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ABSTRACT

Background

The increasing demand for quality assurance in agro-food production requires

sophisticated analytical methods for in-line quality control. One of these techniques is

visible and near-infrared (VIS-NIR) spectroscopy, which has low running costs, does

not need sample preparation, and is non-destructive, environmentally friendly, and fast.

Despite these advantages,  only a limited amount of research has been conducted on

VIS-NIR  in-line  applications  to  measure,  control,  and  predict  quality  in  fruits  and

vegetables.

Scope and Approach

The applicability of VIS-NIR spectroscopy for the off-line and in-line monitoring of

quality in postharvest products has been addressed in this review. The document focuses
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on  the  comparison  between  the  two  processes  for  the  same  agro-food  product,

highlighting  the  main  advantages  and  disadvantages,  problems,  solutions,  and

differences.

Key Findings and Conclusions

VIS-NIR techniques, combined with chemometric methods, have shown great potential

due  to  their  fast  detection  speed,  and  the  possibility  of  simultaneously  predicting

multiple  quality  parameters  or  distinguishing  between  products  according  to  the

objectives. Being able to automate processes is a great advantage compared to routine

off-line analyses, mainly due to the savings achieved in time, material, and personnel.

However, in numerous cases, in-line implementation has not been accomplished in the

corresponding studies, hence the scarcity of real in-line applications. Recent demands,

together with the advances being made in the technology and a reduction in the price of

equipment,  makes VIS-NIR technology an analytical  alternative for continuous real-

time food quality controls, which will become predominant in the next few years.

Keywords: VIS-NIR  spectroscopy;  in-line;  off-line;  chemometrics;  quantification;

qualification

NOMENCLATURE

ANN, artificial neural network 

BC, background colour 

CA, cluster analysis 

CDA, canonical discriminant analysis

CR2, squared canonical correlation 

IQI, internal quality index 
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ITB, internal tissue browning 

KNN, K-nearest neighbors

LDA, linear discriminant analysis 

LV, latent variables

MIR, med-infrared

MLR, multiple linear regression

MSC, multiplicative scatter correction

OSC, orthogonal signal correction

PCR, principal component regression

PLS, partial least square 

PLS-DA, partial least squares-discriminant analysis

QDA, quadratic discriminant analysis

QS, quantitative starch 

r, correlation coefficient

rp, correlation coefficient for prediction

R2, coefficient of determination

RMSE, root mean square error

RMSECV, root mean square error of cross-validation

RMSEP, root mean square error of prediction

RP
2, determination coefficient for prediction

RPD, ratio of performance to deviation

SEP, square error of prediction

SIMCA, soft independent modeling of class analogy

SNV, standard normal variate

SPI, starch pattern index
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SSC, soluble solids content

SVM, support vector machine

SWIR, short-wavelength near-infrared

SWS, standardized weighted sum

TA, titratable acidity

TDIS, time-delayed integration method

TPC, content of total phenolic compounds

VIS-NIR, visible and near-infrared

1. Introduction

The current demands in an increasingly competitive and globalized framework

call for the agri-food sector to produce higher quality products, which requires an in-line

inspection of the entire production. For this reason, the research and development of

fast, accurate and non-destructive tools that are capable of evaluating each individual

product  is  increasing  at  high  speed  (Porep  et  al.,  2015).  Among  them,  VIS-NIR

spectroscopy  appears  as  a  promising  alternative.  This  technology  allows  easy,  fast,

accurate, non-destructive, and inexpensive quality assessments to be performed without

previous sample preparation, and the potential exists to develop instruments for in-line

measurements. However, as it is based on indirect measurements that produce highly

complex data, VIS-NIR spectroscopy needs the support of chemometrics to take full

advantage of the corresponding spectra (Porep et al., 2015; Huang et al., 2008; Siesler,

2008).

The versatile applications of VIS-NIR spectroscopy for fruit quality assessment

have already been reviewed, for instance by Cen and He (2007) and Kumaravelu and

Gopal (2015). Wang et al. (2015) and Nicolaï et al. (2007) review an extensive number
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of applications using VIS-NIR and chemometrics to measure the quality and properties

of  products.  Giovenzana  et  al.  (2015)  presented  an  overview  of  spectroscopy

applications  on  fruit  and  vegetables,  in  this  case  focused  on  different  moments

throughout the production and distribution process. Cozzolino et al. (2011) surveyed the

diverse steps and procedures that should be taken into account when calibrations based

on NIR spectrometry are developed for the assessment of chemical properties in fruits.

Magwaza  et al.  (2012) and Jha  et al. (2010), respectively,  have also reviewed other

specific applications of VIS-NIR spectroscopy for certain agro-food products, such as

citrus fruit and mango. 

Generally,  reviews on this  topic  have been focused on off-line and laboratory

applications. This is probably because, until recently, little in-line or real-time research

had been conducted with the aim of measuring, controlling, or predicting the quality of

fruits and vegetables at the industrial or semi-industrial level. Working in-line requires

special  equipment  to  move the  products  in  a  manner  that  is  synchronized  with  the

measurements, and presents a series of restrictions that makes them different from ideal

static measurements. Some previous research carried out by Huang  et al. (2008) was

focused on NIR on/in-line applications for monitoring quality in food and beverages,

but without going deeper into the agro-food sector and without making any comparisons

between off/in-line applications for the same product. 

