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Abstract—In this paper we address motion segmentation, that
is the problem of clustering points in multiple images according
to a number of moving objects. Two-frame correspondences are
assumed as input without prior knowledge about trajectories.
Our method is based on principles from “multi-model fitting” and
“permutation synchronization”, and – differently from previous
techniques working under the same assumptions – it can handle
an unknown number of motions. The proposed approach is
validated on standard datasets, showing that it can correctly
estimate the number of motions while maintaining comparable
or better accuracy than the state of the art.

I. INTRODUCTION

Given a 3D dynamic scene with moving objects and a
collection of images, motion segmentation refers to the prob-
lem of segmenting the image points according to the moving
objects they belong to (see Fig. 1a). This problem has attracted
a lot of attention in the literature, thanks to its application in a
variety of tasks in Computer Vision and Robotics [1], [2], [3].
In this work we present MODE-U, a novel method that solves
the motion segmentation problem from pairwise matches for
an unknown number of rigid motions, as illustrated in Fig. 1b.

A. Related Work

Previous works on motion segmentation can be grouped
into three main categories, namely trajectory clustering, seg-
mentation with two-frame correspondences and with unknown
correspondences. As represented in Fig. 2, this taxonomy
reflects the different levels of prior assumptions made on input
data and hence the different degrees of practicality of the
various methods. Stronger assumptions, which however are
rarely available in practice, make the problem easier to deal
with at the expense of actual usability in real applications.

1) Trajectory Clustering: it is assumed that a set of points
is tracked through multiple images, and the task is to cluster
those trajectories (i.e., multi-frame correspondences) into dif-
ferent motions. This category – which is represented in the
right part of Fig. 2 – accounts for the majority of works in the
literature (e.g., [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]).
The typical scenario consists in videos with small motions be-
tween consecutive frames, which appear in surveillance, scene
understanding and autonomous driving. The main limitation
of these approaches is that trajectories are seldom available
in practice. For example, in the popular Hopkins dataset [15],
which has been extensively used in the literature, the input
trajectories are not fully realistic since they were filtered with
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(a) Motion segmentation problem

(b) Sample results of MODE-U

Fig. 1: (Top) A cartoon illustration of motion segmentation: given
a 3D scene with independently moving objects and a collection of
images with key-points, the aim is to identify the objects in the
images. (Bottom) The segmentation results obtained by MODE-U on
the Penguin sequence [4]. Our method correctly clusters most of the
points in two moving objects represented by a penguin (green) and
a bear (violet), without knowing in advance the number of motions.

manual operations. The same happens for the more recent
KT3DMoSeg benchmark [14] built on KITTI [16].

2) Segmentation with Two-frame Correspondences: the
task is to cluster image points (e.g., SIFT keypoints [17])
into different motions, assuming that matches between pairs
of images (i.e., two-frame correspondences) are available only.
This problem – represented in the middle of Fig. 2 – is
addressed in [4] and [18] only. Despite poorly studied, it
has a great practical relevance since it does not assume the
knowledge of multi-frame correspondences, which are hard
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Fig. 2: Existing works can be divided into three categories: (i) tra-
jectory clustering, (ii) segmentation with two-frame correspondences
and (iii) segmentation with unknown correspondences. When going
from right to left, the problem becomes more challenging since
assumptions are weaker (but more realistic). This paper belongs to
the middle category.

to compute in the presence of moving objects. The typical
scenario involves unstructured/unordered image sets with large
motions between different frames (e.g., the indoor scenes
used in [4], [18]), which appear in the context of multi-body
structure from motion [19].

3) Segmentation with Unknown Correspondences: it is as-
sumed that a set of image points (e.g., SIFT keypoints) is given
with unknown correspondences, and the task is to compute
multi-frame correspondences while at the same time classi-
fying those trajectories into different groups. This problem –
represented in the left part of Fig. 2 – is analysed in [20]
and [21] only. Observe that addressing motion segmentation
under such a weak assumption is very difficult due to the
large number of unknowns, and existing approaches are not
practical: in [20], [21] the number of expected trajectories is
set to (at most) 200 due to algorithmic complexity.

