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[11 Recent advances in technology have revolutionized the acquisition of topographic
data, offering new perspectives on the structure and morphology of the Earth’s surface.
These developments have had a profound impact on the practice of river science, creating
a step change in the dimensionality, resolution, and precision of fluvial terrain models.
The emergence of “hyperscale” survey methods, including structure from motion
photogrammetry and terrestrial laser scanning (TLS), now presents the opportunity to
acquire 3-D point cloud data that capture grain-scale detail over reach-scale extents.
Translating these data into geomorphologically relevant products is, however, not
straightforward. Unlike traditional survey methods, TLS acquires observations rapidly and
automatically, but unselectively. This results in considerable “noise” associated with
backscatter from vegetation and other artifacts. Moreover, the large data volumes are
difficult to visualize; require very high capacity storage; and are not incorporated readily
into GIS and simulation models. In this paper we analyze the geomorphological integrity
of multiscale terrain models rendered from a TLS survey of the braided River Feshie,
Scotland. These raster terrain models are generated using a new, computationally efficient
geospatial toolkit: the topographic point cloud analysis toolkit (ToPCAT). This performs an
intelligent decimation of point cloud data into a set of 2.5-D terrain models that retain
information on the high-frequency subgrid topography, as the moments of the locally
detrended elevation distribution. The results quantify the degree of terrain generalization
inherent in conventional fluvial DEMs and illustrate how subgrid topographic statistics can
be used to map the spatial pattern of particle size, grain roughness, and sedimentary facies

at the reach scale.
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1. Introduction

[2] Accurate digital models of river channel topography
are fundamental tools in river science. They provide the
morphological boundary conditions for numerical hydrody-
namic simulations and baselines to quantify erosion and sed-
imentation and estimate sediment transport rates [Ashmore
and Church, 1998; Bates et al., 2003; Brasington et al.,
2003]. Quality topographic data are also key to the assess-
ment of physical habitat [Richards et al., 2002; Wheaton
et al., 2010a] and through multitemporal surveys can provide
insights into fluvial morphodynamics; improving our under-
standing of climate, land use, and extreme events as drivers
of channel change [e.g., Eaton and Lapointe, 2001 ; Williams
etal,2011].
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[3] The production of fluvial topographic data has, over
the last two decades, been revolutionized through advances
in survey platforms and instrumentation, alongside innova-
tions in computational algorithms, software, and hardware.
These developments have facilitated the acquisition of dense,
distributed topographic data through rapid ground surveys
with GPS and robotic tacheometry but perhaps more funda-
mentally through the growing range of earth observation
technologies such as softcopy photogrammetry, structure
from motion, airborne LiDAR, interferometric radar and
multibeam echo sounding [Gao, 2009; Marcus and Fonstad,
2010]. This progress has enabled a profound shift in the
dimensionality of terrain data and the progressive replace-
ment of cross-sectional representations of channels and
floodplains by digital elevation models or DEMs. These spa-
tially continuous data structures are ideally suited to higher-
dimensional hydraulic modeling [Horritt and Bates, 2002;
McMillan and Brasington, 2007] and are directly compatible
with geospatial software to facilitate spatially distributed
geomorphic change detection [Brasington et al., 2000; Lane,
2005; Wheaton et al., 2010b].

[4] The fierce pace of technological growth has contin-
ued to widen the scope and quality of topographic surveys;
stretching the extent of data acquisition and the density of
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observations, alongside continual improvements in hori-
zontal and vertical precision and accuracy. Consequently, a
variety of methods now exist to collect data with sufficient
coverage and resolution to quantify the full spectrum of flu-
vial morphologies, from grain-to-network scale, as shown
schematically in Figure 1.

[s] While individual technologies can be targeted to par-
ticular applications precisely, Figure 1 reveals the difficulty
of acquiring data that transcend this scale continuum and
help reveal how the particle-scale building blocks of the
fluvial system are aggregated and organized to create mac-
romorphologies. For example, airborne LiDAR is an ideal
tool to map the three-dimensional structure of bar forms
and their reach-scale distribution, but with a typical obser-
vation density of ~1 point m 2 and a vertical precision in
the decimeter range is generally unsuitable to characterize
particle or bed form morphologies (10~>-10° m) and detect
subtle bed changes. By contrast, a detailed ground survey
using a total station offers an useful alternative at such fine
scales (e.g., to capture ripple/dune morphology or particle
cluster spacing), however the intensive labor involved limits
the practical extent of surveys much beyond the bar scale
(10-10% m).

[6] An important consequence of this “scale gap” is the
entrenchment of the methodological separation of “large-
scale” topography and “small-scale” roughness implicit in
conventional approaches to hydraulic and morphodynamic
modeling. This separation of scales has hindered the devel-
opment of physically based models of fluid-boundary inter-
action that conjoin the topographic controls on flow
resistance, blocking, and steering [Lane, 2005]. The diffi-
culty of quantifying topography continuously has instead
encouraged the parameterization of fine-scale grain and form
resistance through quasi-analytical functions (e.g., roughness
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lengths or coefficients) or visual assessment [Barnes, 1967;
Hicks and Mason, 1991], while flow blocking and steering
are resolved only at coarser scales, explicitly through a
scale-dependent topographic boundary condition.

[7] Methods that use multiscale topographic data to rep-
resent both these effects on flow resistance, notably poros-
ity-based treatments of the solid boundary, have begun to
emerge as novel parameterization strategies for numerical
hydrodynamic models [e.g., Lane et al., 2004 ; Yu and Lane,
2006; McMillan and Brasington, 2007 ; Casas et al., 2010].
Such approaches offer an elegant means of reconciling the
mismatching scales of computationally affordable model
discretizations and finer topographic controls, however,
their application remains severely limited by the availability
of appropriate topographic data.

[8] Continuing technical developments are now poised
to meet this challenge with the advent of ruggedized, ter-
restrial laser scanners. Employing similar physical princi-
ples to those used in airborne LiDAR, these ground-based
instruments can acquire unprecedented volumes of survey-
grade observations, generating very dense point cloud data
sets with subcentimeter point spacing and precision. Terres-
trial laser scanning (hereafter TLS) for the first time offers
the opportunity to construct landscape-scale (10°-10* m)
DEMs seamlessly at the resolution of the fundamental parti-
cle scale (107*-10~" m) building blocks (Figure 2).

[o9] Applications of TLS in the earth and environmental
sciences are beginning to gather momentum, with applica-
tions across a wide range disciplines from volcanology
[e.g., James et al., 2009] and slope stability [e.g., Dunning
et al., 2010; Aryal et al., 2012] to vegetation dynamics
[e.g., Danson et al., 2007]. The use of TLS in river science
is similarly expanding rapidly, but to date has been limited
typically to small-scale, very high resolution geometrical
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Figure 1.

The overlapping capabilities of geospatial technologies used to characterize fluvial systems.

