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Abstract Indoor air quality (IAQ) parameters in 73 primary classrooms in
Porto were examined for the purpose of assessing levels of volatile organic
compounds (VOCs), aldehydes, particulate matter, ventilation rates and
bioaerosols within and between schools, and potential sources. Levels of VOCs,
aldehydes, PM, s, PM, bacteria and fungi, carbon dioxide (CO,), carbon
monoxide, temperature and relative humidity were measured indoors and
outdoors and a walkthrough survey was performed concurrently. Ventilation
rates were derived from CO, and occupancy data. Concentrations of CO,
exceeding 1000 ppm were often encountered, indicating poor ventilation. Most
VOCs had low concentrations (median of individual species <5 ug/m?) and were
below the respective WHO guidelines. Concentrations of particulate matter and
culturable bacteria were frequently higher than guidelines/reference values. The
variability of VOCs, aldehydes, bioaerosol concentrations, and CO, levels
between schools exceeded the variability within schools. These findings indicate
that IAQ problems may persist in classrooms where pollutant sources exist and
classrooms are poorly ventilated; source control strategies (related to building
location, occupant behavior, maintenance/cleaning activities) are deemed to be
the most reliable for the prevention of adverse health consequences in children
in schools.
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Practical Implications

This study provides quantitative assessment for a large set of indoor air quality (IAQ) parameters in public primary
classrooms together with information regarding potential building-wide contamination sources. Elevated levels of
CO,, PM, 5, PM;, and bacteria may be associated with outdoor pollution sources, occupant behavior, maintenance/
cleaning activities and poor ventilation. IAQ investigations often include air sampling, which must be carefully con-
ducted if representative data are to be collected. To better understand sampling results, investigators need to account
for the variability of contaminants both within and between schools. These findings are of relevance to public health
due to the very large population of exposed school children, especially since attendance in primary schools is compul-
sory and asthma and allergy are very common diseases in childhood. These data may be useful for assessing health
effects of exposure, for understanding the underlying mechanisms and for implementing preventive policies in terms
of standards and guidelines.

Introduction

Children spend most of their time indoors, mainly at
home and in school. They are particularly susceptible
to indoor air pollution when compared to adults due
to their under-developed immune and respiratory sys-
tems and high inhalation rates per body mass (Viegi
et al., 2004). Indoor air pollution is determined by a
combination of pollution sources associated with the
place, the climate and the culture, i.e. the surrounding
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ambient air, the building’s physical characteristics and
the indoor activities (Oliveira Fernandes et al., 2008;
Stranger et al., 2007).

In primary schools, IAQ is characterized by a broad
array of various indoor pollutants such as volatile
organic compounds (VOCs), aldehydes, particulate
matter (PM,s and PM;q), moulds, and bacteria
(Madureira et al., 2009, 2012, 2014; Mendell and
Heath, 2005). Poor IAQ in classrooms can lead to
health problems for occupants in addition to reducing



learning performance, the attendance of students, and
ambient comfort (Annesi-Maesano et al., 2013; Hulin
et al., 2010; Mendell et al., 2013; Simoni et al., 2010).
Several studies have shown that carbon dioxide (CO,)
concentrations in schools often do not meet building
standards due to inadequate ventilation (Annesi-Mae-
sano et al., 2013; Madureira et al., 2009; Simoni et al.,
2010). It has been hypothesized that the associations
between ventilation levels and health or performance
result from the fact that ventilation does not only affect
the level of indoor CO, but also levels of other pollu-
tants in the indoor environment that are able to cause
adverse effects.

Children spend up to 10 h/day in primary schools.
Understanding the air pollution in these environ-
ments, documenting their concentrations and deter-
mining which factors influence these levels is very
important. Despite the large population of primary
schoolchildren, only a few studies regarding IAQ in
Portuguese primary schools have been undertaken
(Fraga et al., 2008; Madureira et al., 2009; Martins
et al., 2012; Pegas, 2012). Often a specific pollutant,
e.g. particulate matter or bioaerosols, or a limited
combination of pollutants, is addressed. Just a few
studies have investigated the contribution of outdoor
or indoor sources for a wide range of IAQ parame-
ters and in a large sample size of classrooms. In
addition, the effects of school building/classroom
characteristics and occupant behavior on indoor air
have not been discussed.

The main purposes of this work were: (i) to assess
TAQ parameters in public primary schools located in
Porto and to compare the measured indoor concentra-
tions with those published in previous studies and with
current guidelines; (ii)) to study potential sources of
indoor pollutant levels, such as building/classroom
characteristics and occupant behavior; and (iii) to
assess the variability in pollutant levels within and
between schools.

Materials and methods
School buildings and classroom selection

Indoor and outdoor measurements were conducted in
20 public primary schools. All of the schools were
located in Porto, the second largest city in Portugal,
located in the north of the country (41.16°N, 8.62°W).
Depending on the size of the school, two to four class-
rooms per school, comprised of children aged 8 to
10 years old, were simultaneously investigated. The
preference was for classrooms with high-density occu-
pation as well as full weekly occupation time by the
same class, and, if possible, at different floor levels. As
a result, a total of 73 classrooms were selected. The
walkthrough survey and the TAQ sampling in each
school occurred within the same visitation period
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during the winter seasons, from November to March,
during the years 2011-2013.

Walkthrough survey and checklist

A walkthrough survey and checklist were completed
for each school and indoor space to document infor-
mation about these parameters and conditions: out-
door environment; building construction, age and size;
number of floors; number of occupants; finishing mate-
rials; heating and ventilation systems; past occurrences
and current visible problems; and potential indoor
sources. Classroom characteristics, such as the area,
floor, walls, and ceiling conditions, windows, class-
room materials (paintings, glues, etc.), maintenance
routines and cleaning procedures were also registered,
as well as the materials of classroom furniture, the
presence of chalkboards, copiers, and plants. The
research team asked the school’s staff to maintain the
same cleaning practices during the study.

