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Highlights 14 

• The stability and kinetics of some mycotoxins during boiling of pasta was studied. 15 

• DON leaches to the broth during boiling but it is not degraded. 16 

• A kinetic leaching model for DON was fitted. 17 

• DON-3-glucoside is totally stable through the pasta making process. 18 

• OTA is stable during pasta making, and scarcely transferred to broth during boiling. 19 

 20 

Abstract: 21 
 22 

The stability of deoxynivalenol (DON), deoxynivalenol-3-glucoside (DON-3-glucoside) and 23 

ochratoxin A (OTA) during spaghetti production and cooking was investigated. Initial mycotoxin 24 

concentration, boiling time and use of egg as ingredient were assayed as factors. DON was 25 

stable during kneading and drying, but a consistent reduction of DON (> 40 %) was observed in 26 

boiled spaghettis. According to our results, DON was transferred to broth, where it was not 27 

degraded, and boiling time determined the extend of the transfer. A DON leaching model was 28 
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fitted to data with a high goodness fit (r2 = 0.99). This model can be used for prediction of final 29 

DON concentration in cooked pasta, and a useful tool in risk assessment models. DON-3-30 

glucoside is totally stable through the pasta making process; moreover DON-3-glucoside is 31 

slightly released from pasta components and it is leached to broth. Similarly, OTA is also stable 32 

during pasta making, however, it is scarcely transferred to broth during boiling. The presence of 33 

egg as ingredient did not affect the final mycotoxin concentration in pasta in any case.  34 

1. Introduction 35 

Mycotoxins are produced by fungi and can contaminate various agricultural commodities either 36 

before harvest or under post-harvest conditions. The main mycotoxin-producing fungi in food 37 
commodities belong to the genera Aspergillus, Penicillium and Fusarium. Wheat, such as the 38 
majority of cereals, is susceptible to be contaminated with mycotoxins. Moreover, cereal 39 
products represent one of the main sources of exposure to deoxynivalenol (DON) and 40 

ochratoxin A (OTA) (Marín, Ramos, Cano-Sancho, & Sanchis, 2013). Different studies show the 41 
high presence of mycotoxins in durum wheat (Brockmeyer & Thielert, 2004; Covarelli et al, 42 
2014; Lippolis, Pascale, Cervellieri, Damascelli, & Visconti, 2014). In addition, it has been 43 
shown that durum wheat is generally more contaminated with DON than common wheat 44 

(Covarelli et al., 2014). The high presence of DON is of concern, because although DON is not 45 
classified as to its carcinogenicity to human by IARC (International Agency for Research on 46 
Cancer) (1993), but it is linked with human gastroenteritis. On the other hand, OTA is a 47 
nephrotoxic mycotoxin which possesses carcinogenic, teratogenic, immunotoxic and possibly 48 

neurotoxic properties. This mycotoxin has been classified, by the International Agency for 49 
Research on Cancer (IARC, 1993) in the group 2B, as a possible human carcinogen. Unaltered 50 
mycotoxins might not be the only source of health hazard for consumers, because there is a 51 
group of metabolites called conjugated mycotoxins which cannot be detected in the routinary 52 

mycotoxins analysis. The co-occurrence of conjugated DON forms has been documented in raw 53 
wheat, especially deoxynivalenol-3-glucoside (DON-3-glucoside) (Berthiller et al. 2009; 54 
Dall’Asta, Dall'Erta, Mantovani, Massi, & Galaverna, 2013; Rasmussen, Storm, Rasmussen, 55 
Smedsgaard, & Nielsen, 2010) and it is a plant metabolite of DON (Berthiller et al., 2009). 56 

Although DON-3-glucoside presence in durum wheat has been detected (Dall’Asta et al., 2013), 57 
few studies exist on its occurrence. Berthiller et al. (2011) showed that DON-3-glucoside can be 58 
hydrolysed to DON by several lactic acid bacteria. Thus, the Joint European Commission 59 
FAO/WHO Expert Committee (JEFCA) considered DON-3-glucoside as an additional 60 

contributing factor of the total dietary exposure to DON (Codex, 2011; JEFCA, 2010).  61 

Processing of wheat at high temperatures might affect DON, DON-3-glucoside and OTA 62 
content. Up to now, few studies exist on the fate of DON during the cooking of durum wheat 63 
pasta (Table 1), but significant DON reductions have been reported. Such reduction levels may 64 
be affected by some factors like ingredients and boiling time. In this way, Visconti, Haidukowski, 65 

http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=36021084400&zone=
http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=7006665185&zone=
http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=55616447400&zone=
http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=24481558000&zone=
http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=24481558000&zone=
http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=6701402076&zone=
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Pascale, & Silvestri (2004) showed the importance of the pasta/water ratio: the lower the ratio 66 
the greater the reduction. Regarding boiling time, Cano-Sancho, Sanchis, Ramos, & Marín 67 

(2013) observed increasing reduction with longer times. Although important DON reductions are 68 
detected in cooked pasta, most authors confirm they are mainly attributed to the high water-69 
solubility of DON, thermal degradation playing a minor role; thus, analysis of broth results in 70 
high DON concentrations after the boiling step (Cano-Sancho et al., 2013; Nowicki, Gaba, 71 

Dexter, Matsuo, & Clear, 1988; Visconti et al., 2004). Moreover, some enzymes can also affect 72 
DON stability (Vidal, Ambrosio, Sanchis, Ramos, & Marin, 2016) causing important increases (> 73 
20 %) during the breadmaking process. Enzymes have not been studied in pasta making, 74 
however, eggs are a common ingredient in pasta and they contain abundant lysozyme (Alderton 75 

