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Abstract. Traditional machine learning techniques were designed for
training for scratch depend on the current feature-space distribution.
In many real applications, the fact to obtain new data for training and
rebuilds models could become expensive or impossible. Therefore, from
a lifelong machine learning conceptualization, transfer learning can be
indeed beneficial to speed up the time it takes to develop and train
a model by reusing an isolated pre-training setting as a starting point
for another target domain, especially when multiple tasks and hyper-
parameter optimization are considered, such as a full model selection
approach. This document presents an early transfer learning strategy
based on a decision tree powered by full models for temporal databases
trained in an isolated way with different search methods. The proposed
transfer learning strategy is capable to suggesting the starting point and
the search method adopted by the full model selection approach.
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1 Introduction

Humans have the innate capacity to transfer knowledge across tasks. In this
regard, the acquired experience can be utilized in the same way to solve re-
lated tasks. Therefore, the more connected tasks, the easier it is to transfer or
cross-utilize the knowledge. Concerning Computer Science, particularly, Data
Mining (DM) and Machine Learning (ML) fields, have been inspired by how
human beings learn and transfer knowledge to simulate those behaviors through
algorithms.

However, although significant progress in knowledge engineering in both DM
and ML algorithms has achieved, most of them have been traditionally designed
to work in isolation. The isolated training means that the built models are
focused on specific tasks and depend on the current feature-space distribution.
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Therefore, if the distribution changes, the models need to be rebuilt from scratch
using newly collected training data.

In many real applications, the fact to obtain new data for training and
rebuilds models could become expensive or impossible. In order to overcome
these issues, researchers and scientists turn the gaze toward knowledge transfer
or transfer learning, whose purpose is centered on the need for lifelong machine-
learning methods that retain and reuse previously learned knowledge. According
to Goodfellow et al. [5], transfer learning is described as the situation where what
has been learned in one setting is exploited to improve generalization in another
environment.

Research on transfer learning has attracted more attention in the last decades
in different ways such as life-long learning, multi-task learning, knowledge trans-
fer, inductive transfer, knowledge consolidation, context-sensitive learning, knowledge-
based inductive bias, meta-learning, incremental/cumulative learning, and re-
cently Auto-machine learning (AutoML) or Full Model Selection.

The specialized literature on learning transfer highlights three important
research issues:

– What to transfer?
– How to transfer?
– When to transfer?

Regarding these issues, Pan and Yang [8], suggest a classification of transfer
learning approaches according to three sub-settings: a) Inductive transfer learn-
ing, the target task is different from the source task, while the source and target
domains can be the same or not. b) Transductive transfer learning, the source
and target tasks are the same, while the source and target domains could be the
same. c) Unsupervised transfer learning, the target task is different but related
to the source task focus on unsupervised learning tasks in the target domain.

In related literature, it has been observed that in transfer learning approaches,
especially inductive transfer learning, it is possible to transfer instances, feature
representation, parameters, and relational-knowledge. Regarding related works
of transfer learning, most of the research has been developed within the frame-
work of artificial neural networks where multi-task can be involved [10].

In the context of the Full Model Selection (FMS) problem, where multiple
task and hyper-parameters optimization are involved, the transfer learning has
not been explored. Since one of the benefits of transfer learning is that it can
speed up the time it takes to develop and train a model by reusing these settings
as a starting point for another scene. The transfer learning strategy turns out
to be an attractive option to accelerate the search for complete models.

In this regard, an early proposal of transfer learning in the frame of an FMS
algorithm for temporal data mining tasks is presented. The remaining sections
of this document are organized as follows. In Section 2, a brief theoretical
background of FMS in temporal data is given. In Section 3, the employed
methodology is described. Then, in Section 4, the preliminary results are out-
lined. Finally, Section 5 presents conclusions and future work.
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2 Background

2.1 Full Model Selection Problem

Full Model Selection problem (FMS) refers to all aspects of automating the
machine learning process, including model selection and hyper-parameter op-
timization for carrying on different tasks in an incremental way. In order to
produce a suitable combination of methods which help to classify or predict a
new data within a fixed computational cost, FMS can involve two remarkable
concerns: (1) no single method performs well on each dataset, and (2) some
methods work appropriately base on its hyper-parameter optimization. Both
issues are known as Algorithm Selection and Model Selection problems [3, 11].

