
1 

 

A New Method for the Estimation of Bearing Health State and 

Remaining Useful Life Based on the Moving Average Cross-

Correlation of Power Spectral Density  
Lang Xu1*, Paolo Pennacchi1  and Steven Chatterton1 

1. Dept. of Mechanical Engineering, Politecnico di Milano, Via G. La Masa 1, 20156 Milan, Italy; 

lang.xu@polimi.it; paolo.pennacchi@polimi.it;  steven.chatterton@polimi.it;  

Abstract: In the broad framework of condition-based maintenance, the final objective of bearing 

condition monitoring is to evaluate the health state and to estimate the remaining useful life of the 

bearings. The latter is a particularly challenging task, considering that remaining useful life is 

inextricably linked to a projection of what will happen in the future. Often, health indices, whose 

reliability relies on their effectiveness and consistency, are used for bearing condition monitoring. 

Most of the existing health indices pursue the property of monotonicity, but generally there are no 

obvious boundaries between the different health states of the bearings. Hence, it is quite difficult to 

give an objective and independent estimation of the health states, especially in real applications under 

different operating conditions and in the presence of noise. Furthermore, it is also difficult to set the 

failure threshold for a given health index when it is employed in different applications. In this paper, a 

new health index called ‘MAC2PSD’ is proposed, based on the moving-average cross-correlation 

(MAC2) of the power spectral density (PSD) of the vibration signals. An interesting property of 

MAC2PSD is its capability to track the health condition and to discriminate clearly between the 

different health states. As shown in the paper, the MAC2PSD can also be used to estimate the 

remaining useful life by using its values during the defect-propagation phase. The effectiveness of 

MAC2PSD is shown by means of two different cases of bearing run-to-failure experimental data, from 

two different test rigs. Additionally, the capability to avoid false positives is evaluated by means of 

bearing vibration data measured on a locomotive in commercial service. 

Keywords: bearing condition monitoring, remaining useful life, power spectral density, health index, 

health state, moving average cross-correlation coefficient. 

1 Introduction 

The demand for safety, reliability and economic efficiency of mechanical systems is growing with 

time, and increasing attention is being paid to it. In particular, safety is a prerequisite for mechanical 

systems designed to transport people, such as vehicles, airplanes and trains, because failures may 

cause catastrophic accidents. Furthermore, the maintenance cost is another focus of companies 

running those assets, and the condition-based maintenance approach is not yet fully exploited, mainly 

due to the lack of reliable estimation of the remaining useful life (RUL) of the components. As one 

kind of critical component in rotating machinery, rolling element bearings (REBs) may fail before 

their designed end of life because of out-of-design operating conditions, lubrication problems, 

improper handling and mounting, etc. (1). REB failures have become one of the most common causes 

of rotating machine breakdowns (2). The purpose of bearing condition monitoring (CM) is to monitor 

and to assess the health state of bearings, then possibly to estimate the RUL of bearings, which makes 

it possible to intervene before machine failure and schedule maintenance in order to decrease safety 

risks and maintenance cost. Therefore, bearing CM is of great importance not only for guaranteeing 

the safe operation of a mechanical system but also for improving the market competitiveness of the 

companies running them. 

In the last few years, an increasing number of researchers have focused on the field of bearing CM 

and obtained many useful outcomes (3–5). The classification of CM methods varies from the 
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perspective of the researchers, but the classification of model-driven methods and data-driven 

methods is widely adopted. Generally, model-driven methods establish a sophisticated mathematical 

model according to the details of the mechanical system and often are able to estimate the RUL 

accurately (5). However, model-driven methods need an in-depth understanding of the mechanical 

system, which is often non-feasible for complex mechanical systems in actual cases. The data-driven 

method is the predominant approach for CM of mechanical systems and has attracted most of the 

attention. Data-driven methods utilize the data collected by the data acquisition system to extract 

some useful health indices (HIs). These HIs are then applied to monitor the health state and forecast 

the RUL of the machine (6). Therefore, the performance of a CM method is largely dominated by the 

extracted HI. As the health condition index of bearings, a good HI should be sensitive to not only the 

existence of the defect but also the evolution of the defect. Time-domain features, frequency-domain 

features, time-frequency features or the fusion of these are commonly used to construct HIs. They are 

usually divided into two categories, including physical HIs and virtual HIs in (3). Physical HIs have 

an exact physical meaning, such as RMS, kurtosis, Shannon entropy, etc. (7,8). Virtual HIs are 

without corresponding physical meaning, such as the cumulative features proposed in (9) or the multi-

feature fused feature via principal component analysis (PCA) in (10). As an affiliate function of HIs, 

health state (HS) division aims to divide the continuous life of bearings into several separate segments 

where every segment represents a health condition. Generally, the HS division is made according to 

the varying trends of HI, which means different HSs have different trends in HI variation. The HS 

division methods were simply divided into two groups, including a two-phase division and a multi-

phase division, in (3). El-Thalji et al. proposed an elaborate five-phase HS model based on the 

evolution of dynamic wear of the bearing surface in (11,12). However, almost none of the existing 

HIs can clearly divide the HS state as did the five-phase approach. However, the most important 

function of HI is to estimate the RUL of bearings. Kurtosis was used to adaptively determine the first 

prediction time (FPT), and an exponential model based on RMS was proposed to predict the RUL of 

REBs in (8). Lei et al. made use of RMS combined with a stochastic process model and Kalman 

particle filtering algorithm to estimate the machine RUL in (13). Pennacchi et al. utilized the cyclic 

content ratio (RCC) to monitor the health condition of REBs on a regional train locomotive in (14,15). 