Therefore,  this work reviews for the first time the implementation of VIS-NIR

spectroscopy applications for the in-line inspection of agro-food products under semi-

industrial  conditions,  and  establishes  comparisons  between  these  and  other  similar

studies  with  the  same  products  based  on  static  measurements  under  laboratory

conditions. Moreover, the main differences between the two types of implementations
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are highlighted, the advantages and disadvantages of each system are emphasized, and

the problems and practical solutions adopted are reviewed.

2. VIS-NIR technology

Infrared  spectroscopy  is  based  on  the  absorbance  of  radiation  at  molecular

vibrational frequencies occurring for the O-H, N-H, and C-H groups and for the C-C,

C-O, C-N, and N-O groups in organic materials (Soriano-Disla et al., 2014). Overtone

and combination vibrations of the first group dominate the NIR region (4,000–14,286

cm−1; 700–2,500 nm), while those of the second group absorb in the mid-infrared region

(MIR) (400–4,000 cm−1; 2,500–25,000 nm). Electronic transitions absorb in the visible

region (14,286–25,000 cm−1; 400–700 nm) and in the ultraviolet region (25,000–40,000

cm−1;  250–400  nm)  (Rossel  et  al.,  2006;  Coates,  2000).  Figure  1  shows  the

electromagnetic spectrum, with the location of the different spectral regions.

A varied selection of spectroscopic instruments is accessible and there are around

sixty  NIR  spectrometer  manufacturers  around  the  world  (McClure  &  Tsuchikawa,

2007). These instruments can be divided into three groups: (i) laboratory devices, (ii)

sorting  and grading,  and (iii)  portable  devices.  The main  differences  between these

types  of  NIR  devices  and  an  overview  of  spectroscopy  applications  on  fruits  and

vegetables based on the instrumental characteristics of the NIR devices employed for

the  studies  can  be  found  in  Beghi  et  al.  (2017). The  literature  shows  that  many

applications  of VIS-NIR spectroscopy involve the use of benchtop and portable full

spectra devices, but recent studies have been conducted using simplified optical systems

based on a small number of wavelengths (Beghi et al., 2013; Giovenzana et al., 2014;

Civelli  et al., 2015). This topic is discussed in  Beghi  et al. (2017).  Regardless of the

type of instrument, the principal components are a sample holder, where the sample is

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151



placed, a light source, a detector to record the received light intensity, and a computer

unit to register and process the spectral information obtained (Siesler et al., 2008). The

use of fiber-optic probes is often desirable, as many current applications are based on

their intensive use in order to simplify data acquisition procedures due to their capacity

for multiplexing, thus allowing them to monitor many points (Pasquini, 2003).

Several optical alternatives are available for VIS-NIR spectroscopy: ‘reflectance’,

‘transmittance’, ‘transflectance’, and ‘interactance’ (Alander  et al., 2013). Illustrations

of these different optical geometries are shown in Figure 2, where it can be seen how

the  location  of  the  detectors  with  respect  to  the  sample  determines  the  mode  of

operation. 

According  to  the  mode  used,  light  attenuation  by  the  sample,  relative  to  the

reference, is known as reflectance (R) or transmittance (T). Commonly, R and T are

transformed into  absorbance  (log  1/R or  log 1/T)  to  perform chemometric  analyses

(Herold et al., 2009).

3. Chemometrics

The  powerful  VIS-NIR  instruments  currently  available  rapidly  provide  large

amounts  of  information  that  need  efficient  pre-treatment  and  useful  evaluation.

Chemometrics is a discipline developed for this purpose. Generally, it involves three

steps: (i) spectral data pre-treatment; (ii) construction of calibration models; and (iii)

model transfer. The main objective of spectra pre-treatment is to transform the data into

more  useful  information  capable  of  facilitating  its  subsequent  multivariate  analysis.

Some of the more frequent pre-treatments for VIS-NIR spectra include: (i) smoothing

methods (for example,  Gaussian filter,  moving average,  median filter,  and Savitzky-
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Golay smoothing);  (ii)  derivation methods (usually  first  and second derivative);  (iii)

MSC;  (iv)  OSC;  (v)  SNV;  (vi)  wavelet  transformation;  (vii)  normalization  and/or

scaling; and (viii) de-trending to eliminate the baseline drift in the spectrum. Moreover,

different combinations of these methods applied simultaneously can also be used for

signal  processing  (Brereton,  2003).  Information  about  the  application  of  these

pretreatments to VIS-NIR spectra can be found in Savitzky and Golay (1964), Wold et

al. (1998), Berrueta et al. (2007), Liu et al. (2011), Lorente et al. (2015), and Wang et

al. (2015). The calibration model can be built for qualitative and/or quantitative analysis

of  the  samples.  Figure  3  shows  a  schematic  diagram  of  possible  experimental

approaches using VIS-NIR spectroscopy techniques. The first step of the data analysis

is often principal component analysis (PCA), in order to detect patterns and outliers