The necessary survey density refers the minimum number of observations required to characterize each
landscape scale. For example, the geometry of a river reach is typically described by the long profile and
can therefore is often measured from a set of thalweg elevations acquired at intervals of many tens of
meters (10~° pts m~?), but extending over a large areas (10°-10* m). Terrestrial laser scanning can be
used to derive information relevant to parameterize the fluvial system from grain-to-reach within one sin-

gle data set.
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MACRO-SCALE (10° - 10* m) [—

Figure 2. Seamless topographic modeling of the fluvial sys-
tem derived by terrestrial laser scanning. Three views of the
same point cloud revealing multiscale perspectives afforded
through TLS survey.

modeling. For example, recent applications have included
the measurement of the explicit grain-scale packing and
sorting characteristics of gravel beds [Hodge et al., 2009a,
2009b; Wang et al., 2011 ; Wang and Huang, 2012]; the ki-
nematics of individual bars [Milan et al., 2007]; and the
development of new parameterizations of vegetative flow
resistance based on high resolution scans of floodplain
plants and trees [Antonarakis et al., 2009, 2010]. This re-
stricted use in part reflects difficulties involved in the field
capture of data, which until recently has involved the inte-
gration of slow, individual scans requiring many hours of
ground occupation to acquire wide-area coverage. How-
ever, continuing enhancements in scanner speed and more
significantly the emergence of kinematic scanning systems
that integrate TLS with inertial or optical navigation solu-
tions and enable the deployment of TLS from mobile plat-
forms, are set to dramatically enhance the spatial extent of
data coverage [e.g., Barber et al., 2008; Alho et al., 2009;
Brasington, 2010; Williams et al., 2011].
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[10] However, in addition to the logistical difficulties of
field data collection, the adoption of TLS is hindered more
significantly by a range of generic data management prob-
lems that arise from the sheer scale of the data sets gener-
ated. Large area scans [e.g., >3 km® see, for example,
Williams et al., 2011] may incorporate as many as 10-10°
individual xyz observations; volumes well beyond the proc-
essing capacity of standard desktop GIS, CAD, and visual-
ization software. In addition, there are further key concerns
over the assessment of data quality; the management of
image “noise” resulting from instrument artifacts and unse-
lective spatial sampling; the derivation of relevant data
products; and their optimal assimilation within a simulation
modeling or change detection framework.

[11] Here we seek to address some of these issues by pre-
senting a geospatial toolkit, TOPCAT (topographic point
cloud analysis toolkit) designed specifically to analyze very
large TLS data sets and generate terrain data sets suitable
for hydraulic modeling and change detection. The approach
involves an intelligent decimation of the raw scan data into
reduced-resolution gridded elevation models that retain
high-frequency topographic information from the point
cloud as the moments of the locally detrended elevation dis-
tribution. Further details of the computational methods used
to implement this scheme are presented by Rychkov et al.
[2012].

[12] In this paper we apply ToPCAT to a large (approxi-
mately 1000 x 300 m) TLS data set acquired on the
braided River Feshie, Scotland in 2007 and undertake a
detailed geomorphic analysis of the derived terrain products.
This involves: (1) an examination of DEM quality based on
the topographic complexity of terrain models derived over a
range of grid resolutions (0.0 m); (2) a comparison of
TLS-derived DEMs with a conventional lower resolution
GPS-based data set; and (3) the assessment of an automated
particle size and facies model based on the locally detrended
standard deviation of elevation. While the techniques pre-
sented here are examined specifically within the context of
TLS data, the same methods could be applied equally to
other emerging dense survey methods, such as multibeam
echo sounding or structure from motion photogrammetry
[Westoby et al., 2012].

2. Terrestrial Laser Scanning

[13] Terrestrial laser scanners (Figure 3a) are active laser
imaging systems that combine high frequency laser range
observations with precision angular sampling to generate
spatially dense point cloud data [Lichti et al., 2008; Petrie
and Toth, 2008]. Designed originally for applications in civil
and structural engineering, portable, full-dome (360° x 270°
field of view) TLS have since been enthusiastically adopted
within a range of fields, including architecture, transport, her-
itage, archaeology, mining, and forensic science [Vosselmann
and Mass, 2010]. Applications across the geosciences are
now beginning to emerge rapidly as instrumentation costs fall
and awareness of the capability of TLS grows (see Buckley
et al. [2008] and Heritage and Large [2009] for recent
reviews).

[14] While prototype TLS were first developed in the
1990s, fast, ruggedized instrumentation suitable for field-
based geophysical survey has only become available in the
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Figure 3. Registering TLS data from multiple setups. (a) A typical study site; exposed estuarine mud-
flats scanned from (b—d) three positions at low tide to capture the morphology of complex mud bed
forms visible trending NE-SW. The highlighted point clouds in Figures 3b—3d are registered using a net-
work of intravisible targets (Figure 3a) to integrate the survey into a single data set which captures the
(e) complex bed form geometry not visible from a single setup. The final product (Figure 3e) is rendered

using the intensity of the backscatter return.

last 34 years. In these systems, 3-D measurements are
facilitated by a sensor head comprising rotating mirrors,
servo-motors and accurate radial encoders that enable fine
angular measurement (purad-mrad) and dense spatial sam-
pling across a wide field of view. For example, a typical
100 prad sampling interval at a range of 100 m equates to
10 mm point spacing and a density of 10,000 pts m .

[15] Distance measurement is based on reflections from
natural objects without the need for retroreflectors and uses
either time-of-flight or continuous-wave (phase-difference)
ranging [Wehr and Lohr, 1999]. Time-of-flight scanners
operate typically over longer distances (10-4000 m) but at
significantly reduced measurement frequencies (2-50 kHz).
By contrast, continuous-wave devices acquire data at very
fast rates and therefore at high densities, but generally only
over short ranges (typically <40-180 m). Until recently
most scanners returned single range estimates along a given
bearing, based on the last significant reflector (or last pulse).
The next generation of scanners now coming to market,
however, offer the capacity to discretize the returned wave-
form into multiple reflections providing information on the
opacity of the scene. For both approaches, range errors are
strongly linked to divergence of the laser beam and (without
secondary compensation) verticality of the sensor head, so
that point accuracy deteriorates with distance [Lichti and
Jamtsho, 2006]. In effect, a trade-off between data quality
(spatial density and point accuracy) and range emerges that
must be tailored to the particular application and field
logistics.

[16] Currently available instruments operate over ranges
of tens of meters to >4 km and at measurement frequencies

of between 1 and 1000 kHz (1000-1,000,000 pts s~ '). Most
scanners also record the intensity of the reflected laser
beam, which although strongly influenced by distance, inci-
dence angle, and surface moisture, may also provide infor-
mation on surface mineralogy and roughness [Lichti, 2005;
Francheschi et al., 2009, Nield and Wiggs, 2011]. Addi-
tionally, some instruments incorporate high-resolution digi-
tal cameras, enabling the true-color pixel values to be
remapped directly onto each survey observation to produce
photo-realistic 3-D renderings. Further technical details on
the principles of TLS are available elsewhere [e.g., Wehr
and Lohr, 1999; Lichti et al., 2002].

