
Chapter 3

Semi-Computability of the

Fréchet Distance between

Triangulated Surfaces

3.1 Introduction

In this chapter we show that the Fréchet distance between triangulated surfaces is
upper semi-computable, i.e., there is a non-halting Turing machine which produces a
monotone decreasing sequence of rationals converging to the result. It follows that
the decision problem, whether the Fréchet distance between two given surfaces is
smaller than a specified value ε, is recursively enumerable. That is, there is a Turing
machine that for two given triangulated surfaces f, g and a value ε will halt if and
only if the Fréchet distance between f and g is smaller than ε. Furthermore, we show
that the Fréchet distance between computable surfaces is computably approximable,
i.e., there is a non-halting Turing machine which produces a sequence of rationals
converging to the result.

As discussed in Section 1.2, the computationally hard part of computing the
Fréchet distance between surfaces is that – according to the definition – the infimum
over all homeomorphisms on the parameter spaces has to be taken. For curves, the
orientation-preserving homeomorphisms on the unit interval can be characterized
as the continuous, onto, monotone increasing functions. For homeomorphisms on
the unit k-cube, k > 1, no such characterization exists.

We tackle this problem in this chapter by approximating the homeomorphisms
by discrete maps which are easier to handle. We do this by first approximating
arbitrary homeomorphisms by piecewise linear homeomorphisms which is a known
result from topology. These piecewise linear homeomorphisms are then approxi-
mated by mesh homeomorphisms, i.e., ones that are compatible with subdivisions
of the given triangulations of the parameter spaces. Furthermore, we approximate
the distances over all points by distances only at vertices of the subdivisions, for
arbitrary fine subdivisions.

As discussed in Section 2.1, we assume that the input to our algorithm are two
triangulated surfaces in Rd, d ≥ 2, which are given by simplicial parameterizations
f, g. We will use K, L to denote the underlying triangulations of the parameter
spaces of f, g, respectively. As discussed in Section 2.4, we assume that the vertices
of the triangulated surfaces and the coefficients of the simplicial parameterizations
are rational. Thus, a problem instance for the Fréchet distance between triangulated
surfaces has a canonical finite representation which can be given as input to a Turing
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14 CHAPTER 3. SEMI-COMPUTABILITY

machine (we will describe our algorithm in some high level language, however). For
the case of computable, but not triangulated surfaces we assume to be given two
computable parameterizations f, g : [0, 1]2 → Rd.

3.2 Computability of Real-valued Functions

The computability of real-valued functions is studied in computable analysis [45, 37,
53]. Definitions for the computability of a real-valued function are based on the com-
putability of a real number. A sequence of rational numbers (rk)k∈N is computable
if it can be computed by a Turing machine, i.e., there exist three recursive functions
a, b, s : N → N such that b(k) > 0 for all k and rk = (−1)ska(k)/b(k) for all k. A
real number x is computable if there is a computable sequence of rational numbers
effectively converging to x, i.e., there is a computable sequence (rk)k∈N such that
‖x − rk‖ ≤ 2−k holds for all k. Furthermore, weaker notions of computability are
considered [10]:

Definition 3.1..

1. A real number is computable if there is a computable sequence of rational
numbers effectively converging to it.

2. A real number is upper (lower) semi-computable if there is a computable se-
quence of rational numbers converging to it from below (above).
It is semi-computable if it is upper or lower semi-computable.

3. A real number is weakly computable if it is the difference of two lower or
upper semi-computable numbers.

4. A real number is computably approximable if there is a computable sequence
of rational numbers converging to it.

Note that for semi-computability the sequence does not need to effectively con-
verge. Instead of computably approximable also the term recursively approximable is
used. These definitions carry over to real-valued functions on the natural numbers:
A function φ : N → R is called computably approximable | lower semi-computable |
computable if there is a Turing machine that on input x outputs a sequence of ra-
tional numbers converging | converging from below | converging effectively to φ(x).

For the computability of functions φ : R → R several definitions exists [53]
which use different representations of real numbers. For example, an effectively
converging sequence of rational numbers may be used as a representation of a real
number, and a function φ : R → R may be called computable if there is a Turing
machine mapping a representation of x ∈ R to a representation of φ(x) ∈ R [37].
The notion of semi-computability may also be defined for functions φ : R → R [54].