Ocak et al. took advantage of the energies of the nodes decomposed by wavelet packets as features to 

track the health condition of bearings (16). Of course, there are many other methods of bearing RUL 

prediction based on machine learning or artificial intelligence, such as artificial neural network 

(ANN)-based methods, support vector machine (SVM)-based methods or Gaussian process regression 

(GPR)-based methods. (17–19). However, literature based on the similarity of the present state and 

the previous state of bearings is scarce. Medjaher et al. proposed an HI by evaluating the similarity of 

the vibration signal between the degraded bearing and the nominal bearing to estimate the RUL (20). 

Yu extracted an HI to track the degradation of bearings via measuring the similarity of the probability 

density functions of the historic hidden Markov model (HMM) with the present adapted HMM (21). 

Guo et al. fused some related-similarity features and several classic time-frequency features using a 

recurrent neural network (RNN) to create a new HI to predict the RUL of bearings (22).  

Even though a considerable number of the existing data-driven methods perform well in some specific 

cases, there are still some problems that impede their wide application to industry. The most discussed 

problem is the determination of the failure threshold for the HI. At present, the vast majority of 

proposed HIs require the users to set a failure threshold in advance. However, in most cases, every 

REB in a mechanical system is different from the others, with different loads, speeds, lubrication 

situations, etc., which would undergo different health degradation paths. Thus, it is extremely hard to 

determine a threshold for each case. Another crucial reason is the consistency or universality of the HI. 

An HI may perform well in some cases but is useless in other cases. Inspired by the aforementioned 

methods, in this paper, a new health index ‘MAC2PSD’ is proposed, which is the moving average 

cross-correlation (MAC2) of the power spectrum density (PSD). PSD represents the energy 

distribution of a signal in the frequency domain, whereas MAC2 is the moving average cross-
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correlation used to measure the similarity of PSD of consecutive records. The rationale of this method 

is that the energies of fault signals and normal signals are distributed in different frequency bands in 

PSD, and the PSD will change with the degradation of the bearings. MAC2PSD takes advantage of the 

variation of the PSD of the signal compared with those of the adjacent signals. Compared with other 

HIs, MAC2PSD can determine a failure threshold for each case by itself when used to estimate the 

RUL of REBs. In addition, it can also clearly distinguish different HSs.  

This paper is organized as follows: Section 2 illustrates the basic principle of MAC2PSD; Section 3 

explains the detail of dividing HSs based on MAC2PSD; Section 4 estimates the RUL of bearings 

based on MAC2PSD via two sets of run-to-failure data of REB. Section 5 tests the performance of 

MAC2PSD applied to bearing data from a regional locomotive train. 

2 Definition of the new health index MAC2PSD 
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Fig. 1.  (a) MAC2PSD calculation; (b) Qualitative diagram of MAC2PSD; (c) Wear severity during the lifetime of a bearing 

(adapted from (11,12)) 

Bearing wear is a complex process mainly related to fatigue (23). To classify the HS during the 

operational life of a bearing, El-Thalji et al. proposed a five-phase wear evolution model in (11,12); 

see Fig. 1 (c). The phases are as follows: 

1) running-in (phase #1);  

2) steady-state (phase #2);  

3) defect initiation (phase #3);  

4) defect propagation (phase #4);  

5) damage growth (phase #5). 

The changes in the HS of the bearings affect their vibrations, including the levels and the components 

of the signals. It is well known (24) that defects in the bearings cause a series of impacts whose 

intensity generally increases with the growth of the defects. The aim of all the data-driven CM 

methods is to track to the best of their ability what is varying in the vibration signals. Generally, the 

fault signals distribute in some frequency bands, which can be distinguished from the environmental 

noise. A reliable signal processing technique for determining the energy distribution of a signal in the 

frequency domain (25) is the PSD. If the frequency spectrum of the signal is compared with the PSD, 

the latter is more effective in highlighting the components related to the defects because the 

autocorrelation of the signal, employed in the algorithm for PSD calculation, is able to denoise some 

of the white noise (26). Therefore, the use of PSD and its variations to monitor the wear of the 

bearings, and their HS is rational and practicable.  

Let us suppose a sequence of N records is collected with a constant time interval (for instance 1 day or 

1 hour) or constant cycle interval throughout the lifetime of a bearing, similar to that displayed in Fig. 

