A Word Embeddings Model for Sentence
Similarity

Victor Mijangos, Gerardo Sierra and Abel Herrera

National Autonomous University of Mexico
Language Engineering Group, Faculty of Engineering
Mexico City, Mexico
{vmijangosc,gsierram }@Qiingen.unam.mx, abelherreracl@gmail.com

Abstract. Currently, word embeddings (Bengio et al, 2003; Mikolov et
al, 2013) have had a major boom due to its performance in different Nat-
ural Language Processing tasks. This technique has overpassed many
conventional methods in the literature. From the obtained embedding
vectors, we can make a good grouping of words and surface elements. It
is common to represent top-level elements such as sentences, using the
idea of composition (Baroni et al, 2014) through vectors sum, vectors
product or through defining a linear operator representing the composi-
tion. Here, we propose the representation of sentences through a matrix
containing the word embedding vectors of such sentence. However, this
involves obtaining a distance between matrices. To solve this, we use
a Frobenius inner product. We show that this sentence representation
overtakes traditional composition methods.

1 Introduction

Word embeddings methods, based on the proposal of neural language models
[2], have over-passed traditional approaches to natural language processing in
a lot of tasks [10], [3]. The distributional space model that word embeddings
proposes seems to codify better the proper features of the language. In general
terms, the distributional models have been used for representing words in a
vector space. Nevertheless, most of the time we look for representing high-level
linguistic elements. For example, here we want to find for sentences similarity
through its representation on a vector space.

For representing such elements, [1] summarizes three compositional methods
that can allow us to represent high-level linguistic terms:

1. Vectors sum.
2. Vectors multiplication.
3. A linear operator through representation of the compositionality of a word.

Vectors sum and vectors multiplication are easy to implement. But to deter-
mine a linear operator representing the compositional of a word becomes a hard
labor. The problem with these compositional approaches is that they assume

pp. 63-74; rec. 2016-02-09; acc. 2016-03-07 63 Research in Computing Science 117 (2016)

Victor Mijangos, Gerardo Sierra, Abel Herrera

that language is compositional. Given this, we can find many counterexamples.
Therefore, we believe that a perspective that compare the similarity between
the words that make a sentence, rather than the sentences themselves, can give
good results in determining similarity between sentences.

2 Previous works

Similarity between sentences has been an essential problem for text mining,
question answering, text summarization and another tasks. What we want is
that given two sentences, we can determine their similarity through semantic
proximity. Nevertheless, this task shows big complications. As we have mentioned
before, most of the time the assumption of compositionality is given. So, most
of the methods are based on this approach to represent linguistic items in vector
spaces [1], [7].

Some of the methods that have been used to determine similarity measures
for sentences are compared in (Achananuparp, 2008). One of these methodologies
is the word overlap measure. This method seeks to find related concepts through
comparing the overlapping words between definitions (sentences) of both con-
cepts. In (Metzler, 2005), a method of word overlap is evaluated from a simple
word overlap fraction that determines the proportion of words that appear in
the two sentences to compare them. Then this proportion is normalized through
the length of the sentences. Another method based on word overlap used to de-
termine similarity between sentences is the Inverse Document Frequency (IDF)
overlap, where the proportion of words is compared in two sentences from their
IDF weights.

Based on these ideas, (Banerjee et al., 2003) extends the concept of word over-
lap to the distinction between multi-word terms. They assume that the simple
word overlap methods do not take into account the elements that are composed
of more than one word and that may be important for the similarity between
sentences. Therefore, they estimate the overlap between multi-word terms and
single word terms.

Other methods are based on Term Frequency-Inverse Document Frequency
(TFIDF). For example, (Allan, 2003) is based on search thematically similar
sentences. It is based on the sum of the TFIDF values of the words in both
sentences, since it is assumed that this measure weights the thematically relevant
words. Another way is to create vectors based on the idea of Bag of Words (BoW)
and compare the distance between vectors sentences. However, BoW lose relevant
information between the sentences, such as order, and have now been overtaken
by the word embeddings representations.

In (Landauer, 1997) it is proposed that the similarity between sentences
is given from a linear combination of vectors of semantic similarity and the
similarity in words order.