This work tackles the FMS problem in temporal databases, mainly in time-
series, as a single-objective optimization problem through an evolutionary wrap-
per approach, where population-based metaheuristics or single point-search meta-
heuristics can be used [7, 2, 9]. An instance of FMS problem for temporal data
consists of finding a suitable combination of smoothing, time-series representa-
tion, instances reduction, and classification methods with the setting of their
related hyper-parameters. The FMS problem is expressed in Equation 1, where
a set of algorithms A = A1, ..., An with their related hyper-parameters θ =
{θ1, ..., θm} and labeled training data D = {(x1, y1), ..., (xn, yn)} are used to find
the optimal generalized performance, for which, the training data is split up into
disjoint training Di

train and validation Di
valid datasets which are evaluated by

loss function L in an isolated training through k-cross-validation method:

A∗,θ∗ ∈ arg min
AJ∈A,θ∈Aj

K∑
i=1

L(Aj
θ, D

i
train, D

i
valid). (1)

One of the advantages of solving the FMS problem by evolutionary wrapper is
the capacity of manipulate multiple task and the hyper-parameter optimization
at the same time. However, the main disadvantages of this approach are the high
computational cost during the isolate training and the absence of reusing trained
models for other data domains. Therefore, to treat those drawbacks, and inspired
by lifelong machine learning (LML) paradigm [12], a set of experiments to find
a strategy of transfer learning within the framework of the FMS algorithm is
carried out.

3 Methodology

In this section, the adopted general methodology is described and presented
in Figure 1. The considered instance space X is a set of time-series databases,
taken of a well-known benchmark [6]. The considered FMS approach is widely
described in [9], and general behavior is presented in Algorithm 1. This approach
can be works under two different metaheuristics structures, based-population or
a single point optimizer [1, 13].
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Fig. 1. Graphical representation of interaction between specific instance space, FMS
approach and transfer learning strategy under LML paradigm.

The based-population structure is guided by µ-Differential Evolution algo-
rithm (four variants are evaluated) while the single point search operates under
local search (two different solution encoding are considered). Candidate solutions
are composed of a combination of methods for smoothing, time-series representa-
tion, instance selection and classification with associated hyper-parameters. The
original FMS approach was designed to train in an isolated way where all candi-
date solutions are evaluated according to the cross-validated miss classification
rate, depending on the available database.

At the end of the evolutionary process, the best solution is obtained for
each database. In order to build a strategy to transfer learning under LML
paradigm, a knowledge base is needed, that a long term will be interacting with
universal knowledge. In this work, the knowledge base is powered by a decision
tree building from the best full models obtained during the isolated training of
the FMS algorithm in its different versions per each database. Concerning the
LML framework, the FMS algorithm must use the decision tree to determine
the starting point for the training stage of a new database, as well as the
recommended metaheuristic. Therefore, with the transfer learning strategy based
on a decision tree, the cost to generate full models for new instances of temporal
databases is expected to be lower than training from scratch. So far, the retention
and consolidation are not considered in this early proposal.

4 Experiment and Results

This section presents a set of experiments realized to build and evaluate the early
transfer learning strategy for FMS algorithm. The experimentation is presented
in two stages: (1) A comparison of the final statistical results of variants of FMS
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Algorithm 1 General behavior of FMS algorithm
Require: A (Pool of available methods), θ (Set of involved hyper-parameters), M (Metaheuristic

as optimizer), fitness (Fitness Function), Dtrain (Train dataset), Dvalid (Validation dataset),
Dtest (Test dataset),

1: Set maxItera % Maximum number of iterations
2: Set i = 0
3: Set M % which can be population-based or single point optimizer
4: Randomly generate initial solution(s) % if M is population-based a set of solutions are generated,

other side one initial solution is generated
5: while i < maxItera do
6: Starts optimization process through population-based or single point search
7: A fitness function is used for evaluating
8: Special operators are involved (crossover, mutation, selection or neighborhood generator)
9: end while
10: Get best final solution ~s % involves a suitable combination of methods and their hyper-

parameters
11: Evaluate ~s on Dtest

algorithm to build a based decision tree knowledge base and (2) preliminary
results of the transfer learning strategy.

