
Chapter 4

Computability of the Weak

Fréchet Distance between

Triangulated Surfaces

4.1 Introduction

In this chapter we give a polynomial time algorithm for computing the weak Fréchet
distance between triangulated surfaces. The weak Fréchet distance is a relaxed ver-
sion of the Fréchet distance using surjective continuous maps as reparameterizations
of the surfaces. Its definition is given in Section 4.2.

In Section 4.3 we analyze the free space diagram in higher dimension. In Sec-
tion 4.4 we show that deciding the weak Fréchet distance is equivalent to determin-
ing whether the free space contains a connected component whose projection onto
both parameter spaces covers the whole parameter space. We give a polynomial
time algorithm for determining if such a connected component exists in Section 4.5.

The algorithms we give will need to compute the intersection of ellipses, circles
and line segments and compare such intersection points. These intersection points
can all be described as roots of polynomials of degree up to four, which can be
compared and computed exactly in constant time [23, 42].

4.2 Weak Fréchet Distance

The weak Fréchet distance does not require the reparameterizations of the curves
or surfaces to be injective. Instead it uses surjective continuous maps as reparam-
eterizations. Furthermore, one can distinguish between the weak Fréchet distance
with and without boundary condition. The weak Fréchet distance with boundary
condition requires that the boundary of one parameter space is mapped onto the
boundary of the other parameter space.

Definition 4.1. The weak Fréchet distance between two k-dimensional surfaces

given by continuous parameterizations f, g : [0, 1]k → R
d with k ≤ d is

δwF (f, g) := inf
α,β : [0,1]k→[0,1]k

surj. cont.

max
x∈[0,1]k

‖f(α(x)) − g(β(x))‖ ,

where α and β range over all surjective continuous maps on the unit k-cube.
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The weak Fréchet distance with boundary condition is

δwFb(f, g) := inf
α,β : [0,1]k→[0,1]k

surj. cont.

boundary cond.

max
x∈[0,1]k

‖f(α(x)) − g(β(x))‖ ,

where α and β range over all surjective continuous maps on the unit k-cube that

map boundary to boundary.

For the weak Fréchet distance in contrast to the Fréchet distance it is necessary
to reparameterize both curves or surfaces. For the Fréchet distance it suffices to
reparameterize one curve or surface because the inverse of an orientation-preserving
homeomorphism is again an orientation-preserving homeomorphism. Thus, instead
of reparameterizing both curves or surfaces by α, β we can reparameterize the second
curve or surface by β−1 ◦ α.

In the man-dog illustration of the weak Fréchet distance the man and dog are
allowed to walk also backwards. For the weak Fréchet distance without boundary
condition the man and dog may also choose their starting and endpoints.

The weak Fréchet distance with and without boundary condition are (by defi-
nition) larger or equal to the Hausdorff distance and smaller or equal the Fréchet
distance. That is, the following relation holds between the different distance mea-
sures:

δH(f, g) ≤ δwF (f, g) ≤ δwFb(f, g) ≤ δF (f, g).

For curves, this relation is also reflected in the free space diagram, i.e., in the
geometric data structure for computing the Fréchet distance between polygonal
curves [6] which we reviewed in Section 2.3.1. The Hausdorff and the weak Fréchet
distance can be characterized by (subsets of) the free space, whose projections onto
the parameter spaces completely cover both parameter spaces. We will call such
subsets extensive, i.e., a subset A ⊂ Fε(f, g) is called extensive if the projection of
A onto the parameter space of f equals the parameter space of f and analogously
for the parameter space of g.

1. Hausdorff distance less than ε is equivalent to the free space being extensive.

2. Weak Fréchet distance less than ε is equivalent to one connected component
of the free space being extensive.

3. Weak Fréchet distance with boundary condition less than ε is equivalent to
one connected component of the free space containing both corner vertices
(0, 0) and (1, 1).

4. Fréchet distance less than ε is equivalent to a connected component of the
free space containing a monotone path from (0, 0) to (1, 1).

These characterizations are illustrated for curves in Figure 4.1. The characterization
of the Hausdorff distance holds also for surfaces. In this chapter we will show that
the characterization of the weak Fréchet distance holds for triangulated surfaces.
This characterization will allow us to compute the weak Fréchet distance between
triangulated surfaces in polynomial time.

Thus the value of the weak Fréchet distance lies between the value of the Haus-
dorff distance, which can be computed in polynomial time but is a coarser distance
measure, and the value of the Fréchet distance, which is a finer distance measure
but not known to be computable in higher dimensions.

A polynomial time algorithm for computing the weak Fréchet distance with
boundary condition between polygonal curves has been developed by Alt and Go-
dau [6] (there it is called the non-monotone Fréchet distance).



4.2. WEAK FRÉCHET DISTANCE 27

f

g

f

g

ε

(a) small Hausdorff distance

f

g

f

g

ε

(b) small weak Fréchet distance
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Figure 4.1: Examples of pairs of curves that have (a) a small Hausdorff distance
but large weak Fréchet distance, (b) a small weak Fréchet distance but large weak
Fréchet distance with boundary condition, (c) a small weak Fréchet distance with
boundary condition but large Fréchet distance, and (d) a small Fréchet distance.
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4.2.1 Is the Triangle Inequality fulfilled?