IAQ sampling and analysis

Sampling included VOCs, aldehydes, PM, s, PMy,
bacteria, fungi, CO,, carbon monoxide (CO), tempera-
ture and relative humidity in each classroom and out-
doors. Monitoring was conducted in occupied
classrooms during regular daily activities and under
representative conditions of occupancy and use of the
classrooms.

Safe and childproof sampling locations were selected
according to the standard ISO 16000-1 (2004). The
instruments were placed on a flat surface, with a height
of 1-1.5 m to simulate the primary school children’s
breathing zone. The sampling locations were no closer
than 1 m to any walls, doors or active heating equip-
ment. Furthermore, the indoor sampling locations
were selected to be as far away as possible from black-
boards, where applicable. Outdoor air samples were
taken at places with electricity and a tamper-free envi-
ronment. The samplers were mounted in a shelter pro-
tected from direct sunlight and precipitation, at heights
of 1-2 m above the ground, leaving the sampling
inlets/sensors unobstructed in order not to compromise
the quality of the sampling.

Volatile organic compounds were collected passively
onto thermally desorbed adsorbents (Tenax® TA,
Sigma-Aldrich, Sintra, Portugal) over five consecutive
days (school week, from Monday morning until Friday
afternoon). After sampling, the Tenax tubes were ther-
mally desorbed (Dani STD 33.50) and the samples
were quantified by gas chromatography (6890N; Agi-
lent Technologies, Santa Clara, CA, USA) coupled to
a mass spectrometry detector (GC-MS) (5973; Agilent
Technologies), according to the standard ISO 16000-6
(2011). Total VOC concentration was quantified using
the toluene response factor and concentrations were
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calculated as the sum of VOC eluting between hexane
and hexadecane (included), expressed as toluene equiv-
alents. Laboratory and field blanks, collected in each
school, showed concentrations below method detection
limits in all cases. All samples were collected in duplicate
to verify the reproducibility of measurements. The limits
of detection were 1.3 ug/m® for toluene, 1.8 ug/m’
for p-xylene, 2.8 ug/m® for d-limonene, 2.5 ug/m’
for tetrachloroethylene (T4CE), and 4.4 ug/m’® for
naphthalene.

Aldehydes (formaldehyde and acetaldehyde) were
sampled by Radiello® passive devices (RAD 165;
Sigma Aldrich) during a school week (from Monday
morning until Friday afternoon) and determined using
isocratic reverse phase high performance liquid chro-
matography (HPLC) (1220 Infinity LC; Agilent Tech-
nologies) with a UV detector operated at 360 nm,
according to the standard ISO 16000-4 (2011). Aldehy-
des were identified and quantified by comparing their
retention times and peak areas with those of standard
solutions. As an internal quality control, duplicate
samplings were collected in one school per each three.
Field blanks were collected and analysed to assess pos-
sible contamination through the sample collection and
analysis process. The detection limits were 0.075 pug/m’
for formaldehyde and 0.178 ug/m? for acetaldehyde.

Portable TSI DustTrak DRX photometers (model
8533; TSI Inc., Shoreview, MN, USA) were used for
the assessment of PM, 5 and PM |, concentrations. This
equipment measures particles with a laser photometer,
based on the light scattering principle. The equipment
operates with a flow rate of 3.0 I/min using a built-in
diaphragm pump powered by an internal battery.
Instruments were installed inside each classroom and
were set to continuously measure during at least one
school day, i.e. for 8.5 consecutive hours. Logging
intervals were set to 1 min between each sample. The
photometers were calibrated once per year at the fac-
tory. As a consequence of the limited number of sam-
pling units, indoor and outdoor particulate matter
could not be sampled in parallel and was collected
indoors and outdoors sequentially avoiding Monday
and Friday weekdays.

Bacterial and fungal air samples were obtained using
a single-stage microbiological air impactor (Airldeal™,;
bioMérieux SA, Marcy I’Etoile, France), according to
the NIOSH method 0800 (1998) and EN 13098:2000
(2000). Tryptic soy agar (supplemented with 0.25%
cicloheximide) and malt extract agar (supplemented
with 1% of chloramphenicol) were used as culture
media for bacteria and fungi respectively. Air was
drawn through the sampler at 100 1/min, and sequen-
tial duplicate air samples of 100 and 250 1 were col-
lected indoors (8 to 16 air samples/school, depending
of the number of classrooms) and outdoors (four out-
door samples/school). The air sample collection
included daytime sampling, starting at 10.00 a.m., and
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was conducted discretely to minimize nuisance to nor-
mal occupant activities. For each sampling day, agar
media blanks per culture media were taken into the
field. The air sampler was always cleaned between sam-
ple collections with cotton wipes wetted with isopropyl
alcohol. After sampling, the agar media plates were
transported to the laboratory in a thermal bag for incu-
bation. To quantify the bacterial and fungal concentra-
tions, samples were incubated at 37 4+ 1°C for
48 £ 3 h and at 25 £ 3°C for 72 + 3 h respectively
(EN 13098, 2000). Quantification of bacteria and fungi
levels was performed by naked eye count in accordance
to the methodologies expressed in ISO 4833: 2013
(2013) and EN 13098: 2000 (2000). The quantification
limit was established as 10 CFU per plate.