2. Each record is composed of L samples, i.e.,  
( ) ( ) ( ) ( ) T

1 2[ , , , ]i i i i

Lx x x=x , whereas the time instant it  

represents the acquisition time (in hours or number of cycles) of record. As an abbreviation in this 

paper, the term ‘time instant it ’ represents the acquisition time of record ( )i
x .  

  

Fig. 2. Sequence of records during the lifetime of a bearing 

The following hypotheses are then assumed to define the MAC2PSD index:  

a) If the HS of the bearing is stable, the PSD of a bearing vibration signal record ( )i
x  in a given 

time instant it  is similar to the PSD of the neighbouring signal records ( )i k−
x  and ( )i k+

x . 

Conversely, if the HS is changing, the PSD of a vibration signal record differs from that of the  

neighbouring signal records. 

b) The difference among the PSD of the signal records increases with the severity of the defect.  

c) The defect propagation phase is a relatively stable process. 

The last hypothesis may appear as a rather strong assumption, but it is important to remember once 

again that the main reason for bearing damage is fatigue and that the fault growth takes millions of 

cycles. Therefore, from an engineering point of view, the defect propagation can be considered as a 

relatively stable process—or at least a not sudden one. 

The algorithm for the calculation of the MAC2PSD is shown in Fig. 1(a), and it is structured on three 

main steps: 



5 

 

Step 1.  Calculating the power spectral density of each vibration signal: 

According to the Wiener–Khinchin theorem, the PSD of a signal ( )x t  can be calculated by 

means of the Fourier transform of the autocorrelation function (24): 

 
( ) { ( )}xxPSD f R t=

 (1) 

while the autocorrelation function ( )xxR   of a signal ( )x t  is obtained by calculating the 

average value of the product of the signal ( )x t  at time t  with the same signal shifted by  

(24): 

 ( ) [ ( ) ( )]xxR x t x t = +  (2) 

where  is the expected value operator. 

Note that the signal ( )x t  is considered as a function in eqs. (1) and (2), so that also ( )xxR   and 

( )PSD f  are functions. For the sampled signal ( )i
x , the corresponding autocorrelation ( )i

xxR  

and ( )i
PSD  of ( )i

x  are symmetric vectors with a length of 2 1L − , i.e., 
( ) ( ) ( ) ( ) T

1[ , , , ]i i i i

xx L L Lr r r− − +=R , ( ) ( ) ( ) ( ) T

1[ , , , ]i i i i

L L Lp p p− − +=PSD .  

 

Step 2. Evaluating the similarity between PSDs in a moving window: 

A predefined window of constant length w  is used for the operation of the moving average 

along the records and the window moves forward with a unitary step size. By considering the 

record ( )i
x  acquired at time instant it , there are w  PSDs in the window, and the similarity 

between the ( )i
PSD  of the ith record and each of the other 1w−  PSDs of the remaining 

previous records 
( ) , ( 1, , 1)j j i w i= − + −x  in the window (see Fig. 1(a)), is measured by 

means of the similarity index ,j iCP  based on the Pearson correlation coefficient (PCC) (20):   

  

( ) ( ) ( ) ( )

,

( ) ( ) 2 ( ) ( ) 2

( )( )

( ) ( )

L
i i j j

k k

k L
j i

L L
i i j j

k k

k L k L

p PSD p PSD

CP

p PSD p PSD

=−

=− =−

− −

=

−  −



 

                                          (3) 

Equation (3) can be rewritten in a compact form as: 

( ) ( ) ( ) ( )

,
( ) ( ) ( ) ( )

( ) ( )i i T j j

j i
i i j j

PSD PSD
CP

PSD PSD

− −
=

− −

PSD PSD

PSD PSD
                                               (4) 

where , 1, ,i w w N= + , for each time instant it , 1, , 1j i w i= − + − , 
( ) ( )( )i iPSD = PSD

and 
( ) ( )( )j jPSD = PSD  are the mean values of ( )i

PSD  and ( )j
PSD  respectively. For the 

initial time instants 2 1it w  − , the window size can be assumed equal to i . 

Step 3. Obtaining the MAC2PSD for every time instant: 

For each time instant, such as time instant it , 1w− similarity indices CPs  are obtained in the 

window. Finally, the average value of these CPs  in the window allows the MAC2PSDi at 

time instant it to be obtained: 

 
1

2

,

1

1

1

i

i j i

j i w

MAC PSD CP
w

−

= − +

=
−

  (5) 

where 2,3, ,i N= . 

In many actual cases, the operating conditions (rotational speed, loads, temperatures) vary during the 

lifetime of a bearing (27), e.g., for bearings used in trains, cars (28), mining machines (29) or wind 

turbines (30–32). In these cases, it is almost impossible to obtain several baseline signals (such as 

those  considered in (20)) for every operating condition in real time. However, for the definition of the 

new index MAC2PSD, no specific baseline is considered at all.  
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The qualitative diagram of the MAC2PSD for a bearing during its lifetime is shown in Fig. 1 (b). 