(Cozzolino et al., 2011) in the measured data. Another unsupervised pattern recognition

technique that  can be used is CA (Næs  et al.,  2002). Subsequently,  a qualitative or

quantitative  approach to  the  data  will  be  chosen according to  the  objectives  of  the

particular study. Qualitative analysis involves classifying the samples according to their

VIS-NIR  spectra  based  on  pattern  recognition  methods  (Roggo  et  al.,  2007).  The

classification model is created with a training set of samples with known categories, and

subsequently this model is evaluated by a test set of unknown samples. In order to do

this, many qualitative methods are used, such as LDA (Baranowski et al., 2012), QDA,

KNN (Derde  et al., 1987), PLS-DA (Liu  et al., 2011), SIMCA (Pontes  et al., 2006),

ANN (Mariey et al., 2001), and SVM (Chen et al., 2007). Of these techniques, PLS-DA

is often commonly selected for optimal classification. For quantitative analyses, which

focus on predicting some of the properties that, for example, can greatly influence fruit

quality, methods such as MLR, PCR, PLS, or ANN are broadly used. The best modeling

method suggested for most VIS-NIR spectra is PLS (Lin & Ying, 2009). The accuracy
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of VIS-NIR models for fruit quality prediction is usually evaluated by means of the R2

or r, the RMSE, and the RPD (Bobelyn et al., 2010). Generally, a good model should

achieve a low RMSE and a high R2 or r. Additionally, a satisfactory model should have

an RPD value of more than 2.5, a value above 3.0 being very good (Kamruzzaman et

al., 2016; Cortés et al., 2016). Other statistical parameters reflecting a good model are

low average  difference  between  predicted  and  measured  values  (Bias)  and  a  small

difference between RMSEC and RMSEP. Moreover, a good model should have as few

LV as possible. 

4. Monitoring strategies in the postharvest stage

Regarding the implementation process used, off-line, at-line, on-line, and in-line

measurements  can  be  differentiated.  The  definitions  of  these  terms  are  as  follows

(Dickens, 2010): 

-  off-line:  analyzes  the  sample  away  from the  production  line,  classically  in  a

laboratory.

-  at-line:  random samples  are  manually  extracted  from the  production  line  and

examined in a place very close to the process line.

- on-line: samples are diverted from the production line to be analyzed directly in

the recirculation loop (by-pass) and are returned to the production line after analysis.

- in-line: analyzes the sample within the running production line (in situ).

The  terms  on-line  and  in-line  are  seemingly  used  similarly  and  so,  for  the

publications cited in this review, the term employed in the original article is the one

used. An exhaustive review of the literature shows that the VIS-NIR technique has been

used with a wide range of agro-food applications. One of the major areas where the
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technology can be employed is the postharvest handling of fruit and vegetables. This

section  summarizes  the  recent  position  of  research  in  the  above-mentioned  area  by

highlighting  current  investigative  and  exploratory  studies  about  off-line  and  in-line

applications.

4.1. Overview of the off-line and in-line applications 

When this technology is applied for an off-line quality control, random samples

are acquired from finished products or from reaction blends and analyzed at laboratory

scale (Roggo et al., 2007). The main disadvantages are that this type of analysis requires

some  time  and,  in  the  meantime,  the  production  of  a  product  of  unknown quality

continues.  Additionally,  most  commercially  accessible  VIS-NIR  spectroscopy

instruments  are  limited  to  single  point  analysis,  and  therefore  if  the  sample  is

heterogeneous, such as fruit, a single value might not be able to characterize the bulk

sample (Wold et al., 2011). 

Some  solutions  to  these  disadvantages  are,  on  the  one  hand,  to  install  the

spectrometer  very  close  to  the  production  line  and  to  perform  the  analysis  at-line

immediately  after  sampling.  This  is  possible  due  to  research  innovations  that  are

creating more compact and portable VIS-NIR devices (McClure  et al., 2007). On the

other hand, another solution is to use a multipoint NIR system capable of monitoring

different points simultaneously. In addition, the system could be installed at different

standoff distances adapted to the shape and size of the product, or even different light

sources for individual probes depending on the objectives. Other advantages that these

multipoint  probes offer are their  flexibility  and the fact  that  they can be coupled to

different scenarios.
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However, acquiring data from the intact product in real time is a currently being a

critical requirement in processing lines. Thus, the demand for strict quality controls and

optimization  of  the  product  is  expected  to  increase.  In-line  monitoring  of  the  food

production process has considered the use of specific  analytical methods and in situ

sensors  or  probes,  such as  NIR spectroscopy  (Zude,  2008),  acoustics  and vibration

(Patist  & Bates,  2008),  microwave resonance technology (Kim  et al.,  1999),  visible

imaging (Cubero et al., 2016), and hyperspectral imaging (Balasundaram et al., 2009;

Lorente  et al.,  2012).  In particular,  NIR spectroscopy has proven to be a  fast,  non-

invasive and effective tool in fruit quality analysis, and its in-line application may be

used to substitute slow and tedious conventional methods (Ait Kaddour & Cuq, 2009;