& Fevold, 1946), which was not studied in Vidal et al. (2016). Vidal et al. (2016) showed that 76 
DON and DON-3-glucoside could be bound to wheat components and enzymes may cleave 77 
them releasing DON and DON-3-glucoside. Moreover, egg contains some ovoinhibitors which 78 
are protease inhibitors (Liu, Means, & Feeney, 1971) and proteases, in their turn, can have an 79 

effect in DON and DON-3-glucoside stability during breadmaking process (Vidal et al., 2016). 80 
Although the thermo stability of DON-3-glucoside during baking of wheat products has been 81 
widely studied (Kostelanska et al., 2011; Vidal, Morales, Sanchis, Ramos, & Marín, 2014a; 82 
Vidal, Sanchis, Ramos, & Marín, 2015), few studies exist about DON-3-glucoside stability during 83 

boiling (Zhang & Wang, 2015). Concerning OTA, it showed higher thermo stability than DON 84 
during baking (Vidal et al., 2015). Looking at the few existing results, OTA, as well as DON, 85 
would be reduced in boiled pasta. For example, Sakuma et al. (2013) observed approximately a 86 
34 % of OTA reduction after 6 min (10 g of pasta with 400 mL of water), and the authors also 87 

pointed out to the transfer of OTA to broth.  88 

The existent literature about DON, DON-3-glucoside and OTA during boiling is scarce and more 89 
information is required, in particular for exposure assessments. The current study aims to 90 
investigate the stability of DON, DON-3-glucoside and OTA during boiling assaying different 91 

factors (boiling time, initial mycotoxin concentration and egg presence) in durum wheat pasta 92 
and modelling the kinetics of reduction of DON during boiling of pasta.  93 

 94 

2. Materials and methods 95 

2.1. DON and OTA contaminated semolina 96 
In order to obtain DON or OTA contaminated semolina, one strain each of Fusarium 97 
graminearum (TA 3.234) and Aspergillus ochraceus (TA 3.201) were used, respectively. Both of 98 
them are kept in the Food Technology Dept. collection, University of Lleida, Spain. They were 99 

previously proven to be DON and OTA producers when cultured on wheat flour (Vidal et al., 100 
2014a, 2014b, 2015). The concentration of DON and DON-3-glucoside in the initial 101 
uninoculated semolina (n=3) was 286.31 ± 21.91 and 72.15 ± 15.24 µg/kg, respectively, while 102 
OTA could not be detected.  103 
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The strains were inoculated and incubated in MEA (malt extract agar) at 25 ºC for 14 days until 104 
strong sporulation. For the inoculation of semolina we followed the method used by Jijakli & 105 

Lepoivre (1998). Briefly, a sterile inoculation loop was used to remove the conidia, suspending 106 
them in Tween 80 (0.005 %). A spore suspension of each strain was made. After homogenizing, 107 
five millilitres of either F. graminearum or A. ochraceus spore suspension were inoculated in 108 
glass flasks containing 250 g of semolina and 50 mL of water. In total, 3 kg of semolina were 109 

inoculated with each strain. The flasks were incubated at 25 ºC for 19 days in the case of F. 110 
graminearum and 8 days in the case of A. ochraceus, with periodic shaking. The incubation 111 
times were calculated based on our previous knowledge in recent similar studies (Vidal et al., 112 
2015), to achieve the desired mycotoxin contamination in the semolina. Anyway, before ending 113 

the incubation period the semolina was sampled to check the concentration attained. Then, each 114 
kind of semolina (3 kg) was properly powdered and homogenized and underwent either DON or 115 
OTA analysis. The content of DON and OTA was of 3,212.32 ± 80.70 µg/kg and 10.5 ± 0.2 116 
µg/kg respectively (n=3), in each contaminated semolina. DON-3-glucoside was not analysed in 117 

the semolina at this stage.  118 

2.2 Spaghetti production 119 

Spaghetti was prepared with 100 g of durum wheat semolina, and 50 g of egg or 40 mL of 120 
water. The semolina used was previously prepared by mixing uninoculated semolina with DON 121 

contaminated semolina and OTA contaminated semolina, depending on the desired initial 122 
mycotoxin concentration: high mycotoxin concentration (HMC) or low mycotoxin concentration 123 
(LMC). The analysed toxin levels in the initial mixed semolina (n=3) were: a) HMC, 1310.08 ± 124 
51.63 µg/kg of DON, 60.74 ± 4.39 µg/kg of DON-3-glucoside and 3.52 ± 0.34 µg/kg of OTA; and 125 

b) LMC, 572.65 ± 21.51 µg/kg of DON, 70.08 ± 6.50 µg/kg of DON-3-glucoside and 1.58 ± 0.22 126 
µg/kg of OTA. The levels were chosen to be close to real values in food samples (Juan, 127 
Covarelli, Beccari, Colasante, & Mañes, 2016). Moreover, the levels were around the maximum 128 
levels set by the European Union (European Comission 1881/2006) for processed cereals, such 129 

as semolina, which are 750 µg/kg and 3 µg/kg, for DON and OTA, respectively.The DON-3-130 
glucoside concentration was not significantly different in both semolina batches. 131 

The dough was manually mixed until held with a non-sticky, smooth and satiny appearance and 132 
optimum handling properties. Then, dough was transferred to a roller machine to get a thin 133 

dough sheet (approximately 5 mm), which was later cut into spaghetti (Imperia 650, Imperia & 134 
Monferrina SPA, Italy). The resulting spaghettis were hung on metal bars where they were 135 
allowed to dry for 12 hours. The water content of the final product was 12.6 ± 0.3 %. Spaghetti 136 
(100 g) were cooked for 9 different times (0, 1, 2, 3, 4, 6, 8, 10 and 12 minutes) in 500 mL of 137 

broth (2.5 g NaCl), so, the ratio pasta:water was 1:5. Thus 2 initial toxin concentrations x 9 138 
boiling times x 3 replicates made 54 different runs. Additionally, egg pasta was made with the 139 
same two different toxin concentrations, however, egg spaghettis were tested only up to 10 140 
minutes. From the 100 g cooked pasta, 25 g were used for OTA analysis, other 25 g for DON 141 
and DON-3-glucoside analysis, and the remaining 50 g were kept at - 20 ºC. All samples were 142 
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lyophilised for 72 h, and then stored at - 20 ºC until the analyses were performed. Moreover, for 143 
each run, 30 mL of broth was kept and stored at - 20 ºC until the mycotoxins analyses were 144 

performed.  145 

 146 

2.3. Chemicals and reagents 147 
Mycotoxin standard solution of OTA was supplied by Sigma (Sigma–Aldrich, Alcobendas, 148 

