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Abstract

We presentan approachto supporteffective learningandadaptationof behaviorsfor autonomous
agentswith reinforcementlearning algorithms. These methodscan identify control systemsthat
optimize a reinforcement program, which is, usually, a straightforvegmesentatiorf the designer's
goals. Reinforcement learning algorithms are usually too slow to be applied! time on embodied
agents, although they providesaitableway to representhe desiredbehavior.We havetackledthree
aspectf this problem:the speedof the algorithm, the learning procedure and the control system
architecture Thelearning algorithmwe have developed includes featu@speedup learning,suchas
niche-basedearning, and aepresentatiomf the control modulesin termsof fuzzyrules that reduces
the search space, and improves robustnessto noisy data. Our learning procedure exploits
methodologies such #sarning from easy missiorad transfer of policy from simpler environments
to the more complex. The architectureof our control systemis layeredand modular, so that each
module has low complexity andit canbe learnedin a shorttime. The compositionof the actions
proposedby the modulesis either learnedor pre-defined.Finally, we adopt an anytime learning
approachto improve the quality of the control system on-line and to adaptit to dynamic
environments.

The experiments we present in this paper consammingto reachanothermoving agentin a real,
dynamic environment that includes nontrivial situations such as when the naxgetjs fasterthan
the agent, and when the target is hidden by obstacles.
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1. INTRODUCTION

Machine LearningML) techniques are ofteadoptedto learnthe control systemof an autonomous
agent that should perform a pre-defined task. ML is used todesignefforts, whenthe environment
is not easy to model, and the task is only known in tesfreshigh level descriptionof the goals.In
particular, Reinforcementearning (RL) (Kaelbling, Littman, Moore, 1996) seems,in principle,
suitablefor addressinghis problem. The task and goal descriptionscan be easily usedto define a
reinforcement prograrthat rewards those contrattionsthat bring the agenttoward the achievement
of the goal. The RL algorithmtypically optimizesthe expecteduture reward,resultingin a control
system that implements the desired behavior.

However, in many situations, learning wighreal, embodiedagentmay be hard, sincethe learning
algorithm is slow, and data acquisition makes it even slower. It is typical to lerdral cycle (i.e.,
a sense-acsequence)asting up to 1 second,and learning algorithms requiring millions of control
cycles to converge. This means that a learning activity may last days, whergtas our agentscan
survive less than 1 hour without recharging their batteries.

We present an approach to speed-up reinforcement leah@hgonsiderghreeaspectsthe learning
algorithm, thelearning sessio@nd thecontrol system structur&Ve will demonstratea RL algorithm
effective in learning completeehaviorsfor embodiedautonomousagents.We operatein an anytime
learning framework (Grefenstette1992) that makesit possibleto run the learning algorithm in a
simulated environment in parallel with the real agent to improve the quality of the control syem,
to adapt it to dynamic environments.

1.1 SPEEDING UP REINFORCEMENT LEARNING

There are many possibilities to speed up RL algorithms. One of them consists of seléntited
set of variablesand values, such that the searchspaceis small. Often, this has been done by
partitioning the variable rangesto few intervals(e.g., (Mahadevarand Connell, 1992) (Dorigo and
Colombetti, 1994)). This may producediscontinuousoutput, and an excessiveapproximationthat
may leadto perceptualaliasing (Whiteheadand Ballard, 1991). An alternativeapproachconsistsof
partitioning thevariablevaluesinto fuzzy sets(Zadeh,1966). The resultingmodelstill exploits the
data precisionavailable from sensorsand actuators,althoughit is basedon few linguistic values
(Saffiotti, Konolige, and Ruspini, 1995), (Bonarini, 1996a). We discussthe use of fuzzy setsto
represent the variables of the control system in Section Zhadesuccessfullyadoptediuzzy models
in ELF (Evolutionary Learning of Fuzzy ruleg (Bonarini, 1993), (Bonarini, 1994a), (Bonarini,
1996a), the learning system that we have also used in the experimental activity presented in this paper.
In Section 3, wepresentELF anddiscussits main features,ncluding its niche-basedartitioning of
the population,which reducescompetitionamong different solutions and contributesto reachinga
solution in a short time. A completiescriptionanddiscussionof ELF hasbeenpresentectlsewhere
(Bonarini, 1996a), and it is outside the scope of this paper.

Another approachto increasingthe speedof a reinforcementlearning algorithm is based on
decomposinghe task into simpler ones. This approachis very common both in Raobotics (e.g.,
(Brooks, 1986), (Arkin, 1992), (Saffiotti et al., 1995)(Mataric, 1995)), arddimforcementearning
(e.g., (Mahadevarand Connell, 1992), (Singh, 1992), (Dorigo and Colombetti, 1994), (Mataric, in
press)). Different decomposition methods have been proposed. In Seet®discusssomeof them,
and we propose a decomposition technique based on the acélifsisvariablesusedby the modules
of the control architecture We presentan exampleof the applicationof suchtechniquedo the task
described in Section 4, where the agent attempts to learn to reach a moving target, even when this runs
faster, and it is occasionally hidden by obstacles.

The last approach to speed up learning that we consider in this paper consists of dasaymétely
the learning sessionsFor instance we may run the learningsystemon increasinglydifficult tasks,
performing shaping of the agent (Singh, 1992), (Dorigo, Colombetti, 1994). When theatdskso
decomposed;learning from easymission$ (Asadaet al., 1994) may bring the systemto converge
quickly to the desired behavior. In some cases it may also be passlbbenbehaviorsin simplified
environments,so that the correspondingcontrol system can successfullyact in more complex
situations(transfer of policy). In Section 6, we discusshow we have adoptedthesetechniquesto
obtain fast convergena® our learningalgorithm appliedto the abovementionedtask. In Section7
we report experimental results supporting all the design choices discussed in the paper.



1.2 ANYTIME LEARNING

Despitethe techniquesve mentionedo speedup learning,it may still be hard to learn on real,
embodiedautonomousagents.Perhapsfor this reason,most of the papersabout learning agents
concern simulated environments. However, ivedl known that the modelsusedin simulation may
hide important aspects that could make the agent fail in a real environment, when running the behavior
learned in simulation (Brooks, Mataric, 1993).

Learning in simulation is much faster than in the real world: a simutaiettol cycle may last few
milliseconds, thus feeding data to the learning algorithm at a rate up to 1,000 times fasterréwin the
agentrunning in real time. Moreover, many learning techniquesmay run only in simulated
environments since they rely on specific sessionsettings, such as random re-positioning of the
learning agent every few steps to enhance the exploration of the search space, or evéaldiffécant
behaviorsin the samesituations,as, for instance,s donewith Learning Classifier SystemgLCS
adopting the "Pitts" schema (Booker, 1988)(Booker, et al., 1989).

The main problemwith learningin simulatedenvironmentsconcernghe model of the interacting
agent and environment adopted in simulation. i i "good" representatiomf the real world, andit
has a computationally tractable mathematicalstructure, then Optimal Control (Kirk, 1970) and
Adaptive Contro(Sastry and Bodston, 1989) techniques are guaranteed to ptbeumestcontrollers.
In practice,thesetechniques caonly be appliedto few classesof models,which are inadequateto
represent all the relevant aspects of the environmengdalk andthe agent.In general the behavior
learned on an inaccurate, simplified model may nafi@ropriatein the real environment.Moreover,
a model identified at a given moment may become invalid at a later time, since the main characteristics
of the environment and the agent may vary.

To addressall theseproblemswe haveadoptedan anytimelearning approach.The term "anytime
learning’ was introduced by Grefensteti@refenstette1992)to denotea classof learningalgorithms
having the characteristicof anytime algorithms (Dean and Boddy, 1988): the algorithm can be
suspended and resumed with negligible overhead, the algorithm can be terairetgtime andwill
return someanswer,andthe returnedanswersimprove over time. The anytime learning algorithm
proposed by Grefenstette has two modules running in paralgrising systemthat learnsbehaviors
running on a simulated environment, andeaecution systeitmat controlshe embodiedagentin the
real environment.The executionsystemusesthe best controller producedso far by the learning
system, which continues to try to improve it, running in parallel. Atstimaetime a monitor checks
whetherthe model adoptedfor the simulation still matcheshe actualenvironment,and, eventually,
updates the simulation model. Thus, when the environment changes, the simulation modéiad
accordingly, and the learning system works on a simulated environment always reflecting the real one.