[17] Terrestrial laser scanners are generally deployed on a
tripod and held stationary for the duration of measurements
at a fixed position. Most scanners have rotating sensor heads
and scanning mirrors that create a 360° horizontal field of
view along with wide, even overhead, vertical sampling. De-
spite this large sampling window, data acquisition remains
limited by line-of-sight, so that surveys of complex objects
typically require multiple setups to ensure adequate overlap
and coverage (Figure 3). The observables from each position
are a set of measurements of range, horizontal and vertical
angles, and intensity. These are converted directly to local
Cartesian coordinates (x, y, z) where the origin and orienta-
tion are defined relative to an internal scanner coordinate
system (scanner space).

[18] Two important steps are thus required for the pro-
duction of data deliverables; registration and georeferenc-
ing. Registration refers to the merging of multiple scans
into a common unified, but relative coordinate system,
whereas georeferencing involves the transformation of
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scans to an established local, national, or global coordinate
system (object space). These two processes are often
referred to synonymously, but represent important distinct
processes which incorporate different sets of errors.

[19] Registration of multiple scans can be achieved using
either or a combination of two approaches: (1) a rigid body
similarity (conformal) transformation from scanner-space
to object-space based on common, observed control points
identified by reflective targets [e.g., Horn, 1987] or (2)
cloud-to-cloud registration which involves identifying tie
points between overlapping point clouds on the basis of
local matching geometry. This latter approach utilizes the
large redundancy that exists in dense scan data and a
variety of methods have been developed to solve this com-
plex problem (e.g., the iterative closest point algorithm of
Besl and McKay [1992] [see also Lichti and Skaloud,
2010]). In practice these two approaches are often best
used in combination, whereby a 3-D similarity transforma-
tion based on known targets is used to provide the initial
orientation of the point clouds, then cloud-to-cloud regis-
tration employed to maximize the fit. Registration is also
best undertaken as a global transformation problem, where
multiple overlapping scans are orientated simultaneously
and global least-squares metrics used to ensure the isotropy
of the solution.

[20] While registration of scan data to a common, rela-
tive coordinate system may be sufficient to generate prod-
ucts suitable for characterizing a particular object, it is
often desirable to tie these data to a recognized frame of
reference. This step facilitates the integration of additional
data, such as airborne LiDAR or ground observations posi-
tioned by GPS and importantly also enables the comparison
of data sets over time. Georeferencing is usually under-
taken during post-processing as part of registration, where
control points measured on national or global mapping sys-
tem are used to define the principal similarity transforma-
tion. Direct (forward) georeferencing during data collection
is also possible when the location and orientation of the
sensor head are prescribed a priori and the scan observables
(range and angles) are transformed directly. This approach
is likely to become more popular as new instruments
directly incorporate GPS and inertial measurement units, so
enabling the collection of real-world coordinates in real
time. Finally, it is important to recognize that georeferenc-
ing inevitably introduces uncertainties associated with the
accuracy of the positional data used to define transforma-
tions and that care should be taken to work within a consist-
ent 3-D Cartesian framework to avoid incorporating
distortion associated with map projections.

3. Digital Elevation and Subgrid Modeling

[21] TLS data have largely been modeled by generating
3-D watertight models by meshing directly the raw scan
data [e.g., Antonarakis et al., 2009] or by fitting known
geometric primitives to point clouds. While this can deliver
rich, complex geometrical models, meshing very large point
clouds is computationally demanding, requires substantial
manual editing, and is therefore, appropriate only for small-
scale applications or simple geometries. The resulting 3-D
data structures are, moreover, not easily assimilated into
existing 2-D hydrodynamic models nor readily compatible
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with GIS software with their rich variety of tools for visual-
ization and terrain analysis.

[22] Simplification of the 3-D point data (x,y,z) to a 2.5-D
terrain model function z = f{x,y), either as rasters or triangu-
lar irregular networks (TINs) therefore remains a practical al-
ternative for the processing and subsequent redistribution,
analysis, and assimilation of landscape-scale data sets. The
extraction of 2.5-D DEMs from unselectively sampled scan
data is not straightforward however and requires segmenta-
tion of the point cloud to distinguish “ground” and “off-
terrain” points [Heritage and Hetherington, 2007]. Although
this distinction is comparatively unambiguous for the smooth
surfaces of the built environment [e.g., Priestnall et al.,
2000; McMillan and Brasington, 2007], rough natural surfa-
ces such as a gravelly river bed exhibit significant topo-
graphic variability across a range of scales; from individual
particles to small sedimentary structures, up to aggregate bar
forms. Recently, Brodu and Lague [2012] have demonstrated
how higher-order analysis of the 3-D structure of point cloud
data may offer a means to classify scan data into complex
categories such as gravel surfaces, boulders, and vegetation.
However, while their approach holds significant potential, a
simple means to decimate even classified point clouds are
nonetheless required to aid the assimilation of dense spatial
data within numerical models and GIS.

[23] Here we present a new geospatial algorithm designed
for processing very large TLS data sets, the topographic
point cloud analysis toolkit, or ToOPCAT. This is used to
extract multiresolution terrain products and a set of comple-
mentary statistical surfaces which retain information on the
locally detrended subgrid topography. This approach enables
significant data simplification without wholesale loss of in-
formation and is capable of processing multibillion observa-
tion point clouds on a standard desktop computer, running a
64-bit operating system.

[24] The workflow used to process a 3-D point cloud is
presented graphically in Figure 4. Formally, we take the
point cloud to be an unstructured set S of n points in R3,
sampled from a 2.5-D elevation function, z(x,y). Methods to
reconstruct this function by interpolation are well estab-
lished, however the computational complexity of these meth-
ods (e.g., inverse-distance weighting, spline fitting, Kriging)
limits their application to comparatively small data problems
(n < 10°). An alternative strategy is to decompose the plane
containing the points into a set of nonoverlapping segments,
each containing a smaller number of points and then to inter-
polate each segment independently. Stage 1 of the processing
methodology (Figure 4) therefore uses a 2-D “bucket sort”
algorithm [Weiss, 2007] which segments S into regularly
sampled square domains (gridcells) of extent AXAY and
computes the set of points in each gridcell and its neighbors.
This sorting algorithm is linear in time and was implemented
in C++ using 64-bit optimization and memory caching to
support very large data sets.

[25] The points in each gridcell are then themselves
sorted and instead of direct local interpolation, the moments
of the elevation distribution are sampled and the precise
coordinates of the minimum and maximum elevation points
identified (stage 2). A variety of terrain functions can then
be interpolated from this reduced resolution data set, taking
either statistical measures of z, e.g., min(z), mean(z),
max(z), o, assumed to lie at the cell centroid, or using
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Figure 4. The ToPCAT workflow: A geostatistical toolbox to filter 3-D point cloud data.

min(z) or max(z) based on their precise (subgrid) locations
(output 1).