B. Contribution and Outline

In this paper we tackle motion segmentation with two-
frame correspondences. We are interested in this problem
since it lies at the middle between trajectory clustering and
the case of unknown correspondences, hence it represents
a good trade-off between making realistic assumptions and
addressing a feasible task. Our work is based on [4] where
a two-step strategy is proposed: first, motion segmentation is
solved on different image pairs independently; secondly, such
partial results are properly combined to get a multi-frame
segmentation. The main drawback of such technique is that
it assumes that the number of motion is known in advance.
However, this information is hardly available in practical
scenarios. In this paper we extend [4] to the case of unknown
number of motions, thus providing a novel solution to motion
segmentation with two-frame correspondences, which is able
to work under more realistic assumptions. Experiments show
that the proposed approach successfully estimates the correct
number of motions on standard datasets, being comparable to
[4] in terms of accuracy.

Retrieving the number of motions was already done in
previous works (e.g., [12], [14]). However, note that such
methods consider a different task than ours, for they address

trajectory clustering. In other words, our method is the first one
that is able to handle an unknown number of objects within
the category of methods performing motion segmentation with
two-frame correspondences.

The paper is organized as follows. Sec. II defines some
background notions necessary to understand the paper. Sec. III
is devoted to present our method and differences with respect
to [4] are also illustrated. Experiments are reported in Sec. IV
and the conclusion is drawn in Sec. V.

II. BACKGROUND

In this section we briefly review two topics which are
essential to define our method, namely “multi-model fitting”
and “permutation synchronization”.

A. Multi-model Fitting

Multi-model fitting aims at extracting multiple parametric
models from unstructured data to segment it in higher-level
geometric descriptions. Motion segmentation in two images
can be seen as a particular instance of this problem, where
the fitted parametric models are fundamental matrices and the
segmentation corresponds to rigid bodies. In simple terms, if
a 3D point undergoes a rigid motion, its projections in two
images are related by a second order relation described by a
fundamental matrix [22], with different motions giving rise to
different fundamental matrices. Therefore, given two images
of the same dynamic scene and a set of noisy matches (usually
corrupted by outliers), a segmentation of the matches in rigid
bodies can be obtained by robustly fitting fundamental matri-
ces and by grouping together the matches that are described
by the same two-view relation.

Several challenges make this problem difficult. First, the
estimation procedure must tolerate both rogue mismatches and
pseudo-outliers. Second, the fit of models and the segmenta-
tion of points are closely intertwined steps that give rise to
a sort of chicken-and-egg-dilemma (the segmentation must be
derived from models, but at the same time models must be fit-
ted to segments). Moreover, the problem of multi model fitting
is inherently ill-posed: many different interpretations of the
same data are possible. For this reason, several regularization
strategies that constrain the solution using prior information –
usually in the form of one or more parameters – are employed.

Several approaches have been proposed to solve this prob-
lem, that range from energy-based optimization (e.g., [23],
[24], [25]) to clustering formulations (e.g., [26], [27], [28]).
T-linkage [27] is a multi-model fitting algorithm that belongs
to the latter category which is closely related to our solution
to motion segmentation, as it does not require as input the
number of models to retrieve. T-linkage follows a two-step
first-represent-then-clusterize paradigm. The main idea is to
describe data points in a conceptual space as vectors of
“preferences”, which measure how well they are fitted by a
pool of provisional models instantiated via random sampling.
The rationale is that – in this conceptual space – the inliers
of a parametric model can be recognized as clusters of
neighbouring points sharing similar preferences. In practice,



model hypotheses are instantiated from a minimal sample set
(i.e., the minimum number of points necessary to fit a model),
residuals are computed for every model, and the preference
a point grants to a model is expressed in term of its residual
using a robust voting function. An inlier threshold ε is used
to cutoff preference votes when residuals are bigger than ε.