Spain). DON and DON-3-glucoside were supplied by Biopure (Tulln, Austria). Acetonitrile (≥ 149 
99.9 %), methanol (≥ 99.9 %) and ethanol (≥ 99.5 %) were purchased from J.T. Baker 150 
(Deventer, The Netherlands). All solvents were LC grade. Filter paper (Whatman No. 1) was 151 
purchased from Whatman (Maidstone, UK). Immunoaffinity chromatography columns (IAC) for 152 

DON (DONPREP®) and OTA (OCHRAPREP®) extracts clean-up were purchased from R-153 
Biopharm (Rhone LTD Glasgow, UK). Pure water was obtained from a milli-Q apparatus 154 
(Millipore, Billerica, MA, USA). Fresh eggs were purchased from La Receta (Madrid, Spain). 155 
Phosphate buffer saline (PBS) was prepared with potassium chloride (0.2 g) (Panreac, Castellar 156 

del Vallès, Spain), potassium dihydrogen phosphate (0.2 g) (98-100 %, Panreac, Castellar del 157 
Vallès, Spain), disodium phosphate anhydrous (1.16 g) (99 %, Panreac, Castellar del Vallès, 158 
Spain) and sodium chloride (8.0 g) (≥ 99.5 %, Fisher Bioreagents, New Jersey, USA) in 1 L of 159 
milli-Q water; the pH was brought to 7.4 with hydrochloric acid 1 M.  160 

2.4.  DON, DON-3-glucoside and OTA by HPLC 161 
2.4.1. Preparation of standard solutions 162 

The standard solution of OTA was dissolved in methanol at a concentration of 500 ng/mL and 163 
stored at 4 ºC in a sealed vial until use. From this, a stock solution was prepared and confirmed 164 

by UV spectroscopy according to AOAC Official methods of analysis (Horwitz & Latimer, 2006). 165 
Working standard solutions (5.0, 1.0, 0.5, 0.01 and 0.05 ng/mL) were prepared by appropriate 166 
dilution of known volumes of the stock solution with the mobile phase and were used to obtain 167 
calibration curves in the appropriated chromatographic system. The standard solutions of DON 168 

and DON-3-glucoside were dissolved in ethanol at a concentration of 10 µg/mL and stored at 4 169 
ºC in a sealed vial until use. DON concentration in the stock solution was confirmed by UV 170 
spectroscopy according to AOAC Official methods of analysis (Horwitz & Latimer, 2006). 171 
Working standard solutions were 5.0, 1.0, 0.5, 0.1 and 0.05 µg/mL for DON and 1.0, 0.5, 0.1, 172 

0.05 and 0.01 μg/mL for DON-3-glucoside. They were prepared as for OTA, as well as 173 
calibration curves.  174 

 175 

2.4.2. Sample preparation and analysis with HPLC-UV and HPLC-FL. 176 

For DON and DON-3-glucoside, 5 g of ground sample was extracted with 30 mL of distilled 177 
water by magnetically stirring for 10 min. Next, the sample was centrifuged for 8 min at 1780 x 178 
g. Supernatant was filtered through Whatman 1 filter. On the other hand, broth was centrifuged 179 
for 10 min at 1780 x g and then filtered through Whatman 1 filter. In both cases, five millilitres of 180 
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filtered sample was cleaned-up using a IAC DONPREP® column (R-Biopharm). Zachariasova, 181 
Vaclavikova, Lacina, Vaclavik, & Hajslova (2012) confirmed the robust cross-reactivity of DON-182 

3-glucoside with the IAC DONPREP® columns (99-102 % recovery for DON and DON-3-183 
glucoside when less than 500 ng of these toxins was loaded). The purified extracts were dried 184 
under a stream of nitrogen at 40 ºC. Each dried sample was resuspended with 0.5 mL of the 185 
mobile phase solution (water:acetonitrile:methanol, 92:4:4). DON and DON-3-glucoside were 186 

quantified using a HPLC Waters 2695® system with an analytical column (Waters Spherisorb® 5 187 
µm ODS2, 4.6 x 250 mm, coupled with a UV/Visible dual λ absorbance Detector Waters 2487). 188 
The absorption wavelength was set to 220 nm. The HPLC mobile phase flow rate was 0.6 189 
mL/min. The injection volume was 100 μL. The column temperature was 40 ºC. The retention 190 

times for DON and DON-3-glucoside were 20 and 23 min, respectively. 191 

 192 

Regarding OTA, 5 g of ground sample were extracted with 30 mL of extraction solution (60 % 193 
acetonitrile, 40 % water) by magnetically stirring for 10 min and filtered with Whatman 1 filter. 194 

On the other hand, the broth was centrifuged for 10 min at 1780  x g and then filtered through a 195 
Whatman 1 filter. In both cases, 4 mL of filtered solution was diluted with 44 mL of PBS solution 196 
and the resulting extract was cleaned-up using a IAC OCHRAPREP® column (R-Biopharm). 197 
The purified extract was dried under a stream of nitrogen. Each dried sample was resuspended 198 

with 0.5 mL of mobile phase (acetonitrile:water:acetic acid, 57:41:2). OTA was determined by 199 
HPLC (Waters 2695®) coupled with a Multi λ Fluorescence Detector Waters 2475®, and an 200 
analytical column Waters Spherisorb® 5 μm ODS2, 4.6 x 250 mm. Excitation and emission 201 
wavelengths were set, respectively, at 330 and 463 nm. The mobile phase flow rate was 1 202 

mL/min, column temperature was 40 ºC, the injection volume was 100 μL, and the retention 203 
time was 15 minutes. 204 