Carbon dioxide, CO, temperature, and relative
humidity levels were recorded concurrently with the
other air parameters (both indoors and outdoors) dur-
ing 8.5 consecutive hours per day over a 5-day period
(from Monday morning to Friday afternoon). These
parameters were measured using an IAQ-CALC moni-
tor (model 7545, TSI, Inc.), which combined an infra-
red non-dispersive sensor for CO,, an electrochemical
sensor for CO, a thermistor for measuring tempera-
ture, and a thin-film capacitive sensor for relative
humidity. Measurements were conducted with a time
step of 5 min during the investigation week. Calibra-
tion was performed once per year at the factory
according to manufacturer’s specifications.

The ventilation rate for each classroom was esti-
mated based on decay of the indoor CO, concentration
(emitted by the occupants during the class periods)
where the room was precisely documented as non-oc-
cupied. On average, only the most trustworthy frac-
tions of the 12-h period (typically the time period
matched between 8.00 p.m. and 8.00 a.m.) of CO, data
extracted for each day was used for further data treat-
ment. The estimated final ventilation rate in the class-
room is the time-weighted average of the ventilation
rates obtained during the school week after the school
was closed and the classroom was empty. The ventila-
tion rate values were estimated using the average out-
door CO, concentration over the week measurements
period according to ASTM E 741-00 (2006) and
ASTM D 6245-98 (2002).

Statistical analysis

The Shapiro-Wilk test was used for normality testing.
The distribution of all IAQ parameters was skewed.
All data reported in this work regarding PM, 5, PM,,
CO,, CO, temperature and relative humidity levels are
restricted to periods of actual classroom occupation
excluding breaks, lunch time, and periods when the
students were elsewhere (e.g. gym). Night-time periods
are also excluded to ensure that the sample is represen-
tative of the exposure time of the children. Data for



individual VOC, total VOCs and aldehydes, measured
in parallel and continuously from Monday morning to
Friday afternoon (~104 h consecutive hours) were
reported for the school week under observation. For
VOCs and aldehydes, the number of observations
above the method detection limit was calculated.
Spearman’s rank correlation coefficient was used to
realize statistical dependence between VOCs, aldehy-
des, CO,, PM>» 5, PM;,, bioacrosols, temperature, and
relative humidity.

Within- and between-school variability was evalu-
ated using mixed linear models.

To investigate the relationship between building/
classroom characteristics, occupant behavior and IAQ
parameters, principal components analysis (PCA) with
varimax rotation was applied, as a first approach, to
understand how the indoor air parameters were aggre-
gated. The Scree Plot criterion was used to determine
the number of components retained. If the factor load-
ing was 0.40 or higher (in absolute value), an item was
considered in the indicator. Considering the asymmetry
in the distributions of the input variables, we applied a
logarithmic transformation to each of the IAQ param-
eters. After choosing indicators that represented each
factor, multiple linear regression was used to assess the
factor associated with each variable. The stepwise for-
ward method was used to assess which factors were
associated with each input variable (data not shown).
In a second approach, a multilevel linear regression
with two levels - classroom and school (random effect)
- was used to determine which factors explained each
input variable and to evaluate the aggregation within
schools. The aggregation was estimated using Intra-
class Correlation Coefficient (ICC). Four models of
multilevel analysis were considered: the first concerned
the characteristics of the classroom; the second was
represented by characteristics of the school; the third
model considered characteristics both of the classroom
and school for each indicator; and the fourth and final
model is represented by the totality of the classroom
and school features, that had a significant effect on the
levels of each of the IAQ parameter in order to summa-
rize the effect of all variables resulting from each of
TAQ parameters analyzed individually. Statistical anal-
ysis was performed using the software R, and multi-
level analysis was implemented using the function Ime
(linear mixed effects) in the nlme library. Statistical
significance was defined as P < 0.05.

Results
Characteristics of school buildings and classrooms

The mean building age of the schools was 51 years
(range: 22-73 years). One-quarter of the school build-
ings were refurbished before 2004, and 75% were refur-
bished between 2004 and 2008. All buildings had
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undergone at least one refurbishment since their con-
struction. Smoking was not legally allowed in any
indoor location of any school building (Lei n.° 37/
2007).

Table S1 provides the main characteristics of the 73
classrooms. No classrooms had mechanical ventilation
systems; opening windows was the only way to venti-
late the classroom. In the winter season, the windows
were usually closed due to the outdoor weather condi-
tions or due to the fact that heating systems were
turned on. All classrooms were cleaned daily with a
broom or, less commonly, a vacuum cleaner at the end
of the classes. The classrooms were occupied from
Monday to Friday, from 9.00 a.m. to 5.30 p.m., with a
morning and an afternoon break, between 10.30-11.00
a.m. and 3.30-4.00 p.m. respectively. The lunch break
was from noon until 1.15 p.m.

IAQ parameters concentrations and correlations

Volatile organic compounds and aldehydes were
detected in almost all indoor samples: benzene, naph-
thalene, and styrene were detected in less than 25% of
classrooms; formaldehyde and acetaldehyde were
detected in all samples. Most of the individual VOCs
had median levels lower than 5 ug/m?®. The most abun-
dant VOC in schools were d-limonene (23 ug/m?),
followed by toluene (6.4 ug/m’®) (Table 1). As
expected, indoor concentrations usually exceeded out-
door levels, although the differences were statistically
significant only for d-limonene (P = 0.001) (Table S2).
Concentrations of toluene, o-xylene, m/p-xylene, d-
limonene, and a-pinene across the 73 classrooms were
significantly correlated (p = 0.40-0.48) with total
VOCs (Table 2). Benzene was also positively, but not
significantly, correlated with total VOCs level. More-
over, strong and significant correlations were found
between toluene and m/p-xylene (p = 0.824, P < 0.05)
and between m/p-xylene and o-xylene (p = 0.801,
P < 0.05). Median outdoor concentrations of benzene
and toluene were 2.2 ug/m> and 4.1 ug/m>, respec-
tively, reflecting the urban areas sampled. The high
indoor/outdoor ratios (I/O > 6) for d-limonene,
formaldehyde, and acetaldehyde, and the moderate
I/O ratio (~2) for total VOCs and toluene suggest that
indoor sources are the main origin for these VOCs. In
contrast, the I/O ratio for benzene (0.84) indicates that
outdoor sources were the primary contributor for this
species.