Alcalà et al., 2010). Therefore, the ability to collect data about the quality of the entire

fruit production using in-line systems based on spectroscopy could be valuable for the

industry. Hence, the determination of the quality traits of intact fruit in movement with

the use of VIS-NIR technology is a great benefit for production lines such as conveyor

belts,  sample  cups  on  a  conveyor  belt  or  hopper  systems,  and  research  has  been

conducted in this regard. Figure 4 depicts the implementation of a system for automatic

acquisition of spectra in a line of inspection and control of fruit quality. The system

shows a possible solution to the problem of the acquisition of measurements at uniform

distances on one side of the fruit. Another solution could be to locate the probe in the

lower  part,  but  there  would  be  problems  of  dirt  accumulation  and  a  uniform

measurement distance is not guaranteed either.

4.2. Comparison between off-line and in-line applications

Although several reviews of VIS-NIR applications  on intact  harvest fruits  and

vegetables have been published to date (Blanco & Villarroya, 2002; Huang et al., 2008;
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Cen & He, 2007; Su et al., 2017; Wang et al., 2017; López et al., 2013; Lin & Ying,

2009; Magwaza et al., 2012; Opara & Pathare, 2014; Wang et al., 2015; Wiesner et al.,

2014; Porep  et al.,  2015; Wang  et al.,  2007; Jha  et  al.,  2010;  Nicolaï  et al.,  2007;

Cozzolino et al., 2011; Ruiz-Altisent et al., 2010), only one of them (Porep et al., 2015)

delves  into  the  possible  applications  of  NIR  technology  on  a  semi-industrial  and

industrial scale. Porep et al. (2015) based their review on NIR applications that follow

an  on-line  strategy.  In  contrast,  this  paper  carries  out  the  first  comparative  study

between off- and in-line strategies followed by different authors for the same type of

product (apples,  watermelons,  nectarines,  olives,  and pears). The implementations  of

VIS-NIR spectroscopy that have been reviewed are summarized in Table 1.

In most off-line applications with fruits, the acquisition mode used is reflectance,

except  for  the  study conducted  by  Khatiwada  et  al.  (2016) and the  two studies  by

McGlone  et al.  (2002 and 2003), which were carried out in transmittance mode with

apples, as well as the studies by Abebe (2006) and Jie et al. (2013) with watermelons or

Xu et al. (2014) with pears. In the case of in-line applications the situation is similar: the

predominant  acquisition  modes  are  reflectance,  used  in  all  in-line  applications  with

olives (Salguero-Chaparro et al., 2012, 2013 and 2014), and the transmittance mode in

the case of pears (Xu et al., 2012; Sun et al., 2016). Examples of both acquisition modes

were found in in-line applications with watermelon (Jie  et al., 2014; Tamburini  et al.,

2017) and apple (McGlone et al., 2005; Shenderey et al., 2010; Ignat et al., 2014), but

nectarines were the only example found that employed the interactance mode (Golic &

Walsh, 2006).

Several works have been already done to analyzed VIS-NIR spectroscopy applied

to the in-line analysis of intact apples. In the study by Shenderey  et al. (2010) moldy

core in apples was detected by a VIS-NIR mini-spectrometer (400–1,000 nm) installed
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in-line. The system was fitted with four cells, and in each cell rubber rings at the top and

bottom hold  the  fruit  and  the  fiber-optic  probe  was  connected  below  the  fruit-cell

locations. The fruits were analyzed in transmittance mode, with a whole scan time of 1

second per fruit. The accuracy of the classification results was high: 92% recognition of

healthy apples and 100% detection of deterioration at  levels of damage above 30%.

Similarly, and also in transmittance mode, but in this case with a higher analysis speed

(approximately 5 fruits per second), McGlone  et al. (2005) developed two prototype

on-line NIR systems to measure the proportion of internal tissue browning in apples in

the wavelength range 650–950 nm. The same motor-driven fruit conveyor with 21 fruit

cups was used for both prototypes. The best correlations for the measurement of ITB in

apples, comparing the two transmission systems that were designed, indicated that a

conventional large aperture approach to the spectrometry (LAS) was more precise as

well as more economical and less susceptible to data misses than an alternative based on

the recently  developed TDIS. In reflectance  mode,  but  with the same speed as  that

employed by Shenderey et al. (2010) (1 sample per second), Ignat et al. (2014) assessed

the possibility of quickly determining the quality of apples of three cultivars using two

commercial  spectrophotometers  (VIS-NIR  with  a  spectral  region  between  340–

1,014 nm and SWIR between 850–1,888 nm). The advantage of this study is that they

evaluated both instruments to measure the same product in a static mode (off-line) and

on a moving conveyor (in-line). In this case, the conveyor had 24 fruit cells and the

light source illuminated the sample vertically with an optical fiber at an inclination of

45º.  The results  demonstrated  that  in-motion  measurement  modes gave higher  SWS

than static  measurements  in  some cases.  During in-motion measurement  modes,  the

scanned area of the samples is greater and, thus, it reflects the individual apples more

accurately compared with the static mode, where the optical fiber observes a reduced
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area. Additionally, comparing certain quality parameters, such as SSC, in both static and

in-motion studies resulted in similar prediction models as regards the in-motion and the

static measurements. Moreover, a comparison of certain quality parameters in both off-

line and in-line studies resulted in similar and, in some cases, even better models for in-

line than for static measurements. For example, observing the prediction of the SSC in

studies with similar spectral ranges and the same measurement mode, an R2=0.86 was

obtained for the in-motion study by Ignat et al. (2014), which is a very similar result to

that found in static  studies by Nicolaï  et al. (2007),  with an R2=0.87, Xiaobo  et al.