 205 

2.4.3. Methods performance for HPLC-UV and HPLC-FL 206 

The analytical methods used were assessed for linearity, precision and recovery. Standard 207 
curves were generated by linear regression of peak areas against concentration (r2 values were 208 
0.99, 0.97 and 0.99 for DON, DON-3-glucoside and OTA, respectively). Precision was 209 
estimated by determining DON, DON-3-glucoside and OTA levels in broth and spaghettis, in 210 

triplicate, in fortified samples prepared to calculate recovery rates. The limit of detection (LOD) 211 
was considered to be three fold greater than the signal of blank noise, and the limit of 212 
quantification (LOQ) was calculated to be 3 x LOD. Characteristics of the method performance 213 
for DON, DON-3-glucoside and OTA are summarized in Table 2.  214 

 215 

2.5. Statistical analysis 216 
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Multifactorial ANOVA was applied to assess the significance of sample traits in the observed 217 
mycotoxin levels; the software used for multifactorial ANOVA was Statistics 20.0 (IBM SPSS 218 

Statistics 20.0 Inc., Chicago, IL). Moreover, linear regression was applied to assess the rates of 219 
DON, DON-3-glucoside and OTA reduction during the boiling process.  220 

 221 

2.6.  Equations 222 

2.6.1. Mass balance 223 

A system of mass balance was developed for DON in the boiling process. The water mass 224 
balance was made with 4 products: uncooked pasta, water before boiling, pasta after boiling 225 
and broth. The water mass balance between pasta and broth resulted in: 226 

tt WHWH +=+ 00   (1) 227 

H0 = Content of water in the uncooked pasta (g).  228 

W0 = Weight of water before to start the boiling step (g). 229 

Ht = Content of water in the cooked pasta at time t (g). 230 

Wt = Weight of broth at time t (g).  231 

From eq. 1 the Wt is isolated and the weight of the broth at time t is known.  232 

tt WHWH =−+ 00   (2) 233 

Knowing Wt a DON mass balance can be made among uncooked pasta, initial water, and 234 
cooked pasta at time 12 minutes and broth at time 12 minutes. This balance was made under 235 
the assumption than no thermal degradation of DON occurred.  236 

tttt WxHyWxHy +=+ 0000   (3) 237 

y0 = weight of DON in uncooked spaghettis (ng) / (weight of DON + weight of water in pasta in 238 

uncooked spaghetti) (g). 239 

x0 = weight of DON in initial boiling water (ng) / (weight of DON + weight of broth) (g).  240 

yt = weight of DON in pasta (ng) / (weight of DON + weight of water in pasta) at time t (g).  241 

xt = weight of DON in broth in balance conditions (ng) / (weight of DON in broth + weight of 242 

broth) at time t (g).   243 

When equilibrium between DON in the spaghetti and DON in the broth is reached, yt will equal 244 
xt.  245 
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yt = xt = b  (4) 246 

From eq. 3, the value b can be calculated as:  247 

00

0000

WH
Hy

WH
Hyb

tt +
=

+
=  (5) 248 

 249 

2.6.2. Kinetic calculations 250 

According to literature, several models can be used to explain the kinetics of sorption (e.g. first-251 
order, pseudo-first, pseudo-second-order reaction model) (Ho & McKay, 1999). The studies on 252 
the kinetics of leaching of water-soluble compounds have revealed that the pseudo-second-253 
order model provides the best correlation (Ho, Harouna-Oumarou, Fauduet, & Porte, 2005). 254 

dpt / dt = k · (pm – pt)2   (6) 255 

Where  256 

pt = percentage of DON leached at time t (%). 257 

t = time (min). 258 

pm = maximum percentage of DON leached (%). 259 

k = leaching rate constant (1/min  %). 260 

Accordingly, the pseudo-second-order reaction model was applied to our experimental data in 261 
order to determine the leaching rate constant. The integrated linear form of the pseudo-second 262 

order model is 263 

(7) 264 

 265 

The leaching rate constant (k) comes from the interception.  266 

 267 

3. Results and discussion 268 

3.1. DON 269 

Kneading and drying did not cause any difference in DON concentration because DON 270 

concentrations in semolina and in uncooked spaghettis were very similar (Table 3). However, 271 
DON decreased along time in cooked spaghettis (p < 0.05) (Figure 1). Although DON content in 272 
pasta dropped during boiling, no further significant DON reduction occurred from minute 2 273 
(Figure 1). A similar trend was observed regardless of the initial toxin concentrations, with 274 
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percentages of reduction in spaghettis above 30 %. As a result, analysed broth showed a 275 
significant increase in DON through time till minute 3-6 (Figure 1), due to the leaching process 276 

from pasta to broth. The presence of egg did not affect DON content neither in the preparation 277 
nor in the boiling process. 278 

Similar to what was observed here, the existing literature on DON fate during pasta making 279 
reported a high stability of DON during kneading. For example, Visconti et al. (2004) found a 280 

non-significant slight decrease of DON (10.8 %) after the kneading and drying process; they 281 
used a pasta extruder (40 °C at 80-100 bars) and dried the pasta at 80 and 90 °C for almost 5 282 
hours, thus their process was harsher than ours. Also in boiling step, the levels of DON 283 
reduction in boiled pasta found in our study agreed with other studies (Brera et al., 2013; 284 

Visconti et al., 2004; Zhang et al., 2015). The results show boiling time is a crucial factor in the 285 
level of reduction.  Cano-Sancho et al. (2013) tested three different times (2, 6 and 12 minutes), 286 
with higher reduction with longer time, although the levels after 6 and 12 minutes were very 287 
similar (Table 1). Alike, similar DON reduction after boiling for 12 minutes (48.54 %) and 22 288 

minutes (54.30 %) were obtained by Nowicki et al. (1988). This suggests that transfer of DON 289 
from pasta to water occurs till equilibrium is reached. This equilibrium point depends on the 290 
initial DON concentration because there was more DON in the broth when the initial DON 291 
concentration was higher. That way, some authors suggested the ratio pasta/water was an 292 

important factor in DON reduction during boiling. Hence, Visconti et al. (2004) showed 293 
increasing DON reduction in pasta with decreasing ratio pasta:water (Table 1). The amount of 294 
DON retained by cooked spaghettis consistently decreased by increasing the pasta:water ratio 295 
during cooking. Different ratios were not tested in the present assay. This suggests that DON 296 