Classrooms with graphic art activities (e.g., painting)
had some of the highest levels measured for certain
VOCs (e.g., toluene and naphthalene). Whilst levels of
most VOCs appear to be higher in classrooms where
art activities were performed, this result should be
interpreted cautiously since there were the only two
classrooms with graphic art activities during the sam-
pling and they belonged to the same school.
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Table 1 Summary statistics of VOCs, aldehydes, particulate matter, bioaerosols, CO,, CO,
temperature, and relative humidity levels

n>

Location  MDL*  Median (P25-P75) Mean (s.d.) Range

Benzene, yg/m3 Indoor 7 2.5(1.6-2.6) 2.2(0.5) 15-27
Outdoor 2 22(1.6-2.8) 22(09 16-2.8
Toluene, yg/m3 Indoor 72 6.4 (4.5-10.4) 15.1(34.5) 1.8-202.5
Outdoor 20 4.1(28-7.2) 5.0(3.0) 1.2-10.4
m/p-xylene, ,ug/m3 Indoor N 50(3.3-6.8) 17.7 (59.0) 1.2-365.2
Outdoor 18 3.3(1.8-6.4) 48(5.7) 1.1-26.3
o-xylene, yg/m3 Indoor 68 2.3(1.8-3.4) 3.9(6.9) 1.1-52.4
Outdoor 15 22(1.9-2.7) 2.7(2.3) 1.1-109
d-limonene, ,ug/m3 Indoor Al 23.1(11.5-48.6) 38.1(44.5) 2.8-2153
Outdoor 5 2.1(1.7-2.56) 2.1(0.5) 14-26
a-pinene, yg/m3 Indoor 63 1.8(1.4-2.8) 3.4(55) 1.0-32.0
QOutdoor 3 2.3(1.4-4.1) 2.6(1.4) 1.4-4.1
Styrene, ug/m° Indoor 13 12(1.2-1.4) 14(0.5) 1.0-27
Outdoor 1 1.0 1.0 -
Total VOC, pg/m® Indoor 73 140.3 (85.5-198.4)  1722(1452)  8.9-8202
Outdoor 20 48.2 (35.4-62.9) 545 (42.2) 12.1-216
Formaldehyde, yg/m3 Indoor 73 175(13.8-23.1) 19.8(10.9) 8.24-126.9
Outdoor ~ 19° 2.74(2.27-3.60) 2.90(0.74) 1.82-4.17
Acetaldehyde, yg/m3 Indoor 73 7.65(4.96-10.4) 9.31(7.82) 1.92-64.6
Outdoor ~ 14° 0.84 (0.82-1.36) 0.96(0.58)  0.19-2.09
PM, 5, ug/m® Indoor 73 82 (67-106) 94 (40) 39-244
Outdoor 20 71 (40-100) 81(61) 27-270
PMyq, ug/m® Indoor 73 127 (109-167) 139 (49) 56-320
Outdoor 20 75 (45-112) 88 (64) 30-276
Bacteria, CFU/m® Indoor 73 3200 (1800-5400) 3600 (2300) 200-8400
Outdoor 20 200 (80-900) 600 (800) 20-3700
Fungi, CFU/m® Indoor 73 240 (170-400) 300 (250) 60-1300
Outdoor 20 200 (120-300) 200 (130) 50-600
€0y, ppm Indoor 73 1469 (1195-2104) 1669 (601) 829-3111
Outdoor 20 442 (364-504) 449 (90) 349-636
€0, mg/m® Indoor 73 0.38(0.07-0.68) 0.48 (0.44) 0.01-1.70
Outdoor 20 0.22 (0.04-0.55) 0.39(045)  0.01-1.30
Temperature, °C Indoor 73 20.8(19.2-21.7) 20.5 (2.06) 14.3-24.6
Outdoor 20 14.5(11.7-16.9) 14.6 (3.25) 10.0-20.6
Relative humidity, % Indoor 73 54 (50-65) 55 (10) 34-74
Outdoor 20 59 (53-68) 59 (10) 40-75
Ventilation rate, Indoor 73 0.33(0.21-0.78) 0.87(1.38) 0.11-7.21

I/s per person

MDL, Method Detection limit; s.d., Standard deviation; P25, 25th percentile; P75, 75th per-
centile; VOCs, volatile organic compounds.

@Number of classrooms (indoor) or schools (outdoor) with values above the method detec-
tion limit.

®Total of 19 of 20 schools was assessed.

The lowest aldehyde levels were observed for
acetaldehyde (Table 1). The median values of
formaldehyde levels were lower than the guidelines
values established by the WHO (2010) and the EU-
INDEX project (Kotzias et al., 2005). However,
levels were significantly higher than those measured
outdoors (18 vs. 2.7 ug/m?®, P < 0.05).

The indoor median concentration of PM,s and
PM,, in all of the classrooms exceeded the 25 ug/m?
and 50 pg/m’® guideline values suggested by World
Health Organization (2010) for a sampling period of
24 h. Whilst for PM, 5 there was no significant differ-
ence between the levels measured outdoors and inside
the classrooms (71 vs. 82 ug/m®, P = 0.098); for PM,
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there was a statistically significant difference (75 vs.
127 pug/m®, P =10.001). Indoor concentrations
exceeded outdoor levels, indicating an I/O ratio higher
than the unity, which suggests possible indoor sources
(Table S2).