Taking into account the definition of MAC2PSD, one can expect the following: 

1) a certain trend during the running-in phase: the vibration signal record ( )i
x  at time it  is 

slightly different from the previous ones. In view of bearing topology, this corresponds to the 

smoothing of surface roughness; 

2) a rather stable value during the steady-state phase: the vibration signal record ( )i
x  at time it  is 

not very different from the previous ones. In view of bearing topology, this corresponds to 

uniform lubricant film and contact mechanics; 

3) a variable trend during the defect initiation phase: the vibration signal record ( )i
x  at time it  is 

rather different from previous ones. In view of bearing topology, this corresponds to the start 

of surface denting; 

4) a sudden change at the beginning of the defect propagation phase followed by an evident 

trend: the vibration signal record ( )i
x  at time it  changes strongly from the previous phase and 

it is also changing during this phase. In view of bearing topology, this corresponds to micro-

cracks opening on and under the surfaces; 

5) another sudden change at the beginning of the damage growth phase followed by an evident 

trend: the vibration signal record ( )i
x  at time it  is changing from the previous phase, and it is 

also changing during this phase. In view of bearing topology, this corresponds to the 

detachment of relatively large material debris. 

3 Use of MAC2PSD to determine the health state of bearings during run-to-failure 

tests 

As stated before, bearing wear is a complex process and during the different phases the degeneration 

rate may vary with the severity of the damage. A good HI should distinguish between the different 

HSs, or at least between the last ones (phases #4 and #5 in Fig. 1). A counterexample is given by 

RMS, which is not generally deemed as a “good” HI. Beyond being strongly influenced by 

environmental noise, RMS generally does not show remarkable variations during the steady-state 

phase nor during defect initiation, while it increases rapidly only before the final failure. This negative 

characteristic is shared with other HIs with the property of monotonicity: it is hard to define the 

boundaries between different HSs. In contrast, an HI characterized by discontinuities/sharp variations, 

such as the MAC2PSD, is a good candidate for distinguishing the HSs, especially for the last two 

phases. 

A further reason for which a “good” HI must be able to distinguish between the last HSs of a bearing 

life is the case for which the calculation of the RUL starts from a given instant of time FPTt , generally 

defined as the first predicting time (FPT) (33,34). It will be immediately understood how convenient it 

is to calculate the FPT before the bearing enters the last phase, i.e., that of the damage growth phase. 

Two experimental cases are used to show the performance of the MAC2PSD, considering two 

different applications.  

3.1 Case study 1: Rexnord/NASA data 

The first set of experimental data consists of the run-to-failure data of the Rexnord ZA-2115 double 

row bearings which were obtained by the NSF I/UCR Center for Intelligent Maintenance System with 

the support of Rexnord Corp. (35,36). The rotation speed was set at a constant of 2000 rpm and a 

radial load of approximately 26700 N was applied. The sampling rate was 20 kHz, with a one-second 

vibration signal being collected every 10 minutes. More details about the bearing and the test rig are 

in references (35,36). The original data was sampled every 10 minutes but here the data are resampled 
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every 30 minutes. Finally, 328 records are selected from the original 984 records to carry out the 

following analysis. 

3.2 Case study 2: Test rig for traction system of high-speed train 

Another set of data was collected during the endurance test on a full-scale test rig for high-speed train 

traction systems. The failure occurred on the bearing of the frame that was used to support the output 

shaft of the gearbox (Fig. 3). The damaged bearing is a cylindrical roller bearing (FAG NU1040M1) 

and the main damage, highlighted during the visual inspection after the bearing replacement, occurred 

in the inner race with many brinelling marks (Fig. 4). Even though the damaged bearing was an 

auxiliary component of the test rig, it was also monitored. The parameters of the bearing are shown in 

Table 1. The rotation speed of the shaft was approximately 16.17 Hz and a constant torque was 

applied. The sampling rate was 20 kHz, and a five-second vibration signal was collected every hour. 

The experiment lasted for approximately 100 days and the system ran for approximately 8 hours every 

day. More details about the test rig and the experiment are in outlined in (37–39). Considering the 

effect of thermal expansion during the run-up from stand-still condition and the variation of 

environment condition, such as the room temperature, only four records from the second hour to the 

fifth hour are selected every day. Finally, 388 records are selected from the original 751 records for 

further analysis. It has been validated by many works in the literature that order tracking can mitigate 

the effect of speed variation when applied to bearing fault diagnosis. Since the tacho signal is 

available in this case study, order tracking is performed, and each record is resampled in angular 

domain, with 1226 samples in each revolution (40).   

 
Fig. 3. The position of the damaged bearing 

Table 1. The parameters of the tested bearing  

Bearing code Speed/[Hz] BPFI/[NX] BPFO/[NX] FTF/[NX] BSF/[NX] 

NU1040M1 16.17 13.20 10.80 0.45 4.85 

 

 
Fig. 4. The inter race of the damaged bearing of case study 2 
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3.3 Health state determination 

Assume that the evolution of the bearing health state is similar to that shown in Fig. 1(c), which 

would go through the previously mentioned five phases. The turning points and the rapidly drop 

points of the MAC2PSD are seen as the potential candidates of boundary points for two HSs. 