4.1 Stage 1: Knowledge Base Building

Six versions of FMS algorithm were trained in an isolated environment where
eight temporal databases (Table 1) were used. The four firsts versions of FMS
algorithm correspond to population-based option while the two rests are compat-
ible with the single-point search option. In all cases, the termination condition
was 3000 evaluations, and five independent runs were carried out. The configu-
ration used by each involved metaheuristics is described as following, based on
[2, 14]:

P-DEMS versions: iter = 500, NP = 6, CR = 0.1, F = 0.9, N = 2 and R = 10.
S-LSMS versions: iter = 500 and Nk = 6.

Table 3 shows the final numerical results obtained by the six FMS ver-
sion training in a isolated way. The population-based versions were known as
P-DEMS1 to P-DEMS4 and the single point search versions were named as
S-LSMS1 and S-LSM2. The reported values correspond to the average of five
trials evaluated in the testing set of each database. A non-parametric Friedman
test was used [4] for multiple comparison among FMS versions. Friedman test
converts numerical values to ranks. Thus, it ranks the FMS versions for each
problem separately, the best performing algorithm version should have rank 1,
the second-best rank 2, etc. When ties are presented, like this case, average ranks
are computed.

According to the average ranks, it is observed that SLSMS1 and PDEMS1
were the two best versions, followed by P-DEMS2, S-LSMS2, P-DEMS4 and
P-DEMS3, respectively. From this, information a simple log-archive was created.
The log-archive contains information related to each database’s information
(time-series length, number of classes, domain), the full best model obtained
by isolated training of the six versions of FMS algorithm for each database, the
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Table 1. Time-series databases description.

No. Name
No. of
classes

Training
set size

Testing
set size

Time-series
length

Domain

1. Beef 5 30 30 470 Spectro

2. CBF 3 30 900 128 Simulated

3. Coffee 2 28 28 286 Spectro

4. ECG200 2 100 100 96 ECG

5. FaceFour 4 24 88 350 Image

6. Gun Point 2 50 150 150 Motion

7. Lightning-2 2 60 61 637 Sensor

8. Lightning-7 7 70 73 319 Sensor

9. OliveOil 4 30 30 570 Spectro

10. Trace 4 100 100 275 Sensor

Table 2. Description of knowledge base attributes.

Attribute Description Type

length Time-series length. Numeric

classes Number of classes. Numeric

smooth Type of selected smoothing method. Nominal

representation Type of selected time-series representation method. Nominal

insReduc Type of selected instance selection method. Nominal

error Misclassification rate of the tested model. Numeric

Meta Version of FMS algorithm. Nominal

average runtime during isolated training for each database and FMS algorithm,
the test misclassification rate of each full model and the name of FMS algorithm.

From this, information a simple log-archive was created. The log-archive
contains information related to each database’s information (time-series length,
number of classes, domain), the full best model obtained by isolated training of
the six versions of FMS algorithm for each database, the average runtime during
isolated training for each database and FMS algorithm, the test misclassification
rate of each full model and the name of FMS algorithm. A total of 300 models
were stored that gave rise to form a supervised knowledge database, where the
name of the FMS algorithm was considered as the class attribute.

Because only two versions of FMS algorithm reported competitive results, the
knowledge database was limited to only store the models of these versions. Then,
the knowledge base was composed of seven attributes, detailed in Table 2, with
100 different models. A decision tree of Weka was selected to generate a practical
and visual way that supports the rules generation that can be incorporated as
part of the learning transfer strategy. The accuracy of the decision tree was of
83.10%, and it is presented in Figure 2.

4.2 Stage 2: Adoption and Testing of the Learning Strategy

According to the taxonomy of learning transfer approaches, the proposed strat-
egy, in this work, is classified as Transductive transfer learning, because of the
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Table 3. Comparison of averaging performance among the six metaheuristics for each
database. Values to the right of ± represent the standard deviation and the values in
parentheses represent the ranks computed by the Friedman test. Values in boldface
mean the lowest values found or the best ranking.