The segmentation step in T-Linkage is performed exploiting
a bottom-up hierarchical clustering scheme. At first, every
model is put in its own cluster, then the two clusters having
more similar preferences (measured with the Tanimoto dis-
tance) are merged together. The merging phase continues until
there exists a sampled model that can explain all the points
belonging to two distinct clusters. In this way the number
of clusters is automatically detected. The inlier threshold
works as a regularization parameter: by defining the size of
the inlier set of models, it implicitly controls the number
of attained models. This approach is robust to outliers, that
turns to be isolated points in the conceptual space. Typically,
outliers emerge as micro-clusters that can be easily pruned
out with outlier rejection criteria, the simplest being based
(for example) on cluster cardinality.

B. Permutation Synchronization

Matches between objects (e.g., key-points) in two structures
(e.g., images or shapes) are represented by a permutation ma-
trix, which can be either total (square) or partial (rectangular).
A total permutation has exactly one entry in each row and
column equal to 1 and all other entries are zero. A partial per-
mutation has at most one nonzero entry in each row and col-
umn, and these nonzero entries are all equal to 1. The former
requires all the objects to be visible in both structures, whereas
the latter models missing correspondences. Synchronization of
permutation matrices is equivalent to joining matches in multi-
view correspondences (e.g., across multiple images or shapes)
while enforcing loop-closure constraints. This is a particular
case of the more general “synchronization” problem [29].

Permutation synchronization is hard to solve due to the com-
binatorial nature of the problem, hence existing approaches
usually rely on approximate solutions (see [30], [31], [32],
[33], [34], [35], [36], [37]). Moreover, the presence of noise
(i.e., false matches) increases the difficulty of the problem.
Another relevant issue concerns the number of objects. In
the case of total permutations, it is clear that the size of the
permutations equals the total amount of objects. In the (more
practical) case of partial permutations, instead, it is not obvious
how many objects are present due to missing correspondences.
To overcome such difficulty, some approaches (e.g., [30])
address a simplified problem by assuming that the total amount
of objects across all the structures is known. Among existing
methods, we are particularly interested in MatchEIG [34] and
QuickMatch [35], which are illustrated here and will be used
in the next section.

MatchEIG: this method works with partial permutations and
it requires an over estimate of the total amount of objects
(denoted by f ), which in practice is set equal to twice the
average number of objects present in each structure. The

authors of [34] introduce a big block-matrix, named the
“measurement matrix”, which collects all the permutation
matrices representing matches between pairs of structures.
First, the measurement matrix is projected onto its rank-f
approximation via spectral decomposition; then, such approx-
imation is transformed into a binary matrix using a threshold
0 ă t ă 1; finally, each block – representing matches between
two structures – of the binary matrix is projected onto a
partial permutation using a greedy strategy. MatchEIG can
be interpreted as a denoising procedure, which reduces the
number of false matches and completes missing matches with
new ones retrieved indirectly via loop closure. However, multi-
view correspondences are not computed explicitly.

QuickMatch: this method works with partial permutations
and it computes multi-view correspondences while automati-
cally estimating the total number of objects. The authors of
[35] interpret the measurement matrix as the adjacency matrix
of a graph, hence permutation synchronization is cast to a
“graph clustering” problem. Such a problem is solved with
QuickShift [38], which performs clustering by seeking the
modes of an empirical density estimate. Exclusion constraints
are also considered in the formulation, in order to ensure that
a single cluster cannot contain two objects from the same
structure. The number of clusters is automatically detected
since the problem is solved in a bottom-up way, similarly
to T-Linkage. At the end micro-clusters (i.e., clusters with
cardinality lower than a parameter τ ) can be possibly removed
in order to improve robustness to outliers.

III. PROPOSED METHOD

In this section we derive our solution to motion segmenta-
tion, which can be seen as an extension of MODE [4] to the
case where the correct number of motions is not available.
This covers more scenarios of practical interest. The proposed
approach is named MODE-U where “U” stands for unknown
number of motions.