Meanwhile, in (Achananuparp, 2008a) a methodology of similarity between
sentences for question-answering systems is proposed. They propose an hybrid
approach, combining semantic similarity and syntactic patterns; for this, they

Research in Computing Science 117 (2016) 64

A Word Embeddings Model for Sentence Similarity

take into account the similarity between words, word order and Part of Speech
tags. Also, they integrate a Support Vector Machine to determine information
about the types of sentences.

As reported by Achananuparp (2008), the method with the highest accuracy
is proposed by (Achananuparp, 2008a), followed by other methods that rely in
similar concepts. However, such methods require a high cost, since they are based
on principles of word order, labeling Parts of Speech and semantic similarity.
Meanwhile, the methods of word overlap are generally not as efficient, as they
do not capture the paraphrase or syntactic level elements, rather remaining at
the lexical level.

Socher (2011) proposes the analysis of similarity between paraphrases through
a recursive auto-encoder (RAE). They represent the sentence as an ordered list of
word vectors, s = {x1, .., T, } obtained with a word embedding algorithm. Given
a sentence s the binary parse tree has the form of branching triplets (p — ¢1¢2),
where p is a partner and ¢; is a children, such that ¢; is a word vector or a
non-terminal node. Then p = f(W,[c;; ¢;]+b), where [¢;; ¢;] is the concatenation
of the corresponding word vectors and W, is the encoding matrix to learn.

The error function is given by:

Eree(p) =I| [e1s c2] = [chs ch] |I? (1)

where [¢};c5] = f(Wap + b). This process is recursively applied until the tree
is fully constructed. To assign a similarity between two sentences, a euclidean
distance is computed between all words and phrases vectors. This euclidean
distance fills a similarity matrix. To determine a similarity between paraphrases,
the authors use a pooled matrix. Nevertheless, as the authors said, the pooled
matrix loses some of the information of the original matrix.

Another approximation to sentence similarity is showed by Kartsaklis (2012).
They propose a tensor-based method. They create tensors through grammati-
cal information and Frobenius algebras. Nevertheless, this method requires the
grammatical information and, also, does not use the matrix representation for
computing the similarity but a R™ representation.

Based on this ideas, Kim (2015) proposes a tensor-based composition for the
word embedding algorithm. They used the compositional methods explained in
(Milajevs, 2014) for integrating the compositional function into the neural net-
work of the word embeddings. They proved the typical mean and point-wise mul-
tiplication techniques; additionally, they proved the sum and the concatenation
of these two techniques. Furthermore, they proposed tensor-based techniques;
nevertheless, they used a projection function to obtain a vector in R™ from the
matrix representation.

A comparison of different methods is made by Milajevs (2014). They show
the simple vector addition and multiplication methods as well as the Frobenius
algebras based methods. However, for the computation of similarity between
sentences they use a vector representation in all cases combined with a cosine
distance.

Our proposal seeks to be more simple, and at the same time to capture ele-
ments that are beyond the lexical level. At the same time, the method proposed

65 Research in Computing Science 117 (2016)

Victor Mijangos, Gerardo Sierra, Abel Herrera

here does not lose information of the similarity between words. This proposal
seeks to characterize a sentence from the words that compose it, and to deter-
mine a matrix space where a geometry can be defined through a Frobenius inner
product. Thus, the method proposed here becomes simple compared with the
categorical compositional distributional and projection methods. Furthermore,
it has good performance.

3 Theoretical framework

The methodology proposed here consists of two main tools: word embeddings
and Frobenius inner product. In the following section we describe these tools.

3.1 Word embeddings

In the area of Computational Linguistics, it is common to hear about language
models. These language models can be seen as Markov process of order r. Overall,
Markov models allow us to see the likelihood of a chain as the product of the
states that make up the chain. The language models are simple models that
attempt to determine the likelihood of a linguistic element from the n above
items. Thus we can understand them as we show below.

Definition 1 (n-grams models) Giving a string of words w , = {w1, ..., ws}
the language model determines the probability of the chain from the probability
of the states of the chain. Such that:

P(wy ;) = H P(w;|wi—p41...wi—1) (2)

where n € N is the lenght of the window.

