Rebeca

Reactive Object Language

Ali Jafari, Ehsan Khamespahanh
Hossein Hojjat, Zeynab Sabahi Kaviani,
and Marjan Sirjani
http://www.rebeca-lang.org

December 6, 2016

Contents
1__Introductionl 1
2 Structure of a Rebeca Modell 1
BT Known Rebecdo 3
B2 Statevars 3
[2.3 Message Servers|. 3
R4 Methods 5
2.5 Rebeca Statements| oL 5
2.5.1 OOPS| + « v v e e e e e e e e e e e e e e e)
2.5.2 Conditional Statementsl 6
2.5.3 Non-deterministic Expressions| 6
254 Tocal Varfabled 6
............................. 7

J

13 A Typical Example]

Abstract

Rebeca is an actor based modeling language that is supported by
a model checking tool suite. In this document we explain the Rebeca
language. The syntax of Rebeca is defined formally and is explained
through different examples.

1 Introduction

Rebeca (Reactive Object Language) has been designed in an effort to facilitate
the verification process for practitioners who are not experts in formal methods.
From one point of view Rebeca is a Java like language which is easy to use for
software engineers, and from another point of view it is a modeling language

reactiveclass Rebec1(2) {
knownrebecs { Rebec2 d;}
statevars{}

Rebec1 ()

{ self.msg1();

/* the constructor */}
msgsrv msgl()

{ d.askForService();}
msgsrv msg2()

{ /* Handling message 2%/}
void methodl(int paraml)

{ /* method definition */}
int method2()

{ /* method definition */

return intValue;}

}

Figure 1: A typical class definition in Rebeca

with formal semantics and formal verification support. A model in Rebeca
consists of concurrently executing reactive objects, rebecs. Computation takes
place by asynchronous message passing between rebecs and execution of the
corresponding message servers of messages. Each message is put in the queue
of the receiver rebec and specifies a unique method to be invoked when the
message is serviced.

2 Structure of a Rebeca Model

Figure [] illustrates a simple Rebeca class definition. Although in a pure actor
model the queue length is unbounded, for model checking the modeler has to
declare the maximum queue size in the class definition. This size shall be indi-
cated in parenthesis next to the reactiveclass name. In a class definition there
are two central declarations: the knownrebecs and statevars. Known rebecs are
the rebecs that messages are sent to. The statevars are responsible for holding
the rebec state. After these declarations, the message handling methods are
defined in a Java like code. We call these methods the message servers of this
reactive class, and their task is to serve the incoming messages.

In addition to message servers which are defined using the keyword msgsrv,
local methods can also be defined. Methods are local, and can only be called
from within the message servers and methods of the same rebec. A method call
can result in a return value to the caller.

Execution of a message server consists of the following operations:

1. Executing statements: statements are defined in Figure

2. Sending a message: a message can be sent to a rebec (to this rebec or
known rebecs).

3. Calling a method: a method is called by its name.

Execution of a method includes the three above mentioned operations except
that messages can only be sent to this rebec, not to known rebecs. Sending a
message to this rebec is done using the keyword self.

In Rebeca, rebecs have a unique thread of control. This brings simplicity
and ease in modeling. At each step the rebec takes a message from its queue
and executes the corresponding message server.

Every reactive class definition has a constructor. In the initial state, each
rebec has an constructor message in its message queue, thus the first message
executed by each rebec is the constructor. The state variables can be initialized
in the constructor.

After defining the reactive classes, there is a keyword main followed by the
definition of the Rebeca model which is a finite set of rebecs. The rebecs are in-
stantiated from reactive classes. In declaring a rebec, the bindings to its known
rebecs are specified in the list of known rebecs. The abstract syntax of Rebeca
is shown in Figure

2.1 Known Rebecs

The rebecs which are included in the knownrebecs part of a reactive class defi-
nition are those rebecs whose message servers may be called by instances of this
reactive class. The syntax of declaring known rebecs is shown in Figure [2}

There is another important feature in Rebeca. A rebec can also send mes-
sages to variables of type className if their values are not equal to null. When
sending the message, the value of these variables should be associated to a
reference to a rebec.