A. Problem Formulation

The task is to segment p “
řn
i“1 pi points in n images

according to d motions, where pi denotes the number of points
in image i. It is assumed that correspondences between points
in image pairs are available. Such a task can be expressed
as the problem of estimating the “total segmentation” of each
image starting from a redundant set of “partial segmentations”,
which are defined as follows.

The total segmentation of image i is denoted by

si P t0, 1, . . . , du
pi (1)

and it represents the labels of points in image i: labels from
1 to d identify the membership to a specific motion, while
the zero label identifies the unclassified points, that are those
points whose cluster can not be established due to the presence
of mismatches.

The partial segmentation of pair α “ pi, jq is denoted by

tα P t0, 1, . . . , du
mα (2)
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Fig. 3: Images and a sample of a total segmentation. The task is to
assign a label (green or pink) to each point in several images based
on the moving object (square or circle) it belongs to.

and it represents the labels of corresponding points in images
i and j: labels from 1 to d identify the membership to a
specific motion, while the zero label identifies those correspon-
dences which are labelled as outlier. Here mα ď mintpi, pju
denotes the number of matches in the pair α. Note that
tα P t0, 1, . . . , du

mα gives rise to two vectors

sαi P t0, 1, . . . , du
pi

sαj P t0, 1, . . . , du
pj

(3)

which contain labels of corresponding points in images i and
j, where missing correspondences are given the zero label.
The superscript in Eq. (3) refers to an image pair whereas
subscripts refer to images in the pair. In this paper Greek letters
are used to denote pairs of images.

Observe that total segmentations are global/absolute
whereas partial segmentations are relative/local. The former
represent our desired output, shown in Fig. 3, whereas the
latter can be computed as explained in the next paragraph and
they are represented in Fig. 4.

B. Two-frame Segmentation

Motion segmentation in two images can be seen as an in-
stance of multi-model fitting, where we aim at fitting multiple
fundamental matrices to corresponding points (see Sec. II-A).
To accomplish such a task, we exploit T-linkage [27], that
handles an unknown number of motions. The input data consist
in matches between two images i and j, and the output is a
partial segmentation tα with α “ pi, jq. Given an estimate
of the inlier threshold ε – that was fixed to ε “ 0.1 in
all our experiments – T-linkage segments all the matches by
fitting fundamental matrices, including outliers. A very simple
outlier rejection strategy is employed to get rid of the majority
of mismatches: clusters having less than 8 points (which
is the minimal number of matches required to instantiate a
fundamental matrix) are rejected.

This procedure is applied to all the image pairs in order to
obtain the partial segmentations. Two challenges have to be
addressed:

Image 3 Image 4

t (3 ,4)

Image 4Image 2

t (2 ,4)

Image 1 Image 2

t (1 ,2)

Fig. 4: Sample image pairs and their partial segmentations. Note that
results may be noisy and they are not absolute: the square is given
the pink label in the top pair but it is given the green label in the
bottom pair.

‚ Ambiguity: each partial segmentation considers its own
labelling of the motions, i.e., the same motion may have
a different label in different pairs;

‚ Robustness: each partial segmentation may contain errors,
which are caused either by mismatches or by incorrect
results attained by T-Linkage coupled with the outlier
rejection based on cardinality.

In the next paragraphs we will explain how to address these
challenges one at a time.

C. Ambiguity

Let us construct a graph G “ pV, Eq with vertex set V and
edge set E as follows:
‚ each vertex corresponds to one pair of images;
‚ an edge is present between two vertices if and only if the

associated pairs have one image in common.
Each vertex in the graph corresponds to an unknown permu-
tation, as shown in Fig. 5. The interpretation is that – after
applying the permutation Pα to the partial segmentation tα –
the ambiguity in the local labelling of motions is fixed, so that
the same motion has the same label in different pairs. Each
edge in the graph corresponds to a known permutation derived
as follows. Let k be a common image between pairs α and β
(i.e., k P α X β) and let Pαβ denote the permutation matrix
associated with the edge pα, βq, that is computed as follows

Pαβ “ bestMap psαk , s
β
kq. (4)

Equation (4) means that Pαβ is the permutation that best maps
the vector sαk (i.e., labels of image k in pair α) into the vector
sβk (i.e., labels of image k in pair β). Recall that sαk and sβk
are recovered from tα and tβ respectively via Eq. (3). Finding
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Fig. 5: The graph formulation of the permutation synchronization
problem. The vertices represent unknown permutations associated
with image pairs. The edges represent known permutations between
partial segmentations.