In Grefenstette's original work (Grefenstette, 19@2)efenstettein press),only few parametersre
monitored and updated. Moreover, the learning systerhémming Classifier Syste(Booker, 1988),
(Booker et al., 1989), where a Genetic Algorithm (Goldberg,1989) learnsthe best controller by
evolving a population of controllerthus following the "Pitts" schemaThis requiresthe evaluation
of a lot of genes, each one representing a whole controller, and each controller shestiedeaough
to estimatdts value. Sincethis may requirea large amountof computationatime (Grefenstettein
press), it may not be appropriate for many applications (Bonarini, 1996a).

The proposal we present in this paper belongha@mnytimelearningframework,but with a more
efficient learningalgorithm anda different control model, basedon fuzzy setsinsteadof intervals.
Moreover,we exploit the anytimelearningschemaby learningfrom simulatedeasy missions, and
with a comparativereinforcementprogram, applicable only in a simulated setting. Finally, our
monitor checks not only the limiparametergsuchas maximum speedand maximum steeringangle
(Grefenstette, in press)), but also more interesting parameters, as discussed in Section 5.

2. FUZZY MODELS AND REINFORCEMENT LEARNING

In this Section, we introduce and motivate the adoption of fuzzy models for the control gydiem
learnedby reinforcementiearningalgorithms(Bonarini, 1996c¢). Fuzzy sets are a powerful tool for
representingetswith fuzzy boundariesAny elementof the universeof discoursecan belongto a
fuzzy set with a givedegree of membershjpthatrangesfrom 0 to 1. Given a rangeof continuous
values (such as real numbersisitpossibleto definea membershigfunction that gives the degreeof
membershifu to a fuzzy set of anyalue belongingto the universeof discourseEachfuzzy setcan
be denoted by bel that, usually, also denotesa classof valuessignificantfor the application.For



instance, whemlesigningan embodiedautonomousagent,it may be relevantto distinguishbetween
closeanddistantobjects, or amont@rge, medium andlow speed.

Fuzzy sets have the interestingproperty of admitting partial overlapping of their membership
functions. This givesthe possibility of a gradualchangeof classificationof contiguousvaluesas
belonging to contiguous classes, as shown by the fuzzy representation on the left of figure 1. Here, we
have three fuzzy sets, each corresponding to a class relevémd foterpretationof the variableDist,
the distance from an object in front of the agent.

*** INSERT FIGURE 1 ABOUT HERE ***
With a fuzzy classification,the value 100 is considerecas completelyNormal pyorma(100) = 1;

the nearbyvalue 110 is still consideredas Normalwith a degreeiiyo,ma(110) = 0.5 but it is also
considered aBistantto someextentppsan{110) = 0.5. With an interval-basedtlassificationas the

one shown on the right, which is commonly adoptedfor autonomousagents,the value 109 is
considerechs Normal andthe closevalue 111 is consideredas Distant This is in contrastto the
common sense interpretation of these classes, and may result in abrupt didhgestiontakenby
a control system basedon this classification.It is possible that people and animals adopt a
classificationapproactsimilar to the fuzzy one (Zadeh,1966), sinceit is easierto reasonwith few
conceptsnsteadof with single membersof a potentially infinite set of real values;in addition, the
quality of the available sensorsencourageshe developmentof conceptswith fuzzy bordersand
partially overlapping. The same considerations can also be drawn for embodied artificial agents.

As shownon the right of figure 1, a fuzzy setmay also describean interval, andin particularan
interval consistingpf only one point: a crisp value. Thereforefuzzy setscanbe adoptedto integrate
fuzzy andcrisp conceptsNotice also that the definition of a fuzzy setis not fuzzy, but crisp; in
particular, it can be used to map real values to péétsel, Li>.

A variable ranging on a set of fuzzy sets is usually calledzy variableFor instance, we camve
the fuzzy variabl®ist ranging on the setdlose, Normal, Distaft wherethe threelabelsdenotethe
fuzzy sets shown in figure 1. When we use fuzzy variables in a caystdm,usually we havea set
of fuzzy rules. A fuzzyrule is an If-then rule mappingfuzzy variablesto other fuzzy variables.In
fuzzy control, the variables in the antecedent classify the inputsdemsorsandthe variablesin the
consequent classifthe control actions.However,aswe will seein Section5, fuzzy rules may also
havedifferentinput and output, and canbe usedto implementhigher levels of a structuredcontrol
system.

Thefuzzy inference cycktarts by matching the inputs, usually real numbers: for each, the dégree
matchingwith the fuzzy valuesof the correspondingvariableis computed.Then, fuzzy operators
(Dubois and Prade, 1980) are used to combine the matching degreediffétbet variablesto obtain
a matchingdegreefor the statedescribedoy all the input variables.At this point, all the matching
rules are triggered: each one proposes an actionawitbight that dependsn the degreeof matching
of the rule. The output comesfrom the aggregation(Dubois and Prade,1980) of all the proposed,
weighted outputs. Finally, the global output is defuzzyfied,thus becominga real-value.In other
terms, a fuzzy inferenceprocessimplementsa mapping from real numbersto real numbers, and
operateson a representatiorof a mapping-- the fuzzy rules -- betweenclassificationsof these
numbers the fuzzy set valuesfor the variables.The resulting Fuzzy Logic Controller (FLC) has
many, well-known, interesting properties, such as robustness, smoothness of action, and wide range of
applicability (Pedrycz, 1992).

As an example,let us considera part of a simple obstacleavoidancebehaviorfor an autonomous
agent, implemented as

(I'F (> FRONT-DI ST mini mum saf e-di st)
(I'F (< LEFT-SIDE RGHT-sSIDE) (TURN R GHT a-1ot)

Here, the designer has used a symbolic latiehi rum saf e- di st) to denotea conceptrelevant
for this application: the minimum distance from an unknown obstacle thaféfor the autonomous
agent.In figure 2, we showtwo possibleinterpretationf the label m ni mum saf e- di st. The
one on the right is based on intervals, that on the left on fuzzy sets.

! This is an adaptation of ora the behaviorsproposedin (Mataric, 1989), written in the Behavior language(Brooks, 1990). At this
point, we havepreferred to considerthis way of representinga control system,to showthat a fuzzy modelcan also be integratedin
approaches not based on fuzzy rules. In the rest of the paper, we will consider fuzzy rules.



*** INSERT FIGURE 2 ABOUT HERE ***
The above part of program can now be written as:

(IF (FRONT-DIST |'S nornal)
(I'F (< LEFT-SIDE R GHT-SIDE) (TURN R GHT a-1ot)

The corresponding tracks of the autonomous agamtsolledby this behaviorare shownin figure
3. In figure 3.a the autonomous agent (the white limxpntrolledby an interval-basednterpretation
of the termmi ni num saf e- di st, andtakescrisp decisionson the borderof the area(in gray)
delimited by the distanceni ni num saf e- di st from the obstacle(in black). In figure 3.b the
autonomous agens$ controlledby the fuzzy setinterpretationof the term; notice how the actionis
smoother than that reported in figure 3.a.

** INSERT FIGURE 3 ABOUT HERE ***

In figures 3.c and 3.d we see what may happen when the distance sensor does patpeolsk and
it measures an incorrectly larger distance from the obstacleg ithe autonomousagentis controlled
by the interval-basedontroller,andit is lessrobustwith respectto this type of errorsthanthe one
shown in figure 3.d, controlled by the fuzzy system.

Another important benefit that comes from modeling the application doangithe control system
by fuzzy sets is that we have at the same time a relatively small model, and the potential talexploit
the precisionavailablefrom real-valueddata. An interval-basedmodel maps a whole rangeof real
values onto a uniquiaterval, denotedby a label; in otherterms,the control systemconsidersall of
the values belonging to the interval in the same way. A fuzzy set model maps a set of reantalues
a potentially infinite numberof pairs<label, 1> that bring information aboutboth the classof the
real value, and the degree of this classification. Thisush more informative than a simple interval
mapping. Thus, a fuzzy model provides at the same time the possibility to reason effectiseigl|
models based on the namediué classeqthe labels),andto exploit all the precisionavailablefrom
real-valued data.