2.2 Statevars

There are two primary factors determining the state space of a Rebeca program:
the contents of the queues and the values of the state variables. Each rebec
implicitly has an internal queue, and there is no need to declare it explicitly.
The state variables are declared after the knownrebecs definition in a statevars
block. In Figure [2| the declaration style and in Table [1| the variables ranges are
specified.

The state variables can be defined of types int, byte, short, boolean, or class-
Name. The type of className is similar to Java, and refers to the name of a
defined reactive class in the Rebeca program. In the constructor, state variables
can be initialized. Specifically, variables of type className have to be initialized
to null.

Model := Class™ Main
Main == main { InstanceDcl" }
InstanceDcl := className rebecName({rebecName)™) : ({literal)™);
Class == reactiveclass className { KnownRebecs Vars
MsgSrv™ LocalMethods™ }
KnownRebecs = knownrebecs { RebecDcl™ }
Vars == statevars { VarDcl* }
RebecDel == className (v)";
VarDel == Type (v)1; | Type [number |* v
MsgSrv = msgsrv msgName({ExtType v)*) { Stmt" }
LocalMethods := method Name({ExtType v)*) { Stmt* }
Stmt = Assignment | SendMessage | MethodCall |
ConditionalStmt | LoopStmt | LocalVars
Assignment == v = Exp; | v =?(Exp(, Exp)T);
SendMessage == rebecExp.msgName({(Exp)*);
MethodCall := methodName({Exp)™);
ConditionalStmt == if (Exp) { Stmt" } [else { Stmt”™ }]
LoopStmt == for (Exzp; Exp; Exp) { Stmt" } | while (Exp) { Stmt* }
LocalVars = ExtType (v)*;
Exp == e | rebecExpr
rebecExp = self | rebecTerm | (className)rebecTerm
rebecTerm = rebecName | sender
ExtType == Type | float | double
Type == boolean | int | short | byte | className

Figure 2: (a) Abstract syntax of Rebeca. Angle brackets (...) are used as meta
parentheses, superscript + for repetition at least once, superscript * for repe-
tition zero or more times, whereas using (...) with repetition denotes a comma
separated list. Brackets [...] indicate that the text within the brackets is op-
tional. The symbol ? shows nondet choice. Identifiers className, rebecName,
methodName, v, and literal denote class name, rebec name, method name,
variable, and literal, respectively; and e denotes an (arithmetic, boolean, nondet
choice, or a rebec name in case of a variable of type reactive class) expression.

Table 1: The variable ranges in Rebeca

| Type Name | Range \
boolean true, false
int -2147483648 to 2147483647
short -32768 to 32767
byte -128 to 127

2.3 Message Servers

Execution of rebecs in a Rebeca program takes place in an interleaving scheme.
In this manner each rebec dequeues a message from the top of its queue and
executes its corresponding message server. During execution no other message
servers of this rebec is allowed to be executed. The declaration of a message
server is very similar to a method declaration in Java with the difference that
there is no returning value associated with a message server. The message
servers can have input parameters which can be of different types as shown in

Figure [2|

2.4 Methods

Methods can be defined in a reactive class. Methods are local to the container
rebec, and can only be called by the message servers and other methods of
this rebec. A method can return a value to its caller, and can include input
parameters of types ExpType, as defined in Figure 2] When a variable of type
className is passed as an argument to message servers or methods, its value
has to be binded to the reference to a rebec (i.e. an instance of a reactive class
which is defined in the main part). Note that a rebec can send a message to a
variable of type className if its value is not equal to null.

It’s worth mentioning that a method can only send a message to the rebec
containing it. This rebec is accessible by using keyword sel f, which is a reference
to a rebec (an instance of this reactive class).