Pαβ is a linear assignment problem, which can be solved with
the Hungarian algorithm [39].

To sum up, we have to address the problem of recovering
an unknown permutation Pα for each vertex α P V starting
from a (redundant) set of permutations Pαβ with pα, βq P E .
Such matrices satisfy the following consistency constraint

Pαβ “ PαP
T
β (5)

which defines a permutation synchronization problem. With
reference to the terminology used in Sec. II-B, “objects”
correspond to motions and “structures“ correspond to image
pairs. In other words, the task is to connect motions across
multiple image pairs. Observe that the involved permutation
matrices may be partial/rectangular: it can happen that two
partial segmentations have a different number of objects if T-
Linkage estimates a wrong number of motions. This usually
happens in the case where some spurious models with small
support are retained as valid motions by the simple outlier
rejection implemented to refine the segmentation.

In order to solve permutation synchronization, we proceed
as follows:

1) a measurement matrix is constructed from the permu-
tations tPαβupα,βqPE which is refined with MatchEIG
[34]; the parameter t (which is used to threshold the
entries in order to get binary values) is set to t “ 0.3 in
our experiments1;

2) QuickMatch [35] is applied to the refined measurement
matrix constructed in the previous step; the parameter
τ (which defines the cardinality of micro-clusters to be
removed) is set to τ “ 5 in our experiments1.

Step 1 has the effect of removing potential errors in the
input permutations (caused, e.g., by a wrong estimation of
the number of motions in some partial segmentations). Step

1This value provided good results in all our experiments. This choice is
not critical and other values gave similar performance.

Two-frame
segmentation
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Fig. 6: Our approach and MODE [4] address motion segmentation
with two-frame correspondences based on the following general
approach: first, segmentation is addressed on pairs of images via
multi-model fitting; then, segmentation is solved on all the images
by permutation synchronization and robust voting.

2 has the effect of fixing the permutation ambiguity while
estimating the number of motions. Recall that QuickMatch
works under the assumption of an unknown number of objects
(see Sec. II-B), so it is suited to our problem. At the end, the
permutation Pα is applied to the partial segmentation tα for
each pair α. This has the consequence of (possibly) reshuffling
the labels of motions in individual image pairs, so that the
same motion has the same label in different pairs.

D. Robustness

We now explain how to address the “robustness” challenge.
Observe that Eq. (3) means that each partial segmentation
provides a possible solution for the total segmentation of the
two images involved in the pair. Thus, for a given image,
several solutions are available for its total segmentation, which
are given by tsαi s.t. α P Tiu. Here Ti denotes the set of all
the pairs involving image i. In order to assign a label to each
point, the following voting criterion [4] is used

sirrs “ mode tsαi rrs s.t. α P Ti, sαi rrs ‰ 0u (6)

with r “ 1, . . . , pi and i “ 1, . . . , n. The idea is that the
most frequent label (i.e. the mode) is, in general, correct in
the presence of moderate noise. Observe that both missing
correspondences and points labelled as outlier (if any) are
ignored (i.e., the mode is computed over remaining points),
as stated by the condition sαi rrs ‰ 0. We set sirrs “ 0 (i.e.,
point r in image i is labelled as unknown) in the case where
sαi rrs “ 0 for all α P Ti, meaning that the point is either
missing or classified as outlier in all the pairs.