Database P-DEMS1 P-DEMS2 P-DEMS3 P-DEMS4 S-LSMS1 S-LSMS2

Beef 0.053±0.102 (3) 0.087±0.038 (4) 0.000±0.000 (1.5) 0.160±0.060 (5) 0.000±0.000 (1.5) 0.367±0.227 (6)

CBF 0.000±0.000 (3) 0.000±0.000 (3) 0.000±0.000 (3) 0.000±0.000 (3) 0.000±0.000 (3) 0.030±0.027 (6)

Coffee 0.000±0.000 (3) 0.000±0.000 (3) 0.000±0.000 (3) 0.000±0.000 (3) 0.268±0.157 (6) 0.000+0.000 (3)

ECG200 0.000±0.000 (2) 0.800±0.447 (4) 1.000±0.000 (5.5) 1.000±0.000 (5.5) 0.000±0.000 (2) 0.000±0.000 (2)

FaceFour 0.000±0.000 (3.5) 0.000±0.000 (3.5) 0.000±0.000 (3.5) 0.000±0.000 (3.5) 0.000±0.000 (3.5) 0.000±0.000 (3.5)

Gun Point 0.000±0.000 (1) 0.395±0.221 (4) 0.493±0.000 (5.5) 0.493±0.000 (5.5) 0.388±0.217 (3) 0.212±0.253 (2)

Lightning-2 0.000±0.000 (3) 0.000±0.000 (3) 0.000±0.000 (3) 0.000±0.000 (3) 0.000±0.000 (3) 0.069±0.154 (6)

Lightning-7 0.766±0.035 (5) 0.762±0.028 (4) 0.786±0.019 (6) 0.761±0.012 (3) 0.019±0.019 (1) 0.082±0.046 (2)

OliveOil 0.013±0.030 (2.5) 0.033±0.047 (5) 0.027±0.043 (4) 0.013±0.018 (2.5) 0.000±0.000 (1) 0.133±0.122 (6)

Trace 0.800±0.447 (3.5) 0.800±0.447 (3.5) 1.000±0.000 (5.5) 1.000±0.000 (5.5) 0.000±0.000 (1.5) 0.000±0.000 (1.5)

Average rank 2.950 3.700 4.050 3.950 2.550 3.800

Fig. 2. Decision tree of knowledge base.

source and target tasks are the same, while the source and target domains
could be the same or not. Regarding the three principal questions on what(Q1),
how(Q2)and when(Q3) to transfer, these will be described below:
Q1: Setting of full models that includes selected methods and their hyper-
parameters optimized. Besides the suggested search engine for continue the
training process.
Q2: The pre-trained models that will be the starting point for another dataset
will be randomly selected within the knowledge base, as long as the pre-trained
models have been used in smaller time series or of the same length as the new
database. A set of six different models can be selected as randomly, which will be
evaluated by the decision tree. The tree will suggest a class tag for each instance,
which corresponds to the type of search engine. Considering the majority vote, If
the population-based option (P-DEMS1) is suggested, all models are transferred.
Otherside, if the single point optimizer (S-LSMS1) is suggested, only one of the
six can be assigned.
Q3: At the beginning of the training process of a new data set that not exists
in the knowledge base.

The proposed transfer strategy for FMS algorithm was tested on four databases,
the preliminary results are shown in Table 4. Similar behavior was obtained by
LML-FMS in two of the four databases against isolated training. The suggested
search strategy for theses cases was S-LMS1. Otherside, the significantly worse
cases were produced by the P-DEMS1 search engine. An improvement speed up
on training was observed when P-DEMS1 was suggested as a search engine.
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Table 4. Comparison between the isolated training and proposed approach by transfer
learning. IT means isolated training, while LML-FMS means lifelong machine learning
for the full model selection. Values in boldface mean the significant lowest values.

1

No. Name Classes TS-Length .6Domain .6 IT .6LML-FMS

1. ECGFiveDays 2 136 ECG 0.0000 0.0011

2. SonyAIBORobotSurface 2 70 SENSOR 0.0032 0.0080

3. SonyAIBORobotSurfaceII 2 65 SENSOR 0.0031 0.0183

4. ItalyPowerDemand 2 24 SENSOR 0.0264 0.0255

5 Conclusions and Future Work

In this paper, a transfer learning strategy for the FMS algorithm for temporal
data mining was presented. The initial knowledge base was built from isolated
pre-trained full models, and the transfer learning is based on a decision tree
powered by that base. Although isolated training provides better solutions in two
of the databases, preliminary results through transfer learning show competitive
results, encouraging to extend experiments in other database domains. There-
fore, as future work, data complexity measures, test data distribution, or model
complexity could be considered into the knowledge base. Besides, to explore
other ways to transfer the learning between different temporal domains data.
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