[26] A simple, neighborhood triangular tessellation is
then used to reconstruct the surface locally, fitting four
planes to elevation measures at the centroids of the principal

and adjacent cardinal cells (stage 3). While more complex
interpolators could be used, this approach has two advan-
tages. First, user selection of a particular z attribute for the
tessellation, such as the minimum elevation allows a delib-
erate bias to help reduce the effects of unwanted reflections
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from vegetation or surface objects. Second, the tessellation
is a hydrologically continuous surface rather than a set of
disjointed, locally fitted planes. In the final step of the work-
flow, the tessellation is used to detrend all points within the
central gridcell and a new set of statistical moments and
sampled elevations (min, max, and mean) are extracted
(stage 4 and output 2). This second set of attributes there-
fore reflects variability found within each gridcell after re-
moval of spatial trends, such as bank edges and avalanche
slopes which are larger than the grid resolution.

[27] This spatial sorting process provides a simple but
intelligent decimation of the point cloud and can be imple-
mented at any resolution that balances sample frequency,
topographic complexity, and user goals. Multiple DEM
products can then be derived at each scale, for example,
using the minimum or maximum local elevations to repre-
sent extreme topographies, or surfaces representing the dis-
tribution of the subgrid elevation statistics. The C++
source code, libraries, and binaries are available for free
download under a GNU general public license agreement
at http://code.google.com/p/point-cloud-tools. The code is
called by a Python script and expects an input file as x,y,z
flat text and can be used in batch mode to automatically
generate gridded products across a range of resolutions.
The outputs are flat text files directly compatible with
ArcGIS.

4. Case Study Data Collection: The Braided
River Feshie

[28] The study area is a 1 km long braided reach of the
River Feshie that drains an 80 km? watershed within the
Cairngorm Mountains, Scotland (Figure 5). The channel
bed comprises schistose, cobble-sized material (Ds, varies
between 50 and 110 mm). The braidplain is largely inun-
dated in moderate floods (mean annual flood = 70 m* s™'),
however, during low flows between 85% and 90% of the
channel bed is subaerially exposed and discharge confined
in two to three shallow anabranches (mean depth 0.4 m).
This is significant, as the eye-safe (class 1-3R) lasers used
in most TLS are not water penetrating. Thus, while ideally
suited for data collection in braided rivers, TLS in common
with many other remote sensed survey methods (e.g., air-
borne LiDAR) may have more limited use in widely inun-
dated fluvial systems. While not discussed here, the
development of continuous channel bed models even for
braided rivers requires infilling of this submerged topography,
either with ground-based or remotely sensed bathymetry [see,
e.g., Brasington et al., 2003 ; Westaway et al., 2003 ; Williams
etal.,2011].

[20] Data acquisition was completed during low flow
conditions (Q = 1.4 m® s™') in July 2007. Two independent
topographic surveys were obtained, first with multistation
TLS and second with real time kinematic GPS to provide a
conventional, benchmark topographic data set.

4.1. TLS Survey

[30] Scans were undertaken with a Leica ScanStation: a
pulsed 532 nm laser scanner, with a 360° x 270° field of
view, a maximum range of 300 m (at 90% reflectivity) and
an operating frequency of 24 kHz. The scanner was
mounted on a heavy-duty tripod at approximately 2 m height
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STUDY REACH IN THE
RIVER FESHIE
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Figure 5. Survey network revealing scan stations and
control target locations used to acquire TLS data of the
study reach, the River Feshie, Scotland, in 2007.

and controlled from a laptop PC in the field running the
Leica Geosystem TLS control and modeling software
Cyclone. This allows data to be visualized live during acqui-
sition and has controls to specifically target regions, acquire
registration targets, and modify the scan resolution. Both
laptop and scanner were powered using a smoothed output
EU10i Honda generator.

[31] The theoretical accuracy of the scan data varies with
distance due to the propagation of angular errors and laser
beam divergence. Manufacturer specifications suggest a 3-D
point precision of 6 mm (1 o) at 50 m. Contiguous coverage
of the study reach required 18 survey stations, spaced at
between 80 and 100 m (Figure 5b). At each location, a full
360° scan was obtained with the resolution set to a point
spacing of 15 mm at a range of 30 m. The actual point spac-
ing is higher closer to the scanner and decays linearly with
distance. Line of sight losses (due to vegetation and shadow-
ing by the dissected topography) required careful positioning
of each survey station to maximize data returns.

[32] The scans were registered and georeferenced using
a global 3-D similarity transformation estimated using
least-squares adjustment in Cyclone. The transformation
was calculated using a network of 43 independent tripod-
mounted, retroreflective survey targets, each tied to local
planar approximation of the UK OSGB36 coordinate sys-
tem by GPS. A minimum of four targets were visible from
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each scan location and 200 coincident links used to define
the global transformation, while a subset of 46 links were
used to provide an independent assessment of the transfor-
mation. The mean absolute transformation errors were found
to be: 7 mm in xy (¢ = 6 mm) and 7 mm in z (¢ = 7 mm)
for control links, rising to only 9 and 7 mm (¢ = 9 and
9 mm), respectively, when evaluated against the independent
check data. The resulting point cloud comprised 326 million
observations with a mean density of over 1765 pts m ™~ and
a mean point spacing of 13 mm. The point density is how-
ever highly variable, with a maximum of 390,822 pts m *
recorded in areas close to the scanner, while 2.2% of the
study reach had between 1 and 4 observations at a | m sam-
pling resolution and 2.3% recorded no observations at all,
although these were small discrete locations of shadow.

[33] Prior to further processing, the point cloud was
cleaned manually within the visualization environment of
Cyclone, and large trees and the targets were clipped from
the scan and the area of interest restricted to a 700 m cen-
tral reach. These steps reduced the resulting point cloud to
178 million points. No attempt was made to remove the
sporadic cover of low-level vegetation, largely grasses and
heather (Calluna vulgaris and Erica cinerea), with the
intention of using the minimum elevation attribute to help
create “bare-earth” surfaces. In addition to off-terrain
observations caused by surface features, a variety of other
scan artifacts are evident in the data set, including observa-
tions in midair, due to dust and insects and multipath reflec-
tions close to the waters’ edge. Obvious examples of such
artifacts were also removed by visual inspection, although
some observations were inevitably overlooked due to the
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complexities of rendering the complete scene. A visualiza-
tion of the point cloud is shown in Figure 6, where the
points are colored with RGB values obtained from an inte-
grated camera.

4.2. GPS Survey

[34] The study reach was also surveyed using real time
kinematic (RTK) GPS to provide a reference, comparison
data set against which to benchmark the TLS models.
Following Brasington et al. [2000], observations were
acquired in rapid stop-and-go mode using Leica 1200 series
GPS, with a 3-D error tolerance set at 40 mm. The total
survey (requiring 14 man days) comprised 34,266 observa-
tions with an internally estimated mean 3-D point quality
of 17 mm and observation density of 0.17 pts m 2 (0 =
0.14 m). These data were transformed on to the same coor-
dinate system as the TLS survey. The observations were
interpolated using Delaunay triangulation and then resampled
on to a 1 m resolution DEM, following protocols established
by prior surveys on the Feshie and documented at length
elsewhere [see Brasington et al., 2000, 2003 ; Wheaton et al.,
2010a]. A 1 m resolution has been adopted for similar GPS
surveys of the study site and reflects a compromise between
the density of support observations and the apparent local
topographic complexity. The DEM quality was assessed
using a bootstrap test, randomly separating 5% of the survey
observations as check data and performing a grid-to-point
comparison. This found a standard deviation of absolute
errors (|[Zgps — Zpem|) of 0.1 m, a mean (signed) error of
<0.01 m, and revealed no visually identifiable systematic
errors or blunders.