We call a statedescribedby a vector of valuesof fuzzy variablesa fuzzy state An agentmay
partially visit a fuzzy state,in the sensethat the real-valueddescriptionof the agent'sstate may be
matched by a description based on fuzzy sets with a degree béaedrl. For instance referringto
the first examplepresentedn this Section,the agent'sstatedescribedby a value of the real-valued
variableDist equal to 110, can be interpreted as the fuzzy didamal’ with the degree0.5, andasa
fuzzy state Distant' with the degree 0.5. A fuzzy state miag also describecby valuesof morethan
one variable (for instancdistanceanddirection from a moving target). The conceptof fuzzy stateis
interesting for the implementation of controllers for autonomous agents, wigiefortantto also
evaluate partial achievements states.Moreover,since morehan one fuzzy statemay be visited at
the sametime, we havea smoothtransition betweena stateand its neighbors,and, consequently,
smoothchangesn the actions.This is also a desiredpropertyfor many behaviorsfor autonomous
agents.

3. ELF, THE LEARNING SYSTEM

ELF is a FuzzyClassifier System(Valenzuela-Rend6r,991) that evolvesa population of fuzzy
rulesto maximizethe expecteduture rewardgiven by a reinforcementprograny this evaluatesthe
behavior of the agent controlled by the learned rules and produces reinforcement digtriltitadles
that have contributed to the evaluated behatbF may either build aule basefrom scratchor start
with an initial rule base, or even with constraints on the rule shape (Bonarini, 1996a).

Here, we first introduce the data structures implement&d i then,we summarizethe algorithm,
with special attention to it®inforcement distributiomspect.

3.1 DATA STRUCTURE

In ELF, we use gopulationof fuzzyrules andwe representhemwith strings of numbers.Each
position of the string represent& fuzzy variable and eachvalue a fuzzy set for the corresponding



variable. Each position can also be occupiedby a "don't care" symbol ("#"), stating that the
corresponding variable can take any value. Thus, the rule:

IF (PREY-DISTANCE | S cl ose) AND (PREY-DIRECTION IS |l eft) AND
(OBSTACLE-DISTANCE |'S far) AND ( OBSTACLE-DIRECTION | S any)
THEN (SPeeD | S fast) AND (DIRECTION |S left)

is represented by the strig@3# 30
ELF learns the best consequent (in this exarBpkED and DI RECTI ON) valuesfor eachantecedent,
i.e., the rules for each fuzzy state that maximize the expected, fainfercementWe associatevith
each rule a real number between 0 and Etiength(s). This is an estimate dfow usefulthe rule is
in achieving the behavior that optimizes the reinforcement program. The aim of the learningisystem
to find the rules with the highest strength that estimates at best their real usefulneste $thength
is only used for learning purposes, as specified below, and itadedfect the contributionof a rule
to the control action.

The populationof fuzzy rulesis partitionedinto sub-populationsvhosememberssharethe same
values for the fuzzy variables in the antecedent; in other terms, rules belonging to a sub-papealation
candidatedor firing when the input valuesare classified as belonging to the same fuzzy state.
Therefore, in eacBub-populationve haveruleswith the sameantecedentand different consequents.
They competeto proposethe bestconsequentor the fuzzy state describedby the antecedentThis
implements a fuzzy version of the idea afieheadopted imiche-GA(Booker, 1989), (Wilson1994)
to reduce undesirable competition.

Since the rules are fuzzy, the sareal-valuedinput may be matchedby different antecedentsyith
different matching degrees. Each rule in the matchatgproposesa fuzzy output, andthe real-valued
output is computed bgombiningthem with one of the standardcombinationoperatorgDubois and
Prade,1980). Therefore,the sub-populationscooperateto producethe control action, while the
membersof eachsub-populatiorcompetewith eachotherto coverthe sameniche with the highest
strength. This is a way to exploit bathe most interestingfeatureof fuzzylogic controllers thatis
cooperationamong rules, and the feature neededby reinforcementlearning algorithms that is
competitionamong the members of a population.

Thecardinality of each sub-population is dynamically adapted according to the current performance of
the autonomousagentin the correspondinduzzy state(Bonarini, 1996a).At the beginning, all the
sub-populations grow to explore a large seaéice As the performanceof the agentimprovesin a
fuzzy state, the cardinality of the sub-population that matches this state is decreased, and thie worst
is eventually deleted. In the version of Eaioptedfor the experimentsve presentin this paper,the
optimal number of rules for a sub-populati@an ¢ is computed by the heuristic formula:

0 DMax_reinf-( Max_reinf * 01— Max_ vote_ spl-
o_c=max L, 3 - I
a5 (Max_reinf * 0. T

whereMax_reirf is the maximum value for the reinforcement (in our ch§8€0), and Max_vote_sp
is the maximum vote so-fabtainedby rules of the sub-populationFrom this formula, we cansee
that for asub-populationwhosebestrule hasobtaineda reinforcementigherthan 900, the optimal
cardinality is 1, whereas, if the best rule has obtaomyg 500, the optimal cardinalityis 4. In more
recentversionsof ELF, the cardinality of the sub-populatioris computedalso taking into account
other aspects, such as how much the sub-population has been testedtithasngthe reliability of
Max_vote_sp The goalis alwaysto obtain the minimum numberof enoughtestedrules with a
satisfactory performance.

3.2 THE ALGORITHM
In figure 4 we give the high-level pseudo-codébf.
*** INSERT FIGURE 4 ABOUT HERE ***

During the initialization phase (line {1}), the first state is detected, and, if no rulggsesentin the
population, acover detectooperator (Wilson, 1985) generates a given numbeewfrules, according



to the optimal cardinalitpf the sub-populatiordefinedabove.The new rules are different from each
other, they havethe antecedenthat best matchesthe detectedstate (possibly including also some
"don't cares"), and randomly generated consequents. These constitute the first sub-population.

We call a sequence sénse-acfor control) cyclesthat endwith a stateevaluationan episode Each
episodeeitherlastsfor a given numberof control cycles,or endswhena condition is matched(for
instance,a given stateis reached)ELF loops on episodeq2-9} until the end of the trial, usually
determined by a maximum number of episodes.

Each episode is composed of control cycles {3-6}. At the beginning of each EiEléjentifiesthe
setof sub-populationgnatchingthe current state. One rule from eachmatching sub-populationis
randomly selectedduring eachepisode{4}. Let us consideran antecedeng; correspondingo a sub-

populationsp , and matching the current, real-valued s@téinceeachantecedenconsistsof fuzzy

sets, more than one antecedent can match the same statefdoetsum the i-th antecedentlf it has
not yet matcheda stateduring the current episode,ELF selectsa rule from sp, with a likelihood

proportional to its strength: this ruieill representts sub-populatiorsp during the currentepisode.
In the othercase,if g has alreadymatcheda previous state during the current episode,then ELF

triggers the rule selected at that point. This gives ELF the possibility to evaluatentini&utionthat
one rule per matching sub-populationgives to the agent'sperformance Since rules are randomly
selectedall of them will havetheir chanceto contributeto the control actions, and, so, to be
evaluated.

At eachcontrol cycle, onceselectedhe triggering rules, ELF computesthe correspondingcontrol
action {5} by composing the actions proposed by the matching rules, by rokans of the standard
composition operators (Dubois, Prade, 1980).

At the end of eachepisode,ELF evaluatesthe currentstate{7}, by running the reinforcement
program.As discussedn (Bonarini, 1996b), the performanceevaluationat the end of an episode,
instead than at each control cycle, produces some interesting dffebsepisodeis terminatedwhen
the agenteaches particular (fuzzy) state,then the performancesvaluationis donewhensomething
relevant happens, ardittely providesnovel information. In any case the episodeplaysthe role of a
filter that averages the effects of the single actions, and has a stabilizing effedEL®r@esobtained
the reinforcementit distributesit to the rulesthat havetriggeredduring an episode{8}. We discuss
this critical activity in detail in the next sub-section.