Therefore, the MAC2PSDs is used to divide the lifetime of a bearing into phases according to the 

variation trend of the MAC2PSD. The window size for the moving average operation clearly can 

affect the performance of the MAC2PSD. The size of the window cannot be too large because it may 

produce too much smoothing in the MAC2PSD, or too small because it may lead to heavy oscillations 

of the MAC2PSD. An empirical suggestion is that the window size can be no more than 10% of the 

total number of records by considering the complete bearing life but not less than 8.  

Since the total numbers of records in the two sets of data are similar, the same window size will be 

used to calculate the MAC2PSD. Three different window sizes, namely, 8, 16 and 24, are applied to 

obtain the MAC2PSD for the two case studies. The corresponding results are displayed in Fig. 5. As 

expected, the MAC2PSD of the two case studies with a window size of 8 (see Fig. 5(a), (b)) oscillates 

heavily and is unable to clearly distinguish different HSs. The MAC2PSD of the two case studies with 

a window size of 24 are shown in Fig. 5(e), (f) respectively, where the HSs of the two case studies 

cannot be clearly identified because the large window size smooths the MAC2PSD too heavily. 

However, when a window size of 16 is applied (see Fig. 5(c), (d)), the MAC2PSD of the two case 

studies clearly separate the different HSs, and increase steadily in phase #4 as well. Therefore, a 

window size of 16 is used here for the two sets of data. 

Conversely, the MAC2PSDs of the two case studies do not have the same aspect as those of the 

schematic diagram shown in Fig. 1(b). However, it is possible to identify three main common 

characteristics. First, both of them have a clear steady-state phase (phase #2) where the MAC2PSDs 

fluctuate near a constant value (see Fig. 5(c), (d)); then, the MAC2PSDs decrease like a step function 

after the steady state. Second, there are sharp drops between two consecutive states, such as from state 

3 to 4 and from state 4 to 5 (see Fig. 5(c), (d)). Third, the most important is that both MAC2PSDs 

increase smoothly in the defect propagation phase (phase #4). However, there are also some 

differences between the two MAC2PSDs. The MAC2PSD of the first case study decreases from state 1 

to state 2 (Fig. 5(c)), while the MAC2PSD of the second case study increases from state 1 to state 2 

(Fig. 5(d)). This is reasonable because the initial operating condition may be different. Furthermore, 

the MAC2PSD of case study 1 clearly distinguishes states 2 and 3 (Fig. 5(c)), but it is not the same as 

that of the MAC2PSD of case study 2 (Fig. 5(d)). This difference has been explained by the 

maintenance operations that occurred during the experimental activity, in which the gearbox was 

removed and reinstalled to perform visual inspection. This maintenance represents a discontinuity 

(circled in Fig. 5(d)) in the system behaviour and occurred exactly in correspondence of the transition 

from phase #2 to #3. About the RMS values of the two case studies, both remained almost constant 

until heavy damage occurred, especially the RMS value of the data from the high-speed train traction 

test rig only rapidly increases in the final phase (Fig. 5(d)). From the above analysis, it can be 

concluded that in comparison to the RMS value, the MAC2PSD not only can clearly separate the HSs 

but can also clearly indicate the occurrence of defects earlier. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 5.  MAC2PSD of actual vibration data; the MAC2PSD of case study 1 with time intervals of 8 (a), 16 (c) and 24 (e); the 

MAC2PSD of case 2 with time intervals of 8 (b), 16 (d) and 24 (f). 

To check the performance of the MAC2PSD in the identification of HS phases, the health condition of 

the bearing has been checked at the five time instants A, B, C, D, E, (see Fig. 5(d)). The squared 

envelope spectra (SES) of the signals at the five time instants are displayed in Fig. 6. The optimal 

frequency bands used for the evaluation of each SES has been selected by PMFSgram (see (41)) in 

order domain and are listed in Table 2. Except for the last time instant E, the optimal frequency band 

of all the other four time instants are in the same narrow range of 180 NX to 280 NX and more or less 

overlap each other. It is clearly shown in Fig. 6 that all the SESs of the five points have a high value 

close to the BPFI or its second harmonic, which indicates the existence of defects on the inter race of 

the bearing. Although the amplitude of BPFI peaks increases slightly from time instant A to C (Fig. 6 

(a), (b), (c)), it decreases in time instant D and it appears submerged at time instant E. Because of the 

complexity of the evolution of bearing damage, even though the SES method is suitable for detecting 
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the damage on the bearing, it is not quite a suitable approach to monitoring the health condition of the 

bearing based directly on its amplitude.  