reduction in pasta is explained by leaching to water during the boiling process. Previous studies 297 
observed DON leaching to water but few information exists on the kinetics of such leaching 298 
process. The amount of DON in water plus that in pasta was nearly constant (Figure 1), thus 299 
DON thermal stability was confirmed. In fact, boiling conditions (100 °C) are mild and boiling 300 

time is short, thus this result was expectable. Baking of bread and bakery products has shown 301 
that harsh conditions are required for DON inactivation (e.g. 40 minutes at 160 °C or 20 minutes 302 
at 200 °C (Vidal et al., 2015). The high stability of DON in broth agrees with Mishra, Dixit, 303 
Dwivedi, Pandey, & Das (2014), who observed DON was only unstable at 125-250 °C showing 304 

16-100 % degradation.  Enzymes present in wheat or artificially added to doughs have shown to 305 
be important for DON fate (Simsek, Burgess, Whitney, Gu, & Qian, 2012; Vidal et al., 2016). 306 
The presence of egg did not cause any change in DON content during spaghetti making 307 
process. Water represents more than 75 % of total egg, the rest are mostly lipids and proteins. 308 

Regarding enzymes, lysozyme is the main enzyme found in egg and its effect on DON has not 309 
been tested. However, the short time involved in kneading and pasta production may not allow 310 
for significant enzymatic activity. To our knowledge, this is the first time different ingredients are 311 
tested to study DON stability during the boiling of pasta, although some studies exist regarding 312 
other food processes, mainly baking (Simsek, Burgess, Whitney, Gu, & Qian, 2012; Vidal et al., 313 

2016).  314 
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 315 

3.1.1. Mass balance  316 

Initially, DON concentration in pasta decreased quickly till a plateau was reached after six 317 
minutes; a parallel increase occurred in the broth, suggesting that an equilibrium was reached 318 
(Figure 1). A water mass balance between pasta and broth resulted in the application of the eq. 319 
1 (see section 2.6.1), and in our experiment, H0 is 12.6 because it is the average moisture find 320 

in the uncooked spaghettis. W0 is always 500 g because we always used 500 mL of water for 321 
boiling. Ht is 253.4 g, it was the average moisture of our spaghettis cooked for 12 minutes. Eq. 2 322 
results in a Wt = 259.2 g. Knowing Wt a DON mass balance (eq. 3) can be made among 323 
uncooked pasta, initial water, and cooked pasta at time 12 minutes and broth at time 12 324 

minutes. We used minute 12 but any time between 6 and 12 could have been used because all 325 
of them are in equilibrium. From the eq. 3, only y0 and x0 are known, with y0 = 9616.16 ng/g and 326 
4097.24 ng/g for high and low initial DON concentration, respectively, and x0 always 0. Then 327 
from the eq. 3 we found the b values which are 236.84 ng/g and 101.91 ng/g, for high and low 328 

initial DON concentration respectively. yt found in the analysis are 276.77 ± 46.97 ng/g and 329 
114.75 ± 22.86 ng/g. The high similarity between predicted and experimental yt confirms that 330 
the system was in equilibrium at minute 12. Experimental xt were 189.76 ± 29.31 ng/g and 86.67 331 
± 11.19 ng/g for high and low initial DON concentration, so they are also similar to predicted xt. 332 

Thus, if equilibrium is reached at the end of the boiling time, the eq. 5 can be used directly to 333 
find the final DON concentration in boiled pasta. It is only necessary to know the DON content in 334 
uncooked pasta, the humidity of uncooked pasta, the volume of broth and the final humidity of 335 
cooked pasta. The lack of thermal effects plus the equilibrium assumptions were also tested on 336 

data from Visconti, et al. (2004), who described all information required for DON balance (Table 337 
4). The obtained concentrations experimentally parallel predicted concentrations, so at the end 338 
of boiling time the system is in balance and equations can be used to know the DON 339 
concentration in boiling spaghettis. The agreement between observed and calculated data 340 

confirms that there is not DON degradation during boiling, and that only a leaching process 341 
takes place. The amount of DON detected in pasta plus that in the broth at the end of the boiling 342 
process equals that in the pasta at the beginning.  343 

 344 

3.1.2. Kinetics of DON leaching  345 

As shown in section 3.1.1., DON leached from pasta to broth until an equilibrium point was 346 
reached, with some DON still remaining in the pasta. In order to know the remaining DON 347 
concentration in pasta at any time point the DON leaching process was studied. The equation 348 

described in section 2.6.2 was followed and a pseudo-second-order reaction model was applied 349 
to our experimental data in order to determine the leaching rate constant. When the eq. 6 was 350 
applied to our data (Figure 2) the slope of the straight line led to a maximum percentage of DON 351 
leached (pm) at equilibrium of 45.45 %. The leaching rate constant (k) was 0.024 min (Table 5).  352 
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To our knowledge, there is no previous report on modelling DON leaching during boiling. 353 
However some differences in pm and k could be found in other leaching situations because 354 

several factors can influence, mainly pasta:water ratio seems an important factor in DON 355 
reduction. It must be pointed out that modelling of mycotoxins behaviour during food processes 356 
is essential to provide an applied knowledge about mycotoxins intake by the population, but 357 
nowadays scarce works exist about this (Castells, Pardo, Ramos, Sanchis, & Marín, 2006; 358 

Ferraz et al., 2010; Numanoglu, Gökmen, Uygun, & Koksel, 2012; Vidal et al., 2015). In 359 
particular, exposure assessment studies could benefit from correction of the initial DON 360 
concentration in uncooked pasta.  361 