In this chapter, we will show that the Fréchet distance between triangulated
surfaces is upper semi-computable and the Fréchet distance between computable
surfaces is computably approximable. Since we assume that the triangulated sur-
faces are given by finite rational input, the Fréchet distance between triangulated
surfaces can be interpreted (by appropriate coding of the input) as a real-valued
on the natural numbers. For the Fréchet distance between computable surfaces, we
will assume to be given two Turing machines Tf , Tg for the parameterizations f, g
which we can use as black boxes in the following way: On input q ∈ Q and k ∈ N,
Tf outputs a value rk s.t. ‖f(r) − rk‖ ≤ 2−k and analogously for Tg. We will only
evaluate the surface parameterizations for rational coordinates and therefore do not
need to work with representations of the input values.
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Figure 3.1: Approximating a homeomorphism by a mesh homeomorphism.

3.3 Approximating the Homeomorphisms

In this section, we show that homeomorphisms can be approximated arbitrarily
closely by mesh homeomorphisms.

Let us recall some standard definitions and notations from topology. For a sim-
plicial complex K – a triangulation in our case – its mth barycentric subdivision Km

is defined as follows. Let ∆1, . . . , ∆m be the simplices of K. The barycenter of a
simplex ∆ ∈ K with vertices v1, . . . , vk is b(∆) = 1/k

∑k

i=1 vi. The first barycentric
subdivision K ′ of K is the complex having vertices b(∆1), . . . , b(∆m) and simplices
(b(∆i1), . . . , b(∆ik

)) for all sequences of simplices ∆i1 ⊂ . . . ⊂ ∆in
in K. The mth

barycentric subdivision is defined inductively by Km = (Km−1)′. For triangula-
tions, barycentric subdivision can be described geometrically by subdividing each
triangle into six triangles by its angular bisectors. With mesh(K) we denote the
maximal diameter of simplices in K, again triangles in our case. Thus, mesh(K)
gives a measure for the fineness of K. For m → ∞ the diameters of simplices of
the mth barycentric subdivision tend to zero. The underlying space of K, denoted
by |K|, is the set of all points lying in simplices of K. In our case the underlying
space |K| is always the unit square [0, 1]2.

Let us now define mesh homeomorphisms.

Definition 3.2. Given two triangulations K and L, a piecewise linear homeomor-
phism h : |Km| → |Ln| is called a mesh homeomorphism if it maps the edges of Km

to edge chains of Ln, i.e., polygonal chains made up of edges of Ln.

Next we will show that any homeomorphism can be approximated arbitrarily
closely by a mesh homeomorphism. In fact, we need only a weak form of closeness
which is defined as follows.

Definition 3.3. Given two homeomorphisms h, h′ : |K| → |L| on the underlying
spaces of the triangulations K and L, let

dK(h, h′) := max
∆∈K

δH(h(∆), h′(∆))

where ∆ ∈ K ranges over all triangles in K and δH denotes the Hausdorff distance.

Lemma 3.1. Let K and L be triangulations, σ : |K| → |L| a homeomorphism, m ∈
N, and ε > 0. Then there exist n ∈ N and a mesh homeomorphism h : |Km| → |Ln|
such that dKm(σ, h) < ε.

Proof. By a theorem from topology (see, e.g., Theorem 4 in Chapter 6 of the book
by Moise [40]), the homeomorphism σ can be approximated arbitrarily closely by
a piecewise linear homeomorphism, i.e., for all ε1 > 0 there exists a piecewise
linear homeomorphism h′ : |K| → |L| with dK(σ, h′) < ε1. We use this fact as
a first step, because piecewise linear homeomorphisms are easier to handle than



16 CHAPTER 3. SEMI-COMPUTABILITY

arbitrary homeomorphisms. In the second step, a piecewise linear homeomorphisms
is approximated by a mesh homeomorphism, see Figure 3.1.

We will show that any piecewise linear homeomorphism h′ can be approximated
to any ε2 > 0 in the sense of Definition 3.3 by a mesh homeomorphism h, i.e.,
dKm(h, h′) < ε2. Choosing ε1 and ε2 so that ε1 + ε2 < ε then proves the lemma.