The weak Fréchet distance with boundary condition is a pseudo-metric for curves [28],
i.e., it fulfills the triangle inequality but curves with distance zero may be distinct.
For the weak Fréchet distance between surfaces it is not known whether the triangle
inequality holds.

To see why the proof of the triangle inequality does not generalize to higher
dimensions, consider three curves or surfaces given by parameterizations f, g, h.
For the triangle inequality one needs to show

δwF (f, h) ≤ δwF (f, g) + δwF (g, h).

Let ε > 0, then there exist reparameterizations α, β, γ, δ s.t. holds for all t

‖f ◦ α(t) − g ◦ β(t)‖ ≤ δwF (f, g) + ε and

‖g ◦ γ(t) − h ◦ ζ(t)‖ ≤ δwF (g, h) + ε.

For curves, the mountain climbing theorem [38] states that there are reparameter-
izations η, ϑ s.t. β ◦ η = γ ◦ ϑ. Thus, we can reparameterize f by α ◦ η and h by
ζ ◦ ϑ, and get

‖f ◦ α ◦ η(t) − h ◦ ζ ◦ ϑ(t)‖

≤ ‖f ◦ α ◦ η(t) − g ◦ β ◦ η(t)‖ + ‖g ◦ γ ◦ ϑ(t) − h ◦ ζ ◦ ϑ(t)‖

≤ δwF (f, g) + ε + δwF (g, h) + ε.

In the first step we use the triangle inequality of the underlying metric in image
space and the equality β ◦ η = γ ◦ ϑ.

For surfaces, however, the mountain climbing theorem cannot be applied because
it is not known to hold in higher dimensions. We could try instead to reparameterize
f by α ◦ γ and h by β ◦ ζ, which yields

‖f ◦ α ◦ γ(t) − h ◦ β(t) ◦ ζ(t)‖

≤ ‖f ◦ α ◦ γ(t) − g ◦ β ◦ γ‖ + ‖g ◦ β ◦ γ(t) − h ◦ β ◦ ζ(t)‖

≤ δwF (f, g) + ε + ‖g ◦ β ◦ γ(t) − h ◦ β ◦ ζ(t)‖.

The term ‖g ◦ β ◦ γ(t) − h ◦ β ◦ ζ(t)‖ however can be much larger than δwF (f, g).

4.3 Free Space Diagram of Triangulated Surfaces

In this section we analyze the free space diagram of triangulated surfaces. We
consider parameterized triangulated surfaces given by simplicial maps f, g : [0, 1]2 →
R

d, d ≥ 2. In the following, we will always use x,y to denote points in parameter
space, i.e., x,y ∈ [0, 1]2. Let Fε(f, g) :=

{

(x,y)
∣

∣ ‖f(x) − g(y)‖ ≤ ε
}

be the free
space diagram, as defined by Alt and Godau [6] and reviewed in Section 2.3.1. The
free space diagram lies in the product of the parameter spaces of the two surfaces,
i.e., for two-dimensional surfaces it lies in the four-dimensional cube. As in the case
of curves, we can partition the free space into cells and show that it is convex inside
cells.

4.3.1 Cells of the Free Space Diagram

Definition 4.2. Given simplicial maps f, g : [0, 1]2 → R
d, d ≥ 2, with underlying

triangulations K and L, respectively. I.e., |K| = |L| = [0, 1]2 and f and g map

triangles of K and L, respectively, linearly into R
d. A cell of the free space is the
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free space of f and g restricted to a simplex of K and L, respectively. Let ∆K be a

simplex of K and ∆L a simplex of L. Then we define a cell of the free space as

Cε(∆K , ∆L) := Fε(f, g) ∩ (∆K × ∆L)

=
{

(x,y) ∈ ∆K × ∆L

∣

∣ ‖f(x) − g(y)‖ ≤ ε
}

.

The dimension of a cell is the sum of the dimensions of the simplices ∆K and ∆L.

Two l-dimensional cells are called neighboring if they share a l−1-dimensional cell.

We will be interested mostly in cells where both simplices are triangles. These
cells are four-dimensional and two such cells are neighboring if they share a three-
dimensional cell, which is the cell of a triangle and an edge. More explicitly, two
four-dimensional cells Cε(∆K , ∆L) and Cε(∆

′

K , ∆′

L) are neighboring if and only if
either ∆K = ∆′

K and ∆L ∩ ∆′

L is an edge of the triangulation L or ∆L = ∆′

L and
∆K ∩ ∆′

K is an edge of the triangulation K. The shared three-dimensional cell is
the cell of the shared triangle and the shared edge. In the following, with a cell of
the free space we will mean – unless stated otherwise – a four-dimensional cell, i.e.,
the cell of two triangles, and with a boundary cell a three-dimensional cell, i.e., the
cell of a triangle and an edge.

As for curves the cells of the free space are convex. In fact, this holds for
parameterized simplicial shapes of any dimension:

Lemma 4.1. Cells of the free space diagram of k-dimensional parameterized sim-

plicial shapes are convex.