3.2. DON-3-glucoside 362 

The initial semolina contained also DON-3-glucoside (Table 3). DON-3-glucoside content was 363 
the same in the two assayed batches because it is a plant conjugate (Berthiller et al., 2009) and 364 
till now there is no evidence that it can be produced by fungi. The levels of DON-3-glucoside 365 
vary among wheat studies, however the ratio DON-3-glucoside/DON concentration is similar 366 

among the assays, from 10 to 30 % (Berthiller et al., 2009; Dall’Asta et al., 2013; Desmarchelier 367 
& Seefelder, 2010; Rasmussen et al., 2010). Hitherto, few studies exist about DON-3-glucoside 368 
in durum wheat but the ratio DON-3-glucoside/DON in durum wheat could well be similar. We 369 
got a ratio of 25 % and Dall’Asta et al. (2013) also obtained ratios between 20 and 30 %. 370 

Moreover, DON-3-glucoside is not only found in raw cereals, because some studies indicate the 371 
high presence of DON-3-glucoside in cereal based products (De Boevre et al., 2012; 372 
Malachova, Dzuman, Veprikova, Vaclavikova, Zachariasova, & Hajslova, 2011). Thus, although 373 
it seems it is important to study DON-3-glucoside stability during food processing, few 374 

investigations have been made about it and scarce knowledge exists for pasta making process. 375 

The concentration of DON-3-glucoside did not change after kneading and drying pasta, thus the 376 
concentrations were similar in semolina and uncooked pasta (Table 3). Regarding boiling, DON-377 
3-glucoside remained nearly constant in spaghettis (Figure 1) through the time. On the other 378 

hand, a slight and fast increase of DON-3-glucoside in broth was detected (p < 0.05) (Figure 1). 379 
This increase suggests that an increase in the total amount of DON-3-glucoside occurred during 380 
boiling (Figure 1). The DON-3-glucoside concentration in broth was the same regardless of the 381 
initial DON concentration. The presence of egg in formulation instead of water did not cause 382 

any change in DON-3-glucoside content (Table 3).   383 

By contrast, Zhang et al. (2015), who studied DON-3-glucoside stability in noodles production 384 
detected a significant increase of DON-3-glucoside (69 %) in uncooked pasta. However, they 385 
used fermentation (30 minutes at room temperature) after mixing of the ingredients. 386 

Fermentation showed to cause an increase in DON-3-glucoside in breadmaking studies 387 
(Kostelanska et al., 2011; Vidal et al., 2014a; Vidal, Marín, Morales, Ramos, & Sanchis, 2014b). 388 
The high stability of DON-3-glucoside found after boiling of pasta agrees with the results found 389 
by Zhang et al. (2015). They did not find any DON-3-glucoside reduction after boiling noodles 390 

http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=6602537913&zone=
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for 5 minutes. Similarly, increases of DON-3-glucoside have been observed during baking 391 
(Vaclavikova, Malachova, Veprikova, Dzuman, Zachariasova, & Hajslova, 2013; Vidal et al., 392 

2014b), although some studies showed important reductions after baking (De Angelis, Monaci, 393 
Pascale, & Visconti, 2013;  Kostelanska et al., 2011; Simsek et al., 2012). Vidal et al. (2015) 394 
revealed that DON-3-glucoside could either increase under mild baking conditions (for instance 395 
140 º for 35 minutes or 200 ºC for less than 10 minutes), or decrease under harsher 396 

temperature/time conditions. The mild conditions involved in boiling (100 °C and short times) 397 
may lead to DON-3-glucoside release instead of thermal degradation as in baking. The detected 398 
increase of DON-3-glucoside content could be caused by the release of DON-3-glucoside from 399 
the matrix due to the thermal treatment. DON-3-glucoside found in broth was not be linked to 400 

DON presence, because in one hand no change in the total amount of DON was detected and, 401 
in the other hand, DON-3-glucoside content found in broth was independent of the initial DON 402 
content. Other baking studies did not find any relation between both toxins (Kostelanska et al. 403 
2011; Vidal et al., 2015); they pointed out to a possible splitting of glycosidic bonds between 404 

DON-3-glucoside and cell polysaccharides. However, to our knowledge, their possible relation 405 
has not been studied in depth yet.  406 

DON-3-glucoside presence in the broth confirms that leaching from pasta took place (Figure 1). 407 
The high solubility of DON-3-glucoside and other DON conjugates has been observed in 408 

malting and brewing process (Lancova et al., 2008). Thus during boiling, an increase of DON-3-409 
glucoside content occurs in the pasta due to a release from its components, which is 410 
subsequently transferred to broth. Finally, the stability of DON-3-glucoside in spaghettis during 411 
boiling is of concern because, although DON-3-glucoside is far less active as protein 412 

biosynthesis inhibitor than DON (Poppenberger et al., 2003), DON-3-glucoside will likely be 413 
cleaved in the gastrointestinal tract due to chemical hydrolases or, more important, to microbial 414 
activity in the intestine as shown in vivo in swine and in vitro using human intestinal microbiota 415 
(Berthiller et al., 2011), thus its presence is important for food safety. 416 

 417 

3.3. OTA 418 

Although our semolina batch did not contain OTA, durum wheat has been shown to contain 419 
OTA in previous studies (Winnie, Mankotia, Pantazopoulos, Neil, Scott, & Lau, 2009), and some 420 

authors pointed out that durum wheat may be more contaminated by OTA than other types of 421 
wheat (Kuruc, Manthey, Simsek, & Wolf-Hall, 2014). So, it is important to study the fate of OTA 422 
during durum wheat processing to food products. 423 

OTA showed a high stability during the entire studied process. Kneading, drying and boiling of 424 

spaghettis did not cause any significant change in OTA concentration. Thus, OTA concentration 425 
in semolina and cooked spaghetti was similar regardless of the two initial assayed 426 
concentrations (Table 3). However, slight increases of OTA through time were detected in broth 427 
(Figure 1) (p < 0.05). Furthermore, the level of OTA in the broth depended on the initial OTA 428 

http://www.scopus.com/authid/detail.url?authorId=6506443666&amp;eid=2-s2.0-64749114660
http://www.scopus.com/authid/detail.url?authorId=6506443666&amp;eid=2-s2.0-64749114660
http://www.scopus.com/authid/detail.url?authorId=7005925021&amp;eid=2-s2.0-64749114660
http://www.scopus.com/authid/detail.url?authorId=7005925021&amp;eid=2-s2.0-64749114660