Perhaps the simplest model within these is the bi-gram model. It takes r = 2
such that we have a simple Markov process, then equation (2) becomes:

t

P(wyy) = [[P(wilwi-1) (3)

i=1

Based on these models, [2] proposes a model to determine the probability of
a linguistic element given its context. To do this, it is proposed the use of deep
learning. Therefore, these new models are called ‘neural language model’. As [2]
noted, this idea is based on three main points:

1. Representing each word in a vocabulary through a distributed feature vector
(a vector with entries in R).

2. Expressing a joint probability function of words sequences in terms of the
features vectors of the words in the sequence.

Research in Computing Science 117 (2016) 66

A Word Embeddings Model for Sentence Similarity

3. To learn simultaneously the feature vectors and the parameters of the prob-
ability function.

The probability function, in this case, is of the type expressed in equation (2).
Now, however, a neural network is used to predict subsequent words in the string.
In this case, the vectors representing the word are learnt by a learning machine.
In general, the model is based on the ideas of distributional models; the vectors
of similar words should be similar, and the context of words plays an important
role.

We have a vocabulary € = {wy,...,w;} of finite lenght. We want to learn a
model f(w;—p+t1...w;) = P(w;|w;—p41...w;) such that Z;zl fi(wizpg1..wiz1) =
1; this means that we look for f to be a probability measure. We can define f
as:

fi(Wimp1.wwiz1) = g5 (0(Wi—nt1)..v(wi-1)) (4)
where

— v : € — R™ is the function determining a vector in R™ for each word in the
vocabulary. In general terms, v(-) is represented as a matrix of size |€| x m.

— A function ¢ (a neural network) that maps a sequence of input vectors,
taking into account its context, to a conditional probability distribution for
the next word w;. The output vector generated by g is a probability vector
such that the ith entry estimates the probability of P(w;|w;—nt1...w;—1).

To determine the probability of each word given the n 4+ 1 previous words,
the Softmax regression is used. The Softmax regression is a form of asymmetric
probability of neighbors (Hinton, 2002) where § = (-,-) is the inner product,
such that:

exp((vi, h(Vi—p+1...0i—1))) (5)
22:1 exp((vk, h(Vi—pt1.--vi—1)))

where vy, = v(wy,) Vk € {1,...,t} and h : R™*(+1) 5 R™ ig a function that
maps the word vectors of the context to a sole vector in R™.

Therefore, the model proposed in (2) now depends on the equation (5). How-
ever, what we want is a vector space representation of sentences.

In general terms, the method of word embeddings is based on stochastic
neighbor embedding, watching the elements in the context of a word as neighbors.
Therefore it seeks to maximize the equation (5) while a loss function, that often
tends to be the Kullback-Liebler divergence (Hinton, 2002), is minimized. So we
want to minimize:

P(wi|wi_n+1 ...wi_l) =

t
pi
KL(pllg) =Y _pi log. - (6)
i=1 ¢
However, since the Kullback-Leibler divergences represents a high computa-
tional cost, the use of negative sampling has been proposed [6], which streamlines

the process of word embeddings.

67 Research in Computing Science 117 (2016)

Victor Mijangos, Gerardo Sierra, Abel Herrera

Then we have a word w and its context, N(w). To generate the vectors of
dimension m, where each coordinate represents a feature that is learnt by a
neural network, we follow the next steps:

1. We randomly generated a matrix V € R**™ of input vectors and a different
matrix V’ € R™** where t is the number of words.

2. Given the context, we determine P(w;, N(w;)) with softmax regression. We
choose the function & as follows:

1 n
h:=— E 4
nkzlvk (7)

where v’ = v/(w) is the word vector of the matrix (V').
3. We upgrade from a hidden layer to the output of the neural network, by
using a stochastic gradient descent with a learning rate 7, such that:

Vi1 (wy) = vi(w;) — nVe(w;) (8)

where € is the loss function. We use a negative sampling such that we define
the loss function as follows.

1 — P [N(w))h(N(wy)) i w; = w,

0 — P(wy|N(w;h(N(wy)) if w; £ w, (©)

Ve(w;) = {
where w, is the actual objective word in the iteration.
4. To upgrade the input to the hidden layers, given e € N(w;) we have Vm' €

1,....m
n

vier (we) = vilwy) — 0> e(wy) - vy (10)

j=1

where v;mj represents the m/th entry of the matrix V’.

The algorithm then iteratively runs until the cost function is less than a given
range. Also, it can be run a determined number of iterations.

This way, what the algorithm does is try to approximate the distributions
between the matrices V and (V')! from the observations of the contexts in which
a word occurs.