Figure 6. Photo-rendered point cloud of the study reach, comprising 178 million observations.
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5. DEM Quality Assessment

[35] The clipped TLS point cloud was processed using
ToPCAT (Figure 4) and grids of the raw and locally
detrended elevation statistics were extracted at 0.1, 0.25,
0.5, 0.75, 1, 2, 5, and 10 m resolutions. Small shadows
(typically <1-2 m?) caused by line of sight losses, most
evident in the highest resolution grids, were interpolated by
Delaunay triangulation and then resampled to the same ras-
ter resolution. In the first instance, the minimum elevation
was used to derive the terrain surface, under the assumption
that this value relates to laser returns that have penetrated the
sparse vegetation cover. Following extraction, each DEM
was adjusted to remove the average valley slope (1.1%).
This emphasizes the drainage structure of the DEM, but this
differs from the local, neighborhood detrending undertaken
by ToPCAT. Descriptive statistics for the detrended DEMs,
along with the 1 m resolution model derived from the GPS
survey are presented in Table 1.

[36] Two approaches were used to investigate DEM qual-
ity: (1) an evaluation of topographic complexity as grid re-
solution was degraded progressively from 0.1 to 10 m and
(2) a comparison of a coarse resolution TLS-based DEM
(1 m) with a comparable surface derived from the signifi-
cantly less dense GPS point cloud (based on four orders of
magnitude less support data).

5.1. Scale-Dependent Topographic Complexity

[37] Prior to the advent of TLS, fluvial topographic DEMs
have rarely exceeded meter resolution for areas larger than
small, individual bars. The extreme density of observations
provided by TLS now provides an opportunity to examine
the additional information and complexity recorded as DEM
resolution is increased, ultimately toward the scale of indi-
vidual particles (0.1-0.25 m). Here the topographic complex-
ity was assessed using three different geospatial metrics: (a)
the surface rugosity; (b) the frequency distribution of local
slope angles; and (c) the reach-averaged topographic relief.
5.1.1. Rugosity

[38] Rugosity is a 3-D measure of the topographic rough-
ness or complexity defined as

fr=7 1

where f, is the rugosity (dim.), 4, is the 3-D surface area,
and A, is the planimetric or 2-D area (both m?). This
parameter is particularly sensitive to local variability in

Table 1. Descriptive Statistics of the Detrended Digital Elevation
Models at Different Grid Sizes

Detrended Elevations

Grid Size (m)  Lowest (m)  Highest (m)  Height (m) n Obs.

0.1 -3.75 2.05 5.80 8,228,144

0.25 —3.63 2.04 5.67 1,316,731

0.5 —3.63 1.67 5.30 329,187

0.75 -3.62 1.52 5.14 146,305
1 -3.69 1.57 5.26 82,298
2 —2.46 1.38 3.84 20,583
5 —2.74 1.24 3.98 3,304
10 —1.95 1.08 3.03 821
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surface slope and aspect and the presence of topographic
singularities (peaks and pits). Rugosity was estimated by
fitting an 8-plane tessellation across a moving 3 x 3 cell
neighborhood and truncating this to cover only the central
cell [see Jenness, 2004]. The area of the set of planes was
then summed to predict A and equation (1) calculated tak-
ing A4, as the grid resolution. The local statistics were then
aggregated to give a regional average and spatial standard
deviation. The relationships between the average and stand-
ard deviation of rugosity with DEM resolution are plotted
in Figure 7. As expected, the shallow fluvial topography
results in low rugosity values (<1.1) for all DEMs com-
pared with, for example, crenulated, mountain landscapes
[see Grohmann et al., 2010]. However, a clear scaling pat-
tern is evident, with rugosity falling rapidly from 1.045 at
0.1 m resolution to 1.009 m at 0.75 m, followed by a break
in slope and more gradual loss of rugosity to 1.001 between
1 and 10 m resolutions.
5.1.2. Local Slope

[39] Fluvial topography is marked by sharp breaks of
slope, cut banks, chutes, and avalanche faces, all of which
are difficult to capture accurately and preserve as DEM re-
solution is degraded. In order to examine the potential loss
of discontinuities, important for topographic steering of the
flow and form resistance, the frequency distribution of
slope angles was calculated for each DEM using the maxi-
mum local slope angle or D8 algorithm [see Brasington
and Richards, 1998]. The resulting cumulative frequency
distributions along with the median and quartile values are
shown together in Figure 8. As expected, this shows the pro-
gressive loss of the distribution tail of high slopes and the
translation of the entire distribution to lower values as the re-
solution is degraded. In common with the rugosity, the loss
of terrain information is most evident between 0.1 and
0.75 m, over which the upper quartile slope angle falls from
9.9° to 5.1° and the median from 5.2° to 2.8°. The lower
quartile also declines with grid size at a comparable rate,
roughly proportional to the 3\/ of the grid size, suggesting a
wholesale, progressive, flattening of the topography.
5.1.3. Surface Relief

[40] A measure of characteristic surface relief was com-
puted by calculating the mean absolute deviation between
each gridcell and the plane describing the fitted average
valley slope. Note that as the TLS data do not include the
wetted channel topography, the result is biased toward only
the exposed topographic surfaces. The relationship between
average relief and grid size is shown in Figure 9. Again,
this function exhibits a rapid loss of information and a
strong break of slope, here at 2 m resolution. Between 0.1
and 2 m relief falls rapidly from 0.51 to 0.31 m but much
more slowly from 0.31 to 0.29 m between the 2 and 10 m
resolutions.
5.1.4. Analysis of Results

[41] All geospatial metrics reveal a significant loss of
topographic complexity as DEM resolution is degraded,
with each indicator highlighting the rapidity of information
loss between the 0.1 and 1 m grid sizes. This range
accounted for 80% of the total lost rugosity, a rapid system-
atic translation in the distribution of slope angles in which
the upper quartile slope falls from 9.9° at 0.1 m to 4.3° at
1.0 m resolutions, while over 20 cm of lost relief (>40% of
the total) was recorded between the 0.1 and 2 m grids.
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Figure 7. Relationship between rugosity, the standard deviation of rugosity, and TLS-derived DEM

resolution.

[42] These effects can be explained by analyzing the spa-
tial distribution of elevation differences between the DEMs
as shown in Figure 10. Here the 0.5, 1.0, and 2.0 m models
have been resampled to 0.1 m and the differences between
these surfaces and the highest resolution model evaluated
by grid-by-grid subtraction (i.e., 0.1— X, where X is resolu-
tion of the coarser grid). The resulting difference maps
reveal the subgrid scale topography lost as the output
model is generalized. The most significant changes are evi-
dent around steep breaks of slope associated with bar-top
chute channels and bank edges. This pattern is not simply
an artifact of sampling frequency, but reflects the system-
atic choice of the minimum local elevation to build the
DEM, chosen deliberately to help remove surface (vegeta-
tion) objects. As the grid size increases, the search area for
this lowest value extends and the elevation value returned
for the cell centroid becomes potentially more and more

distant (horizontally) from the actual minimum. Ultimately
this results in a progressive loss of relief, widening of chan-
nelized topography, and negatively biasing the elevation.
This pattern is well illustrated by the extracted cross sec-
tions shown in Figure 10 which in turn explains the reduc-
tion in overall model relief identified in Figure 9.