Table 2. The optimal frequency band selected by the PMFSgram 

Time instant A B C D E 

Frequency band/[NX] [187.7~247.1] [215.8~ 275.2] [183.4~ 226.9] [197.0~ 256.4] [18.8~ 78.2] 

 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Fig. 6. The SES of the selected optimal frequency band; at time instant A (a), at time instant B (b), at time instant C (c), at 

time instant D (d), and at time instant E (e). 

4 Estimation of the RUL of bearings based on MAC2PSD 

The results obtained in the previous section have shown that the MAC2PSD is able to distinguish 

between the two last phases of the bearing life by means of a clear discontinuity. Thus, on one hand, it 

is meaningless to estimate the RUL of bearings using all the trends of the MAC2PSD, but on the other 

hand, this property is convenient for setting the first prediction time. Only the MAC2PSD values 

during the defect propagation phase (phase # 4) are employed here, since the MAC2PSD has a clear 

increasing trend in this phase. Compared with the phases of defect initiation (phase #3) and damage 

growth (phase #5), the increasing trend is noticeable during the defect propagation phase, and a 

mathematical model can be established.  

4.1. Determination of the threshold for the final failure 

In contrast to what occurs for most of the existing HIs, the determination of the threshold for the 

replacement before final failure for MAC2PSD, including a safety margin, is based on the 
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characteristic of the defect development. The highest value of MAC2PSD is part of the defect 

initiation phase (phase #3); this is characterized by an increasing trend and is used as a threshold value 

for the replacement. Fig. 7 shows how the threshold is defined for the two case studies described in 

section 3.  

The rationale of this choice lies in the property of MAC2PSD that takes into account the similarity 

between the PSDs during the bearing life, i.e., the actual HS. Therefore, during the final phases of the 

bearing life, the MAC2PSD should be less than the value it assumed after the defect onset. Similarly, 

during the last two phases, the highest value in each state should be less than that of the former state. 

Once the MAC2PSD increases to the fixed threshold according to the trend of the defect propagation 

phase (phase #4), the time 
EOLt  that corresponds to the end of life of the bearing can be estimated.  

  
(a) (b) 

Fig. 7. The threshold of MAC2PSD; the threshold of MAC2PSD for case study 1 (a) and the threshold of MAC2PSD for case 

study 2 (b). 

4.2. Determination of the first predicting time 

The determination of the FPT is the first step for predicting the RUL. Since the trend of MAC2PSD in 

the defect propagation phase (phase #4) is almost monotonic, a linear model can be used to fit a set of 

MAC2PSD data in phase #4. The least squares fitting is used and the fitting line, at time 3 4 4 5t t t→ →  , 

is: 

 ( ) t ty t m t q= +  (6) 

where 
tm  is the slope and 

tq  is the y-intercept, respectively, of the fitting line at time t . 

The fitting operation starts after two records are obtained from the beginning of the defect propagation 

phase, i.e., (3 4) 1t t → + . Considering the case study 2 of section 3, the different fitting lines and the 

corresponding slopes of the MAC2PSD for an increasing set of data are shown in Fig. 8. Fig. 8(b) 

shows that the slope 
tm  of ( )y t  converges quickly by increasing the number of records used for the 

fitting to a rather stable value. However, the slope 
tm  is below zero for several time instants before 

the time instant 593 in the magnified zone in Fig. 8(b). Considering the increasing trend of the 

MAC2PSD for the defect propagation phase (phase #4), an additional constraint for the determination 

of the FPT is that the slope 
tm of the time instant of FPT should be positive. Similarly, Fig. 8(a) also 

shows that ( )y t  fits the total trend of MAC2PSD with the increase in the number of records used in the 

fitting.  
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(a) (b) 

Fig. 8. The schematic diagram for determining the FPT; fitting lines in phase #4 (a) and the slope of the fitting lines (b). 

The criterion used in this paper to define the FPT is shown in Fig. 8(b); a moving-window-based 

method is applied to obtain the FPT, where the 
FPTt  is obtained as the first time instant for which 

either the relative rate of change of the mean value t  and variance 2

t  of the slope in the 

window are less than the given tolerance values  and  , respectively. The relative rate of change 

of the mean value 
t  and variance 2

t  of the slope in the window at time t  can be calculated as 

follows: 

 1

1

t t
t

t

 



−

−

−
 =  (7) 

 
2 2

2 1

2

1

t t
t

t

 



−

−

−
 =  (8) 

where t  and 1t −  are the mean values of the slope in the window at time t  and 1t −  respectively, 

and 
2

t ,
2

1t −  are the variances of the slope in the window at time t  and 1t −  respectively. 

Therefore, at the first prediction time, FPTt , the following three conditions should be satisfied at the 

same time: 

 
2

0

FPT

FPT

FPT

t

t

tm





 

 

 

 




 (9) 

where  ,   are the given tolerance values for the relative rate of change of the mean value and 

variance respectively. 

