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Abstract—Directive-drive programming models, such as
OpenMP, are one solution for exploiting the potential of multi-
core architectures, and enable developers to accelerate software
applications by adding annotations on for-type loops and other
code regions. However, manual parallelization of applications
is known to be a non trivial and time consuming process,
requiring parallel programming skills. Automatic parallelization
approaches can reduce the burden on the application develop-
ment side. This paper presents an OpenMP based automatic
parallelization compiler, named AutoPar—-Clava, for automatic
identification and annotation of loops in C code. By using static
analysis, parallelizable regions are detected, and a compilable
OpenMP parallel code from the sequential version is produced.
In order to reduce the accesses to shared memory by each
thread, each variable is categorized into the proper OpenMP
scoping. Also, AutoPar—-Clava is able to support reduction on
arrays, which is available since OpenMP 4.5. The effectiveness
of AutoPar-Clava is evaluated by means of the Polyhedral
Benchmark suite, and targeting a N-cores x86-based computing
platform. The achieved results are very promising and compare
favorably with closely related auto-parallelization compilers such
as Intel C/C++ Compiler (i.e., icc), ROSE, TRACO, and Cetus.

Index Terms—Automatic Parallelization, Source-to-source
Compilation, Parallel Programming, Static Analysis

I. INTRODUCTION

Parallel computing is no longer limited to supercomputers
or mainframes. Personal desktop computers or even mobile
phones and electronic portable devices can benefit from par-
allel computing capabilities. However, parallel programming
is never an easy task for users. Generally, dealing with
parallel programming issues, such as data dependencies, load
balancing, synchronization, and race conditions, requires some
level of knowledge about parallel paradigms and the target
architecture. Therefore, auto-parallelizing compilers and tools,
which (i) accept the sequential source code of an application,
(ii) automatically detect and recognize parallelizable sections,
and (iii) return the parallelized version, are becoming of
increasingly importance for application developers. Based on
that, many efforts have been made to support developers [1, 2]
as well as to provide automatic parallelization [3| 4} |5} |6].

This paper presents the parallelization module of the source-
to-source compiler Clava [7} (8], named AutoPar-Clava.
A preliminary version of AutoPar—Clava has been pre-
sented in [9]. The present version extends the primary
version [9] and includes additional variable analysis that
provides wider range of variable scoping alongside providing

support for new features of OpenMP 4.5, such as array
reduction. AutoPar—-Clava is a source-to-source compilers
that accepts C-code as input, and returns the parallelized
version, annotated by OpenMP directives, as the output. The
compiler provides a Abstract-Syntax Tree (AST) and a high-
level programming environment for specifying source code
analysis and transformations. AutoPar—Clava analyses the
input source code and parallelizes for-type loop regions where
no dependencies or race conditions were found. Currently, we
consider a static approach where all loops are considered for
parallelization and it is up to the user to select which ones to
keep parallel. However, the user can indicate if inner loops
should be considered for parallelization, in order to avoid
nested parallelism. This version does not include loop trans-
formations (e.g, polyhedral model) or locality optimizations
(e.g., temporal and spatial locality [10, [11]). Pointers are also
not considered in the current version of the compiler.

Unlike other approaches, which are not integrated with
their own compiler and often written with high complex pro-
gramming, AutoPar—Clava provides a simple and general-
purpose language to reproduce or modify the parallelizing
strategies for non compiler expertise.

The main contributions of this paper are the following:

« automatic proper scoping of shared array variables that
allows performance improvements;

« provides a widely range of variable scoping for scalar
variables;

e provides the OpenMP reduction feature for array vari-
ables;

o an extensive evaluation study with four state-of-the-art
compilers using the Polyhedral Benchmark suite, and
improvements in 38% and similar results on 52% of the
benchmarks.

The rest of the paper is organized as follows. The pro-
posed approach, AutoPar-Clava, is presented in detail
in Section The experimental methodology is presented
in Section and in Section experimental results are
presented and discussed. Section [V]discusses related automatic
parallelization tools with a brief description of some well-
known approaches. Finally, Section [VI| draws conclusions and
briefly outlines future work.
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II. AUTOMATIC PARALLELIZATION

In this section, we provide an overview and technical details
of AutoPar-Clava for automatic parallelization of the input
C code with annotated OpenMP directives. Since loops are
often the most time-consuming sections in applications, we
mainly focus here on loop parallelization.