Next, the population ispdated{9}. When thenumberof rulesin a sub-populatioris smallerthan
the one estimatedas the optimal with respectto the currentperformanceof the sub-population the
cover detector is activated ppoducenew rules. This stimulatesexplorationwhenthe agentneedsto
improveits performancen a niche. If the matching sub-populationis larger than its dynamically
optimal dimension,then the worst rules are deleted, thus reducing exploration and stimulating
exploitation

Another updating activity is done when the whole population performs better than ahyasold,
andit is not updatedfor a given numberof episodesin this case,ELF savesthe populationand
mutates a certain number of the worst rules before stattegew episode.This operationis similar
to what is done in Genetic Algorithms and LCSs to escape from sub-optimal solutions.

At the endof its execution{10}, ELF selectsthe best, savedrulebase,i.e., the one that had the
higher performance value when it was savedolheof its sub-populationstill havemorethanone
rule, the rulebase shoultk consideredas equivalentto many, potential FLCs, one for eachpossible
rule combination,obtainedby taking one rule from eachsub-population.ELF generateghe final
FLC, collecting only the bestrules, i.e., the rules that have the highest strengthin their sub-
populations.

.3 REINFORCEMENT DISTRIBUTION IN ELF

In this Section we discuss in detail the reinforcement distribution aspectsttsiseare relevantto
understand hoWLF can evolve sets of fuzzy rules also when the reinforcemsptiiseanddelayed
The strength of a rules in the formula below) is updated by the function:

s(9 = $(t-12) +(reinf() - s( t-1)* :2((?)




In other terms, the rule strength is incremerigdh quantity proportionalto the differencebetween
the present reinforcemene{nf) and the passtrength,multiplied by a learning rate. This is the ratio
betweenthe contributionof the rule to the actions performedin the current episode(cg), and the
parametepg,. Thecurrentcontribution(cg) is a numberstatinghow much the actionsproposedby

the rule have contributed to the actions done in the episode. More formally:

Us(F)
—sbg ¢
Hs(r)

sUY §
rCR(e)

oG

where f is the rule under examinatiosjs a statebelongingto the set of statesS(e)visited during
the episode, L (r) is the degree of firing of rulein the states, andR(e)is the setof all the rules
that fire during the episodee. For instance,supposewne havean episodelasting two control cycles,
where a rule ,rmatches both the fuzzy states visited by the agent dtivenepisode respectivelywith
degrees 0.5 and 0.7, and another rulaatches the same statespectivelywith degree€.5 and0.3.
Then,cq,= (0.5+0.7) / (0.5+0.7+0.5+0.3). Thee, factor takesinto accountthe natureof the fuzzy

inferential algorithm. Becauseof this, a rule contributesto the global action proportionally to its
degree of firing, which, in turn, is proportional to the degree of matching with the current state.
The other component of the learning radg ) is updated at each rule activation by addingctiveent

contribution (cg) to the old value of pg,, up to a given maximum, namedEnoughTesteda typical

value forEnoughTested in [10..20]. Thus, the learning rate evolves dutimglife-time of the rule:
it is a weightedaverageuntil the rule has beensufficiently tested;then, the weight of the new
contributions pc,), becomes constant. In other terms, the reinforcement taken by the rulemd tfie

an episode is more important at the beginning of its activity, thus suppotfiisgassessmertf the
rule strength.

ELF may also reinforce rules triggered during past episodesagéetdesignemmay statethat there
is somecorrelation (represented as a value in [0..Ptweenan episodeandthe previousones.He or
shemay considerthat, for a given behavior,a statedependsiot only on what happenedduring the
current episode,but also on the history. The rules triggered in a past episode € receive a

reinforcement at timg given by:

s ()= s(t-1) +(reinf(Y - 5( - D)*w* decay

i)

wherereinf is thereinforcemenbbtainedat the end of the currentepisode,% is computed
pGit—J
with respecto episodeet_j (occurredj time stepsbeforethe currentepisodeg,), anddecayis a value
given by:

decay= correlatiofi

wheren is the numberof episodedrom episodee to the currentone. This mechanismtendsto
evolve rules that bring the agent through a chain of stategtal state,andit shouldbe usedwhen
the reinforcement isparseor delayed It is similar to theeligibility trace mechanism (Sutton, 1984).
As it emerges fronthe abovedescription,this reinforcemendistribution algorithm belongsto the
TemporalDifference class of algorithms (Sutton, 1988), and it is quite different from the Bucket
Brigadealgorithm typical ofL.CS (Holland, 1985), (Booker, 1988). In particular EhF:
¢ rules do not have to bid to have the rigltparticipatingin the action;they are selectedwith a
likelihood proportional to their strength which is left unmodified until the end of the episode;
« rulesdo not pay anyfraction of their strengthto rules triggered before; the reinforcementis
distributed to all the rules, according to the formulae given above.



There are strong relationshipsbetween Q-learning (Watkins and Dayan, 1985) and the ELF
reinforcement distribution algorithm. ELF is a fuzextensionof Q-learning,conceptuallysimilar to
Fuzzy Q-Learning (Glorennec,1994). A complete discussion about this topic is presentedin
(Bonarini, 1996b).

4. THE TASK

The task we presein this paperis the classicalprey-predatortask: a predatorshouldcatcha prey
that runs in a closed environment. In our case, the predatsehasrdor direction and distancefrom
both the prey and the closest wall. The prey moves either randomighoa pre-definedstrategy,and
it can only sensecontactswith walls and obstaclesput notthe predator.Obstacleamay preventthe
predatorfrom detectingthe prey; thus, thereare situationswherethe predatorlosescontactwith the
prey, and should look for it.

The predator should learn to catch the prey. This task is quite trivial wherathee obstaclesand
when thepredatoris fasterthanthe prey. In the presenceof obstaclesthe predatorshoulddevelopa
strategy to avoid them, and look for the prey when litidglen.If the preyis fasterthanthe predator,
this should develop strategies more effective than simple chasing. Therefore, relativie spestital
parameterfor strategyselection,and, consequentlyfor improving the performance.However, no
sensor is available to detect ttedative speeddirectly. It is evenmorecritical if we considerthe real
agentswe haveused:batteryconsumptionis almostirrelevantto the prey's speed,whereasit may
reducethe predator'sspeedby more than 40% of its maximum value. Therefore the predatorshould
adapt its strategy also when the prey is constantly moving.

Thepredatoris CAT (Completely Autonomous TryalBonarini, 1996a), depicted in figure 5.

*** INSERT FIGURE 5 ABOUT HERE ***

It is based on a toy truck, about 60 cm long, and 60 cm wide. CAmoae forward andback at a
maximum speed of 0.3 m/s, and its two steering, front wheels can tamlbyximum of 30 degrees.
CAT hasa 60 cm high, rotating turret, moved by a steppermotor. The turret holds 4 Polaroid,
ultrasonic sensors that are setdetectthe distancefrom objectsbetween20 cm and 3.50 meters.In
this application, they are used to detect the distance from the closest wall in front of CAT. The sensors
havean averageerror of 3% with respectto a reflecting surfaceperpendiculartto the sonaraxis; in
practice,the accuracyis lower dueto the interpretationof sonardata. A sonarecho comes back
following the reflection law. The sonar beam can be roughjyroximatecoy a coneabout30° wide.
Any surfaceperpendiculato any ray belongingto this cone may potentially reflect the signal. To
reduce errors, any signal received is considered as comingfsanfaceperpendiculato the centerof
the cone. The worst situationtise one depictedin figure 6, wherethe first reflectedray receivedby
the sonar is on the border of the cone, on the left.

*** INSERT FIGURE 6 ABOUT HERE ***

This brings another maximum contribution to the error of aboutT¥refore the maximum error
is about6%. The fuzzy controllerswe considerin this paperare, in principle, robust enoughwith
respect teerrorsof this magnitude as summarizedn Section2. Moreover,for the task we consider
here, the distance measured by the sonar is relevant for detecting close objectsevabsnluteerror
is negligible, sinceit is reducedto few millimeters. In the applicationwe presenthere, we have
verified that this type of errors does not affect the performance significantly.