Since the slope 
tm  converges quickly and the time span of phase #4 is not very long, then a short 

window with a size of 6 is used here to determine the FPT. Meanwhile, the relatively small value of 

10% is given for   and  . It is a relatively strong constraint for getting a reliable FPT because it 

means that from time instant 1FPTt −  to FPTt , both 
t  and 

2

t  change less than 10%. The values of 

t  and 
2

t  for the case study 2 are shown in Fig. 9, along with the threshold of 10% assumed for 

  and  . Finally, according to the above rules, the FPT of case study 1 is the time instant 772 and 

the FPT of case study 2 is the time instant of 618.         
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(a) (b) 

Fig. 9. The relative rate of change of the mean value and variance of the slope in the window for case study 2; the relative 

rate of change of the mean value (a) and the relative rate of change of the variance (b) 

4.3. Estimation of the RUL 

The estimation of the RUL starts after the FPT has been determined. If 
tm  and 

tq  are the slope and 

the y-intercept of the MAC2PSD fitting line at time t ( 4 5FPTt t t →  ), the final failure time of a bearing 

can be evaluated when the ( )y t  equals the threshold (see Fig. 10). Hence, the estimation 
EOLt of the 

end-of-life time of a bearing at time t ( 4 5FPTt t t →  ) is given by: 

  EOL ( )
t

t

Threshold q
t t

m

−
=  (10) 

  

Fig. 10. The schematic diagram of estimating the RUL 

The predicted RUL (PRUL) is the difference between the estimated end of lifetime and the time 

instant t, i.e.: 

 EOLPRUL( ) ( )t t t t= −  (11) 

The actual RUL (ARUL), resulted from the run-to-failure tests, and the PRUL of the two case studies 

of section 3 are displayed in Fig. 11. It is clearly shown in Fig. 11(a) that the PRUL of case 1 

oscillates near the ARUL, which means the result of the PRUL is reliable. However, in Fig. 11(b), the 
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PRUL of case 2 oscillates below the ARUL, which means PRUL tends to zero slightly earlier than the 

ARUL. Furthermore, from the time instant 
FPTt  to the end of phase #4 of time instant 

4 5t →
, a time span 

of the estimation of the end-of-life time 
EOLt  can also be obtained (see Fig. 11). The minimum 

estimation of the end-of-life time 
EOLmin( )t  and the maximum estimation of the end-of-life time 

EOLmax( )t  are the two limit values of 
EOLt . The 

EOLmin( )t  is suggested as the final time instant of end 

of life. Even though it may waste part of the useful lifetime of the bearing in an actual situation, the 

wasted lifetime is not far away from the time of the final failure. During the wasted lifetime, the 

bearing operation conditions are already very harsh. Therefore, the 
EOLmin( )t  actually gives a further 

safety margin: the prediction of the failure time is slightly earlier than the actual failure time, which is 

very important for some expensive or high-accuracy mechanical systems. Hence, from the above two 

case studies, the estimation of RUL via MAC2PSD is feasible and acceptable. The main shortcoming 

of MAC2PSD applied to estimate the RUL is that the prediction time span could be short, but it could 

also be enough to assure the safe operation of machines, since the prediction time period is in the 

defect propagation phase but not in the final damage growth phase.     

  
(a) (b) 

Fig. 11. The actual RUL and the prediction of RUL using MAC2PSD; the PRUL of bearing data from the NSF I/UCR Center 

(a) and the PRUL of bearing data from the high-speed train traction test rig (b). 

5 Capability of MAC2PSD to avoid false positives 

Even though the effectiveness of MAC2PSD has been proved using data from two different test rigs in 

Section 4, the capability of avoiding “false positive” detection in the bearing HS is evaluated by 

considering an even harsher operating condition, i.e., that of bearings installed in the traction system 

of a locomotive used for commercial service. Operating conditions are generally variable, including 

variation of speed, temperature, transmitted torque, track conditions, etc.  

The locomotive used for the purpose of this research activity was placed in service in 2008 in the 

north of Italy, and a custom condition monitoring system was installed in late 2014. The sampling 

frequency is 25.6 kHz, and an eight-second signal is collected every two minutes. More details of the 

monitoring system are illustrated in (14). There was a scheduled overhaul from September 2015 and 

all the bearings on the locomotive powertrain were replaced by new bearings. Data from the end of 

2014 to the end of 2017 of the motor bearing M1 of the unit 4 on the non-driven side are used to test 

the performance of MAC2PSD. The bearing is an SKF 6318 deep-groove ball bearing. Outer race and 

cage damages (Fig. 12) on the bearing had been discovered by visual inspection during the overhaul at 

the end of 2015. Therefore, the conditions with a worn bearing (before the overhaul) and with a 

healthy new bearing (after the overhaul) can be considered. Even a large amount of data was collected, 

the operating conditions change all the time. Hence, before applying the MAC2PSD method, the data 
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need to be selected and filtered based on certain conditions, including the cruising speed between 140 

km/h to 150 km/h, the temperature of the bearing in the range of 70 °C to 100 °C, the torque of the 

motor varying from 10% to 30% of the maximum torque, and the same rotation direction of the 

bearing. After the filtering operation, only 246 records and 734 records are selected before (worn 

bearing) and after (healthy new bearing) the overhaul, respectively. 