Bacterial concentrations varied widely. Classrooms
had a median concentration of bacteria higher than
1000 CFU/m3 and, in some cases, indoor levels were
higher than 3000 CFU/m> (Table 1). There were sig-
nificant differences between indoor and outdoor levels
of bacteria, with indoors being significantly higher
(P < 0.05) (Table S2). Indoor bacterial concentrations
were positively and significantly correlated with CO,
(p =0.257; P <0.05) (Table 2), possibly reflecting
poor ventilation in classrooms with higher bacterial
concentrations. This is supported by the fact that no
significant correlations were found between indoor
bacteria concentrations and the density of occupation
(p = 0.219; P > 0.05). There were no significant differ-
ences between classroom and outdoor levels of fungi
(P = 0.066) (Table S2). In 43% of the classrooms, fun-
gal levels were above specifications in Portuguese legis-
lation (‘indoor<outdoor’) (Ordinance 353-A/2013).
Table 2 showed that only d-limonene was negatively
correlated with fungal concentrations, possibly reflect-
ing the use of cleaning products in rooms with higher
levels of fungi.

Carbon dioxide levels ranged widely and, among the
73 classrooms surveyed, 86% of the classrooms
(n = 63) had median CO, concentrations exceeding
1000 ppm (ASHRAE 62-2001, 2001). The CO, levels
changes in the classroom throughout the day and,
depending on the occupancy and ventilation, following
a path that is theoretically predictable for both the
CO, accumulation in the room during the time of
teaching and for the CO, reduction during the breaks.
In the present study, CO, levels exceeded 1000 ppm
during 70% of the occupation measurement time.
Maximum CO, levels should be interpreted cautiously
as they may reflect events such as occupants clustering
around and/or breathing on the sensor during occu-
pancy. As expected, indoor CO, levels were signifi-
cantly higher than outdoor levels (P < 0.05) with an I/
O ratio higher than 3 (Table S2). Higher values were
measured in classrooms with higher occupancy density
for the longest teaching periods between breaks.

Across the 73 classrooms, the median temperature
was 20.8°C, being within the range 20-23°C for 47%
of the classrooms. While 38% of the classrooms pre-
sented temperatures under 20°C, 15% showed temper-
atures over 23°C. More than two-thirds (71%) of the
classrooms had a relative humidity between 30% and
60%. The obtained correlation coefficients between
measured temperature, relative humidity and VOC:s,
aldehydes, and particulate matter are shown in
Table 2. There were significant correlations between
relative humidity and toluene, m/p-xylene, d-limonene,
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a-pinene, formaldehyde, and acetaldehyde. Moreover,
temperature and formaldehyde levels were signifi-
cantly correlated (p = 0.301; P < 0.05). In contrast,
temperature was negatively and significantly correlated
with benzene, d-limonene, and styrene, i.e. the lower
the temperature, the higher the concentrations of the
mentioned parameters.

Estimated ventilation rates are listed in Table 1.
Ventilation rates were lower than desired value of 4
I/s.occupant in almost all classrooms (Wargocki,
2013). However, the values correspond to measure-
ments made during unoccupied conditions, when win-
dows and doors were closed to a greater extent than
when the classroom was occupied.

Associations between schools/classrooms characteristics and occupant
behavior with IAQ parameters

The Scree Plot suggested the existence of three compo-
nents (Table S3). The first component explains 19% of
variance and was characterized by these variables: total
VOCs, toluene, m/p-xylene, and o-xylene; the second
factor has 16% of variance explained and CO,, relative
humidity, PM, 5, PM;,, trichloroethylene and bacteria
characterized this component. Finally, the third factor
explains 10% of variance and was characterized by six
TAQ parameters: CO,, CO, temperature, benzene, styr-
ene, and d-limonene. Three of these indicators (total
VOCs, PM;,, and CO,) were selected for multilevel
analysis.

The results of multilevel analysis are presented by
the estimated linear regression coefficients of the class-
room and school features and the respective 95% CI as
well as intra-class correlation coefficient (ICC). Ceiling
height, window area and the number of windows usu-
ally open in the cooling season were the characteristics
that showed an effect on classroom CO, levels, explain-
ing 16% of the differences among schools buildings
(Table S4). None of the school characteristics represent
a significant effect for this parameter.

Concerning the PM;,, the characteristics that
showed a significant effect in the classroom, explaining
28% of the differences among schools were these: the
number of windows usually open in the heating season;
visible damp spots on walls, ceilings or floors; main
ceiling surface material; visible mould growth in the
room; and, the presence of a closet or shelves with gou-
aches, inks, etc., for graphic arts. Gasoline dispensing
facilities nearby, car park sources of outdoor air pollu-
tion and the existence of a laboratory were the charac-
teristics that contributed to the school levels of PM,
explaining 33% of differences between schools
(Table S95).

When the total VOC parameter was analysed, it was
found that the characteristics of the school building
had no significant effect on it. The number of windows
usually open in the cooling season, the main floor
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surface material, the number of windows usually open
before classes, and the presence of a closet or shelves
with gouaches, inks, etc., for graphic arts are the
variables that explain 21% of the differences among
the schools evaluated (Table S6).

To summarize the effect of all variables resulting
from each of the parameters analysed individually, a
multilevel regression analysis was performed using the
same model for each of the parameters studied. There
was an increase in the value of the ICC, for the param-
eter CO, to 20% and parameter PM,, reaching the
ICC of 40%. On the other hand, a decrease was per-
ceived, assuming a value of 16% of this coefficient,
when the total VOC parameter was analysed (Table 3).