The rotating turret also holds an infrared receiver thatetectthe distancefrom beaconghat emit
infrared signals at a given frequency. The beacons caondigonedfrom 30 cm up to 6 metersfrom
the sensor. Combining thieformation that comesfrom the infrared receiverwith information about
the absoluterotation of the turret, it is also possibleto detectthe direction of the beaconswith a
precisionof 3.5 degreesA systembasedon a Fuzzy ARTMAP neural network (Carpenteret al.,
1992) gives an interpretationof the infraredintensity as a relative distance(Bonarini, in press).The
use of a fuzzy neural network to interpret #iignal intensityas adistancebetweenCAT andthe prey
is a solution to the problemof the identification of the non-linearrelationshipbetweenthese two
variables. Fuzzy ARTMAP is a supervisednetwork basedon the Adaptive ResonanceTheory
(Grossberg, 1976) thaanbe trainedon real-valuedinputs andtheir respectiveclassification,defined
by the designer. In our implementation, we use as input the infirsieytkity, and as output its fuzzy
classificationas a distance.The network is trained off-line, and provides a stable and reliable
classification; sincéts accuracyis about 90%, this interpretationhas not beensubjectto further
adaptation on-line. During operation, the network receives as input the intengigyiofrared signal,



10

and produces as output a fuzzy interpretatidab@, 1>) that can be fed directlp a fuzzy controller.
We havementionedthis solution here just to show how any type of signal interpretationcan be
integrated with our approach.

CAT also hasbooleanbumpersimplementedby switchesbehind the eight platesdelimiting its
body.

Finally, the last of the CAT's sensorswe have usedin this applicationare the two encoders,
mounted on independentwheels, coaxial with the rear, traction wheels. The encodersgive the
possibility to estimate some parameters of the model of CAT used to learn the control system.

The preyis SPOT(SpecialPurposecOoperativeagenT), anothersmall (20 cm of diameter)robot
shown in figure 7.

*** INSERT FIGURE 7 ABOUT HERE ***

It has twoindependentvheels,andit may travel at a maximum speedof 0.2 m/s. It hasa 20 cm
high turret that holdsinfrared emittersimplementinga 360° wide beaconMoreoverit has bumpers
providing real-valued informatioaboutthe direction of the contact,so that SPOT caneasily follow
any wall.

SPOT has no sensors to detect CAT, so, in the application we discuss in this paper, it plays the role
of a blind prey. It moves according to a pre-defined strategy, selected among three strategies:

e wander randomly;

« follow a fixed, circular trajectory;

» follow the wall.

We will showthat the final performanceof CAT is qualitatively the samefor any of the three
SPOT's moving strategies.

5. BEHAVIOR DECOMPOSITION AND CONTROL ARCHITECTURE

To learnthe complexbehaviorfor the task describedn the previousSection, we adopta control
architecture based on different modules, each implemensimge behavio Each behaviorahodule
is a set offuzzy rules. We have decomposedhe complexbehaviorin simpler modules,accordingto
the behavior decomposition strategy that we present below.

5.1 BEHAVIOR DECOMPOSITION

The decompositiorof a complexbehavioris commonpracticeto reducethe complexity of design
(possibly supportedby learning)of control systemsfor autonomousagents.Here,we mentiononly
some of the significant approaches.

In the subsumptionarchitecture(Brooks, 1986), behaviorsare layeredand a network of inhibition
andsuppressiotinks among behaviors determines the action to be takergiven situation. On the
oppositeside, Arkin's motor schemata(Arkin, 1992) produceaction vectorsthat are combinedto
generatea local potential field, whosegradientis followed by the agent. Arbitration is explicitly
excluded. On a similar line are thezzy behaviorproposedoy Saffiotti et al. (Saffiotti et al., 1995)
who use fuzzy operators to produce an analogous field. Mataric (Mataric, iré@sseswo types of
combination:complementarypehaviors combine their outputs wiphe-definedweights, whereasonly
one of the mutually exclusive outputs of contradictory behaviorsis selectedusing sensorialand
internal data.

In the reinforcementearningcommunity, the subsumptionarchitecturehas beenadoptedto learn
behaviors organized in a pre-defined framework (Mahadamd@onnell, 1992). In this approachthe
final behavior iFunctionallydecomposed. ecsys (Dorigo andColombetti, 1994) learnsboth basic
behaviorsand coordinatorsorganizedin a hierarchical architecture,adopting a shaping approach
analogous to that adopted to train animals (Hilgard and Bower, 1975uidi®mnaldecompositions
here structuredin different types of hierarchies.The shapingprocedureis also adoptedby Singh
(Singh, 1992) to learn task sequences. In this case théb&halioris temporallydecomposedhto a
chain of simpler behaviors.

In almost all the mentioned approaches, it seems that the decompsstitegyderivesfrom an &
hocanalysisof the specifictask, aimedat the identification of functional roles, possibly at different
hierarchical levels.

Here, we proposea general approachto behavior decompositionthat appearsto improve the
functional decomposition. Our approach considers general featuties problemthat could be found
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in many applicationsln particularwe analyze:the relationshipsamongthe consideredrariables,the
classificationof thesevariablesaccordingto their temporal characteristicsthe complexity of the
behavior with respect to the input data. The advantage of folloageneralapproachconsistsof the
exploitation of alreadyidentified solutions to common problems. Now, let us discusshow the
mentioned features may influence the partitioning strategy.

If it is possible to identify a relationship between a subset of the irgigblesanda subsetof the
goals, it is desirableto considera behavioral decompositionthat limits the interaction between
variables, and so, the complexity of the behaviors. We call Strong Functional Behavior
Decomposition (SFBD behavior decomposition where behaviors observe different variablésaand
different goals. In our exampl&e may considerbehaviorsconcerningthe prey (Chase_Prey others
concerningwalls and obstacles(Avoid_Contacts others that affect actions without considering
sensorialinputs (Wait). Among the interestingfeaturesof the modulescoming from this type of
decompositionwe mention the possibility to learn the different modulesin completely different
environments. Thisnay reducethe complexity of learningand, also, the resourceneedsto learnthe
different modules. For instance learnto avoid contacts,we don't needto havea prey. Notice that
this approach is on the same linetlo¢ onetakenin classicaldesignof control systems,whereit is
preferred to identify a certain number®iSO(Singlelnput - Single Outpu) modules,hypothesizing
a scarceinteractivity amongtheir variables,rather than a single, more complex, MIMO (Multiple
Input - Multiple Output system.

Another type of behavioral decompositioancernamemory of pastvalues.A behaviormay either
consider only the current input, or also its difference with redpeatvalue takerat a previoustime.
We call the behaviors that have in input the difference between a previous value and thecearent
behaviors. Theorrespondinglecompositioris a A BehavioralDecompositionABD). For instance,
to implement th&Chase-Preyoehavior, we have two interacting control systeame of which hasas
inputs and outputs the variations of the variables considered by the other:

¢ a basic,stimulus-responsés-r) modulethat observes relativeirection and distanceof the prey
and controls speed and steering of the predator;

« aAcontrol module that observemriationsof relative directionand speedof the prey (i.e., the
differencebetweenthe currentanda pastvalue), and gives variations(increments}o the speed
and steering proposed by th& behavior.

Also the ABD decompositioris in the spirit of the classicalControl Theory In fact, the most
typical control system (the so-calledPID) is basedon the observationof the error (the difference
betweenthe currentvalue and a reference)jts derivative andits integral, and all thesecomponents
play well-known, qualitative roles to achieve desired features of the contbtoitrol module,such
as the one mentioned above and included in the architecture of the system we are presenilagshere,
a role similar to the derivativemodule,giving the possibility to predict the courseof its observed
variables, and to act accordingly.

The last aspect of otecompositiorapproachconcernscomplexbehaviors.n this case the agent
may need to exploit differestrategieswhose selection may depend not onlytloa low-level, sensor
variables,but also on higher-levelinformation such as the evaluationof the current performance.
Therefore,we may have low-level behaviorsthat interact directly with eachother, and high-level
behaviors,where an arbitrator decideshow to use lower level modules, by observing high-level
variables. In our example, weaveadoptedsuchan arbitrator to enablethe predatorto stop andwait
for the prey, whenit realizesthat running after the prey is not successfulWe considerthis kind of
decomposition when we observe that data coming from the searsansufficientto decidewhenthe
current strategys not appropriateln generalwe haveobservedhat, asthe task becomesomplex,
the agent needs more insight to tak#eaision,andit shouldobservehigherlevel featuresdescribing
the situation.