[43] This loss of complexity has important consequences
for both hydraulic modeling and change detection by DEM
differencing. In the former case, the loss of fine-scale to-
pography effectively reduces the surface volume of the
topographic boundary. This is likely to enhance flow dis-
persion due to the lack of explicit topographic steering and
blocking of the flow. In turn, this will to lead to overesti-
mates of inundation area for a given discharge, but also a
loss of extreme simulated depths and shear stresses with at-
tendant implications for predictions of bed mobility. This
chain of consequences is similar to that obtained directly
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with 2-D modeling results by McMillan and Brasington
[2007] in their examination of the sensitivity of an urban
flood inundation model to grid resolution.

[44] A likely strategy to offset these effects, where em-
pirical data on the extent of flood inundation or water level
are available, is the calibration of an effective friction fac-
tor (e.g., Manning’s n or roughness length) that implicitly
compensates for the loss of topographically induced flow
resistance and steering. However, in the absence of such
observations, the parameterization of the roughness should
be considered highly uncertain and a complex function of
the grid resolution and actual topographic complexity and
also hydrodynamic factors such as flow depth.

[45] These results also indicate the likely sensitivity of
change detection results to grid size. As the sampling inter-
val increases, the accurate delineation of sharp bank lines is
lost and near vertical slopes reduced to gradually sloping
banks even at moderately high resolutions, e.g., 1 m. In the
case where bank retreat is associated with slumping, the
likely result is a significant underestimate in the volume of
bank loss. However, at very high resolutions such as the
0.1 m, the extracted cross sections reveal highly complex
boundaries which are appear to contain “above surface”
features, such as vegetation (see the irregularities in the
cross sections extracted at this resolution in Figure 10).
Where these objects are transient, such as deciduous vege-
tative growth, or organic deposits of failed bank material
(common on the Feshie), the inclusion of these objects
within a DEM of difference is likely to overestimate the
predicted volume of change.

[46] These results point toward a complex sensitivity of
derived results to grid resolution. While this result is not by
itself novel, the high spatial resolution and vertical preci-
sion of TLS allow for the first time, effective quantification
of the likely impacts of terrain generalization. More signifi-
cantly still, processing these data using TOPCAT provides
opportunities to parsimoniously represent and use this oth-
erwise lost information creatively; for example, by param-
eterizing a subgrid porosity function for hydraulic models,
or modeling the statistical distributions of subgrid eleva-
tions to define more robust statistical methods of change
detection.

5.2. Intercomparison of TLS and GPS DEMS

[47] In order to evaluate the presence of systematic dif-
ferences both between survey methods and also spatially
within the TLS data set, a direct comparison of TLS and
GPS terrain models was undertaken for 1 m resolution
models. This analysis was performed for two TLS models;
derived from the minimum and mean elevations, respec-
tively. The comparison to GPS surfaces was restricted to the
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1 m resolution surfaces as the density of GPS observations is
insufficient to justify interpolation to higher resolutions.

[48] Differences between the GPS and TLS models were
determined by simply subtracting the grids of the same reso-
lution (TLS,, — GPS, ), after establishing the origins were
coincident. The same GPS-based vertical datum was used to
register the TLS data (vertical and horizontal error = 7 mm
in the vertical), so any differences between the models should
reflect a combination of spatial sampling and processing, the
measurement method (i.e., observables, accuracy, and preci-
sion) and subsequent interpolation, rather than a datum shift.
The results are tabulated in Table 2 and spatial patterns of
difference plotted in Figure 11 (note positive differences
reflect higher TLS elevations).

[49] While neither the GPS nor TLS-derived models can
be treated as true or reference surfaces, the intercomparison
yields the expected result that TLS generates a positive bias
in the surface elevations as a result of laser returns from
above ground features, in particular vegetation. Deviations
between the minimum elevation TLS model and GPS model
are, however, significantly less (+5 cm) than those obtained
for the mean elevation TLS model (+17 cm) suggesting that
this simple filtering provides a useful first-order bare earth
topography. Nonetheless, large areas of this model incorpo-
rate significant positive bias (along the true right bank terrace
and on high exposed left bank bars) resulting from a failure
to penetrate the vegetation cover, despite the high sampling
resolution and small laser spot size (<6 mm at 50 m range).
An improved estimate of bare earth elevation may be possi-
ble by extending the search radius (grid-size) or through iter-
ative multiresolution comparisons [e.g., Priestnall et al.,
2000], however as illustrated above, this is likely to come at
the cost of over-generalizing the very subtle fluvial terrain.
This result implies that construction of DEMs to represent
the topographic boundary condition in distributed hydraulic
models will therefore still require judicious editing to esti-
mate and correct for vegetation heights and that ground-truth
data (acquired by GPS for example) is likely to remain nec-
essary to refine and validate the derived products.

[s0] There is also some indication that the TLS survey
may result in slightly higher elevations even on unvegetated
surfaces. For example, the bar head of the most downstream
complex bar, marked by the box in Figure 11, comprises
exposed sands and gravels, but here the TLS model has a
positive bias of between 1 and 10 cm. Such differences result
from the noninvasive laser beam recording the tops of indi-
vidual clasts, while the GPS survey, which was undertaken
using a pointed detailed pole, is more likely to sample inter-
stitial elevations. Such positively biased sampling with TLS
will increase with distance to the scan origin, reflecting
lower and lower angles of incidence of the laser beam so

Table 2. Descriptive Statistics (Including the 5% and 95% Confidence Intervals) of the Difference Between DEMS Based on TLS and

GPS Data®

Difference [Z; — GPS] at 1 m Grid Cell

Elevation Metric

Used to Derive Standard
TLS-DEM (Z)) Mean (m) Maximum (m) Minimum (m) Median (m) 5% (m) 95% (m) Deviation (m) n Obs.
Minimum 0.05 1.46 -3.92 0.04 —0.09 0.26 0.13 81,658
Mean 0.17 1.99 —0.61 0.13 0.03 0.42 0.14 81,658

“Results shown for TLS DEMs derived using both the grid mean and grid minimum elevation values.
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that occlusions along the beam path preclude data returns
from the surficial interstices.

[s1] Finally, close inspection of the minimum elevation
— GPS model comparison also indicates that in areas close
to sharp banks, the TLS model actually predicts lower ele-
vations that those obtained by GPS. This reflects the precise
delineation of the bank line with TLS and a likely under-
sampling of such sharp discontinuities by the manual GPS
survey. While every attempt was made to survey breaks-of-
slope with the GPS, the low spatial frequency of observa-
tions (a point density of <0.17 pts m 2 compared with
0.94 pts m 2 at 1 m resolution for the TLS) inevitably
yields a more generalized surface. This is likely to have im-
portant implications when comparing DEMs of difference
derived from GPS-GPS or TLS-TLS models, with the for-
mer prone to underestimating bank scour and dissection of
bar surfaces by small (1-3 m) chutes which lie below the
sampling resolution of the input data.