An additional data checking process is performed, and some records are disregarded to assure that the 

final retained signals satisfy the following conditions: 1) the time difference of two consecutive 

records is larger than half an hour, 2) each record is quite stable during the sampling time window 

without an obvious jump from a certain time point, and 3) each record can carry out tacho-less order 

tracking correctly. A simple frequency domain tacho-less order tracking method is adopted here, 

which selects one clear harmonic of a reference signal, for example, the gear meshing signal, and then 

this harmonic is filtered out to go on the process of phase demodulation to obtain the phase 

information (42). Finally, 57 records and 175 records are kept, respectively, for the time before and 

after the overhaul. In an actual situation, the longer the time span, the harder it is for the locomotive to 

maintain a constant speed. Therefore, here only a one-second signal cut from the centre of the eight-

second signal is used for the following analysis. Since the number of records is comparatively small, a 

window with a size of 8 is used to obtain the MAC2PSD. The MAC2PSD and RMS of those selected 

records are displayed in Fig. 13. 

  
(a) (b) 

Fig. 12. Bearing damage inspection result; outer race damage (a) and cage damage (b). 

As expected, the RMS shown in Fig. 13 cannot give any information indicating the health condition 

of the bearing. However, the MAC2PSD has an obvious increasing trend before the time of overhaul 

(Fig. 13), which is quite similar to the increasing section of phase #3 and #4 of the two cases in 

section 3. This means that some defects may exist on the bearing and is in agreement with the 

inspection result of damages on the outer race and cage. Since the time span of the selected signal 

before the overhaul is only about half a year which is just about one-twelfth of the designed lifetime 

of the bearing and the bearing has been replaced before serious damage, it is impossible to confirm 

which phase the bearing was in, the defect initiation phase or the defect propagation phase. Compared 

to the MAC2PSD before the overhaul, the MAC2PSD after the overhaul generally oscillates but 

assumes high values in the range of 0.8 to 1, which means the bearing is in good condition (see for 

instance the trend of Fig. 4 in phase #2). This is accords well with the fact that a new bearing was 

installed after the overhaul. Furthermore, there is no obvious transition of the MAC2PSD at the 

beginning after a new bearing was installed, which may be because the running-in state is very short 

and without apparent differences compared with the steady state. Even though an obvious drop 

(circled in Fig. 13) occurs in the MAC2PSD close to the end of Nov. 2016, there is no obvious 

difference in MAC2PSD before and after that time instant. It can be seen as a normal fluctuation. 
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Although the operating conditions of the bearing on the commercial locomotive are very complex, the 

MAC2PSD is still effective, and its performance is very stable. 

 

Fig. 13. The MACPSD of bearing data from the locomotive 

6 Conclusions 

In this paper, to realize the goal of bearing CM, a new HI called ‘MAC2PSD’ is proposed based on the 

moving average cross-correlation of the PSD of the signals. The MAC2PSD method utilizes the 

relationship between the variation in PSD and the development of the defects in bearings and is able 

to track the evolution of health condition and can clearly divide the HSs of bearings. In comparison 

with RMS, MAC2PSD can indicate the occurrence of a defect earlier and more clearly. Furthermore, a 

linear model is proposed to estimate the RUL of bearings according to the trend of the MAC2PSD in 

the defect propagation phase. Compared with most of the existing health indices, the MAC2PSD can 

determine the failure threshold by itself. The MAC2PSD performs well when applied to two sets of 

bearing vibration data from two different test rigs. In addition, the effectiveness of MAC2PSD in 

avoiding false positives is tested via actual bearing vibration data from a commercial locomotive. 

MAC2PSD is a useful HI for bearing CM. However, MAC2PSD can only estimate the RUL in the 

propagation phase. Extension of the prediction time span and means of dealing with the gap between 

the PRUL and ARUL will be discussed in the future. 
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Acronyms 

ANN Artificial Neural Network 

ARUL Actual Remaining Useful Life 

BPFI Ballpass frequency, inner race 

BPFO Ballpass frequency, outer race 

BSF Ball (roller) spin frequency 

CM Condition Monitoring 

FTF Fundamental train frequency (cage speed) 

FPT  First Prediction Time 

GPR Gaussian Process Regression 

HI Health Index 

HMM Hidden Markov Model 

HS Health State 

RUL Remaining Useful Life 

MAC2 Moving Average Cross-Correlation 

MAC2PSD Moving Average Cross-Correlation of the Power Spectral Density 

PCA Principle Component Analysis 

PCC Pearson’s Correlation Coefficient 

PSD Power Spectral Density 

PRUL Predicted Remaining Useful Life 

RCC Cyclic Content Ratio 

REB Rolling Elements Bearing 

RNN Recurrent Neural Network 

RMS Root Mean Square 
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SES Squared Envelope Spectrum 

SVM  Support Vector Machine 
 