Within and between-school variation in IAQ parameters

For the dependencies of measurements taken in a given
school building, within- and between-school variability
was evaluated. Mixed linear models showed that con-
centrations of m/p-xylene varied more within schools
(expressed as a percentage of the total variation) than
between schools. The remaining IAQ parameters
showed the opposite trend. A major variation within
and between schools was observed for m/p-xylene and
the lowest for temperature and relative humidity.

Table 3 Estimated linear regression coefficients of the classroom/school features and
respective 95% confidence intervals for the three parameters of indoor air quality, assum-
ing a multilevel model with ‘school” as a random effect

In(CO,) In(PMq)
Estimates (35% Cl) Estimates (95% Cl)

In(total VOC)
Estimates (95% Cl)

Ceiling height (m) 0.657 (0.15; 1.16)

Windows area (m?) —0.024 (—0.05; 0.01)

No. of windows 0.067 (—0.02; 0.16)
usually open
in the cooling
season

No. of windows
usually open
in the heating
season

Visible damp spots
on walls, ceiling or

—0.290 (—0.84; 0.26) 0.057 (—0.94; 1.05)
0.003 (—0.03; 0.03)  —0.006 (—0.06; 0.04)
0.045(—0.05;0.14)  —0.113(—0.29; 0.06)

—0.123(—0.28; 0.03) 0.127 (—0.02;0.28)  —0.227 (—0.53; 0.08)

—0.012 (—0.26; 0.24) 0.371(0.10; 0.64) 0.340 (—0.15; 0.83)

floor

Main ceiling —0.025(-0.38;0.33) —0.312(—0.70; 0.08) —0.009 (—0.72; 0.70)
surface material

Visible mould 0.066 (—0.18; 0.31)  —0.245 (—0.50; 0.01) 0.046 (—0.43; 0.52)

growth in room
Existence of a closet
or shelves with
gouache, inks etc.
for graphic arts
Windows usually
open before classes

0.082(-022;0.38) —0.106 (—0.46; 0.25) 0.555 (—0.05; 1.16)

—0.034 (—0.36; 0.29) 0.160(—0.20;052)  —0.661(—1.30; —0.02)

Main floor surface 0.035(—0.28; 0.35) —0.001 (—0.37; 0.37) 0.557 (—0.05; 1.17)
material

Variance of school 1.88 424 6.02
(%)

ICC (%) 20 40 16

ICC, Intra-class correlation coefficient.



Table 4 Within and between-school variation in IAQ parameters

Percent of variation (%)

Within Between
Parameters n schools schools P-value
Benzene 6 104 254 <0.05
Toluene 20 37 227 <0.05
m/p-xylene 20 746 338 <0.05
o-xylene 20 34 191 <0.05
d-limonene 20 48 124 <0.05
o-pinene 20 44 172 0.002
Styrene 20 78 96 <0.05
Total VOC 20 38 88 <0.05
Formaldehyde 20 24 70 0.002
Acetaldehyde 20 24 84 0.001
PM, 5 20 24 45 <0.05
PMiq 20 23 39 <0.05
Bacteria 20 50 65 <0.05
Fungi 20 40 74 <0.05
€0, 20 22 35 0.001
Temperature 20 5 10 <0.05
Relative humidity 20 7 19 <0.05
Ventilation rate 20 70 156 <0.05

Between-school difference of all IAQ parameters were statistically significant at P < 0.05.

Within-school variability in bioaerosols, CO, concen-
trations, and ventilation rates were lower than
between-school variability (Table 4).

Discussion
Concentrations and sources of IAQ parameters

According to Kotzias et al. (2005), toluene has been
used as a solvent in a variety of household products
such as paints, cleaning agents, adhesives, and print-
ing products. Toluene levels measured in this study
were far below the weekly average concentrations
found in libraries, offices, newspaper stands, and copy
centers in Italy (Bruno et al., 2008), but were similar
to those reported by Stranger et al. (2007) in primary
schools in Belgium, and by Martins et al. (2012) in
Portuguese schools. Xylenes are widely used in the
chemical industry as solvents for products such as
paints, inks, dyes, adhesives, and detergents (Sarigian-
nis et al., 2011). In the current study, indoor xylene
concentrations were higher than those registered in
previous studies involving 14 elementary schools in
Lisboa (Pegas et al., 2011a). Terpenes, including d-
limonene, are well-known substances emitted from
cleaning products and room fresheners (Singer et al.,
2006). Although in the current study the high propor-
tion of d-limonene indoors agrees with other observa-
tions made of the increasing ubiquity of this
compound in indoor environments (Weschler, 2004),
the entire d-limonene concentration range was much
lower than the recommended limit value proposed by
EU-INDEX project (450 ug/m’) (Kotzias et al.,
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2005). The presence of d-limonene was identified in
both indoor and outdoor air samples but with higher
concentrations in the indoor environment (I/O > 6)
suggesting the importance of indoor sources for this
compound.

Total VOCs levels measured in this study were
higher than in previous studies (Godwin and
Batterman, 2007; Smedje et al., 1997; Zhang et al.,
2006), but lower than those measured by Yang et al.
(2009). Comparisons of total VOC levels across studies
can be problematic due to differences in definition,
sampling times, measurement, and analysis (Zhang
et al., 2006), and examination of specific VOC species
is often more informative. The current study showed
an increase in total VOC levels when the floor surface
material was PVC/vinyl or linoleum. Decreases in total
VOC levels were associated with the increase of ventila-
tion measured by the number of windows usually open
in the cooling season and if the windows were usually
open before classes. These results, the room-to-room
variability, and the outdoor levels suggest classroom
(indoor) sources rather than building-wide or outdoor
sources.