13 
 

concentration in spaghettis. So, transfers of OTA from spaghetti to water obviously occurred 429 
during boiling, although no significant changes in OTA concentration of cooked spaghettis were 430 

detected.  On the other hand, no variations were detected when egg was used (Table 3).  431 

There is limited information about food processing effects on OTA. OTA stability has been 432 
confirmed in the breadmaking process where kneading and fermentation of flour wheat did not 433 
cause differences in OTA content (Vidal et al., 2014a). An existing study on OTA fate after 434 

boiling of spaghetti showed, by contrast, a 35 % of OTA reduction after boiling 10 g during 6 435 
minutes in 400 mL of water (Sakuma et al., 2013). However they worked with OTA spiked 436 
spaghettis, which may easily loose the toxin. In addition they used a high ratio water:pasta 437 
which may favour OTA leaching, nevertheless this factor has not yet been studied during boiling 438 

process in OTA. The transfer of OTA to water was suggested by Sakuma et al. (2013) because 439 
their OTA content in broth paralleled OTA losses in spaghettis. Thus a transfer of OTA to water 440 
is possible but not clearly observed in our study. An increase of OTA content in broth was 441 
observed when boiling time increased, and the transfer of OTA reached over 15 % in the last 442 

minutes of boiling. On the other hand, a 47 % of OTA transfer was reached after boiling for 3 443 
hours in decoctions of herbal medicines (Shim, Ha, Kim, Kim, & Chung, 2014) and 1 % of OTA 444 
transfer occurred after 5 minutes of boiling infusion tea (Ariño, Herrera, Estopañan, & Juan, 445 
2007). So, boiling time has an importance in the level of OTA transfer.  Finally, the sum of OTA 446 

content in broth and boiled spaghetti showed no loss of OTA during the process, so the 447 
temperature used in boiling does not cause OTA degradation. OTA is thermo stable; baking 448 
studies only showed some reduction under high temperatures (> 140 ºC) and long times (Vidal 449 
et al., 2015). The higher transfer of DON to broth could be caused by its higher solubility in 450 

water than OTA. DON is one of the more polar trichothecenes with a solubility of 11 g/L at 25 °C 451 
in water (Chemicaldictionary, 2009), whereas OTA is hardly soluble in water (1.31 mg/L at 25 452 
°C) (SCR, 2010).  453 

 454 

4. Conclusion 455 

DON is stable during kneading and drying, but a high DON reduction (> 40 %) was observed in 456 
boiled spaghettis. DON is transferred to broth, where it is not degraded and boiling time 457 
determines the extent of the transfer. The use of the DON leaching model developed in the 458 

work can be a useful tool in risk assessment under different scenarios of pasta cooking when 459 
the initial mycotoxin concentrations in the raw materials are known. By contrast, DON-3-460 
glucoside is totally stable through the pasta making process; moreover DON-3-glucoside is 461 
released from pasta components and it is leached to broth. OTA is also stable during pasta 462 

making, however it is scarcely transferred to broth during boiling.  463 

 464 
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Table 1. Effect of boiling in DON content in pasta.  625 

- = data not provided.  626 

 627 

 628 

 629 

 630 

 631 

 632 

 633 

 634 

 635 

Reference Cereal Product Mycotoxin Initial mycotoxin 
concentration (µg/g) 

Cooked 
spaghetti 
quantity (g) 

Pasta/water 
ratio 

Boiling 
time 
(min) 

NaCl in 
water (%) 

% of 
mycotoxin 
reduction 

% of 
mycotoxin 
in water 

Recovered toxin 
in pasta+water 
(%) 

Nowicki et al., 1988 Durum wheat semolina  Spaghettis DON 3400-4330 (Natural) 75 
75 

1:10 
1:10 

12  
22 

0  
0 

49.5 
53.4 

39.8 
48.1 

90.3 
94.8 

Visconti et al., 2004 Durum wheat semolina Spaghettis DON 190-6370 (Natural) 25 
25 

1:5 
1:4 

7  
7 

0.4 
0.5 

79.6 
50.4 

58.4 
55.3 

78.8 
91.56 

Sugita-Konishi et al., 2006 Soft wheat flour Noodles DON 850 (Natural) 50 1:20 10 0.2 69.4 50.58 81.2 
Brera et al., 2013 Durum wheat semolina Spaghettis DON 140-190 (Natural) 100 1:10 - 1.0 36.1 - - 
Cano-Sancho et al., 2013 Durum wheat flour  Spaghettis DON 620 (Natural) - - 2 

6 
10 

0 
0 
0 

38.9 
56.5 
74.6 

22.1 
58.5 
73.9 

83.2 
102 
99.3 

Sakuma et al., 2013 Soft wheat semolina Noodles OTA 5-10 (Spiked) 10 1:40 6 0.1 34.1 34.3 100.2 
Zhang et al., 2015 Soft wheat flour Noodles DON 900-6870 (Natural) 100 1:10 5 0 52.0 - - 
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Table 2. Performances of the DON, DON-3-glucoside and OTA determination in spaghetti and broth.  636 
Mycotoxin Product LODa  (μg·kg-1) LOQb (μg·kg-1) n Spiking level (μg·kg-1) Recovery c (%) RSDrd(%) 