Proof. This follows from the simpliciality of the parameterizations and the triangle
inequality of the underlying metric in R

d. Let f and g be two simplicial parameter-
izations of two k-dimensional shapes. Let x, x′ be two points in the same simplex
of the underlying simplicial complex of f and y, y′ two points in the same simplex
of the underlying simplicial complex of g. Furthermore, let both (x, y) and (x′, y′)
lie in free space, i.e., ‖f(x) − g(y)‖ < ε and ‖f(x′) − g(y′)‖ < ε. Let 0 ≤ λ ≤ 1.
Then also the point λ(x, y) + (1 − λ)(x′, y′) lies in the free space cell:

‖f
(

λx + (1 − λ)x′
)

− g
(

λy + (1 − λ)y′
)

‖

= ‖λf(x) + (1 − λ)f(x′) − λg(y) + (1 − λ)g(y′)‖

≤ λ‖f(x) − g(y)‖ + (1 − λ)‖f(x′) − g(y′)‖

≤ λε + (1 − λ)ε = ε

The first equality holds because x, x′ and y, y′ come from the same simplex on
which f and g, respectively, are linear. The second inequality holds because of the
triangle inequality of the underlying metric in R

d. The third inequality holds by
the assumption that (x, y) and (x′, y′) lie in free space.

4.3.2 Projections of the Free Space Diagram

We will consider the projection of the free space onto the two parameter spaces,
i.e., the projection of Fε(f, g) under

ProjK : [0, 1]4 → [0, 1]2, (x,y) 7→ x,

ProjL : [0, 1]4 → [0, 1]2, (x,y) 7→ y.

We will compute the projections of the free space by computing it for its cells, i.e.,
we will compute

ProjK
(

Cε(∆K , ∆L)
)

=
{

x ∈ ∆K

∣

∣ ∃y ∈ ∆L : ‖f(x) − g(y)‖ ≤ ε
}

,

ProjL
(

Cε(∆K , ∆L)
)

=
{

y ∈ ∆L

∣

∣ ∃x ∈ ∆K : ‖f(x) − g(y)‖ ≤ ε
}

.
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Note that the free space lies in the product of the parameter spaces but is defined
based on the distances in image space. That is, the projection of a cell of the free
space contains all those points, which when mapped into image space are close to
a point on the other surface in image space. More formally,

ProjK
(

Cε(∆K , ∆L)
)

= f−1
(

f(∆K) ∩ (g(∆L ) ⊕ Bε)
)

ProjL
(

Cε(∆K , ∆L)
)

= g−1
(

g(∆L ) ∩ (f(∆K) ⊕ Bε)
)

, (4.3.1)

where ∆⊕Bε denotes the Minkowski sum of the simplex ∆ with a ball of radius ε.

4.3.3 Combinatorial Structure of the Free Space Diagram

The combinatorial structure of the free space is captured by the graph whose vertices
are the cells of the free space and edges exist between neighboring cells which share
a non-empty boundary face. For a free space diagram Fε(f, g) we define

Gε = (V, Eε) where

V =
{

(∆K , ∆L)
∣

∣ ∆K triangle in K, ∆L triangle in L
}

and

Eε =
{(

(∆K , ∆L), (∆K , ∆′

L)
) ∣

∣ eL = ∆L ∩ ∆′

L is an edge of L ∧ Cε(∆K , eL) 6= ∅
}

∪
{(

(∆K , ∆L), (∆′

K , ∆L)
) ∣

∣ eK = ∆K∩ ∆′

K is an edge of K∧ Cε(eK, ∆L) 6= ∅
}

.

The graph Gε has mn vertices. The number of edges is at most the number of
triangles in K times the number of edges in L plus the number of edges in K times
the number of triangles in L. In a triangulation, the number of edges is at most
2n + 1 if n is the number of triangles. Thus, the number of edges is O(mn).

Note that for ε1 ≤ ε2 the graph Gε1
is a subgraph of Gε2

. Furthermore, Gε

changes for varying ε only at finitely many values, namely when a boundary face
becomes non-empty. The number of boundary cells is finite, it is m′n+mn′ ∈ O(mn)
where m, m′ and n, n′ are the number of triangles and edges in K and L, respectively.

A boundary cell Cε(eK , ∆L) is non-empty if and only if the distance between
the edge eK and the triangle ∆L is less than ε. In formulas,

Cε(eK , ∆L) 6= ∅ ⇔ dist
(

f(eK), g(∆L)
)

≤ ε, (4.3.2)

where the distance between an edge and a triangle is defined as the minimum
distance between a point on the edge and a point on the triangle, i.e., dist(e, ∆) =

min
x∈e,y∈∆

‖x − y‖.

We will search for extensive connected components in the free space. A neces-
sary condition for a connected component to be extensive is that it contains a cell
Cε(∆K , ∆L) for all triangles ∆K in K as well as for all triangles ∆L in L. In par-
ticular, the connected component needs to have a size of at least m+n−1. We will
call connected components of this size large. There are at most mn

m+n−1 ≤ min(m, n)
large connected components in a free space of size mn.

4.4 Characterizing the Weak Fréchet Distance

In this section we show that we can decide the weak Fréchet distance by searching
for an extensive connected component in free space.

Lemma 4.2. The weak Fréchet distance between two triangulated surfaces is less

than ε if and only if there is an extensive connected component A ⊂ Fε(f, g) in the

free space for the parameter ε, i.e., ProjK(A) = ProjL(A) = [0, 1]2.
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Proof. Let α, β be two reparameterizations of f and g, respectively. We define a
set Mα,β ⊂ [0, 1]4 by

Mα,β :=
{(

α(x), β(x)
)
∣

∣x ∈ [0, 1]2
}

.