Indoor concentrations of formaldehyde and
acetaldehyde exceeding the outdoor concentrations
suggest that indoor sources were the most important
contributors to the indoor levels. Indoor formaldehyde
concentrations may be related to insulating materials;
parquet, particle board or plywood furniture contain-
ing formaldehyde-based resins; and paints, cleaning
and other consumer products used either in the didac-
tic work or in the cleaning processes of the classrooms
(Gilbert et al., 2008; Mendell, 2007). Additionally,
formaldehyde and acetaldehyde can occur in the
indoor environment as secondary product, and there-
fore, as products of the reaction of a primarily emitted
pollutant with ozone (Nazaroff and Weschler, 2004).
The formaldehyde concentrations measured in the pre-
sent study were higher than those reported for schools
in Sweden (Smedje et al., 1997) and Australia (Zhang
et al., 2006), but lower than the median concentration
reported in France (Annesi-Maesano et al. (2012).
Taking into consideration that each classroom was
equipped with standard plywood school furniture, and
that currently no special care was taken regarding the
household products used in the classrooms, particular
attention should be paid regarding the selection of new
furniture, cleaning, consumer, and didactic products.

There was a significant correlation between relative
humidity and almost of the measured VOCs and alde-
hydes. Therefore, an increase in classroom relative
humidity may result in high levels of the mentioned
chemical agents.

PM, 5 concentrations have been measured in few
studies (Annesi-Maesano et al., 2013). As the class-
rooms do not contain any specific PM,s source
(such as smoking or cooking), the indoor PM, ;s
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concentrations were more likely due to outdoor pollu-
tion penetration rather than indoor sources related to
the presence of children. This finding is consistent with
the observations from other studies (Almeida et al.,
2011; Fromme et al., 2007; Guo et al., 2010; Oeder
et al., 2012). Due to the fact that 13 (65%) of the
schools in the present study were situated close
(<500 m) to a heavily trafficked road and that 5 (25%)
were close (<100 m) to a car park, it is expected that
ambient air did contribute to indoor concentrations of
particulate matter in the classrooms. It could therefore
be suggested that when new schools are built, outdoor
risks factors should be taken into account. In general,
the indoor PM;, concentrations obtained were consis-
tent with data reported in other studies (Fromme et al.,
2008; Simoni et al., 2010), but higher than those
reported by Stranger et al. (2007). Re-suspension of
coarse particles indoors resulting from occupant activi-
ties as well as the presence of other potential indoor
sources of coarse particles were important factors to
the increase PM;, concentrations indoors. Besides
delayed deposition/settlement due induced turbulence
created by occupant’s movements and the reduced ven-
tilation could also affect the dispersion of PM g, and so
causing their accumulation indoors. The PM;, indoor
concentration profiles showed peaks within the time
slots when the studied classrooms were occupied
(Madureira et al., 2012). However, the data from cur-
rent study should be observed with caution taking into
account that indoor and outdoor particulate matter
could not be sampled in parallel, affecting the accuracy
of the estimated I/O ratios.

In the present study, approximately 20% of the
classrooms had interior damp stains and 49% of class-
rooms had a tendency to form condensation on the
windows. This excess of moisture could be associated
with higher levels of bacteria as reported by Meklin
et al. (2002). Moreover, the environmental conditions
surrounding the classrooms, as plants and soil in the
school playgrounds can offer important sources of
microorganisms (WHO, 2009). Mean indoor levels of
bacteria higher than 500 CFU/m’ were observed in 63
(86%) classrooms; which was similar to those obtained
in 11 schools in Porto during the winter season
(Madureira et al., 2009), but lower than those reported
in a study covering 14 schools in Lisboa in spring (Pe-
gas et al., 2011a). Indoor bacteria concentrations were
higher when compared with outdoor levels, indicating
significant indoor sources and poor ventilation. For
both the indoor and outdoor air samples, the concen-
trations of fungi were lower than the concentrations of
the bacteria, which were consistent with other studies
(Godwin and Batterman, 2007). The weather condi-
tions including low temperatures and precipitation
levels could explain lower outdoor concentrations.
During the heating season, occupants generally spend
more time in indoor environments, windows are more

534

often closed, due to the outdoor weather conditions or
due to the fact that heating systems were turned on,
and ventilation may be insufficient; thus, indoor tem-
perature and relative humidity become suitable for fun-
gal growth indoors as reported by (Meng et al., 2012),
which is in agreement with the results obtained in the
current study. None were statistically significant,
although a positive Spearman correlation coefficient
was observed (p = 0.142, P > 0.05 between tempera-
ture and fungi; and p = 0.042, P > 0.05 between rela-
tive humidity and fungi). Madureira et al. (2014) also
found a positive correlation between indoor concentra-
tion of airborne fungi and indoor temperature
(p = 0.453, P < 0.05), which is consistent with the fact
that optimal temperature ranges for fungal growth
may have been achieved for some fungi genera or spe-
cies. The median fungi level was higher than those val-
ues reported in other studies conducted in similar
places (Grisoli et al., 2012; Mentese et al., 2009; Roda
et al., 2011).

Based on CO, levels, inadequate ventilation appears
to be a common IAQ problem encountered in the stud-
ied classrooms, reinforcing earlier studies (Geelen
et al., 2008; Madureira et al., 2009; Mumovic et al.,
2009; Pegas et al., 2011a). Based on a 1000 ppm CO,
limit (ASHRAE 62-2001, 2001) and using school-day
averages, 86% of the classrooms were inadequately
ventilated. In addition, classrooms were monitored
under ‘closed’ conditions, keeping windows and doors
closed as best possible during the occupied hours. Dur-
ing the occupation period it was observed that CO,
concentration produced by the occupants build up
until reaching an equilibrium level reaching levels
greater than 1000 ppm and decreased to levels below
1000 ppm during breaks (data not shown).