(2007), with an R2=0.93, and the studies by Pissard et al. (2013) and Guo et al. (2016),

with an R2=0.94. Schmutzler and Huck (2014) quantified soluble solids content, total

acid and polyphenol content of Golden Delicious and Pink Lady apples comparing a

novel automated surface scanning technique to a manual measurement.  They used a

prototype  constructed  to  rotate  samples  while  recording  spectra.  The  samples  were

analyzed in the wavelength region from 1,000 to 2,500 nm in diffuse reflectance mode.

The NIR-based determinations were superior to the manual measurements, for the three

analyses and for both varieties of apples, using surface scanning.

Watermelons  were  analyzed  by  Jie  et  al. (2014)  using  a  prototype  in-line

detection system based on the VIS-NIR technique for predicting their  soluble solids

contents. The prototype works in transmittance mode and the spectral range studied was

687–920 nm. The measurements were conducted on a conveyor belt, where trays were

moved at a speed of 0.3 m/s. The best results were obtained using a calibration model

based  on  Monte-Carlo  uninformative  variable  elimination  (MC-UVE)  jointly  with

stepwise multiple linear regressions (SMLR) (rpre=0.66). The spectra were pre-treated

using baseline offset correction (BOC). Recently, Tamburini et al. (2017) developed an

NIR in-line system to determine lycopene, β-carotene, and total soluble solids content in
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red-flesh  watermelons  in  the  selected  wavelength  range  from  900  to  1,700  nm  in

reflectance  mode.  Watermelons  were  transported  along  a  conveyor  belt  system  at

different speeds (2,100, 2,400 and 2,700 rpm). Models were performed using partial

least squares (PLS) on pre-treated spectra (derivate and standard normal variation), and

the results confirmed a good predictive ability with R2
p higher than 0.70.

On  comparing  the  off-  and  in-line  studies  by  Jie  et  al. (2013  and  2014)  in

transmittance mode, it is observed that off-line results are slightly better (R2
p=0.845 for

off-line and rpre=0.66 for in-line) but with higher RMSEP (RMSEP=0.574 ºBrix for off-

line and RMSEP=0.39 ºBrix for in-line). If this is compared with the other off-line study

(Abebe et al., 2006) conducted in transmittance mode found for this type of product, a

higher R2
p (0.81) is also obtained but with higher RMSEP (0.42 %) than for the in-line

system.

In the case of nectarines, only one study conducted with an in-line application has

been found. In this case, Golic and Walsh (2006) employed an NIR spectrometer (735–

930 nm). In contrast to the rest of the in-line systems, this prototype was designed to

acquire the fruit spectra in interactance mode (or partial transmittance configuration).

The SSC of nectarines were determined above the cup in the conveyor belt by passing

each cup at approximately 0.7 m/s, or 6 cups per second. The prediction performance of

the model was good in terms of R2>0.8. Comparing the prediction results of SSC of the

in-line system (Golic & Walsh, 2006) with the off-line studies, although the mode of

data acquisition was different, it was shown how the in-line system achieved, with a

smaller spectral range, results as good as or even better than those obtained by Pérez-

Marín et al. (2009), with an R2=0.89, and Sánchez et al. (2011), with an r2=0.47–0.68.

Intact olives were also measured by VIS-NIR reflectance spectroscopy in both

off-line  and  in-line  applications  by  a  research  group  at  the  University  of  Córdoba
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(Salguero-Chaparro  et  al.,  2012,  2013  and  2014).  Salguero-Chaparro  et  al. (2012)

studied and optimized some parameters,  such as focal distance and integration time,

prior to implementing the system at factory level.  The spectrometer  was fitted on a

structure designed expressly to support it and to achieve on-line analysis on a conveyor

belt  in  the  spectral  range  of  380–1,690  nm.  With  the  same  semi-industrial  scale

development line on a conveyor belt, Salguero-Chaparro  et al. (2013) determined the

moisture, fat content and acidity in intact olives. The predictive performance achieved

varied  depending  on  spectra  pre-treatment  and  validation  strategies.  However,  the

authors determined that the in-line NIR estimate results were adequate with R2>0.74 for

the  three  parameters  analyzed  in  samples  in  movement.  Additionally,  Salguero-

Chaparro  et al. (2014) compared on-line versus off-line NIR systems to analyze the

same properties as in the previous study. The parameters used were characterized in

Salguero-Chaparro et al. (2012) and were the focal distance, the speed of the conveyor

belt, and the integration time. The values were 13 mm, 0.1 m/s and 5 s, respectively.