The set Mα,β is connected because α and β are continuous. Mα,β is extensive
because α and β are surjective. By definition of Mα,β the following equivalence
holds:

Mα,β ⊆ Fε(f, g) ⇔ max
x∈[0,1]2

‖f(α(x)) − g(β(x))‖ ≤ ε. (4.4.1)

Now we show the two directions of the lemma.

⇒: If α, β are two reparameterizations for f and g, respectively, realizing the
weak Fréchet distance, i.e., maxx∈[0,1]2 ‖f(α(x)) − g(β(x))‖ = ε then Mα,β is an
extensive connected component in Fε(f, g)

A weak Fréchet distance of at most ε does not however imply that two realizing
reparameterizations α, β exist, as it is defined as infα,β maxx ‖f(α(x))−g(β(x))‖ ≤
ε. This can be reformulated as

∀ϑ > ε ∃α, β : max
x∈[0,1]2

‖f(α(x)) − g(β(x))‖ ≤ ϑ.

By equation 4.4.1 this implies that Fϑ(f, g) contains for all ϑ > ε an extensive
connected component. We will show that this holds also for Fε(f, g).

As discussed in 4.3.3 the combinatorial structure of the connected components
of the free space changes only at finitely many values for ε, i.e., when a boundary
cell becomes non-empty. Let

η := argmin{ϑ | ϑ > ε ∧ a boundary cell becomes non-empty in Fϑ(f, g)}.

Then the combinatorial structure of Fϑ is the same for all ϑ ∈ [ε, η).
Let (εn)n∈N be a sequence in [ε, η) converging to ε. Fεn

contains for all n
an extensive connected component. A free space diagram has only finitely many
connected components, and therefore there must be one connected component that
is extensive in infinitely many of the Fεn

. Although the free space does not change
combinatorially for any of the εn, its projection shrinks with decreasing ε. Therefore
the same connected component that is extensive in Fεm

need not be extensive in
Fεk

for m < k.
We claim however, that the connected component which is extensive in infinitely

many of the Fεn
is also extensive in Fε. Assume this is not the case, i.e., there is

a point in parameter space that does not lie in the projection of the connected
component in Fε. Then because the projection of the free space is closed this must
have already been the case for a small neighborhood [ε, η′) ⊂ [ε, η), i.e., for all but
finitely many of the εn, n ∈ N. This is a contradiction to the assumption.

⇐: Let A ⊂ Fε(f, g) be an extensive connected component of the free space.
We will construct reparameterizations α and β of f and g, respectively, such that
Mα,β ⊂ A and ProjK(Mα,β) = ProjK(A) and ProjL(Mα,β) = ProjL(A). This will
imply that α and β realize a weak Fréchet distance less than ε.

We do this in two steps: first we define for each cell contained in the connected
component A two parameterized surface patches MK(∆K , ∆L) and ML(∆K , ∆L).
With a surface patch we mean a two-dimensional manifold with boundary in R

4.
Next we show how to “glue” two parameterized surfaces patches together. Gluing
together the surface patches of all cells contained in the connected component will
give the desired reparameterizations.



32 CHAPTER 4. WEAK FRÉCHET DISTANCE

Defining Parameterized Surface Patches in each Cell For each cell of the
free space Cε(∆K , ∆L) we define:

MK(∆K , ∆L) :=
{(

x, g−1
(

n
(

f(x), ∆L

))) ∣

∣ x ∈ ProjK(Cε(∆K , ∆L))
}

,

ML(∆K , ∆L) :=
{(

f−1
(

n
(

g(y), ∆K

)

,y
)) ∣

∣ y ∈ ProjL (Cε(∆K , ∆L))
}

,

where

n(x, A) := arg min
y∈A

‖x − y‖

is the nearest neighbor of a point x in a metric space A.

For the surface patches MK(∆K , ∆L) and ML(∆K , ∆L) natural parameteriza-
tions αK , βK and αL, βL exist which fulfill MαK ,βK

= MK(∆K , ∆L) and MαL,βL
=

ML(∆K , ∆L). Let σK and σL be homeomorphisms from [0, 1]2 to ∆K and ∆L,
respectively. Then αK = σK and βK = σK ◦ f ◦ n(·, ∆L) ◦ g−1 and αL =
σL ◦ g ◦ n(·, ∆K) ◦ f−1 and βL = σL are parameterizations of MK(∆K , ∆L) and
ML(∆K , ∆L), respectively. These reparameterizations are continuous because the
identity map, f, g and the nearest neighbor function on convex sets in R

d are con-
tinuous.

Now we define MA to be the union of all surface patches of cells in the connected
component A, i.e.,

MA :=
⋃

Cε(∆K ,∆L)⊂A

(

MK(∆K , ∆L) ∪ ML(∆K , ∆L)
)

.

MA has the following properties:

1. MA ⊂ A

2. ProjK(A) = ProjK(MA) and ProjL(A) = ProjL(MA).

3. MK(∆K , ∆L) ∩ ML(∆K , ∆L) 6= ∅

4. If the shared boundary cell of the cells Cε(∆K , ∆L) and Cε(∆K , ∆′

L) is non-
empty, then MK(∆K , ∆L) ∩ MK(∆K , ∆′

L) 6= ∅.
If the shared boundary cell of the cells Cε(∆K , ∆L) and Cε(∆

′

K , ∆L) is non-
empty, then ML(∆K , ∆L) ∩ ML(∆′

K , ∆L) 6= ∅.