In order to approximate h′ we first show how to find edge chains in Ln, for some
large enough n ∈ N, that are close to the polygonal chains which are the images of
edges of Km under h′. Then we explain how this can be extended to a piecewise
linear homeomorphism on the whole parameter space |Km|.

In fact, the piecewise linear images of the edges of Km under h′ form a graph G′

isomorphic to Km embedded in |L| where the edges of G′ are polygonal chains in
|L|. We want to modify G′ to obtain an isomorphic graph G embedded in |Ln| with
edge chains of Ln as edges that have a distance smaller than ε2 to the corresponding
edges of G′. We will do this in two steps.

Step 1. We map the nodes of the graph G′ and short initial segments of their
incident edges to nearby vertices of Ln′

and (some of) their incident edges, for some
suitable n′ ∈ N.

More precisely, for mapping the nodes, we put a small circle of radius r around
each node h′(v) where r < ε2/2 and less than the smallest distance between two
nodes h′(v1) and h′(v2). r < ε2/2 yields disks of diameter less than ε2 in which we
may move nodes and edges freely. r less than the smallest distance between two
nodes ensures that disks around different nodes do not touch.

We choose n′ ∈ N such that mesh(Ln′

) < r/2 and for all nodes h′(v) there is a
vertex w ∈ Ln′

of distance less than r/2 whose degree (in Ln′

) is greater than the
degree of h′(v) (in G′). This is possible because mesh(Ln′

) tends to zero for large n′

and in the barycentric subdivision the degrees of vertices double in each subdivision
step after their introduction. For each node v ∈ Km we choose h(v) = w for such
a w, i.e., satisfying ‖h′(v) − h(v)‖ < r/2 < ε2 and deg(h(v)) ≥ deg(v). By this
construction each h(v) and all its incident edges of Ln′

lie in the disk of radius r
around h′(v), see Figure 3.2(a). We start mapping the edges of G′ by first choosing
edges incident to h(v) in Ln′

as initial segments. We do so maintaining the order
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Figure 3.2: Approximating a piecewise linear homeomorphism by a mesh homeo-
morphism.
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given by G′, i.e., if the edges e1, ..., el leave the vertex h′(v) of G′ in clockwise order,
we choose corresponding edges f1, ..., fl of Ln′

leaving h(v) in the same order, see
Figure 3.2(a).

Next we cut the edges e1, ..., el at the points p1, ..., pl where they first leave the
disk. Within the disk we connect the free endpoint of each fi with the point pi,
i = 1, ..., l by non-intersecting polygonal chains, which replace the original polygonal
chains from h′(v) to pi. This is possible because we chose the edges f1, ..., fl in the
same order as the cutting points and within a disk we are allowed to move freely,
without violating the distance bound ε2, see Figure 3.2 (b). Thus, we replaced all
vertices h′(v) by close by vertices h(v) lying on the mesh Ln′

.

Step 2. Next we delete the nodes h(v) together with the incident edges f1, ..., fl

from the scenery, leaving a finite set of pairwise disjoint polygonal chains which
start and end in mesh points of Ln′

. We show that they can be ε2-approximated
by edge chains of Ln, for suitable n ≥ n′.

To achieve this, let η be the minimum distance between a vertex of a curve and
a non-incident edge of a curve (possibly the same). For edges sharing an incident
vertex let θ be the minimum distance between the intersection points of the edges
with a circle of radius ε2/2 around their common vertex.

Then we subdivide Ln′

to Ln for a suitable n ≥ n′ such that mesh(Ln) <
min(η/2, θ/2). Thus, Ln is so fine that each polygonal chain π traverses a sequence
of triangles Tπ so that Tπ and even its neighboring triangles are not intersected by
other polygonal chains (see Figure 3.2(b)). Now, we can approximate each polygonal
chain π by any connected, not self-intersecting edge chain aπ of Ln that lies within
Tπ and connects the endpoints of π so that the Hausdorff distance between π and
aπ is less than ε2.

Thus, we showed the existence of a polygonal chain h(e) in Ln for each edge
e of Km which is arbitrarily close to σ(e). The chains h(e) and the vertices h(v)
form an embedded graph G isomorphic to G′ and, therefore, to Km. h can be
extended to the interior points of each edge e to form a homeomorphism on e in
a straightforward manner. Furthermore, the faces of G induce a partition of the
set of triangles of Ln which is isomorphic to the triangulation Km. To extend h to
a piecewise linear homeomorphism on |Km|, we subdivide each triangle ∆ of Km

according to the triangulation of the associated set of triangles in the partition of
Ln and extend h to the interior of ∆ correspondingly.