.2 THE CONTROL ARCHITECTURE

The control architecture that we have identified to face the global task is shown in figuieeh@ve
two modules for the-r and theA aspectf the Chase_Preypehavior. TheAvoid_Contactdehavior
is implementedby an independentmodulethat combinesdirectly its actionswith Chase_PreyThe
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Avoid_Contactdehavior observethe distancefrom the closerwall andthe relative direction of its
position, and proposes a steering action to avoid the contact.

All behaviors are implemented by sets of fuzaies, exceptfor the Wait module,which is trivial.
They are learned bigLF following the learning procedure described in the next Section.

** INSERT FIGURE 8 ABOUT HERE ***

Another control system, at tlstrategic levelmonitors the performance of the predatod switches
amongtwo possible strategies Wait_for_the_preyimplementedby the only behavior Wait, and
Chase_the prey_safeiyplemented by theombinationof Chase Preyand Avoid_ContactsNotice
that thisarbitrator observes variables that haa@aturecompletelydifferent from the others:whereas
all the other modules observe statgiablesmore or lessrelatedto sensorsthe arbitratorobservesa
sort of performanceevaluationvariables namelythe sign of the differencebetweenthe last and the
current performance value, themberof episodessincethe last changeof this sign, andthe current
strategy.

The arbitrator is implemented by a set of fuzzy rules, and it is learnBdfyin this case, only one
of the three input variables is classifieg standarduzzy sets(the secondof the abovelist), whereas
the other two are fuzzyfied, binary variables. This is an example of fuzzy models used to réprasent
uniform way both fuzzy and crisp variables.

Comparing this architecture with the proposals mentioned in the previous Seioray say that
we integrate a vectorial combination with a hierarchical structure. Moreovenhiatorimplements
a mechanism similar to thehibition mechanism proposed in the subsumption architecture, but keeps
the sensor variables separate from variables evaluating the performance. Findilpetbfsarbitrator
could be usedalso to weight dynamicallythe output from different behaviors,as we have donein
another application (Bonarini, 1994b). Apart from the fuzzy implementation, thediffehencewith
respectto the hierarchicalapproachproposedby Dorigo and Colombetti (Dorigo and Colombetti,
1994) is the possibility to coordinate behaviors by observing high-level variables independent from the
lower-levelbehaviors.This becomesmportantwhenthe arbitrator needsto composestrategies,or
very complexbehaviors.n this case,the information elaboratedfrom the only input may not be
sufficient to provide interesting and reliable coordination.

6. THE LEARNING SESSION

Following the above mentioned behavior decompositienhavepartitionedalso the learningtask
in simpler subtasksThis makesit possibleto learn effectively the simpler behaviors.Learning a
unigue, global behavior that takes into acc@int4, and strategic aspects would be a Hagk, since
the learning system has to consideany variablesat the sametime, andthis makesthe complexity
growing exponentially (Kaelbling et al., 1996), (Dorigo and Colombetti, 1994). Moreover, weadopt
learningschemawhich is efficient, but it can only be appliedin simulation. In this Section, we
describe in detail the learning activity performedEyF in the simulatedenvironment.t is basedon
four techniquescomparativelearning strategylearning transfer of policy, and learning from easy
missions All of them implement different aspects of a general forrshafpingfor our agent.Finally,
we discussthe adaptationof the model, usedin simulation, to the real world, discussingthe model
identification issues that complete our anytime learning approach.

6.1 COMPARATIVE LEARNING

To learnthe Chase-Preybehaviorwe firstly apply ELF to learnthe s-r control system. Then, to
improve the overall performanceof the agentalso with relatively fast preys, ELF learnsthe A
behavior mentioned above.

We have decidedto learn the A behavior by considering as reinforcementthe increment of
performance with respect to the behavior omparativdearning). In orderto do that, we first learn
thes-r behavior, then we simulate two agents facing the same initial, randomly selected sittlzions:
first one is controlled by ther behavior, whereas trsecondis controlledby the compositionof the
s-r control system and th# The performance of both the agents is evaluated.

In particular, we evaluate the performance ofghdehavior at time as:

ds_ (t
ps-r(t) =1- ;r()
RIF
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wherepg_, is a performance indeg,_, is the relative distance between prey and predatordgnts a
normalizing constant. Theeinforcemenfprogramproducesa reinforcemenfroportionalto pg_,, thus

reinforcing the approaching to the prey. Analogouslg,evaluatethe performanceof the A behavior
as

whered, is the relative distancebetweenprey andthe predatorshowing the A behavior.In other
terms, we evaluate the relative performance oftlagent with respect to tier.

To learn theA control systemthe reinforcementprogramproducesa reinforcementproportionalto
Pa-

As mentionedin Section 3, ELF evaluatesat the end of an episodethe performanceof the
populationit is evolving. In this case,eachepisodeis a sequencef control cyclesterminatedby a
condition discussed in Section 6.3.

Comparative learnings interesting in @hapingactivity, since it makes it possibte usethe same
type of performance evaluation during the development of different, increasingly complex behaviors for
the agent. The agent running with the old control systemaacgeferencefor the new agent,which
should behave better than its ancestor.

6.2 LEARNING BEHAVIORAL STRATEGIES

We have adopted comparative learnaigo for the next step of our shapingprocedureto learnthe
arbitrator. In this case,the comparisonis madebetweenan agent controlled by the A behavior
mentioned above, and another agent controlled barhiratedcompositionbetweenit, andthe Wait
behavior. The arbitrator monitors the performantés agent,andproposedo activateone behavior
or the other.

In particular, it receives at each control step the sign of the difference between the last and the current
performancesvaluation,the numberof evaluationcyclessincethe last changeof this sign, and the
current strategy. In output, it gives the selection of one of the two strategies.

The performance of th&trategicbehavior is evaluated by:

whered; is the distance at the end of the episode betwezprey andthe predatorcontrolledby the
strategic behavior.

For other tasks, with a different control architectleF haslearnedalso an arbitratorthat weights
the output of several behavioral modules (Bonarini, 1994b).

6.3 TRANSFER OF POLICY

Another interesting techniquethat we have adoptedin our learning sessionconcernslearning
behaviors insimplified situations,so that the learnedbehaviorcould be successfullsoin the final,
more complex environment.

In our task, we have learned each behavior in a simplified setting where the préygoassideto
the otherof the playground,andthe predatoris initially placedin a fixed position, with a random
orientation (figure 9).

*** INSERT FIGURE 9 ABOUT HERE ***

In the figure, the prey is represented as a circle, the predatisnage-markedroundedboxes.The
darker predatoon the right showsan s-r behavior,whereaghe lighter hasa A behavior. Theyhave
been put both in the same initial position. We may notice typical, different behasiersfacing the
obstacle.The s-r agentfollows the direction betweenits currentposition andthe prey; the A agent,
once recognizethe prey movement.anticipatest andsucceedsn catchingit alsoin presenceof an
obstacle.
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This behavior is successfully applied also in the real environment whepgey movesin a closed
room, and the obstacle is U-shapedregmrtedin Section7.1. Learningdirectly in the closedroom,
with a prey moving in two dimensions had introduced unnecegsaigntial problemsconcerningthe
relative positioning at the beginning of the trial, the turning capabilities of the prelerityh of the
trial, andmany otheraspectsin the simpler situation shownin figure 9, the trial terminateseither
when the predatorreachesthe prey, or when the prey comesat the end of its track. An episode
terminates on these two conditionsvarenthe predatorloosescontactwith the prey, hiddenby the
obstacle. In this case, the already learyedid _Contactbehavior is applied and the trial continues.

6.4 LEARNING FROM EASY MISSIONS

A similar learning schemais adoptedto learn the arbitrator at the strategiclevel: the episode
termination is the same, and the prespsedis changedrom about-30%to +70% of the predator's.
This is a particular interpretationof the learning sessionschemaknown as learning from easy
missions(Asadaet al., 1994). The agentstartsits learning activity on simpler tasks, in our case,
chasinga prey with approximatelythe samespeed.Once the simpler task is achieved,then more
complex tasks are faced, keeping the experience so far acquired.

