithm.  

 

Definition 1 (Alpha and Beta operators). Given the sets A = {0, 1} and B = {0, 1, 2}, the 

alpha (α) and beta (β) operators are defined in a tabular form as shown  in table 1. The 

corresponding vector versions of both operators for inputs x ∈ An, y ∈ An, and z ∈ Bn give 

an n-dimensional vector as output, whose i-th component is computed as follows. 

 

α(x,y)i = α(xi,yi) and β(z,y)i= β(zi,yi)  

 
Table 1. Alfa and Beta Operators definition  

 

α : A x A → B 

x y α(x,y) 

0 0 1 

0 1 0 

1 0 2 

1 1 1 
 

 

β : B x A → A 

x y β(x,y) 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

2 0 1 

2 1 1 
 

 

Definition 2 (uβ operator). Considering the binary pattern x ∈ An as input, this unary 

operator gives the following integer as output. 

 

𝑢𝛽(𝑥) = ∑ 𝛽(𝑥𝑖, 𝑥𝑖)
𝑛

𝑖=1

 

(1) 

Definition 3 (Gamma operator). The similarity Gamma operator takes two binary 

patterns —x ∈ An and y ∈ Am; n,m ∈ Z+ n ≤ m — and a non-negative integer θ as input, 

and outputs a binary number, according to the following rule. 

 

𝛾𝑔(𝑥, 𝑦, Ө) =  {
1     𝑖𝑓 𝑚 − 𝑢β[𝛼(𝑥, 𝑦) 𝑚𝑜𝑑 2] ≤  Ө

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(2) 

 The Gamma Classifier Algorithm for Time Series Forecasting is described below:    

1. Convert the patterns in the fundamental set into binary vectors using the MJM code. 

2. Code the test pattern with the MJM code, using the same parameters used for the 

fundamental set. 
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3. Compute the stop parameter 𝝆 =  ⋀ ⋁ 𝒙𝒋
𝒊𝒑

𝒊=𝟏
𝒏
𝒋=𝟏  

4. Transform the index of all fundamental patterns into two indices, one for their class and 

another for their position in the class (e.g. xμ in class i becomes xiω). 

5. Initialize θ = 0  

6. Do γ(xj
iω, yj, Ө) for each component of the fundamental patterns. 

7. Compute a weighted sum ci for each class, according to this equation:  

ci =  
∑ ∑ γ(xj

iω,yj,Ө) n
j=1

ki
ω=1

ki
, 

(3) 

where ki is the cardinality in the fundamental set of class i. 

8. If there is more than one maximum among the different ci, increment θ by 1 and repeat 

steps 6 and 7 until there is a unique maximum, or the stop condition θ ≥ ρ is fulfilled. 

9. If there is a unique maximum among the ci, assign ỹ to the class corresponding to such 

maximum. 

10. Otherwise, assign ỹ to the class of the first maxima found. 

 

Definition 4 (Separation). Given a TS D with samples d1d2d3 . . ., the separation s 

between a segment di di+1  . . . dn−1 (of length n) and sample dj is given by the distance 

between the closest extreme of the segment and the sample. 

 

Based on this definition and the GC, the proposed TS forecasting method follows the 

algorithm presented below, considering a TS D of length l with a prediction (test) segment 

of length t, and a length for the patterns of size n. 

1. Starting from the TS D, calculate the differences between successive samples in order 

to work with values relative to that of the previous sample. The new time series D’ has 

length l − 1.  

𝐷𝑙𝑥1 → 𝐷(𝑙−1)𝑥1
′  (4) 

 

 

2. Build a set of associations between TS difference segments of length n and its 

corresponding difference with separation s, for positive values of s = 1, 2, . . . , t − 1, t.  

Thus, there will be a sets of associations of the form {aμ, bμ} where a ∈  Rn and b ∈ R , 

and the i-th association of the set is made up by aμ = didi+1 . . .di+n−1 and bμ = di+n+s−1. 

3. Train a different GC from each association; there will be t different classifiers, each 

with a distinct fundamental set {xμ, yμ} for its corresponding value of s. 

4. Operate each GC with all the input segments aμ. 

5. When multiple classifiers give different output values ỹ for the same data point in the 

differences TS D, there are two prominent alternatives to integrate them into one value ỹ. 

(a) Average the values given by the two classifiers with the same absolute 

separation |s| = {−s, s}; this is denoted as the combined method. 

(b) Average the values given by all available classifiers; this is known as the 

combined average method. 

6. Convert back to absolute values by adding the forecast relative value (ỹ) to the original 

value of the previous sample, taken from D. 
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ỹ = 𝐷𝑖−1 + ỹ𝑖
′  (5) 

3 Proposed Model 

The Gamma Classifier Algorithm for Exchange Rate Forecasting is described below:    

1. Convert the patterns in the fundamental set into binary vectors using the MJM code. 

2. Code the test pattern with the MJM code, using the same parameters used for the 

fundamental set. 