The first two properties hold by definition. The third property is equivalent to the
existence of two points in ∆K and ∆L whose images under f and g, respectively,
are each others nearest neighbor in the free space cell, i.e.,

∃(x,y) ∈ ∆K × ∆L : g(y) = n
(

f(x), ∆L

)

∧ f(x) = n
(

g(y), ∆K

)

.

Points fulfilling this condition are points whose images have minimal distance in
the free space cell, i.e.,

(x,y) = argmin
(x′,y′)∈∆K×∆L

‖f(x′) − g(y′)‖.

The fourth property holds because MK(∆K , ∆L) and MK(∆K , ∆′

L) coincide on the
shared edge of Cε(∆K , ∆L) and Cε(∆K , ∆′

L), and analogously for ML(∆K , ∆L) and
ML(∆′

K , ∆L).
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Figure 4.2: Gluing together two parameterizations

Gluing together the Parameterizations of the Surface Patches We show
that two parameterizations can be joined to one in the following sense:

∀α, β, α′, β′ : Mα,β ∩ Mα′,β′ 6= ∅ ⇒ ∃α′′, β′′ : Mα,β ∪ Mα′,β′ = Mα′′,β′′ (4.4.2)

where α, β, α′, β′, α′′, β′′ are continuous functions on [0, 1]2. We will then obtain
parameterizations αA, βA for MA by successively gluing together parameterizations
of the surface patches in MA.

Proof of 4.4.2: Let p = (xp,yp) be an intersection point of Mα,β and Mα′,β′ .
Let x0,x1 be such that p =

(

α(x0), β(x0)
)

and p =
(

α′(x1), β′(x1)
)

.
For gluing together the parameterizations α, β, α′, β′, we partition the parameter

space as illustrated in Figure 4.2 (a). Choose a point c in parameter space and radii
r1, r2 such that r1 < r2 and the disc of radius r2 around the point c is contained in
[0, 1]2. Let Dr be the (closed) disc of radius r around c and Cr the circle of radius
r around c. Let R[r1,r2) be the half-open ring with radii r1, r2 around c and let
R = [0, 1]2\Dr2

.
We will glue the parameterizations α, β and α′, β′ along the circle Cr2

. On the
circle α′′, β′′ will be constant, outside they will be defined based on α′, β′ and inside
based on α, β.

We define homeomorphisms on the parts of the partition as illustrated in Fig-
ure 4.2 (b). Let σ1 be a homeomorphism from Dr1

to the unit cube. Let σ2 be a
homeomorphism from R[r1,r2) to the unit cube without the point x0. Choose σ1

and σ2 s.t. they coincide on the circle Cr1
. Let σ3 be a homeomorphism from R to

[0, 1]2\{x1}. Now we define α′′, β′′ : [0, 1]2 → [0, 1]2 as follows:

α′′(x) :=



















α(σ1(x)), x ∈ Dr1

α(σ2(x)), x ∈ R[r1,r2)

xp, x ∈ Cr2

α′(σ3(x)), x ∈ R

, β′′(x) :=



















β(σ1(x)), x ∈ Dr1

β(σ2(x)), x ∈ R[r1,r2)

yp, x ∈ Cr2

β′(σ3(x)), x ∈ R

.

α′′, β′′ are continuous and fulfill Mα,β ∪Mα′,β′ = Mα′′,β′′ by construction. They
are continuous inside Dr1

, R[r1,r2), and R as concatenations of continuous functions.
On the circle Cr1

they are continuous because σ1 and σ2 coincide on Cr1
. They are

continuous on the circle Cr2
because σ2(x) tends to x0 for x tending to x′ ∈ Cr2

and therefore α(σ2(x)) and β(σ2(x)) tend to xp and yp, respectively, for x tending
to x′ ∈ Cr2

. Similarly, σ3(x) tends to x1 for x tending to x′ ∈ Cr2
and therefore

α′(σ3(x)) and β′(σ3(x)) tend to xp and yp, respectively, for x tending to x′ ∈ Cr2
.
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We can glue together all surface patches in MA because they are connected by
intersection – properties 3. and 4. of MA. By gluing together all surface patches
in MA we get reparameterizations αA, βA for f, g which realize a weak Fréchet
distance between f and g which is less than ε: αA and βA are continuous because
the parameterizations of single surface patches and the gluing of parameterizations
are continuous. αA and βA are surjective because the projection of MαA,βA

= MA

equals the projection of A – property 2. of MA – and this was assumed to be [0, 1]2.
Finally, ‖f(αA(x)) − g(βA(x))‖ ≤ ε holds for all x ∈ [0, 1]2 because MαA,βA

lies
completely in Fε(f, g).

4.5 Deciding the Weak Fréchet Distance

By the result of the previous section, Lemma 4.2, deciding the weak Fréchet distance
is equivalent to determining if there is an extensive connected component in free
space. We will do this algorithmically in two steps:

1. determine the connected components of the free space

2. for all large connected components, test if their projections completely cover
both parameter spaces.