6.5 ANYTIME LEARNING

The last consideration about learning concexateptationto the environment.As mentionedabove,
we haveadoptedan anytimelearning approachto adaptthe behaviorslearnedin simulation to real
environments and agents. As mentioned in Sedti@nthe simulatedmodelis updatedoy a monitor
module thatrunsin parallelto the learningsystem,and detectspossibledifferencesbetweenthe real
world and the current model. We hawneplementeda monitor that usesdatacoming from the CAT's
encoders te@stimatethe actualspeedand steeringof the predator,obtainedfrom eachcontrol action.
The monitor modulecontinuouslyupdatesa set of tablesrepresentinghe mappingfrom the control
actionsto their actual values. When thesebecomedifferent enough from the expected,the new
estimate is sent to the simulation system, which updates its model artd ds&dearningsystemto
startagainthe learningsession.The learningsystemsavesthe best control systemso far obtained
running on the old model, sincet could be re-usedif the model parametercome back to the old
values €¢ase-based learningThen, it searchesn its control systembasewhetherit hasbeenalready
activatedin a situation similar to that describedby the current parameters. Ithis is the case,the
retrieved situation is restored, the best control system for that situation substitutes the curgeat one,
ELF continues to try to find better contrsystemsfor this situation. If the currentsituation hasnot
beenfacedyet, the learningsystemstartsto work on the new model, evolving a population from
where the 30% of the rules of the previous population have been randomly deletedpdfotheance
on the new model rises over a given threshold, the new control sgstestitutesthe currentone, on
board.

7. EXPERIMENTAL RESULTS

We have studied a variety of possible speed combinations, and we have observed, at the end of all the
trials, three, qualitatively different behaviors for the predator:

1. when the preys slowerthan the predator.the predatorjust movesat eachcontrol cyclein the

direction of the prey;

2. when the prey has a speeamparablewith that of the predator(+5%), CAT considersalsothe
speed of the prey iorderto guessits movementsandto try to optimizeits trajectory(e.g., it
points to an estimated future position of the prey, "cutting” corners of its trajectory);

3. whenthe prey is fasterthanthe predator,CAT decidesto stop and wait until SPOT is close
enough (SPOT cannot sense CAT) to jump on it.

The behavior obtained for the predator makes it reaching a preyd@¥4ddasterthanitself in more
thanthe 90% of the trials, in a time less than that requiredto perform 200 control cycles, given
environments such as the one shawriigure 10, whereboth prey and predatorhaverandom,initial
position and orientation. The tracks in figure 10 are tdkam the simulator, but they are analogous
to the real ones.

** INSERT FIGURE 10 ABOUT HERE ***
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The situation shown on the right of the figure deserves some comments. Thefpstgriso, after
a short unsuccessful activity, the predator stops and atgitsint "X" (you may notice that its track
is shorter than that of the prey). At this moment the arbitrator has decidkdrgestrategysincethe
previous one was not effective. In this case, in a while the prey becomes visiblaragaesin the
direction of the predator. This is the only case where it can edts$terprey, so CAT startsmoving
in the prey directionasit is closeenough.Notice that this situationis similar to what happensin
naturewith animalswith characteristiceanalogousto our agents;for instance,frogs wait for they
preys, since these are faster.

Before giving some numerical results about our experiments, we woultb lifiscusssometypical
situationsthat may arisewhenonly the s-r or the combinationof the s-r and the A behaviorsare
adopted. We present paradigmatic situations that show general properties.

On the left of figure 11, we show tser behavior ofa predatorchasinga fasterprey that runson a
square track. The best thing it can do to optimize the reinforcement, is to try to keep its distance to the
prey as small as possible, thus taking a track internal to that pfelyeat a distanceproportionalto
the difference between the two speeds.

** INSERT FIGURE 11 ABOUT HERE ***

On the right of figure 11, we show the A behaviorin the same situation. In this case,the
observationof the relative speedof the prey gives to the predatorthe possibility to catch it by
pointing to an estimated, future prey position, thus taking also a shorter track in the angles.

If the prey is even faster also this strategy is not enough. A qualitatively difigrate#gyshouldbe
considered. A possibility may be to try to identify a high-level description of the belwi\tioe prey,
such as: "it is running on a square track". This problem is not trivial famsiderthat we may have
many different preys, showing a large variety of behaviors, and thaettsarsof the predatorgive it
only a rough, deictic view of its environment. Moreover, oiteatified the behaviorof the prey, the
predator should be able to adapt to it, by adopting the most appropriate action (for instanczsse the
of our example, it may decide to wait for the pegya position on its regulartrack). We areworking
on this researchopic, by providing the predatorwith someclassificationcapabilities,but we only
have preliminary results.

In the restof this Section,we presentexperimentakvidencethat supportsour approachpoth for
what concerngthe control architectureand anytimelearning.All the resultsreportedin Section7.1
concerns trials on aimulatedenvironment,aimedat demonstratinghe effectivenes®of the proposed
architecture, comingrom our decompositiorapproachln Section7.2, we reportaboutexperiments
done in a real environment, to show the validity of the anytime learning approach and of the adaptation
mechanism.

7.1 VALIDATION OF THE ARCHITECTURAL CHOICES

The goal of the first experimentwe presentis to comparea monolithic control architecture
(consistingof only one rule base)with our decomposedarchitecture.We focus on the aspects
concerningthe learningactivity that, in our approachjs performedon a simulatedenvironment.In
this experiment, the prey runs at a speed at most 5% higheththizof the predator,andthe predator
is controlled by a systemhaving only the s-r and the A modules.There are no obstaclesin the
environment. In this case, we had four input varialldggda, and their variations), artavo control
variables ¥ and 8). Thesevariableshaverespectively5, 4, 3, 3, 6,and5 values(fuzzy sets)each,
giving a search space of 5400 rules for the monolithic control sy§ensideringthe decomposition
presented in Section 5, waveonly 600+270=87Qpossiblerules. The experimentakesultsconfirm
the theoreticalexpectationsin 12 trials, lasting 20,000 control cycleseach,only one rule basehas
been savedy ELF learningthe monolithic architectureThis meansthatin only onecaseELF has
been able to learn a reliable, good enough, monolithic rule base. With the architecture presented above,
ELF haslearnedin the sametotal numberof control cyclesmorethan7 A modulesfor eachof the
first 5 s-r moduleslearned.The first valid combinationwas availableat a cost of only 910 control
cycles. This result is analogousttmat obtainedby Dorigo and Colombetti (Dorigo and Colombetti,
1994): a structured architecturentainsknowledge providedby the designerwith the decomposition
activity, that should be learned when adopting a monolithic architecture.
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In a secondexperimentwe haveaddedthe obstacleshownin figure 9, andwe have comparedthe
performanceand learningtime of the s-r andthe A behaviors.n table 1, we summarizethe results
obtained in 12 trials lasting 5,000 control cycles each.

** INSERT TABLE 1 ABOUT HERE ***

In the first pair of columns we give the average nundfeules for the two final rulebasesandits
standarddeviation.In the secondpair, the numberof control cyclesto obtain the first, good, stable
rulebase. In the thirgair of columnswe reportthe minimum distancefrom the prey obtainedin 12
test trials lasting 1,500 control cycles each, by the s#l{pehaviorandby its combinationwith the
A. We may notice how at a relatively low learning cost (the first rulebase far ttehaviorhasbeen
saved, in average after only 789 control cycles), we can obtain a relevant improgémhertbehavior
(more than one order of magnitude for the final distance to the prey).

In a third experimentwe havestudiedthe performanceof the predatorcontrolledby an architecture
with or without the arbitrator. In table 2, they are respectivelyreferredto as A and B. We have
compared the performances of the two architectures in trials of 1,000 episodes each, with a prey having
the average speed reported in table 2, and the predator having a speed of 0.11 m/s.

** INSERT TABLE 2 ABOUT HERE ***

In table 2, the first performance indé¥/ihg is the numberof times an agenthas performedbetter
than the other, either by catching the prey or getting closer tdhea&nd of the episode.The second
performance indexnfinD) reported in table 2 is the minimum distarieethe prey achievedat the end
of the episode by each of the two agents.