E. Final Remarks

We observe that both our method (named MODE-U) and
MODE [4] can be seen as instances of the same general
framework, illustrated in Fig. 6. First, motion segmentation is
solved on different image pairs independently; then, such local
results are combined in a multi-frame segmentation by permu-
tation synchronization (which fixes the permutation ambiguity)
followed by a robust voting scheme (which handles noise).
MODE and MODE-U differ for the techniques used to address
two sub-tasks, namely two-frame segmentation and permuta-
tion synchronization, as clarified in Tab. II. MODE uses Robust
Preference Analysis (RPA) [28] for the first task and Spectral
[30] for the second task, whereas our approach uses T-Linkage



TABLE I: Misclassification error [%] (the lower the better) and classified points [%] (the higher the better) for several methods on the
data used in [4], [18]. The number of motions (denoted by d), the number of images (denoted by n) and the total number of image points
(denoted by p) are also reported for each scene. The left column under MODE-U reports the number of motions estimated by our method
(denoted by pd), while the right column reports the percentage of image pairs where T-Linkage recovers the correct number of motions. The
best results are highlighted in boldface.

MODE-U MODE [4] SYNCH [18]
Dataset d n p pd Error Classified Motions Error Classified Error Classified

Pen [18] 2 6 4550 2 1.55 89.08 100.00 0.58 80.07 0.82 83.23
Pouch [18] 2 6 4971 2 1.39 60.79 73.33 3.79 65.34 4.15 69.89
Needlecraft [18] 2 6 6617 2 1.80 67.07 86.67 0.83 72.81 1.04 76.76
Biscuits [18] 2 6 13158 2 1.12 90.42 93.33 0.47 84.47 0.51 87.28
Cups [18] 2 10 14664 2 2.05 71.31 95.56 0.56 65.42 1.01 69.82
Tea [18] 2 10 32612 2 0.69 85.21 88.89 0.29 81.70 28.12 52.21
Food [18] 2 10 36723 2 0.78 82.34 88.89 0.36 76.19 0.56 80.66
Penguin [4] 2 6 5865 2 1.36 66.60 91.67 0.76 69.17 44.21 46.97
Flowers [4] 2 6 7743 2 1.51 75.50 86.67 1.23 73.65 1.62 77.28
Pencils [4] 2 6 2982 2 3.09 51.01 73.33 3.80 65.33 27.53 40.44
Bag [4] 2 7 6114 2 2.78 52.91 80.95 1.52 57.95 25.92 54.27
Bears [4] 3 10 15888 3 3.48 68.21 31.11 4.82 73.65 38.95 74.59

[27] for two-frame segmentation and MatchEIG [34] com-
bined with QuickMatch [35] for permutation synchronization.
These different choices reflect different assumptions made by
MODE and MODE-U: the former assumes a known number
of motions, whereas the latter assumes an unknown number
of motions, which is automatically estimated. Indeed, observe
that RPA [28] performs multi-model fitting based on divisive
partitional clustering and it requires as input the number of
clusters. Spectral [30] works with total permutations, hence
it assumes that the total amount of objects is known. T-
linkage, MatchEIG and QuickMatch, instead, do not make
such restrictive assumptions, as explained in Sec. II. As a
consequence, our method is more general and practical, being
able to handle scenarios where it is not possible to know in
advance how many objects are moving in the scene.

TABLE II: Our approach and MODE [4] use different solutions for
two-frame segmentation and permutation synchronization, that are
key components within the segmentation pipeline in Fig. 6.

Two-frame segmentation Permutation synchronization

MODE [4] RPA [28] Spectral [30]
MODE-U T-Linkage [27] MatchEIG [34] + QuickMatch [35]

IV. EXPERIMENTS

In this section we assess the behaviour of MODE-U.
The Matlab implementations of T-Linkage2, MatchEIG3 and
QuickMatch4, which are used within our motion segmentation
pipeline, are publicly released. We compared our approach
with MODE [4], which is reviewed in Sec. III-E, and we also
included SYNCH [18] in the evaluation. The latter starts from
multiple two-frame segmentations computed with RPA – as

2http://www.diegm.uniud.it/fusiello/demo/jlk/
3http://www.diegm.uniud.it/fusiello/demo/mvm/
4https://bitbucket.org/tronroberto/quickshiftmatching

done by MODE– and it applies spectral clustering [40] to get
the final segmentation, by leveraging on a matrix represen-
tation of motion segmentation. The Matlab implementations
of MODE and SYNCH are available online5. Observe that all
the analysed techniques belong to the same category (repre-
sented in the middle of Fig. 2), namely they address motion
segmentation with two-frame correspondences. See Sec. I-A
for more details about how to divide motion segmentation
literature into three categories. Observe also that both MODE
and SYNCH assume that the number of motions d is known a
priori, whereas MODE-U automatically estimates such value
from the data.