For the first step we compute the combinatorial graph of the free space as de-
scribed in Section 4.3.3. For this, we need to decide which boundary cells are
non-empty. By equation 4.3.2 we can do this for each boundary cell in constant
time by computing the distance of the edge and the triangle defining the boundary
cell. This yields a run time of O(mn) for the first step.

In the second step we need to determine if the projection of a large connected
component completely covers a parameter space. For this, we choose w.l.o.g. the
parameter space K, i.e., we want to decide if ProjK(A) = |K| holds for a connected
component A of the free space.

The triangulation K is the union of its triangles and therefore K is completely
contained in the projection of A if this holds for every triangle in K. Since each
cell projects only onto the triangles defining it, we need to consider for each tri-
angle ∆K in K only the cells Cε(∆K , ∆L) in A for triangles ∆L in L. Using the
characterization of a cell stated in equation 4.3.1 we get the following equivalence.

∆K ⊂ ProjK(A) ⇔ ∆K ⊂
⋃

∆L∈L

Cε(∆K,∆L)∈A

ProjK
(

Cε(∆K , ∆L)
)

⇔ f(∆K) ⊂
⋃

∆L∈L

Cε(∆K ,∆L)∈A

(

g(∆L) ⊕ Bε

)

(4.5.1)

Note that we are now concerned only with the triangles in image space and not
in parameter space. We can reformulate equivalence 4.5.1 as a decision problem for
the directed Hausdorff distance, namely it is equivalent to the directed Hausdorff
distance of the triangle f(∆K) to the set of triangles g(∆L), where Cε(∆K , ∆L) is
a cell in A, being less or equal than ε. In formulas,

δH,dir

(

f(∆K),
⋃

∆L∈L

Cε(∆K ,∆L)∈A

g(∆L)
)

≤ ε. (4.5.2)

By a result of Alt et al. [4] the directed Hausdorff distance of n k-dimensional
simplices to m k-dimensional simplices can be computed in O(nmk+2) time. Thus,
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E∆K

g(∆L) ⊕ Bε

C = (g(∆L) ⊕ Bε) ∩ E∆K

(a) ε-neighborhood of a triangle inter-
sected by a plane

E∆K

f(∆K)

C1

C2

C3

(b) arrangement of boundary
curves covering a triangle

Figure 4.3: Computing the arrangement of the cells projected onto the plane.

equation 4.5.2 can be solved in O(m4
i ) time for triangles, where mi is the number

of cells Cε(∆K , ∆L) ∈ A.
For triangles, we can improve this run time. If we define E∆K

to be the plane
containing f(∆K) then we can modify the last expression of equivalence 4.5.1 to

f(∆K) ⊂
⋃

∆L∈L

Cε(∆K ,∆L)∈A

(

(

g(∆L) ⊕ Bε

)

∩ E∆K

)

. (4.5.3)

Intersecting with the plane E∆K
makes the problem two-dimensional. We solve

equation 4.5.3 by computing for each triangle ∆K the arrangement of the triangle
f(∆K) and the set of boundary curves ∂

((

g(∆L) ⊕ Bε)
)

∩ E∆K

)

for all triangles
∆L ∈ L fulfilling Cε(∆K , ∆L) ∈ A. With ∂ we denote the boundary operator. See
Figure 4.3 (b) for an example. We sweep over the part of the arrangement contained
in the triangle f(∆K). f(∆K) is contained in the union of the

(

g(∆L)⊕Bε)
)

∩E∆K

if and only if there is no empty cell in this part of the arrangement.
For the metrics d1 and d∞, the ε-neighborhoods can be described by linear

equations. For the Euclidean metric the ε-neighborhoods are described by quadratic
equations: the ε-neighborhood of a triangle in 3-space is the union of ε-balls around
the vertices, cylinders of radius ε around the edges and a triangle prism of height ε.
The boundaries of the intersections of these ε-neighborhoods with a plane are the
union of a constant number of half-ellipses, circles or half-circles and straight line
segments. See Figure 4.3 (a) for an illustration. The event points of the sweep over
the arrangement are all intersection points of a boundary curve with the triangle
f(∆K) and intersection points between two boundary curves that lie inside f(∆K).

The overall time complexity of the second step of the algorithm adds up as
follows: For each triangle ∆K we need to decide in which connected components it
is contained. For one connected component, the arrangement for ∆K has size O(l2)
and can be swept in time O(l2 log l) where l is the number of cells projecting onto
∆K . Let s be the number of connected components and li, 1 ≤ i ≤ s, the number of
cells projecting onto ∆K in the ith connected component. Because the connected
components are disjoint the sum of the li, 1 ≤ i ≤ s, is at most m. Thus, for each
triangle ∆K ∈ K we can determine in O(

∑s
i=1(m

2
i log mi)) ∈ O(m2 log m) time,

by which of the connected components of the free space it is covered. We have to
apply the same procedure with K and L exchanged. This yields a total run time of
O(nm2 log m + mn2 log n) for all triangles in both parameter spaces.

In the above analysis, we solve equation 4.5.3 in O(m2 log m) time. The problem
Triangles-cover-Triangle, which asks whether the union of a set of triangles
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in the plane contains another given triangle, is 3sum-hard [27]. This implies that
equation 4.5.3 is not likely to be solvable in subquadratic time.