6. Retrieving Particle-Size Information From
Subgrid Topography

[52] Methods for the automated retrieval of particle size
and facies information from remotely sensed data have, to
date, largely relied on texture mapping from high resolution
optical imagery [e.g., Carbonneau et al., 2004; Verdu
et al., 2005]. While such methods can yield detailed, spa-
tially continuous data, the results are strongly dependent on
particle sorting, scene illumination, and require very high
resolution (cm scale) imagery. Recent research has demon-
strated that that an explicitly topographic approach to
retrieving particle size information may be possible using
data acquired by TLS. Entwistle and Fuller [2009] and
Heritage and Milan [2009] both used submeter convolution
kernels to determine the local standard deviation of eleva-
tions from centimeter resolution DEMs of gravel bars and

correlated the results with surface particle size measure-
ments. While promising, this approach fails to account for
scale dependence of the resulting elevation statistics, which
even at submeter resolution, are likely to incorporate topo-
graphic signatures of bed forms, banks, and avalanche faces
in addition to grain size.

[53] The detrending procedure implemented in ToPCAT
is designed specifically to reduce these effects by fitting a
lower frequency surface across each gridcell which is used
to eliminate topographic trends at or above the grid resolu-
tion. Moreover, unlike the approaches described above, the
statistical decomposition is based directly on the raw point
cloud rather than a DEM and therefore: (1) does not incor-
porate artifacts introduced during interpolation; particu-
larly those associated with rendering a 3-D point cloud into
a 2.5-D triangulation or raster data structure; and (2) does
not require computationally expensive prior interpolation,
limiting the spatial extent of analysis, when by contrast,
ToPCAT has been used successfully on data sets exceeding
10° observations.

[54] To examine the relationship between the detrended
topography and the surface particle size, 12 pebble counts
were collected across the study reach, designed to capture
the variability of surface facies. Grid-by-number sampling
[Bunte and Apt, 2001] was used to estimate particle size on
patches varying between 1 and 4 m* according to the maxi-
mum individual clast size. The a, b, ¢ axes of the grains
were measured and Dsq, D¢, and Dg4 determined. The me-
dian b axis, varied between 33 to 117 mm. The four corners
of each patch were measured using GPS and these locations
used to clip the point cloud to the exact position each of
each pebble count. The standard deviation of elevation was
then computed before (0,) and after detrending (o,.) the
clipped point clouds; here, linear orthogonal regression
was used to fit a plane to the local slope by principal com-
ponents analysis and the residuals of each point from this
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Table 3. Median Particle Size and Corresponding Grid Statistics
for Selected Patches in the River Feshie®

SD of Elevation (o)

Median Particle

Sample Size Dso (mm) Raw (mm) Detrended (mm)
Patch 1 30.3 9.4 8.6
Patch 2 41.8 12.4 11.6
Patch 3 43.9 20.4 15.5
Patch 4 49.8 17.4 13.5
Patch 5 59.5 15.3 15
Patch 6 74.6 53.1 22.5
Patch 7 82.4 50.1 324
Patch 8 91.9 37 30.4
Patch 9 92.8 333 315
Patch 10 92.8 34.1 335
Patch 11 99.9 88.6 35
Patch 12 117.4 36.1 343

“Statistical relations are also presented in Figure 12.

plane calculated. Statistics of the pebble data, raw and
detrended point clouds of each patch are given in Table 3.
[s5] Figure 12a shows the relationship between the
observed median surface particle size (Dso, mm) and the
extracted standard deviation for both the raw and detrended
(0. and 0,4, mm) point clouds. The relationship between
the raw standard deviation and particle size appears to
reveal two distinct relationships characterized by different
gradients and intercepts. On detrending, these collapse on
to one curve, describing a strong linear relationship, para-
meterized by a near zero intercept (12 mm) and a gradient
of 2.59 (* = 0.92, p < 0.001). Figure 12b extends this
analysis by incorporating comparable particle size and laser
scan data from two more settings, Tan y Bwlch beach in
West Wales (UK) dominated by coarse rounded grains (D5
= 70 mm), and the Rees River, Otago (NZ), which is charac-
terized by platy, schistose, finer grained sediments (Dsy =
9-35 mm). The addition of these samples from different con-
texts emphasizes the value of detrending the point, resulting
in a significant reduction in scatter and an improvement in
¥ from 0.45 to 0.95. The resulting relationship between
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detrended standard deviation and particle size is very similar
to that obtained just for the Feshie, although with a slight
improvement in the overall goodness of fit (intercept =
—4 mm; gradient = 3.08; = 0.95, p < 0.001).

[s6] The identification of a robust relationship between
04, and particle size offers significant promise for mapping
the reach-scale distribution of facies and related roughness
characteristics. These results also emphasize the impor-
tance of detrending the local topography before extracting
relevant elevation statistics; confirming the likely spatial-
scale dependence of the particle-size estimates. It is impor-
tant to note however, that separation of the overlapping
scales of particle bed form-bar form topographies may not
always be easily achieved using the grid-based discretiza-
tion strategy employed here. For example, at discretizations
of 0.5-1 m, ripples in patches of sand will give rise to o,
similar to coarse gravels or cobbles, similarly larger bed
forms, including particle clusters, gravel dunes, and anti-
dunes, may also influence the predicted grain size albeit at
larger scales of spatial decomposition.

[57] Despite the problematic overlap between grain and
bed form topographies, this approach provides a means to
map reach-scale patterns continuously and at very high reso-
lution, as shown in Figure 13. Here, areas where o, exceeds
that of the coarsest particles were taken to be vegetation.
The complexity of spatial patterning obtained is realized in
the close-up inset image, which compares the predicted dis-
tribution of facies with a close-range vertical aerial image
(5 cm raw pixel resolution). The boundary between fine
gravel/sand and cobble facies is well demarcated, as is the
vegetated high surface on the true left. It is, however, also
noteworthy that discrete units of failed bank material are
also clearly identified, although predicted to be coarse cob-
bles rather than organic rich bank top material. Nonetheless,
such data provide a useful first order approximation which
may be appropriate for mapping roughness lengths using a
simple multiplier approach [Clifford et al., 1992].

[s8] While this approach to estimating particle size or
roughness may provide a ready tool for parameterizing
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Figure 12. Relationship between median surface particle size (Ds) and the standard deviation of local
elevations. Gray and blue observations correspond to moments of the elevation distribution derived from
the raw and detrended TLS data respectively. (a) The relationship for particle size data from the River
Feshie (see also Table 3). (b) Additional data incorporated from the Tan y Bwlch and the Rees River.
Regression results correspond to the detrended data models.
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reveals local sorting patterns at the bar scale.

flow resistance terms in existing hydraulic models, the very
high resolution topography may actually be more usefully
employed in more complex methods of spatial decomposi-
tion. For example wavelet or Fourier transforms could be
used to capture the full power spectrum of topography,
offering the possibility to reconstruct the topography for-
mally as a continuous, scale-dependent function. Similarly,
the subgrid elevations could be used to predict, determinis-
tically or statistically, the local surface porosity as
described in section 5 above.