Currently, the methods based on word embeddings have surpassed previous
models in most of the tasks of natural language processing. Also they have the
advantage of not requiring a dimensionality reduction because the dimension is
chosen a priori. Therefore we work with vectors having low dimensionality unlike
other methods. It is important to point out that the distributional assumptions
[5], [9], are still presented, implying that word embeddings are capturing the
similarity of the words from the idea that similar words appears in similar context
(Goldberg, 2014).

The method of word embeddings generates word vectors. From these word
vectors we can perform a composition process, which commonly consists of the

Research in Computing Science 117 (2016) 68

A Word Embeddings Model for Sentence Similarity

sum vector (it has also been used despite other methods described above). How-
ever, what we propose is to characterize a sentence from a matrix where each
row vector is a vector representation of the words that compose such a sentence.
However, before this, we are faced with reinventing the classic methods of dis-
tance between vectors. For this, we use the Frobenius inner product and related
concepts explained below.

3.2 Frobenius distance

To calculate the distance between two matrices, we first have to define a geometry
in the space of matrices of m x n. For this, we require an inner product. That is,
a function that, given u, v, and w vectors and a scalar A € R, the next properties
are met:

Positive-definite (v,v) > 0.

Non-degenerative (v, v) .
Bilineal (A\u+ w,v) = Au,v) + (w,v).
Conjugated symmetry (u,v) = (v

£

Given this, the following theorem gives us an inner product into the space of
matrices of m x n [4], [8].
Theorem 1 The equation

n
(X,Y) = trace(X"-Y) =Y (X;, V) (11)
i=1
defines a inner product in the spaces of R™*™,
It is easy to see that given the properties of the trace and the inner product

over the column vectors of a matrix, the equation (11) is positive-definite. We
can also see that it is bilinear, as we have:

AX + Z,Y) = trace((AX + Z)'-Y)
= zn:@Xi + Z;, YY)
= ;7(Xi,YZ> +(Z;, Y
=\MX,Y)+(Z,Y)

Finally, it satisfies the property of conjugated symmetry as we have:

(X,Y) = Z<Xi,Yi>

69 Research in Computing Science 117 (2016)

Victor Mijangos, Gerardo Sierra, Abel Herrera

Since equation 11 indeed defines an inner product, then we can move on to define
a norm on the space of matrices of m x n. This norm is known as the Frobenius
norm and is defined as (see (Tarazaga, 2001)):

I|A]| = (A, A) = \/trace(A - At) (12)

The norm defines a metric given by ||A — B|| where A and B are matrices.
Nonetheless, we seek a way to standardize this distance. Given the properties of
the norm and the inner product, it is clear that the Cauchy-Schwartz inequality
is satisfied and therefore we can define a distance function as follows:
(A, B)
cos(A,B) = ——"—"— (13)
Al - [|B]]
B trace(A, B?)
Vtrace(A - A?) - trace(B - BY)

(14)

So the distance between two matrices holds that |cos(A4, B)| < 1. So we now
have a normalized distance between matrices that can be applied to the matrices
generated from the vectors of the words composing each sentence.

4 Proposal

Based on what has been showed, we propose to calculate the similarity of two
sentences from their matrices created by embedding vectors of words and the
use of a Frobenius based distance to determine the similarity between the two
matrices in the space. We start with the following elements:

— Q = {s1,...,Sm} a set of sentences.
— W ={wy,...,wg} aset of words obtained from the sentences in Q.

Now, we choose a sentence set, this set will be the training set, then the words
are split in order to obtain the vector representation used to generate the matrix.
However, a large sample number is required to obtain word embeddings. In con-
sequence, we used the Corpus del Espafiol Mexicano Contemporaneo (CEMC)
(DE, 1987s) that has around two millions of words.

So, the set of words W is done from CEMC corpus. It allows that a sentence
not in @ can be compared even if its words are not in the training set of sentences.

The proposal consists of five steps: words representation in a vector space,
sentences representation, petition representation and the compute of similarity
between sentences. These steps will be explained below:

Word representation. A vector space of dimension n is generated (the dimen-
sion is 800) from the CEMC using word embeddings. We use word2vec [7]
[6]. The window equals to 5 and the minimum occurrence is 1. With these
parameters all the words are included and the algorithm has more range
when we ask for a query. In this step, the vector space W C R™ is obtained,
each vector is the representation of one word of CEMC.