Note that the mesh homeomorphism constructed in the proof of Lemma 3.1 is
orientation-preserving if the original homeomorphism was. Thus Lemma 3.1 can
be strengthened to state that an orientation preserving homeomorphism can be ap-
proximated arbitrarily closely by an orientation preserving mesh homeomorphism.

3.4 Discrete Fréchet Distance

In this section we define a discrete Fréchet distance for surfaces and show that it is
equal in value to the Fréchet distance.

We define the discrete Fréchet distance between two surfaces by taking the
infimum over all mesh homeomorphisms and for each mesh homeomorphism the
maximum over distances at vertices. More formally, we define

Definition 3.4. Let f, g be parameterized triangulated surfaces in Rd, d ≥ 3, with
underlying triangulations K, L respectively, of the parameter space, I.e.,

f : |K| → Rd, g : |L| → Rd
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are piecewise linear maps. Then their discrete Fréchet distance is defined as

δdF (f, g) := inf
m,n

h:|Km|→|Ln|

max
∆∈Km

T

max
v∈V∆

w∈Mn
h(∆)

‖f(v) − g(w)‖

where h ranges over all orientation preserving mesh homeomorphisms, Km
T is the

set of triangles in Km, V∆ are the vertices of ∆, and Mn
h(∆) is the set of vertices

of Ln that lie in h(∆).

We first show that this definition yields a discrete Fréchet distance not smaller
than the Fréchet distance.

Lemma 3.2. The Fréchet distance between triangulated surfaces f, g is at most as
large as their discrete Fréchet distance, i.e., δF (f, g) ≤ δdF (f, g).

Proof. Any mesh homeomorphism is, in particular, a homeomorphism. Therefore,
it suffices to show that for a mesh homeomorphism h : |Km| → |Ln| we can bound
the pointwise maximum by the maximum taken at vertices, i.e., show that

max
t∈[0,1]2

‖f(t) − g(h(t))‖ ≤ max
∆∈Km

T

max
v∈V∆

w∈Mn
h(∆)

‖f(v) − g(w)‖.

To see this, let t ∈ [0, 1]2 be arbitrary. t lies in a triangle ∆ = 〈v1, v2, v3〉 of Km and
h(t) lies in a triangle ∆′ = 〈w1, w2, w3〉 of h(∆) ⊂ Ln. Since f and g are piecewise
linear and Km and Ln are refinements of the underlying triangulations of the pa-
rameter spaces, f(∆) and g(∆′) are triangles, as well, namely 〈f(v1), f(v2), f(v3)〉
and 〈g(w1), g(w2), g(w3)〉, respectively. Consequently, since the maximum distance
between points of two triangles in 3-space is attained between two corners, we have
that ‖f(t) − g(h(t))‖ ≤ ‖f(vi) − g(wj)‖ for some i, j with 1 ≤ i, j ≤ 3. Taking
the maximum on both sides yields the above equation.

Now we show that also the discrete Fréchet distance is not larger than the
Fréchet distance.

Lemma 3.3. The discrete Fréchet distance between triangulated surfaces f, g is not
larger than their Fréchet distance, i.e., δdF (f, g) ≤ δF (f, g).

Proof. We show that for all ε > 0, δdF (f, g) ≤ δF (f, g) + ε. The idea is that for
any homeomorphism there is a mesh homeomorphism arbitrarily close and for the
mesh homeomorphism the distance computation at vertices comes arbitrarily close
to the distance computation on all parameter values by sufficient subdivision of
the domain complex. For this, we show that for any homeomorphism σ and point
t ∈ |K|, there exists a mesh homeomorphism h and vertices v ∈ ∆ ∈ Km, w ∈ h(∆),
s.t. ‖f(v) − g(w)‖ is not much larger than ‖f(t) − g(σ(t))‖. This is illustrated in
Figure 3.3.