7. Discussion: Challenges and Prospects

[59] The horizons of terrain modeling have been stretched
repeatedly over the last 15 years through progressive devel-
opments in geomatics. For a study site like the Feshie
described here, these advances have resulted in a six order of
magnitude enhancement in data density; as sparsely sampled
cross sections (comprising 107 points) have been replaced by
distributed ground surveys (e.g., GPS as used here, compris-
ing 10* points), airborne LiDAR and photogrammetry, (pro-
viding 10° points) and now TLS with the capacity to generate
centimeter resolution data sets comprising 10® observations.
It could be argued that this empirical revolution has out-
stripped the pace of more fundamental developments in
theory and modeling, so that our existing armory of tools to
explore and predict fluvial responses have yet to take full
advantage of the extreme data resolutions now available.

[60] Intelligent data decimation procedures such as ToP-
CAT provide a versatile means of capturing and represent-
ing these emerging data-streams in parsimonious, but novel
geospatial products suitable for assimilation in existing
frameworks for hydrodynamic modeling and geomorpho-
logical change detection. Performance tests on the distribu-
tion version of the code reveal its suitability for desktop

deployment without the need for high performance comput-
ing. For example, processing the 178 million point data set
at the highest 0.1 m resolution, on a laptop PC with a mod-
erate specification (Intel Core Duo 2.53 GHz processor,
8 GB of RAM, Windows 7 x64) required 22:32 min proc-
essing time. This run time was largely associated with
input-output operations (and thus strongly linked to the out-
put grid size and storage media speed) and the sorting oper-
ations were completed in only 147 s. Batch processing
(analyzing the same file at multiple resolutions simultane-
ously) results in significant runtime gains, as the input data
file is read only once, reducing runtimes by well over 50%.
[61] However, while TLS based data sets offer exciting
new opportunities, there remain a number of challenges
that require further research and development. Primary
among these is the inability to survey wetted channels due
to the rapid attenuation and absorption of the green, red,
and near infrared lasers used in TLS. Water penetrating
lasers suitable for bathymetric survey, such as the experi-
mental advanced airborne research LiDAR [McKean et al.,
2009] have been developed for airborne platforms, how-
ever the power output necessary for deep (>1 m) water
penetration of the shortwave (532 nm) lasers used makes
the approach inappropriate for high focused (2-4 mm spot
size) ground-based lasers. Consequently, the production of
continuous fluvial terrain models requires a data fusion
approach, integrating information acquired through TLS
with secondary bathymetric surveys. The new generation of
multibeam echo sounders with data resolutions and precision
comparable to TLS [e.g., Parsons et al., 2005] are ideally
suited to this purpose, although at present are restricted to
deployment in relatively deep (>1 m) navigable water
bodies and inappropriate in shallow gravel bed rivers such as
reported here. In these circumstances, commonly employed
fall-backs involve ground-based surveys of wadeable streams
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or the calibration of an optical depth model from aerial pho-
tography [e.g., Brasington et al., 2003]. Such data are typi-
cally of much lower resolution and precision, ultimately
degrading the unified data product and in many cases, in the
most sensitive areas of the system. An exciting possible solu-
tion to this conundrum lies in the deployment of lightweight,
acoustic Doppler current profilers such as the Sontek S5 or
M9. These instruments have multiple (5-9) sonic transducers
from which estimates of bed depth can be derived, even in
very shallow waters (10 cm depth). Such highly portable
instruments can be mounted on small (submeter) tethered or
remote control boats and when coupled with an external dif-
ferential GPS, can be used to map the bed at high temporal
frequency (observations acquired at 10 Hz), resulting in
dense spatial mapping as the boat moves (see Brasington
et al. [2011] for further details).

[62] The next most significant challenge now lies in
expanding the spatial coverage of TLS. The survey described
here required 18 individual setups, each requiring approxi-
mately 2-3 h of occupation time to scan the scene and record
the targets. As with any emerging technology, the pace of
advance has been significant and the current generation of
TLS have dramatically enhanced ranges and survey fre-
quency reducing data acquisition times. The recently released
Leica HDS7000 phase-based scanner, for example, has a
peak frequency of 10° points per second and a range of
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182 m. However, the most significant gains are likely to
emerge through the integration of TLS with navigation
systems, tracking the position and attitude of a scanner on a
moving platform. This enables scans to be acquired from
moving platforms, such as boats, cars, or trains. Brasington
[2010] [see also Williams et al., 2011] described the applica-
tion of a mobile TLS system deployed on an amphibious all-
terrain vehicle to survey an extensive 3 X 0.7 km reach of
the Rees River in Otago, NZ. This ruggedized platform also
employs optical navigation and GPS to orientate and position
the scanner, resulting in dramatically reduced survey times.
Using this mobile system, they were able to acquire very
high resolution (up to 5 cm) terrain models of a large,
dynamic braidplain between frequent channel forming events
in the New Zealand summer flood season. These data sets
comprised over 6,000,000,000 individual xyz survey observa-
tions and were processed using ToPCAT to generate high
quality terrain products such as shown in Figure 14.

[63] Similar systems mobile systems have been developed
for boat-based platforms [Alho et al., 2009] and road vehicles
[Barber et al., 2008]. However, while the scope of such kine-
matic laser scanner systems dramatically enhances potential
coverage, the dependence on direct georeferencing using
real-time GPS and inertial or optical navigation units results
in less reliable and lower density data that could be acquired
from static deployments. Ultimately, the appropriate survey

Detrended
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Figure 14. Hyperscale modeling of the braided Rees River, NZ. (a) 3 km study reach; (b) mobile ter-
restrial laser survey system in the field; and (c) 0.5 m resolution DEM derived from a 6 x 10° point

cloud.
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method must been targeted to the goals of the application
and a trade-off between data resolution, observation quality,
and spatial extent must be effectively closed.

8. Conclusions

[64] A novel, intelligent decimation algorithm to process
high density TLS data sets has been presented and eval-
uated. The algorithm is available in a distributable form as
a simple toolbox. In this paper we have shown the approach
to offer a number of significant opportunities, including:

[65] 1. Computationally efficient processing of very
large topographic data sets on desktop PCS.

[66] 2. Decimation of dense point cloud data into
reduced resolution statistical summaries that retain infor-
mation on the subgrid topographic variability.

[67] 3. Simple measures for regional estimation of bare-
earth topography from dense first pulse scan data.

[68] 4. The generation of subgrid terrain products suita-
ble for visualization and mapping in GIS.

[69] 5. Identification of key spatial scale dependencies in
fluvial terrain models.

[70] 6. The quantification of lost topographic information
as DEM resolution is degraded.

[71] 7. Inferred impacts for numerical hydrodynamic
modeling and change detection analysis as DEM grid size
is degraded.

[72] 8. Dense spatial mapping of fluvial facies using
locally detrended moments of the elevation distribution.
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