Summarizing, we obtain the following algorithm for deciding the weak Fréchet
distance.

Algorithm 3: DecideWeakFrechet(f, g, ε)

Input: parametrized triangulated surfaces f, g, ε > 0
Output: Is δwF (f, g) ≤ ε?

compute the graph Gε of the free space diagram Fε(f, g)1

forall large connected components A of Gε do2

forall triangles ∆ in either parameter space do3

decide using line sweep whether ∆ is completely covered by the4

component A
end5

end6

output true if a connected component covering all triangles has been found,7

else output false

Lemma 4.2 and the analysis above yield the following theorem:

Theorem 4.1. Algorithm 3 decides whether the weak Fréchet distance between

two triangulated surfaces with n and m triangles, respectively, is less than a given

parameter ε in O(nm2 log m + mn2 log n) time.

4.6 Computing the Weak Fréchet Distance

The decision algorithm can be extended to a computation algorithm by searching
a set of critical values. We first give these critical values and show how to compute
them. Then we show how to search the set of critical values in order to compute
the weak Fréchet distance.

4.6.1 Critical Values

By Lemma 4.2 the weak Fréchet distance equals a value ε if and only if the free
space Fε(f, g) contains an extensive connected component and it does not for any
smaller values of ε. We can characterize the critical value where this may happen
as follows.

1. The combinatorial structure of the connected components changes.

2. The projection of a connected component covers a parameter space completely
whereas for smaller values of ε this is not the case although the free space does
not change combinatorially in ε.

We show that these are polynomially many critical values and each value can
be computed in constant time.

Type 1 The combinatorial structure of the free space changes when a boundary
cell, i.e., the cell of an edge and a triangle, becomes non-empty. This happens for
ε equal to the distance of the edge and the triangle defining the boundary cell, as
stated in equation 4.3.2. These are O(mn) values, each of which can be computed
in constant time.
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(a) vertex (b) edge (c) interior

Figure 4.4: Critical values of type 2 distinguished by the last point covered.

Type 2 Apart from the combinatorial changes, the projection of a connected
component grows monotonously with increasing ε. We distinguish these critical
values by the last point covered by the projection. A last point covered is a point x
in parameter space, i.e., x ∈ [0, 1]2, fulfilling

x ∈ Proj(Fε) ∧ (∀ε′ < ε) x /∈ Proj(Fε′ ). (4.6.1)

This may be either (a) a vertex, (b) a point on an edge, or (c) an interior point of
a triangle of the parameter space.

In the following we will assume that the points of the triangulated surfaces
lie in general position, i.e., that there are no parallel edges or triangles. If this
is not the case, i.e., if there are parallel edges or triangles, then the last points
covered may form a last segment. Such a last segment covered can be the overlap
of the boundaries of ε-neighborhoods of two triangles which lie in parallel planes
or have two parallel edges. Or the ε-neighborhood of a triangle may overlap with
the boundary of a triangle of the other surface in a last segment covered. We
can compute a superset of these additional critical values for the degenerate case
by computing all parallel edges and planes and adding the distance and half the
distance of each pair of parallel edges or planes to the set of critical values. These
are O(m2 + n2) values, each of which can be computed in constant time.

Now we describe the critical values for the non-degenerate case. If the last point
covered is a vertex, then equation 4.6.1 holds if this point lies on the boundary of
g(∆)⊕Bε for a triangle ∆ in the other parameter space, as in Figure 4.4 (a). If the
last point covered lies on the boundary of the parameter space, then two boundaries
of ε-neighborhoods of g(∆L)⊕Bε intersect in this point, as in Figure 4.4 (b). If the
last point covered lies in the interior of the parameter space, then three boundaries
intersect in it, as in Figure 4.4 (c).

Type 2 a A point x lies on the boundary of the ε-neighborhood of a triangle if
and only if it has distance ε to the triangle. In formulas,

x ∈ ∂
(

g(∆) ⊕ Bε

)

⇔ dist(x, g(∆)) = ε (4.6.2)

where ∂ denotes the boundary operator and dist(x, g(∆)), the distance of the point
x to the triangle g(∆) is defined as the minimal distance between x and a point on
the triangle. That is, dist(x, g(∆)) = min

y∈g(∆)
‖x − y‖.

Thus we can compute these critical values by computing the distances between
any vertex of the one surface in image space and a triangle of the other surface in
image space. These are O(mn) values, each of which can be computed in constant
time.
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Type 2 b By equation 4.6.2, a point lies on the boundary of two ε-neighborhoods
of triangles if and only if it has equal distance to the two triangles. We can compute
these critical values by solving for each triple consisting of an edge of the one
triangulated surface in image space and two triangles of the other triangulated
surface in image space the set of distance equations. This can be simplified by
computing a superset of critical values, namely all equal distances between an edge
of the one surface in image space and two “components” of triangles of the other
surface, namely a vertex, a line defined by an edge or the plane defined by the
triangle. These are one linear and two linear or quadratic equations, which we
assume that we can solve in constant time (see Section 2.4). The number of critical
values of this type is O(mn2 + m2n).

Type 2 c These critical values are similar to those of type 2 b. Now we determine
points inside one triangle with equal distance to three other triangles. For this we
again solve the set of distance equations. These are O(mn3 + m3n) critical values.

Summarizing, we get the following lemma.