As shown in table 2, the agent controlled by the most complex archite&jyverformsbetterthan
the other (B) whenthe prey is faster. The only differencebetweenthe two is the presenceof the
arbitrator, which have learned to understand when followhegrey becomesuselessandwhenit is
better to wait for it. With these results, we demonstrate that, even if the strategy of waitidaster a
prey may seem trivial, it appears to be effective.

7.2 EXPERIMENTS CONCERNING ANYTIME LEARNING

In this Section we present results of experiments performed in the anytime learning framethork,
the learning system running on the on-boardd?CAT. So, ELF learnsin simulation, while CAT
actsin the real environment,chasingSPOT with the bestso-farlearnedcontrol system.The model
used to learn in simulation is improved on line.

In our specific setting, CAT has very imprecise mechanical features. For instanitenttposition
of the steering system cannot be calibrated doicall in its centralposition, dueto the imprecision
of the mechanical links. Moreover, some features also vatiyne The most critical for this taskis
the maximum speed, which decreases almost lingartjightly lessthan 60% thanits initial value,
with the battery consumption.

We have done experiments with SPOT either moving randomly, or following a circular trajectory, or
going straightto the first wall of a rectangularoom, andthen following it. The respectiveaverage
performance, computed as the minimum distance to theqwen20 episodesof at most 200 control
steps each (i.e., about 3 minutes each) is given in table 3. At the end of each episode (iwhegither
CAT touchesSPOT, or after 3 minutes of activity) the agentsare separatedand put in positions
randomly chosen by a computer, to avoid the experimenter's influence.

** INSERT TABLE 3 ABOUT HERE ***

We consider an episode successful, when CAT touches SPOT before the end of the episode.

As you can see, the performance is almost independent from thertivementstrategyof SPOT,
whereas the wall following behavior seemstoslightly convenientfor the prey. In this case,CAT
may come too close to the wall before touching SPOT, satthailvoid_Contactdehaviorbrings it
away from both the wall, and SPOT. We have reduced this effect by putting the fuzzy set
correspondingdo the interpretation"too close obstaclé at its minimum admissiblevalue. A more
conservativechoicewould havegiven SPOT a safe place aroundany wall. We discussin the last
Section the possibility to dynamically adapt the definition of the fuzzy sets.

The maximum CAT's speed with fresh batteries is set to 0.25 m/s, and spontaneously decreases with
batteryconsumptionto about0.15 m/s in about50 minutes.At that point, the batteriesshould be
changed with fresh ones. The SPOT's speed is about 0.2 m/s at the beginrdrapasdddenlyto 0
after aboutone hour. The performanceeportedin table 3 concernstrials donein randomly chosen
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conditions, and it should be considered as the CAT's average performance of thiaitpdifie, where
it had the need to chase either a slower and a faster prey.

To test the relevance of adaptation, we have perfoars of trials without any adjustmentof the
model, thus excluding the activity of the monitor. In this case,we have consideredonly random
movements oSPOT. After aboutthreehoursof trials (andthreebatterypacksto be recharged)the
average minimum distance at taied of the episodewas 78 cm, i.e., approximately30% worst than
what obtained withmodel adaptationMostly important, the failure/successatio rosefrom 0.051 to
0.1. Theseresultsgive an ideaof the importanceof adaptingthe model usedin simulation to the
dynamic environment.

8. CONCLUSION

Our goal was talemonstrateéhe feasibility of reinforcementearningto developcomplexbehavior
for an embodiedautonomousagent.We havefacedthis problemby consideringdifferent aspectsto
reduce learning time as much as possibleatberithm, thelearning sessionthecontrol architecture

We have implemented atgorithmthat operates oniches thus focusing théarningactivity only
on the part of the searchspacethat is being explored. Moreover, we have adopteda fuzzy
representation for the controlodulesthat makesit possibleto treat classified,real-valuedinput and
output thus reducing the searshpace.The fuzzy classesoverlap,thus producingdesirableeffectson
the produced controller, such as robustness, and smoothness of action.

Our learning sessionis basedon shaping and it exploits learning techniquesthat reducethe
complexity of the environments on which the agent learns, thus contribatieglucethe time spent
in this activity.

The control architectureis basedon a partition of the whole control system, accordingto a
methodologicaframeworkthat identifies different control modulesto implement simpler behaviors
that:

« operateon different variables, such as the Chase_Prey and the Avoid_Contactsmodules

presented in Section 5;
e operateon variablesandtheir variations,suchasthe s-r andthe A modulesimplementingthe
Chase_Preypehavior.

Moreover, in the framework we have proposed, the outputs of the control modules may be composed
either by static operatorsas we did for the Chase_Preyand the Avoid_Contactsdbehaviors,or by
adopting a higher levehodule (an arbitrator)that dynamicallyweightsthe outputswith referenceto
high level variables. We have shown how this last mechanism can be ustd iaiptementstrategy
selection

In conclusion, the learning approach we hpxesentedn this paperhasbeendemonstratea@s very
effective to learn complete behaviors for our autonomous agent, at least in the considered environment.
Any testing activity donein real environmentshas only a relative validity, since the operating
conditionscannotbe identified precisely,by definition, otherwiselearning would not be motivated.
However, our approach is also supported by the theoretical motivations presented in the paper.

Future developmeniaclude learning more complex interactive tasks for CAT and SPOT. Presently,

they have been programmed to clean a room exploiting their characteristic featuregd&i3&@dund
the wall drawing a brush, and brindsstto CAT that is large enoughto removeit usinga vacuum
cleaner. We are now studying the role of learning and adaptation in this type of tgsksiclnar, we
plan to add a mechanism itmplementon-line tuning of the fuzzy setsdefinitionsusedin our fuzzy
rules. We are studying a systemthat, basing on the current performanceevaluation, and on the
analysisof the statesthat broughtthe agentto a dramaticdrop of performanceproposealternative
modelsnot only for the environmentandthe agent,but also for the fuzzy setsusedby the control
system.
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Figure Captions

Figure 1 - Fuzzy sets and intervals for the classification of values of the vdbiable

Figure 2 - Interpretation of the threshold value MINIMUM-SAFE-DIST

Figure 3 - Some behaviors of an autonomous agent in presence of an obstacle.

Figure 4 - TheELF algorithm

Figure 5: CAT

Figure 6 - Sonar approximation

Figure 7 - SPOT

Figure 8 - The control architecturd.is the speed of the predatéis its steeringdp andap are distance and direction
of the preydyy andayy are distance and direction of the closest wall, Z is a block that keeps memory of the
last value of its input variable.

Figure 9 - Learning to chase a prey with a speed similar to the predator's, and an obstacle.

Figure 10 - Chasing a slower prey (on the left), and a faster (on the right), in a simulated environment.

Figure 11 - CAT, chasing a faster prey: thebehavior on the left, tha on the right, in a simulated environment.
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Figure 4
l.initialize()
2.while not end of trial()
3 {whil e not end_of episode()
4 {T rules = select _rules(State)
5. execute_action(T rules, State);
6. State = detect_environnent ()}
7 Rei nforcenent = eval uate(State);
8 di stribute(Reinforcenent);
9 popul ati on_update(State)}
10. final _rul ebase: =refi ne(sel ect _best rul ebase());
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Figure 7

Figure 8
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Tables
Table 1 - Comparison amorsgr andA behaviors
Rule basg # of rules # of cycled min distancefrom
type 1st base prey (in cm.)
ave | std ave | std ave std
A 11.2 | 0.83 | 789 | 187.3| 54.8 8.5
S-r 31.5 | 1.68| 2711 | 452.8] 740 159.3
Table 2 - Performance witl\] and without B) a strategic control.
Ve =0.07 V,e,=0.12 Ve =0.2
Wins minD Wins minD Wins minD
ave [std |ave | std |ave |std | ave [std | ave | std | ave | std
A | 553 | 37 28 11 629 61 96 39 81 34 19 44
B | 447 | 37 45 12 371 61 288 147 189 34 627 180

Table 3 - Performance in the real world

Prey movement failure/success minD
random 0.051 53
circle 0.051 46
wall 0.055 67
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