Similar accuracy for the determination of physicochemical composition in intact olives

was obtained for the on-line analysis and using the traditional off-line methodology. 

More specifically,  on comparing  the  prediction  by the  PLS method of  certain

quality parameters such as fat content, free acidity, and moisture content for the same

mode of acquisition (reflectance),  it  is observed how the predictions achieved in the

in-line studies (Salguero-Chaparro et al., 2013 and 2014) were as good (R2
fat content = 0.79

and 0.86; R2
free acidity = 0.74 and 0.77; and R2

moisture content = 0.87 and 0.89) as those analyzed

off-line (R2
fat content = 0.87; R2

free acidity = 0.76 ; and R2
moisture content = 0.89).

In the same way as in two studies dealing with apple and one with watermelon,

the in-line systems developed for pears have been used in transmission mode. Xu et al.

(2012) investigated the determination of sugar content in pears between 533–930 nm in
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an  on-line  system.  The  on-line  measuring  system included  a  tray  conveyor  with  a

circular hole in the back of the tray to fit a collimating lens and an optical fiber used to

connect the collimating lens and spectrometer. The halogen lamps were attached to two

sides of the tray. The speed of the conveyor belt was 0.5 m/s and the integration time

was 100 ms.  Similarly,  Sun  et  al. (2016)  developed on-line  VIS-NIR transmittance

system to measure soluble solids content and also brown core in pears. Like Xu et al.

(2012), VIS-NIR spectra were collected using a very similar wavelength range (from

600 to 904 nm) and at  a  moving speed of  5  samples  per  second.  Furthermore,  the

system also consisted of a transmission chain, light source, detector, sorting device, and

fruit cup. 

A comparison of both systems in in-line applications allowed very good results to

be obtained for SSC predictions, with an R2 between 0.82 and 0.99. Compared with the

SSC analysis off-line and also in transmission mode (Xu et al., 2014), the in-line results

are better than those performed off-line (rp=0.96). With respect to off-line analyses but

in reflectance mode (Li  et al., 2013 and Nicolaï  et al., 2008), in-line results were still

better than those performed off-line (rp=0.91 and R2=0.60, respectively).

4. Conclusions and future directions

Visible and near-infrared reflectance spectroscopy has become a powerful tool for

the non-destructive monitoring and prediction of multiple quality and safety attributes

of  agro-food  products.  This  technique,  combined  with  chemometric  methods,  has

proven to be an alternative to destructive analysis due to its fast detection speed, no

need for sample disposal, relative lower cost, and potential to predict multiple quality

parameters  at  the same time,  and therefore  to  distinguish the  products  according to

different characteristics.

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426



Most applications  carried out  to date  have been based on static  measurements

under  controlled  laboratory  conditions.  In  these arrangements,  the  product  is  placed

appropriately  and  the  probe  is  carefully  moved  toward  the  sample  to  take  the

measurement.  However, recent demands from industry and consumers, together with

the advances being made in the technology, makes VIS-NIR spectroscopy a promising

analytical tool for routine and real-time food safety and quality controls in the coming

years. This would allow all  the production to be monitored instead of just choosing

some random samples as being representative of the whole batch, as occurs at present.

However,  the  creation  of  practical  in-line  applications  running  on  industrial

prototypes is still  challenging and requires extensive research to overcome problems

such  as:  i)  the  negative  influence  of  the  high-speed  movement  of  the  samples;  ii)

maintaining the same distance between the probe and the samples regardless of the size

or shape of the samples; iii) measuring on different points of the fruit at the same time

to avoid the natural distribution of the compounds inside the fruits; and iv) reducing the

integration and data processing time to allow the speed of the system to be increased. 
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Figure captions

Figure 1. The electromagnetic spectrum with the location of the visible and infrared

spectral regions.

Figure 2. Modes for the acquisition of spectra. L: light source, D: detector.

Figure 3. Schematic overview of the different chemometric approaches using VIS-NIR

spectra.

Figure 4. System for taking measurements of fruits in-line using a spectrophotometer,

ensuring uniform distance between the probe and the sample through a computer vision-

based system.
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Table 1. Off-line and in-line applications of VIS-NIR spectroscopy in the assessment of quality in agricultural products.

Sample Application
Acquisition

mode
Statistic
method

Spectral range 
(range used)

Attributes
analyzed

Performance Ref.

A
p

p
le

s

Off-line Reflectance MLR
350-850 nm; 810-999

nm
SSC RP

2=0.49, SEP=1.14ºBrix
Ventura et al. 
(1998)

Transmittance PLS 500-750 nm BC
R2

(on the harvest)=0.78; R2
(on the 

storage)=0.71
McGlone et 
al. (2002)

500-750 nm Firmness
R2

(on the harvest)=0.63; R2
(on the 

storage)=0.59

500-750 nm QS R2
(on the harvest)=0.66

500-750 nm SPI R2
(on the harvest)=0.78

600-1000 nm; 800-
1000 nm

SSC
R2

(on the harvest)=0.63; R2
(on the 

storage)=0.70

500-1100 nm TA R2
(on the harvest)=0.38

Transmittance PLS 800-1000 nm Dry matter
R2

(at harvest time)=0.95 and 
RMSEP=0.29; R2

(post-storage)=0.97 
and RMSEP=0.24;