Lemma 4.3. For the weak Fréchet distance between triangulated surfaces there are

O(m3n + mn3) critical values, each of which can be computed in constant time.

4.6.2 Searching the Set of Critical Values

We can compute the weak Fréchet distance by computing and sorting the critical
values and then doing a binary or median search over the set of critical values,
solving Algorithm 3 in each step. The run time of this algorithm is dominated
by computing and sorting of the critical values which takes O(m3n + mn3) and
O((m3n + mn3) log(mn)) time, respectively.

The run time can be improved using Meggido’s parametric search [39], and
Cole’s trick for parametric search based on sorting [17]. We apply the parametric
search to the critical values of type 2 c, of which there are O(m3n + mn3) many.
The other critical values, of which there are O(m2n + mn2) many, we search with
a binary search in O((m2n + mn2) log2(mn)) time or with a median search in
O((m2n + mn2) log(mn)) time. Thus, our final algorithm has two steps:

1. binary or median search on the O(m2n + mn2) critical values

2. parametric search on the O(m3n + mn3) critical values.

For the parametric search, instead of giving a parallel algorithm for the decision
problem, it suffices to use any parallel algorithm whose critical values include the
critical values of the decision problem. In our case, we can use a parallel comparison-
based sorting algorithm for sorting the intersection points of the boundary curves of
ε-neighborhoods of triangles of the one surface intersected with a plane containing
a triangle of the other surface. I.e., we want to sort all values

∂
(

(∆′

1 ⊕ Bε) ∩ E∆

)

∩ ∂
(

(∆′

2 ⊕ Bε) ∩ E∆

)

,

where ∆ is the image of a triangle in one parameter space and ∆′

1, ∆
′

2 images of
triangles of the other parameter space. The critical values of type 2 c are the ε values
where two such intersection points coincide, which share one triangle. Sorting all
intersection points gives a superset of critical values, namely also those do not share
a triangle.

We can simplify the computation of the intersection points by writing ∆′ ⊕ Bε

as the union of the balls of radius ε around its vertices, the cylinders of radius ε
around its edges and a triangle pyramid of height ε. Then we sort the intersection
points ∂(P1ε ∩ E∆) ∩ ∂(P2ε ∩ E∆), where P1ε, P2ε are two such “components”
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of ε-neighborhoods of images of triangles ∆′

1, ∆
′

2. These intersection points are
a superset of the intersection points we need. There are O(m2n + n2m) many
of these, which is asymptotically the same as without the decomposition of the
ε-neighborhoods into balls, cylinders, and pyramids.

For the parametric search, we can sort these (two-dimensional) points lexico-
graphically or by one of the two coordinates. In both cases, the critical values for
sorting will be a superset of the critical values for the Fréchet distance.

We use Cole’s variant of parametric search based on sorting [17]. His technique
yields a run time of O((k + Tdec) log k) where Tdec is the run time of the decision
algorithm and k is the number of values to be sorted. In our case, k ∈ O(m2n+n2m)
and Tdec ∈ O(m2n log n + n2m log m). Thus we get a total run time of O((m2n +
mn2) log2(mn)).

Theorem 4.2. The weak Fréchet distance between two triangulated surfaces with

m and n triangles, respectively, can be computed in O((m2n+mn2) log2(mn)) time.

4.6.3 Non-parameterized Curves and Surfaces

All computations for computing the weak Fréchet distance are done on the surfaces
in image space and not in parameter space. The parameter space is used only for
the connectivity of the free space. Instead, we could also define the connectivity of
the free space based on the connectivity in image space (assuming this to be given).
Then we can run the same algorithms for non-parameterized triangulated surfaces.

Let us call the space in which the free space diagram lies the configuration space.
For parameterized curves and surfaces, the configuration space is the product of the
parameter spaces of the curves or surfaces, respectively. If we instead define the
free space based on the curves and surfaces in image space, then the configuration
space will be the product of the two shapes.

Let us consider the example of closed curves. For computing the Fréchet distance
of closed curves Alt and Godau [6] use the double free space diagram, i.e., two
concatenated copies of a single free space diagram. If we instead define the free
space based on the connectivity in image space, then the configuration space of two
closed curves will be homeomorphic to the product of two circles, which is a torus.

For curves and surfaces which are homeomorphic to their parameter spaces, i.e.,
the unit interval and unit square, respectively, the topology of the configuration
space is the same whether we define it based on the connectivity in parameter or
image space. If the curves and surfaces are not homeomorphic to the their parameter
spaces, however, as in the case of closed curves parameterized over the unit interval,
the topology of the configuration space will differ. An interesting open problem is
to further investigate this definition of a “generalized” weak Fréchet distance for
non-parameterized curves and surfaces.

4.7 Discussion

In this chapter we have shown that the weak Fréchet distance between triangulated
surfaces is polynomial time computable. For this, we showed that the free space
diagram in higher dimension is computable, and used that the weak Fréchet distance
is a relaxed version of the Fréchet distance. Thus, we now have a gap between the
NP-hardness of deciding the Fréchet distance and a polynomial time algorithm for
deciding the weak Fréchet distance between triangulated surfaces. An immediate
open question is to learn more about this gap. Another interesting open question is
whether the weak Fréchet distance between triangulated surfaces fulfills the triangle
inequality and therefore is a metric as in the case of curves.