Let σ be a homeomorphism very close to realizing δF (f, g), i.e., max
t

‖f(t) −
g(σ(t))‖ ≤ δF (f, g) + ε1 for some small ε1 > 0. By Lemma 3.1, for any ε2 > 0
and any m ∈ N there is a mesh homeomorphism h : |Km| → |Ln| such that
dKm(σ, h) ≤ ε2 .

Let ∆ be some triangle in |Km| and v one of its vertices. Since dKm(σ, h) ≤ ε2,
for any w ∈ h(∆) ⊂ Ln there is an x ∈ σ(∆) with ‖w − x‖ < ε2. Using t = σ−1(x)
and the Lipschitz-continuity of g we get ‖g(w) − g(σ(t))‖ < cg · ε2 for some t ∈ ∆
where cg denotes the Lipschitz constant of g.

t and v lie in the same triangle ∆ ∈ Km, so ‖v− t‖ ≤ mesh(Km) and, therefore,
‖f(v) − f(t)‖ ≤ cf · mesh(Km) where cf is the Lipschitz constant for f .
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Figure 3.3: The discrete Fréchet distance is not larger than the Fréchet distance.

Putting everything together and applying the triangle inequality repeatedly we
get

δdF (f, g) ≤ max
∆∈Km

T

max
v∈V∆

w∈Mn
h(∆)

‖f(v) − g(w)‖

≤ max
∆∈Km

T

max
v∈V∆

x∈σ(∆)

‖f(v) − g(x)‖ + cg · ε2

≤ max
∆∈Km

T

max
t∈∆

‖f(t) − g(σ(t))‖ + cg · ε2 + cf · mesh(Km)

≤ δF (f, g) + ε1 + cg · ε2 + cf · mesh(Km).

For any ε > 0 we can now choose ε1, ε2, and mesh(Km) such that ε1 + cg · ε2 + cf ·
mesh(Km) ≤ ε holds. For instance, we can choose ε1 = ε

3 , ε2 = ε
3cg

, and m large

enough s.t. mesh(Km) ≤ ε
3cf

. Note that although for ε tending to zero, m, n will

tend to infinity, for any fixed ε > 0 this yields finite values for m, n.

Lemmas 3.2 and 3.3 yield the following corollary.

Corollary 3.1. The Fréchet distance and discrete Fréchet distance between trian-
gulated surfaces f, g are equal, i.e., δF (f, g) = δdF (f, g).

3.5 Semi-Computing the Fréchet Distance

Using the results of the previous sections we can now give an algorithm showing
the upper semi-computability of the Fréchet distance between triangulated surfaces.
This algorithm will, on input f, g run forever and produce a monotone decreasing
sequence of rational numbers converging to δF (f, g).
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Algorithm 2: SemiComputeFréchet(f, g)

Input: Triangulated surfaces f, g, including triangulations K, L of the
parameter spaces, in a finite description

Output: A monotone decreasing sequence converging to δF (f, g)

set D = ∞1

forall (n, m) ∈ N × N do2

generate the barycentric subdivisions Km of K and Ln of L3

let E = {e1, ..., ek} be the set of edges in Km
4

forall k-tuples (π1, ..., πk) of simple polygonal chains in Ln do5

assign to the edge ei the polygonal chain πi for i = 1, ..., k6

if this assignment results in an orientation preserving homeomorphic7

image of Km then

set M = 08

forall triangles ∆ of Km do9

let H∆ ⊂ |Ln| be the area in Ln assigned to ∆10

forall vertices v of ∆ and vertices w of H∆ do11

set M = max(M, ‖f(v) − g(w)‖)12

end13

set D = min(D, M)14

output D15

end16

end17

end18

end19

We claim that this algorithm approximates the discrete Fréchet distance which
is, by Corollary 3.1, the same as the Fréchet distance.

Theorem 3.1. The Fréchet distance between two triangulated surfaces in space
Rd, d ≥ 2, is upper semi-computable.

Proof. We need to show that each step of the algorithm is finitely computable
(except, of course, the loop over all pairs of natural numbers) and that the algorithm
indeed computes the discrete Fréchet distance.

Line 2 can be realized by some standard enumeration method for pairs of in-
tegers. In fact, in the following observation we will see that it would also suffice
to consider only the pairs (m, 2m), m ∈ N. The number of k-tuples of polygonal
chains of Ln checked in line 5 is finite. In fact, it is bounded by (l!)k where l is the
number of edges in Ln, which itself is exponential in n, whereas k is exponential in
m. But efficiency is not the issue here.