We considered the benchmark proposed in [4] and [18],
which provides image points with ground-truth labels and
noisy two-frame correspondences (obtained with SIFT [17]).
The dataset comprises 12 indoor scenes with two or three
motions counting from 6 to 10 images. As done in [4] and
[18], we computed both the misclassification error – defined
as the percentage of misclassified points over the total amount
of classified points – and the percentage of points labelled by
each method.

Results are reported in Tab. I, showing that all the analysed
techniques classify a significant amount of points in most
cases. Note that one can not expect to classify all the data
in practice, due to the presence of mismatches, as already
observed in [4], [18]. Concerning the misclassification error,
the best results are achieved by MODE-U and MODE, whereas
SYNCH presents poor performances in 5 out of 12 sequences.
Hence the latter does not represent a practical solution to
motion segmentation. It is remarkable that our method (which
automatically estimates the number of motions) is comparable
in accuracy to MODE (which assumes the correct number
of motions as input). In other words, MODE-U successfully
solves motion segmentation while working under more diffi-

5https://github.com/federica-arrigoni/ICCV 19
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Fig. 7: Histograms showing the distribution of the number of motions detected by T-Linkage on the data used in [4], [18]. Each point in
the horizontal axis corresponds to a possible number of motions in an individual pair of images. Each point in the vertical axis corresponds
to the amount of pairs where a given number of motions is estimated. The correct number of motions (denoted by d) is also reported for
each scene.

cult and practical assumptions than the state of the art. The
high accuracy achieved by our method can also be appreciated
in Fig. 1b, which shows visual results obtained on a sample
sequence.

We conclude this section with some remarks about the
estimation of the number of motions. Observe that T-Linkage
– which constitutes a sub-block of our approach – does not
recover the correct number of motions in all the situations, as
shown in Tab. I. In particular, it correctly estimates the number
of motions in all the image pairs in the Pen sequence only.
In the remaining sequences, T-Linkage correctly recovers the
number of motions only in a subset of the image pairs. For
instance, such subset is about 30% of all the pairs in the Bears
sequence. Further information is reported in Fig. 7, which
shows the distribution of the number of motions detected by
T-Linkage on each scene. For instance, observe that more
than 10 motions are detected in two image pairs in the Bag
sequence (see Fig. 7k). A wrong estimation of the number
of motions introduces errors among two-frame segmentations.
It is remarkable that our approach is able to adjust such
errors: MODE-U correctly recovers the number of motions
in all the sequences and it solves motion segmentation with
low misclassification error, as shown in Tab. I. The reason
for the success of our method is two-fold: firstly, permutation

synchronization removes spurious objects which do not exist
in the scene but are caused by over estimating the number of
motions; secondly, our method is robust to errors in individual
two-frame segmentations since it exploits redundancy.

V. CONCLUSION

We presented a novel solution to the problem of motion
segmentation with two-frame correspondences, which is a
poorly studied task. The key components of our approach
are a “multi-model fitting” block, which is solved with T-
Linkage [27], and a “permutation synchronization” block,
which is solved with MatchEIG [34] and QuickMatch [35].
Differently from previous works considering the same assump-
tions (namely [4], [18]), our approach can handle an unknown
number of motions, hence it is more general and it is better
suited for practical scenarios. Experiments demonstrate that
our method achieves comparable or better accuracy than the
competing techniques on existing benchmarks, while correctly
estimating the number of moving objects in every scene.
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