McGlone et 
al. (2003)

SSC

R2
(at harvest time)=0.79 and 

RMSEP=0.52%brix;R2
(post-

storage)=0.94 and 
RMSEP=0.30%brix;

Reflectance PLS 300-1100 nm SSC RMSEPcorr=0.65 ºBrix
Roger et al. 
(2003)

Bias=-0.35 – 0.39 ºBrix

Reflectance CDA 400-1700 nm
Impact bruises and
non-bruised tissue

CR2=0.68
Xing et al. 
(2003)

Compression bruises
and sound tissue

CR2=0.68
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Table 1. (Continued)

Sample Application
Acquisition

mode
Statistic
method

Spectral range 
(range used)

Attributes
analyzed

Performance Ref.

A
p

p
le

s

Off-line Reflectance PLS 380-2000 nm Streif index
RMSEP=0.14-0.20 log kg cm-2 
%brix-1

Peirs et al. 
(2005)

Respiratory
maturity

RMSEP=4.4-7.9 days

Physiological
maturity

RMSEP=5.7-8.8 days

Reflectance
Conceptual

model
400–800 nm Flavonol content r2=0.92; RMSEP=20 nmol/cm2 Merzlyak et 

al. (2005)

Reflectance PLS-DA 400-1700 nm Bruise detection Classification accuracy >90%
Xing et al. 
(2005)

Reflectance
Kernel PLS
regression

800-1690 nm SSC R2=0.87; RMSEP=0.44 ºBrix
Nicolaï et al. 
(2007)

Reflectance PLS 11000–3800 cm-1 SSC

rp(full spectrum)=0.811; RMSEP(full 

spectrum)=1.1522; Rp(optimal selected 

intervals)=0.93; RMSEP(optimal selected 

intervals)=0.4424

Xiaobo et al. 
(2007)

Reflectance PLS-DA 500-1600 nm Softening index Classification accuracy >95%
Xing et al. 
(2007)

PLS 804-1294 nm E-modulus rp=0.77-0.80

Reflectance LS-SVM 400-2500 nm Vitamin C R2=0.80; SEP=4.9
Pissard et al. 
(2013)

Total polyphenol R2=0.94; SEP=140

SSC R2=0.94; SEP=0.37

Reflectance ICA-SVM 500-1100 nm SSC rp=0.94; RMSEP=0.39 %
Guo et al. 
(2016)

Reflectance PLS-DA
400-1000nm; 1100-

2100 nm

Influence of
packaging on
apple slices

86.7 % – 100 %
Beghi et al. 
(2016)

767
768

769



Table 1. (Continued)

Sample Application
Acquisition

mode
Statistic method

Spectral range 
(range used)

Attributes
analyzed

Performance Ref.

A
p

p
le

s

Off-line Transmittance PLS
302-1150 nm and 600-

973 nm
Defect level

(visual score)
R2=0.83, RMSEP=0.63

Khatiwada et 
al. (2016)

PLS-DA, LDA
and SVM

Internal flesh
browning

Classification accuracy>95%

Reflectance QDA, SVM 800-2500 nm Bitter pit detection
Average accuracy in the range 
of 78-87 %,

Kafle et al. 
(2016)

Reflectance PLS 6267-4173 cm-1 Total antioxidant
capacity

R2=0.85, SEP=0.13% gallic 
acid equivalents, RPD=2.8

Schmutzler et 
al. (2016)

SSC
R2=0.76, SEP=0.55ºBrix, 
RPD=2.5

Reflectance PLS 408-2498 nm Dry matter
R2

(peel)=0.94; RPD(peel)=4.8; 
R2

(flesh)=0.94; RPD(flesh)=4.9
Pissard et al 
(2018)

TPC R2
 (peel)=0.91; R2

 (flesh)=0.84

In-line (sample
cups on 
conveyor)

Transmittance PLS 650-950 nm ITB R2=0.9; RMSECV=4.1 %
McGlone et 
al. (2005)

(simulated 
conveyer)

Transmittance PLS 400-1000 nm Moldy core r2=0.71; SEP=0.036; RPD=1.71
Shenderey et 
al. (2010)

(cell conveyer) Reflectance PLS
340-1014 nm and 850-

1888 nm
SSC R2=0.86, RMSEP=0.80

Ignat et al. 
(2014)

TA R2=0.66, RMSEP=0.04

Firmness R2=0.76, RMSEP=6.60

Starch R2=0.91, RMSEP=0.86
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Table 1. (Continued)

Sample Application
Acquisition

mode
Statistic
method

Spectral range 
(range used)

Attributes
analyzed

Performance Ref.
W

at
er

m
el

on
s

Off-line Transmittance PLS 700-1100 nm SSC R2=0.81; RMSEP=0.42 % Abebe (2006)

Transmittance
MC-UVE-GA-

PLS
220-102 nm (680-

950 nm)
SSC R2=0.845; RMSEP=0.574 ºBrix Jie et al. (2013)

In-line 
(conveyor 
belt)