3. Compute the stop parameter 𝒑 =  ⋀ ⋁ 𝒙𝒋
𝒊𝒑

𝒊=𝟏
𝒏
𝒋=𝟏  

4. Transform the index of all fundamental patterns into two indices, one for their class and 

another for their position in the class (e.g. xμ in class i becomes xiω). 

5. Initialize θ, 

θ =  (0.005) ∗
1

𝑝
∑ 𝑥𝑖  

𝑝

𝑖=1

 

(6) 

6. Do γ(xj
iω, yj, Ө) for each component of the fundamental patterns. 

7. Compute a weighted sum ci for each class, according to equation (3). 

8. If there is more than one maximum among the different ci, calculate the average of all 

Ci classes that has a ci maximum and assign the average divided by 10d (to get the original 

scale of the time series S) to the unknown pattern ỹ. 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
1

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑚𝑎𝑥𝑖𝑚𝑎
∑ Cj 𝑤ℎ𝑒𝑟𝑒 𝑗 = 𝑖 ∀ 𝑖  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑐𝑗 = ⋁ 𝑐𝑖

𝑘

𝑖=1
 

 

(7) 

 

𝐶ỹ =
𝑎𝑣𝑒𝑟𝑎𝑔𝑒

10𝑧
 

 

(8) 

9. If there is a unique maximum among the ci, increment θ by 1 and repeat steps 6 and 7 

until there is more than one maximum, or the stop condition θ ≥ ρ is fulfilled. 

10. Otherwise, assign ỹ to the class of the first maxima found. 

 

      Opposed to the Gamma Classifier that seeks for a unique maximum for the class 

assignation for the unknown pattern ỹ, the proposed model seeks for several alike classes. 

The idea is to find similar classes (time series patterns) that have occurred in the past,  and 

assign an average of those alike classes to the unknown pattern ỹ. 
      To do this the conventional initialization of Ө in 0 is not appropriate, because if we do 

this it takes more iterations to find similar patterns; also, on a low value of Ө, the lower 

amount of similar classes we will have (could be only two). Experimental results have 

shown that the best results are given when we have more than 2 similar classes, but we 

should be careful of not giving a high value of Ө because this could lead the classifier to 
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determine that classes are similar, and they are not, because, while Ө increases, the 

similarity between the features of the unknown pattern and the known patterns decreases. 

      For Ө initialization purpose we propose the equation 3.Experimental results also have 

shown that low size of n, (size of the pattern codification) between 4 and 6, have better 

performance that high values of n (10 or more).  

4 Experiments Design 

 
4.1 Data Sets 

 

The time series used in these experiments were taken from 2 web sites, daily values of  

MXN/USD (Mexican Peso/American Dollar) and JPN/USD (Japanese Yen/USD) were 

taken from  www.forecasts.org, and USD/GBP (USD/British Pound) monthly values, 

were taken from http://www.ny.frb.org/markets/fxrates/historical/home.cfm (Federal 

Reserve Bank of New York site), for MXN/USD we used the interval from  2010-12-01 - 

2013-12-20, for JPN/USD we used from 2010-01-04 - 2012-12-31 and finally for 

USD/GBP we used from 1971-01-01 to 2013-11-01.  

We create a set of experiments where we compare our proposed model against the 

classical forecasting models, under the very same circumstances; we take a whole time 

series and hold out the last 23 values (approximately the working days in a month) for the 

daily values, and hold out the last 12 values for the monthly values, then we use the time 

series (without the last 23 or 12 values) as an input of the models and forecast the next 23 

and 12 values for of the series for the daily and monthly time series respectively, then we 

compare the results using the last 23 and 12 values held out before and calculating the 

errors.  

 

4.2   Error Metrics 

 

The error metrics used for the models comparison are Mean Square Error (MSE), Root 

Mean Square Error (RMSE) and Mean Absolute Percent Error (MAPE), also we calculate 

the Pearson’s Correlation Coefficient (PCC) to see the behavior of the forecasted result. 

For MSE, RMSE and MAPE lower values are better, meanwhile for PCC closest values to 

1 are better. The metrics equations are given as follows: 

 

𝑀𝑆𝐸 =  
∑ 𝑒𝑡

2

𝑛
, 

  

(9) 

  

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸, 

 

(10) 

Omar Shatagua Jurado-Sánchez, et al.

Research in Computing Science 78 (2014) 72

http://www.forecasts.org/
http://www.ny.frb.org/markets/fxrates/historical/home.cfm


  

𝑀𝐴𝑃𝐸 =  
∑

𝑒𝑡
𝑎𝑡

𝑛
(100), (11) 

  

𝑃𝐶𝐶 =
𝜎𝑥𝑦

𝜎𝑥𝜎𝑦
, (12) 

  

where:  

et– mean error on time t, where: et= at - ft. 

at – is the actual value. 

ft – is the forecasted value, and 

n – The amount of samples.  