In line 12 we assume that the norm ‖ · ‖ underlying the Fréchet distance can be
evaluated by rational operations. This is correct for, e.g., the d1- or d∞-metric but
not directly for the Euclidean metric d2. In that case, one should rather operate with
the square of the distance in line 12 and output some suitable rational approximation
of

√
D (which is possible) in line 15.

In line 7 we check whether an assignment of edges in Km to polygonal chains
in Ln results in an orientation-preserving homeomorphic image of Km by checking
the following three conditions

- the edges on the boundary of |Km| are mapped onto the boundary of |Ln|
preserving the orientation

- if a set of edges in Km share an endpoint, the corresponding chains in Ln do,
as well,
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- other than that, there are no intersection points between two chains.

Note that checking that the boundary of |Km| is mapped orientation preserving
onto the boundary of |Ln| entails that the mesh homeomorphism is orientation
preserving also on the interior.

For each pair (m, n) ∈ N × N all mesh homeomorphisms h : Km → Ln are
evaluated by Algorithm 2, i.e.,

δh,m,n := max
∆∈Km

T

max
v∈V∆

w∈Mn
h(∆)

‖f(v) − g(w)‖

(see Definition 3.4) is computed.
To see that Algorithm 2 produces values arbitrarily close to δdF (f, g), observe

that any neighborhood of δdF (f, g) must, by Definition 3.4, contain some value of
the form δh,m,n. The algorithm will eventually encounter that pair (m, n) and the
subdivision corresponding to h and output δh,m,n.

By line 14 the output sequence is monotone decreasing. Since for all triples
(h, m, n), by Definition 3.4, δh,m,n ≥ δdF (f, g), line 14 is justified. Since by Corol-
lary 3.1, δF = δdF Algorithm 2 arbitrarily closely approximates δF (f, g) which
proves Theorem 3.1.

Observation 3.1. In Algorithm 2 it would suffice in line 2 to loop over all tuples
(m, 2m), m ∈ N.

Proof. Let (m, n) ∈ N × N be arbitrary. If n ≤ 2m then L2m is a subdivision of
Ln and any mesh homeomorphism h : |Km| → |Ln| is also a mesh homeomorphism
h : |Km| → |L2m|.

If n > 2m then we claim that any mesh homeomorphism h : |Km| → |Ln| can
be extended to a mesh homeomorphism h′ : |Kn−m| → |L2(n−m)|. For this, observe
that n−m = m + (n− 2m) and 2(n−m) = n + (n− 2m), i.e., Kn−m and L2(n−m)

can be obtained from Km and Ln, respectively, by subdividing (n−2m) times. Let
∆ be any triangle in Km which is mapped to h(∆) ⊂ Ln. Let h′ map ∆n−2m mesh
homeomorphic to (h(∆))n−2m. This does not increase the distance achieved by h′

compared to the distance achieved by h, i.e. δh′,n−m,2(n−m) ≤ δh,m,n.
To see this let v be any vertex of ∆n−2m and w any vertex of a triangle ∆′ ∈

(h(∆))n−2m. Let p1, p2, p3 be the three vertices defining ∆ and q1, q2, q3 the three

vertices defining ∆′. Thus, v =
∑3

i=1 µipi and w =
∑3

i=1 νiqi. Let λi, i = 1, . . . , l,

be a common subdivision of the µi and νi, i.e., we can write v =
∑l

i=1 λipi and

w =
∑l

i=1 λiqi. Then

‖f(v) − g(w)‖ = ‖
l∑

i=1

λi(f(pi) − g(qi))‖ ≤
∑

λi‖f(pi) − g(qi)‖

where the first equality holds due to the linearity of f and g on ∆ and ∆′, respec-
tively and the second inequality holds by the properties of a norm.

Theorem 3.1 implies the following corollary, which states that the decision prob-
lem for the Fréchet distance between triangulated surfaces with a <-sign, i.e., the
question “Is δF (f, g) < q?”, is recursively enumerable. Note that Corollary 3.2 can-
not be deduced from Theorem 3.1 any more, if we replace the <-sign a ≤-sign. Let
<f, g, q> denote some standard encoding of a triple consisting of two triangulated
surfaces f and g, and some rational q > 0.