Research in Computing Science 117 (2016) 70

A Word Embeddings Model for Sentence Similarity

Sentence Representation. The sentence representation in @) is done from ma-
trices where each line is one vector of a word in W. To do this, first of all,
the sentence is divided in its words, where a vector v € W is the representa-
tion of the word. So, the method obtains a matrix of r x n, where n is the
dimension of W (the chosen dimension is equals to 800) and r is the number
of the sentence words. Finally, the method obtains a set S = {s1,...,8m}
where each s;,i = 1,...,m is the matrix representation of the sentence i.

Petition Representation. The petition is a sentence; the method will look for
the Q element most similar. The petition is called gy, not necessarily in Q.
It is replaced by the vectors representation of its words, so it forms a matrix
s, of [x n dimension.

Sentence similarity. Finally, the objective is to determine a distance between
s’, the matrix representation of ¢g, and all the elements of S. This function
will give us the most similar sentence to s’. The reader can notice that
the matrices are not of the same dimension but have the same number of
columns. In the method we propose the use of the Frobenius inner product
to compute this distance. So, the similarity function between the matrices is
given by equation 13 and equation 11. Then the sentence most similar to g
is given by

argmax6(s’, s;),s; € S (15)
1
where ¢ is the distance between the matrices.

The process is described at Figure 1.

r

do S
s o
oc2vec [D (s".9)

Q/ \.S

) argmax 4(s’, S)

Fig. 1. Process to compute the similarity between sentences.

The advantages of our proposal over other methods reside in the computation
of the similarity through the matrix representation. We do not need to make any
map into R™ for computing a metric between sentences. The Frobenius inner
product allows us to determine a primal geometry over the space of matrices.
With this geometry we can calculate the similarity between points in this vector
space (these points are matrices). But what happens in a deep level is that the
Frobenius inner product computes a standard inner product over the row vectors

71 Research in Computing Science 117 (2016)

Victor Mijangos, Gerardo Sierra, Abel Herrera

representing the words of the sentences. Then, the Frobenius inner product can
bee seen as follows:

(A,B) = (a;.by) (16)

i=1

where a; is the ith word vector composing the sentence represented by the

matrix A and b; the ith word vector of the sentence represented by the matrix
B.

0.4 T J
Juan manzanas
0.2¢ Maria ¥ v 1
A uvas
00| =]
-0.2} |
Ana
e}
-0.4} |
p— lentes usa 1
© o]
¥ sentence 1
-0.8} A sentence 2 |
O sentence 3 Co”];iesayuné
-1.0} L |
-1.2 . L : :
10 —0.5 0.0 0.5

Fig. 2. Plot of the words composing the similar sentences ‘Juan comi6é manzanas’
(‘John ate apples’) and ‘Maria desayuna uvas’ (‘Mary had grapes for breakfast’), and
the disimilar sentence ‘Ana usa lentes’ (‘Ana wears glasses’).

Take a sentence like ‘Juan comié manzanas’ (‘John ate apples’). This sen-
tence is similar, for one hand, to ‘Maria desayuno6 uvas’ (‘Mary had grapes for
breakfast’) since the verbs ‘comié’ y ‘desayund’ are similar; both verbs reflect
the action of ‘eat’, past tense and third singular person. Also, the direct objects
‘uvas’ and ‘manzanas’ ares similar because they both are fruits. For the other
hand, a sentence like ‘Ana usa lentes’ (‘Ana wears glasses’) has a completely
different meaning. Here, the verbs ‘wears’ and ‘ate’ are from different seman-
tic groups, such as ‘glasses’ and ‘apples’. If we plot the three sentences we can

Research in Computing Science 117 (2016) 72

A Word Embeddings Model for Sentence Similarity

see that the words composing them are grouped differently depending on its
meaning (see Figure 2). Computing the Frobenius cosine between the two sim-
ilar sentences ‘Juan comi6é manzanas’ and ‘Maria desayuné uvas’ we have 0.62.
Whereas for ‘Juan comié manzanas’ and ‘Ana usa lentes’ the Frobenius cosine
equals 0.39.

Our method tries to make the calculation of similarity between sentence
simpler than than other methods like the proposed in (Milajevs, 2014) or (Socher,
2011) by computing the metric in the original matrix space. This implies that
there is no information loss and we do not need to map the representation into
another simpler vector space (generally R™).