Multiple regression models were performed to assess
the associations between the schools/classrooms char-
acteristics, occupant behavior, and the CO, levels. The
present study showed higher CO, concentrations in
classrooms with higher ceiling height and an inverse
association with windows area in the classroom.
Although almost all classrooms have the same ceiling
height (range = 2.9-3.6 m), the classroom area/volume
and the density of occupation varied between class-
rooms. Moreover, the difficulty associated to heat a
high space volume might also explain and determine
the occupant behavior reflected in a reduced number of
times that the windows were opened (introduction of
‘fresh’ air); thus, suggesting a potential stagnation of
the indoor air. Consequently, taking into account that
the school staff reported that opening windows was not
so frequent due to noise problems and/or weather con-
ditions, the results of the present study underlined the
relevance of use strategies or occupant behavior influ-
encing indoor CO, concentrations.

Two parameters are particularly critical: the density
of occupation and the duration time of both ‘teaching



periods’ and ‘breaks’. The implementation of more
breaks and recesses between classes, and decreasing the
occupancy per classroom might help to reduce the
indoor levels of pollutants that originate from indoor
sources.

Spatial variation

School-by-school variation for most IAQ parameters,
except for temperature and relative humidity, suggests
that differences in outdoor location and building-wide
cleaning/maintenance practices affected measurements
more than any common classroom factor. Conse-
quently, multiple building locations should be mea-
sured to characterize IAQ parameters in schools.

Strengths and weaknesses of the study

The current study had a large sample size in particular
when compared with earlier studies carried out in Por-
tugal (Madureira et al., 2009; Martins et al., 2012;
Pegas et al., 2011a; Sousa, 2009; Valente, 2010). In
addition, measurements were performed using stan-
dardized procedures and the objective measurement of
a broad spectrum of IAQ parameters in classrooms
allowed a better appraisal of individual exposure com-
pared to indirect methods such as the use of question-
naires or checklists (Viegi et al., 2004). However,
results may not be representative of school districts
elsewhere for several reasons (e.g. climatic zones and
ambient air quality, as well as building characteris-
tics). Moreover, schools were monitored during the
winter. Monitoring during other seasons is necessary
to evaluate seasonal effects, e.g. ventilation may be
further increased during warm seasons. Furthermore,
the TAQ characterization used instruments, indicators,
averaging times and analysis methods that may differ
from those used in other studies, especially for VOCs,
particulate matter and bioaerosol measurements. For
the specific case of VOCs and aldehydes, the passive
sampling method provided an integrated sample for
both occupied and unoccupied periods; thus concen-
trations may not be representative of occupant expo-
sure levels. Depending on the nature of the source and
the ventilation, passive sampling may either over- or
underestimates occupant exposures, especially for
VOCs closely associated with occupant activities.
Another limitation can be associated with the estima-
tion of ventilation rate based on the decay of CO,
concentrations measured in the classrooms after the
school was closed and the classroom was empty with
all windows and doors closed to a greater extent at
the times when the classroom was occupied. Future
studies utilizing other methods for ventilation rates
estimation (Godwin and Batterman, 2007; Haverinen-
Shaughnessy et al., 2011; Mendell et al., 2013) would
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be used for comparison purposes. However, a basic
challenge is that a CO, approach utilized for the esti-
mation of ventilation rates (with children in class-
room) will be affected by levels of activity that will
typically vary throughout a given school day. More-
over, as reported by (Haverinen-Shaughnessy et al.,
2011) classrooms environments are difficult to charac-
terize because of the activities that typically are non-
stop in children with 8-10 years old as occurred in the
current study. In addition, monitoring did not include
other potentially important contaminants (e.g. ultra-
fine particles, endotoxins, allergens). Bioaerosol sam-
pling over short periods in microenvironments and the
used of culture-based sampling could be problematic.
To overcome it, measurements were systematically
obtained during periods of typical activities in the
classrooms after an extended period of steady occu-
pancy. However, for future sampling we would also
recommend greater use of repeated measurements
over the school week and a larger sample size of
schools.

Conclusions

The 73 classrooms monitored in 20 public primary
schools located in Porto showed generally low levels of
VOCs and aldehydes, acceptable ranges of temperature
and humidity, but often high levels of CO,, PM, s,
PM,,, bacterial concentrations, and low rates of venti-
lation, which might be explained by the reduced airing
of the classrooms which underlines the influence of
indoor sources, occupant behavior and maintenance/
cleaning activities in schools and the high density of
occupants.

The between-school variability of most IAQ parame-
ters (most VOCs, bioaerosols, and CO») exceeded the
variability within schools, suggesting the influence of
activities or building features and the need for multiple
monitoring locations to characterize IAQ in schools.
For VOCs, identified sources included graphic art
activities and floor surface material (PVC/vinyl, lino-
leum).

Therefore, we recommend that school buildings be
designated to prevent indoor pollutant sources. That
situation could be overcome by the implementation of
more breaks and recesses between classes, decreasing
the occupancy per room, increasing the exchange of
indoor air with the outdoor, and improving the cleanli-
ness of facilities which might benefit the TAQ. The
advice is to adopt strategies based on source control as
the most consistent and efficient for the prevention of
adverse health consequences to children and adults in
schools. Nevertheless, to completely explore how
building and classroom characteristics may influence
the IAQ in schools, a study with a larger sample size
needs to be conducted.
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