Corollary 3.2. The set {<f, g, q> | δF (f, g) < q} is recursively enumerable.
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Consider the Turing machine producing a monotone decreasing sequence con-
verging to δF (f, g) which exists by Theorem 3.1. Stop this Turing machine as soon
as it produces a value less than q. Thus, the algorithm will eventually halt for all
triples < f, g, q > in the language and it will run forever for the ones not in the
language.

If we assume more general surfaces as input, that is we assume the parameter-
izations f and g to be computable real functions, then we can modify Algorithm 2
to show a weaker form of Theorem 3.1.

Theorem 3.2. The Fréchet distance between two computable surfaces in space
Rd, d ≥ 2, is computably approximable.

Proof. We assume we are given two Turing machines Tf and Tg for the parameter-
ized surfaces f and g, respectively. On input (r ∈ Q, k ∈ N), Tf , Tg output values
rk, sk ∈ Q, respectively, s.t. ‖f(r) − rk‖ ≤ 2−k and ‖g(r) − sk‖ ≤ 2−k.

We will modify Algorithm 2 such that it can be applied also in this case. To run
Algorithm 2 we can choose a triangulation of the vertices (0, 0), (0, 1), (1, 0), (1, 1)
as initial triangulations K and L. In each step, Algorithm 2 will refine these trian-
gulations by barycentric subdivision. This implies that in each step the sampling
density of the point set for which f and g, respectively, are evaluated is increased.

The more important change is that in each step we increase the precision and
update previously computed values. We do this as follows: In the kth call of the
loop in lines 2–18, Algorithm 2 computes the values for mesh homeomorphisms of
the current refinement Km, Ln. We change this to computing all values for previous
refinements Km′

, Ln′

, m′ ≤ m, n′ ≤ n at precision k. Using Observation 3.1 we can
change the loop in lines 2–18 to a double loop over all natural numbers k and natural
numbers m ≤ k. In the inner loop over m we compute the mesh homeomorphisms
for the subdivision (m, 2m) and evaluate f, g at precision k, i.e., as value for f(r)
we use the output of Tf on input (r, k), and analogously for g(r).

The sequence of rational numbers computed in this way will converge to the
Fréchet distance by a similar argument as in Theorem 3.1: with m, n tending to in-
finity, we come infinitely close to all surface points and the discrete Fréchet distance
equals the Fréchet distance.

The sequence of rational numbers computed in this way, will, however, not
necessarily be monotone decreasing. This is because in any step of the algorithm,
we do not have full information on the surfaces parameterized by f, g, but only on
a finite sample of points in [0, 1]2. Thus in any step of the algorithm, we can still
be missing some parts of the surfaces which may be far apart.

Note that because of the missing monotonicity of the computed sequence, a
similar corollary as Corollary 3.2 cannot be deduced from Theorem 3.2 for the
Fréchet distance between computable surfaces.

3.6 Discussion

In this chapter we have shown the semi-computability of the Fréchet distance be-
tween triangulated surfaces. The computability of the Fréchet distance between
surfaces in the strong sense of computability theory of real functions remains open,
since the sequence produced by Algorithm 2 is not shown to converge effectively.
That is, we cannot give an upper bound on the distance of the value produced by
the algorithm after k steps to the real value. This is because in any step of the
algorithm we consider mesh homeomorphisms h : |Km| → |Ln| as approximation
of homeomorphisms σ : |K| → |L|. Although as shown in Lemma 3.1, mesh home-
omorphism approximate homeomorphisms arbitrarily closely in the limit, for fixed
m, n there is no approximation guarantee.
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For a similar problem in topology, the Simplicial Approximation Theorem [14],
also no approximation guarantee is known. Since in both approaches all homeomor-
phisms are approximated, it seems difficult to give such an approximation guarantee
and thus to strengthen the result of this chapter to show computability in the strong
sense. An approximation guarantee on the Fréchet distance might be achieved by
a stronger restriction on the set of feasible homeomorphisms. In Chapter 5, we will
show such a restriction for the special case of simple polygons. In fact, it seems likely
that whether the Fréchet distance is computable is closely linked to the question
whether such a restriction is possible.