DON 

Spaghetti 50.0 150.0 
3 
5 
3 

100 
500 

1000 

93±6 
81±3 
92±7 

5.9 
3.2 
7.2 

Broth 2.5 7.5 
3 
5 
3 

20 
100 
500 

91±2 
87±2 
92±6 

14.2 
1.9 
7.2 

DON-3-
glucoside 

Spaghetti 25.0 75.0 
3 
5 
3 

50 
150 
500 

93±6 
82±3 
92±7 

5.9 
3.2 
7.2 

Broth 2.0 6.0 
3 
5 
3 

5 
15 
30 

82±4 
84±5 
84±4 

4.3 
6.5 
4.2 

OTA 

Spaghetti 0.02 0.06 
3 
5 
3 

0.1 
1.0 
5.0 

87±13 
81±9 
96±1 

15.4 
11.8 
1.4 

Broth 0.005 0.015 
3 
5 
3 

0.05 
0.5 
1.0 

86±4 
108±2 
102±3 

4.3 
1.3 
3.3 

a LOD = Limit of detection. 637 
b LOQ = Limit of quantification. 638 
c Mean value ± standard deviation. 639 
d RSDr = relative standard deviation.  640 
 641 
 642 
 643 
 644 
 645 
 646 
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Table 3. Evolution of mycotoxin concentration (mean ± standard deviation) in the different steps of pasta making process: semolina (ng/g), uncooked 647 
spaghetti (ng/g), cooked spaghetti for 10 min (ng/g) and in broth (ng/mL).  648 

* There are significant differences compared to the previous step (p < 0.05).  649 

 650 

 651 

 652 

 653 

 654 

Table 4. Comparison of DON concentration (ng/g) remaining in pasta boiled for 12 minutes without egg from mass balance equation (eq. 5) and 655 
experimental values at the end of boiling process for our experiments (high and low initial concentration) and Visconti et al. (2004) results with the DON 656 
concentration (ng/g) in the uncooked spaghettis.  657 

  High Initial Concentration Low Initial Concentration 

Mycotoxin  Semolina Uncooked 
spaghetti 

Cooked 
spaghetti Broth Semolina Uncooked 

Spaghetti 
Cooked 

spaghetti Broth 

DON 
Egg 

1310.08±51.63 
1323.66±98.96 640.20±18.19* 172.32±15.22 

572.65±21.51 
562.33±32.23 331.00±45.58* 58.76±5.13 

Without 
egg 1389.14±18.05 772.82±140.34* 181.60±21.52 591.88±15.68 372.40±28.63* 75.18±14.41 

DON-3-
glucoside 

Egg 
60.74±4.39 

59.18±11.02 103.65±31.32 8.26±2.37 
70.08±6.50 

75.03±3.78 73.28±2.77 7.28±1.68 
Without 

egg 62.99±15.97 85.06±27.56 8.66±3.72 73.45±1.04 82.65±12.47 9.46±2.04 

OTA 
Egg 

3.52±0.34 
3.69±0.47 3.51±0.23 0.23±0.00 

1.58±0.22 
1.47±0.15 1.61±0.27 0.09±0.00 

Without 
egg 4.26±0.42 4.47±0.22 0.33±0.04 1.69±0.10 1.97±0.53 0.14±0.01 

   DON content remaining in pasta (ng/g) 
  Initial DON content (ng/g) Calculated Observed 

High initial concentration  1389.14±18.05 698.91 820.28±180.93 
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 658 

 659 

 660 

 661 

 662 

 663 

 664 

 665 

Table 5. Comparison of observed and predicted DON concentration in spaghetti without egg during boiling process using the kinetic model.  666 

  High Concentration Low concentration 
Time 

(minutes) 
Predicted 

reduction (%) 
Observed 

reduction (%) 
Predicted 

concentration (ng/g) 
Observed 

concentration (ng/g) 
Observed 

reduction (%) 
Predicted 

concentration (ng/g) 
Observed 

concentration (ng/g) 
0 0 -0.21±6.11 1389.14 1392.12±84.90 12.27±7.73 591.88 504.71±27.32 
1 23.69 20.01±5.02 1060.05 1111.25±69.69 21.12±2.50 451.66 467.05±14.81 
2 31.15 29.58±5.40 956.42 978.22±74.97 31.90±4.19 407.51 403.24±24.82 
3 34.80 31.28±6.02 905.72 954.66±83.66 30.41±3.85 385.91 412.03±22.88 
4 36.97 30.63±9.23 875.57 963.61±128.22 33.89±4.27 373.06 391.44±25.31 
6 39.42 44.56±8.98 841.54 770.23±124.79 39.03±1.64 358.56 361.19±9.79 
8 40.77 42.12±10.48 822.79 804.07±145.55 41.53±8.17 350.57 346.23±48.39 
10 41.63 44.43±10.10 810.84 772.82±140.34 37.10±4.84 345.48 372.40±28.63 
12 42.22 40.97±13.02 802.65 820.28±180.93 45.07±8.67 341.99 325.25±51.32 

 667 

 668 

 669 

 670 

Low initial concentration  591.88±15.68 297.15 325.31±51.32 

Vi
sc

on
ti 

et
 a

l.,
 2

00
4 

Sample 1  170±30 42.14 37.51±6.78 
Sample 2 230±0.00 58.46 47.00±22.14 
Sample 3 260±20 61.00 48.80±29.82 
Sample 4 500±30 205.51 280.61±35.25 
Sample 5 420±10 175.56 203.34±27.11 
Sample 6 790±70 339.44 389.06±27.11 
Sample 7 1850±60 873.99 993.67±93.09 
Sample 8 3280±410 1281.74 1619.97±150.93 
Sample 9 6970±100 3062.25 2816.99±311.79 
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Figure 1. Content of DON (µg) in spaghettis (     ),  broth (    ) and sum of DON content in spaghettis and broth (    ) over time at high initial DON concentration 671 
(a) and low initial DON concentration (b), content of DON-3-glucoside (µg) in spaghettis (    ), broth (    )and sum of DON-3-glucoside content in spaghettis and 672 
broth (  ) over time at high initial DON-3-glucoside concentration (c) and low initial DON-3-glucoside concentration (d)and content of OTA (ng) in spaghettis (    673 
) and broth (    ) and sum of OTA content in spaghettis and broth (    ) over time at high initial OTA concentration (e) and low initial OTA concentration (f) (bars 674 
indicate standard deviation).  675 

 676 

Figure 2. Linear model of DON leaching model through the time.  677 

 678 

 679 

 680 

 681 

 682 

 683 

 684 

 685 

 686 
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 687 

 688 

 689 

 690 

 691 

 692 

 693 
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 694 