σxy – is the covariance of (x,y) 

σx – is the standard deviation of x 

σy – is the standard deviation of y 

 

 

4.3 Models Construction 

 

We used 3 tools for the models construction, for the regression models (AR, ARIMA, 

ARMA) we used Matlab 2013 which includes an Econometric toolbox that allows to 

create an ARIMA(p,D,q) model, and an Estimate function that uses maximum likelihood 

to estimate the parameters of the ARIMA(p,D,q) model given the observed univariate 

time series. For the Machine Learning Algorithms we used Weka 3.7.11 that now includes 

a forecast utility. The model configuration used for Multi-Layer Perceptron (MLP), 

Support Vector Regression, MLP Regressor are the default suggested by Weka 

Optimization class. Finally we implemented in Java Language the Gamma Classifier.  

5 Experimental Results  

 

5.1 Models Comparison 
 
The models are ordered from lower to higher RMSE. The tables 2-4 show the 

performance of the models implemented for this work. The Gamma Classifier with 

Combined (C) method and Combined Average (CA) method are highlighted. 

For GBP-USD predictions (Table 2), the Gamma Classifier with CA method has the 

second best performance and also it have the best PCC. 
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Table 2. GBP-USD results for 12 months ahead forecasted  

 

Model 

Correlation 

Coefficient MSE RMSE MAPE 

ARMA(10,3) 0.549237 0.000202 0.014223 0.515375 

Gamma Classifier CA 0.703234 0.000211 0.014516 0.037408 

SVRegression 0.562688 0.000301 0.017362 0.585531 

AR 10 0.573760 0.000305 0.017465 0.636467 

Least Median Squared 

Linear Regression 
-0.414414 0.000567 0.023810 0.835851 

Gamma Classifier C 0.296301 0.000701 0.026479 0.993409 

MLP Regressor -0.092631 0.000818 0.028593 1.042937 

ARIMA(10,1,10) -0.028813 0.000997 0.031568 1.174118 

Gaussian Processes 0.562810 0.083368 0.288736 11.376421 

Multi Layer Perceptron 0.607254 0.096973 0.311405 9.630076 

 

For JNP-USD predictions (Table 3), the Gamma Classifier with C method has the 

third best performance; meanwhile the Gamma Classifier with CA method has the fourth 

best PCC.  

 
Table 3. JNP-USD results for 23 days ahead forecasted 

 

Model 

Correlation 

Coefficient MSE RMSE MAPE 

Multi-Layer Perceptron 0.979428 0.468221 0.684267 0.701716 

SVRegression 0.966534 1.904561 1.380058 1.089557 

Gamma Classifier C 0.580982 3.273381 1.809249 1.554930 

ARMA(10,3) -0.719281 3.958358 1.989562 1.629965 

Least Median Squared 

Regression 
-0.732313 4.588599 2.142101 1.809652 

MLP Regressor -0.954679 4.707212 2.169611 1.768684 

ARIMA(10,1,10) -0.850739 4.802789 2.191527 1.849221 

AR 10 -0.750468 4.861758 2.204939 1.887653 

Gamma Classifier CA 0.903806 5.372789 2.317928 2.446975 

Linear Regression 0.983064 18.519081 4.303380 3.947253 
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Finally, for MXN-USD predictions (Table 4), the Gamma Classifier with CA method 

has the third best performance and the third best PCC.  

 
Table 4. MXN-USD results for 23 days ahead forecasted 

 

Model 

Correlation 

Coefficient MSE RMSE MAPE 

Least Median Squared 

Regression 
-0.126938 0.011632 0.107851 0.657486 

SVRegression -0.291778 0.012311 0.110954 0.625846 

Gamma Classifier CA  0.180517 0.012805 0.113159 0.690101 

Linear Regression -0.377727 0.012867 0.113432 0.661473 

MLP Regressor -0.347532 0.013522 0.116283 0.729020 

ARIMA(10,1,10) -0.074195 0.019713 0.140405 0.808322 

AR 10 0.125089 0.024416 0.156257 0.944695 

ARMA(10,3) 0.381415 0.025612 0.160037 0.996850 

Multi-Layer Perceptron 0.271096 0.035570 0.188601 1.183675 

Gamma Classifier C -0.466466 0.049240 0.221902 1.372825 

 

 

6 Conclusions and Future Work  
 

The Performance of the Gamma Classifier is a promising model for the forecast exchange 

rate problem, it is simple for understanding, implementing and is computationally 

efficient. However, one open problem is find a way to decide which method for the result 

of the Gamma Classifier should be used, combined or combined average, because where 

Combined method does not have the best of the performances the Combined Average 

improve the results and conversely.  

Empirical results have shown that ranges between 4 and 6 for the size of the pattern n 

have better performance. Other open problem is, find a way to determinate the optimal 

initial values of n and Ө for this kind of problem. This algorithm can be extended to other 

forecasting financial problems, because other financial problems present .similar features 

that exchange rate problem also does. Another approach for this forecasting task. is that 

the Gamma Classifier could be considered to be part of a hybrid model for the forecasting 

problem, given that, sometimes GC has better performance than classical financial or 

machine learning approaches. 
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