2.5 7Rebeca Statements

A message server contains one or more Rebeca statements. There are differ-
ent types of statements in Rebeca: conditional statements, assignments, non-
deterministic expressions, local variables declaration, for-loop and while-loop
statements, method calls, and sending message statements. The syntax is de-
scribed in Figure

The logical and arithmetic expressions in Rebeca are similar to Java, and
the syntax is not included in this manual. One can refer to Java documents for
the syntax. The set of acceptable operators are given in Table We should
emphasize that casting in Rebeca is the same as in Java. There is a predefined
variable named sender in Rebeca. The receiver of a message can get a reference
to the sender of the message through accessing the value of variable sender. The

Table 2: Operators in Rebeca

| Operation Type | Operation \ Definition
Arithmetic +-*/
% mod
++ --
Assignment =
+=-=*= /= %=
&=|=
Conditional ?7: ternary conditional
Logic && logical and
I logical or
|
& bitwise and
| bitwise or
Comparative <> >=<=
== equality
= inequality
Cast like in Java

following example shows the casting of variable sender.
senderDevice = (CommunicationDevice)sender;

In this example, the value of sender is assigned to the variable senderDevice
which is of type CommunicationDevice (a defined reactive class in the program).

2.5.1 Loops

In Rebeca, for-loop and while-loop constructs are introduced with the same
syntax as in Java. To facilitate the loop iteration, break and continue are
included too. The syntax is shown in Figure

2.5.2 Conditional Statements

The switch conditional statement has been added to Rebeca and its syntax is
like Java. So, the keywords case, break and de fault have been added too. The
case expression will be valid if its value is determined at compile time. The i f
conditional statement can also be used in Rebeca.

2.5.3 Non-deterministic Expressions

The non-deterministic expressions are valuable in many models. The assignment
x =7(e1, €9, ,ey,) assigns non-deterministically a value from the e;’s valuation
to x. It means that e; can be an expression. The expression will be valid

msgserver AdaptFrequency() {
int noise, frequency;
bool isNoisy;
noise = 7(-1, 1) + 0;
isNoisy = ?(true,false);
if (isNoisy)
frequency = 7(18 , 2 + noise);
else
frequency = 18;

Figure 3: An example of nondeterministic expressions

if its value is determined at compile time. An example of non-deterministic
expressions is shown in Figure This Figure shows a msgserver that sets
the frequency by non-deterministically choosing occurrence of a noise and the
amount of it.

2.5.4 Local Variables

In many situations a rebec needs to work with a variable that is not included
in the state space. We call these variables local variables. These variables
are declared locally in a message server and the value is accessible only in the
message server context. Their value are not considered in state space. The
possible types of local variables are shown in Figure |2| (as ExtType).

2.5.5 Arrays

Arrays can be defined in a Rebeca program. The type of arrays can be int,
byte, short, boolean, or className, as defined in Figure The length of an
array should be specified in its declaration. As an example, x is an array of
bytes with length 3 in the following declaration:

byte [3] x;

An array is indexed from 0. So there are three indexes for the above decla-
ration, namely 0, 1 and 2. The elements of an array can be accessed as in Java,
for example x[2] denotes the last element of the array. Arrays have strict type
checking in Rebeca, i.e. if a message server is willing to accept a variable of
type byte[2], a variable of type byte [3] cannot be passed to it.

3 A Typical Example

Figure 4] shows a producer consumer problem which is modeled in Rebeca.

reactiveclass Producer(2) {
knownrebecs { Consumer knownconsumer; }
statevars { boolean productsent; }
Producer() {
productsent = false;
self.produce(); }
msgsrv produce() {
knownconsumer . consume () ;
productsent = true; }
}
reactiveclass Consumer(2) {
knownrebecs { Producer knownproducer; }
statevars { boolean productreceived; }
Consumer () {
productreceived = false;
self.consume(); }
msgsrv consume() {
knownproducer.produce() ;
productreceived = true; }
}
main {
Producer produceri(consumerl);
Consumer consumerl(producerl); }

Figure 4: A typical model definition in Rebeca

	Introduction
	Structure of a Rebeca Model
	Known Rebecs
	Statevars
	Message Servers
	Methods
	Rebeca Statements
	Loops
	Conditional Statements
	Non-deterministic Expressions
	Local Variables
	Arrays

	A Typical Example