Transmittance
MC-UVE-

SMLR
687-920 nm (200-

1100 nm)
SSC rp=0.66; RMSEP=0.39 ºBrix Jie et al. (2014)

Reflectance PLS 900-1700 nm Lycopene R2=0.805; SECV=16.19 mg/kg Tamburini et al. (2017)

B-Carotene R2=0.737; SECV=0.96 mg/kg

SSC R2=0.707; SECV=1.4 %

N
ec

ta
ri

n
es

Off-line Reflectance PLS 360-1760 nm IQI R2= 0.909-0.927; RMSEP=0.235-0.238 Cortés et al. (2017a)

PLS-DA and
LDA

360-1760 nm
Varietal

discrimination
Classification accuracy of 100% and 
97.44%

Reflectance
PLS-DA and

LDA
600-1100 nm

Varietal
discrimination

Classification accuracy of 100% Cortés et al. (2017b)

Reflectance MPLS
1600-2400 nm; 
400-1700 nm

SSC r2=0.89;SEP=0.75-0.81%
Pérez-Marín et al. 
(2009)

Flesh firmness r2=0.84-0.86; SP=11.6-12.7 N

Weight r2=0.98; SEP=5.40 g

Diameter r2=0.75; SEP= 0.46 cm

Reflectance PLS2-DA 1600-2400 nm
Shelf-life

discrimination
86-96%

Pérez-Marín et al. 
(2011)

400-1700 nm 66-89%

Reflectance
MPLS;LOCAL 
algorithm

1600-2400 nm Weight r2=0.53;0.59 Sánchez et al. (2011)

Diameter r2=0.53;0.56

Flesh firmness r2=0.85;0.87

SSC r2=0.47;0.68

Table 1. (Continued)
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Sample Application
Acquisition

mode
Statistic
method

Spectral range 
(range used)

Attributes
analyzed

Performance Ref.

N
ec

ta
ri

n
es

In-line
(the cup 
conveyor belt)

Interactance PLS 735-930 nm SSC R2 > 0.88; RMSECV=0.53–0.88 %SSC Golic & Walsh (2006)

O
li

ve
s

Off-line Reflectance PLS 400-2500 nm Fat content R2=0.87 ; RMSEP=2.50
Salguero-Chaparro et 
al. (2014)

Free acidity R2=0.76 ; RMSEP=3.07

Moisture content R2=0.89 ; RMSEP=3.48

LS-SVM Fat content R2=0.82 ; RMSEP=2.28

Free acidity R2=0.69 ; RMSEP=2.95

Moisture content R2=0.88 ; RMSEP=3.30

In-line 
(conveyor 
belt)

Reflectance
ANOVA and

LSD
380-1690 nm

Focal distance and
integration time

RMS (5s)=28.753 - 66.028
Salguero-Chaparro et 
al. (2012)

Reflectance PLS 380-1690 nm Free acidity R2=0.74 ; RMSEP=2.53
Salguero-Chaparro et 
al. (2013)

Moisture content R2=0.87 ; RMSEP=2.98

Fat content R2=0.79 ; RMSEP=2.15

Reflectance PLS 380-1690 nm Fat content R2=0.86 ; RMSEP=2.02
Salguero-Chaparro et 
al. (2014)

Free acidity R2=0.77 ; RMSEP=2.64

Moisture content R2=0.89 ; RMSEP=3.33

LS-SVM Fat content R2=0.83 ; RMSEP=2.19

Table 1. (Continued)
Sample Application Acquisition Statistic Spectral range Attributes Performance Ref.
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mode method (range used) analyzed
P

ea
rs

Off-line Reflectance MLR 1100-2500 nm
Pectin

constituents

R=0.93, SEP=0.62 for alcohol insoluble
solids in the fresh weight (for AIS in 
the FW)

Sirisomboon et al. 
(2007)

R=0.95, SEP=8.48 for oxalate soluble 
pectin content in the alcohol insoluble 
solids (OSP in the AIS)

Reflectance PLS
780-1700 nm;
875-1030 nm

SSC RMSEP=0.44ºBrix; R2=0.60 Nicolaï et al. (2008)

Firmness -

Reflectance EW-LS-SVM
380-1800 nm

(400-1800 nm)
SSC rp=0.9164; RMSEP=0.2506 Li et al. (2013)

pH rp=0.8809; RMSEP=0.0579

Firmness rp=0.8912; RMSEP=0.6247

Reflectance PLS

300-1100 nm and
1000-2500 nm

(680-1000 nm and
1100-2350 nm)

Dry matter R2=0.78; RMSECV=0.78 Travers et al. (2014)

SSC R2=0.84; RMSECV=0.44

Transmittance PLS 465 - 1150 nm SSC rp=0.96; RMSEP=0.29 Xu et al. (2014)

In-line Transmittance SMLR
200-1100 nm
(533-930 nm)

SSC R2=0.8296 Xu et al. (2012)

GA-PLS R2=0.8781

iPLS R2=0.8396

GA-SPA-MLR R2=0.880

Transmittance PLS
200-1100 nm
(600-904 nm)

Brown core 98.30 % Sun et al. (2016)

SSC 97.8 % – 99 %

780