5 Results

For evaluation, a corpus of Spanish paraphrases was used; this corpus has 144
sentences with paraphrases. The corpus always has an original document and two
paraphrase levels: low-level paraphrases and upper-level paraphrases. The low-
level paraphrases has lexical and syntactic changes and, in general, formal level
changes. The upper-level paraphrases has changes at discursive level, semantic
and more elaborated changes. Then, for the evaluation process, the method only
uses low level paraphrases, and they are compared to the original texts. More
information of this corpus is at (Mota).

The baseline is the paraphrase representation from word vectors sum, the
vectors were obtained from the words embedding method explained above. The
cosine and inner product are compared at both cases, then the accuracy is
obtained. Using the cosine distance, the highest accuracy is achieved by our
method. Unfortunately, only by a difference of 0.03; this improvement is not sig-
nificant. However, with the inner product, our method achieve a 0.62 accuracy,
against the accuracy of 0.55 obtained by the vectors sum method (see table 1).

Table 1. Results comparation.

Method Inner product Cosine
Matrix representation 0.6206 0.5862
R"™ representation 0.0689 0.5517

6 Conclusions and Future work

The proposed method has a better performance compared to the traditional R™
vector representation. The R™ representation method is commonly used to repre-
sent linguistic elements; now, the information from that method can be amplified
using a matrix representation. This way, the a priori conception of composition-
ality is not assumed. In the matrix representation method, each word represents

73 Research in Computing Science 117 (2016)

Victor Mijangos, Gerardo Sierra, Abel Herrera

a column of a matrix and we can compare each word with the words of another
sentence. So, a matrix representation is more adequate than the representation
through vectors in R”.

The advantage over other methods, such as the one proposed in (Socher,
2011) is that our proposal does not lose information. The Frobenius inner product
is a natural geometric form in the matrix space. This inner product compares the
distance between all the words of both sentences to give us a similarity measure
of the sentences.

However, a lot of work must be done. The matrix representation method
must be compared with other methods. In this paper we prove this method for
Spanish language. Nevertheless, a more complete set of languages can show that
this is a good language-independent method.

We want to point out that, as the angle within matrices makes no much sense,
the Frobenius inner product improve the result of the experiment. Nevertheless,
we use just two distances to compare. For later works, it is necessary to define
metrics that capture better the topology of the data. Also, the word embeddings
methods need big size corpora. So a bigger corpus than CEMC is needed for a
question-answering system application.

The sentence representation can be improved. We see that, by the definition of
the Frobenius inner product, the word order between the sentences improves the
results. This is given because it is expected that both sentence were composed by
the same syntactic structure. Nevertheless, this happens rarely. Other elements
as syntactic information and morpho-syntactic information can be integrated.
The contribution of these elements must be proved.

References

1. Baroni, M., Bernardi, R., Zamparelli, R.: Frege in space: A program of composi-
tional distributional semantics. Linguistic Issues in Language Technology 9 (2014)

2. Bengio, Y., Ducharme, R., Vincent, P., Janvin, C.: A neural probabilistic language
model. The Journal of Machine Learning Research 3, 1137-1155 (2003)

3. Campr, M., Jezek, K.: Comparing semantic models for evaluating automatic docu-
ment summarization. In: Text, Speech, and Dialogue. pp. 252-260. Springer (2015)

4. Chang, K.C., Pearson, K., Zhang, T., et al.: Perron-frobenius theorem for nonneg-
ative tensors. Commun. Math. Sci 6(2), 507-520 (2008)

5. Harris, Z.: Distributional structure. Papers on Syntax pp. 3-22 (1954)

6. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

7. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in neural
information processing systems. pp. 3111-3119 (2013)

8. Noutsos, D.: On perron—frobenius property of matrices having some negative en-
tries. Linear Algebra and its Applications 412(2), 132-153 (2006)

9. Sahlgren, M.: The distributional hypothesis. Italian Journal of Linguistics 20, 33—
54 (2008)

10. Sateli, B., Witte, R.: Supporting wiki users with natural language processing. Pro-
ceedings of the 8th Annual International Symposium on Wikis and Open Collab-
oration pp. 379-423 (2012)

Research in Computing Science 117 (2016) 74