Typically, a loop can be a candidate to be parallelized by
using OpenMP directives if it follows a certain canonical form,
and avoids certain restrictions, e.g., not containing any break,
exit and return statements. Therefore, AutoPar-Clava
starts by analyzing the input source code and marks all loops
that can be a candidate for parallelization. Then, to decide if a
candidate loop should be parallelized, it identifies the existence
of data dependency between iterations. At the final step, it
generates an annotated OpenMP version of the input source
code.

The proposed approach contains four main phases: (i) pre-
processing of the sequential code; (ii) dependency analysis;
(iii) parallelization engine; and (iv) code generation.

Figure |1| shows the annotated OpenMP output generated by
AutoPar-Clava for an input example. In this example, we
have chosen to insert all OpenMP pragmas found by our tool
in the output code, just to illustrate what kind of information
is added to OpenMP pragmas by AutoPar-Clava.

1 void kernel_atax(int m, int n, double A[1900] [2100],
< double x[2100], double y[2100], double tmp[1900])

2 {

3 .

4  #pragma omp parallel for private(i, j) firstprivate(A,

< tmp, x, m, n) reduction(+:y[:2100])

5 for (int i = 0; i < m; i++)

6 {

7 tmp[i] = 0.0;

8 #pragma omp parallel for private(j) firstprivate(4,
< x, n, i) reduction(+:tmp[i])

9 for (j = 0; j < n; j++)

10 tmp[i] += A[i]1[j] * x[j];

11 #pragma omp parallel for private(j) firstprivate(A,
<~ tmp, y, n, i)

12 for (j = 0; j < n; j++)

13 y[31 += A[i1[3] * tmp[il;

14 3}

15

16 }

Fig. 1. Annotated OpenMP C code generated by AutoPar—Clava

AutoPar-Clava provides information about what loops
can be parallelized and the corresponding OpenMP pragma.
One of the contributions of this work is to provide an ac-
cessible way for a user to specify which loops should be
parallelized. Although we provide some predefined strategies
(e.g., parallelize only outermost loops), users can very easily
develop their own strategies.

A. Preprocessing and variable access pattern

AutoPar-Clava allows to perform queries, modifications
and source-code generation requests over the presenting the
source-code. Users can develop custom program analyses and

transformations using a high-level programming model based
on aspect-oriented concepts and JavaScript, i.e., the LARA
framework [7, [8]].

B. Dependency analysis

Dependency analysis involves finding occurrences of over-
lapping accesses in memory and, therefore, it plays a major
role in any auto parallelization compiler.

Generally, considering two statements S; and Ss, there are
three types of data dependencies from source statement 57 to
destination statement S5 (i.e., S1 — S2): a) Anti-dependence,
where S; reads from a memory location that is overwritten
later by S5; b) Output-dependence, where both S7 and So write
to the same memory location; and c) Flow(true)-dependence,
where S; writes into a memory location that is read by Ss.

To determine if a loop can be parallelized, two types of de-
pendencies are analysed: (1) loop-independent that represents
dependencies within a loop iteration; and (2) loop-carried that
represents dependencies among different iterations of a loop.
In both cases, a precise analyzer which detects a dependence,
if and only if it actually exists, is needed. To describe and
implement our approach at a higher level, AutoPar-Clava
uses separate dependency analysis strategies to process the
variable access type. Variables access in loops, are commonly
of scalar and array access types. By performing dependency
analysis tests, a loop is considered for parallelization if it is
determined that: (i) it has no true dependencies; or (ii) it has
a true dependency, but it is a reduction operation; or (iii) has
a false dependency so that it can be resolved by loop-private
variables.

To perform dependency analysis on scalar and array vari-
ables, first AutoPar—Clava does variable pattern access
(i.e., read, write, or readwrite) analysis over all statements
in the loop, in order to find how each reference to a vari-
able is used. By taking advantage of the AST generated
by Clang [12]], the AutoPar-Clava compiler can provide
information, such as the list of variables that were referenced
and how they were used (i.e., Read, Write, or ReadWrite).
With this information, a pattern access (e.g. RRWRRR) for
each variable (scalar/array) is generated. The usage pattern
is defined as a compressed version of pattern access by
removing consecutive repetitions from it (e.g., RWR), and is
used to identify the data dependency of the variables. In
addition to collecting pattern accesses within the target loop,
the first pattern access outside of the loop is identified and
saved as nextUse attribute for each variable. For both scalar
and array variables, AutoPar-Clava can identify reduction
operations and categorize them into reduction scope, by
using a pattern matching algorithm which follows the rules
specified by OpenMP [13[[]

The most common obstacle to loop parallelization are loop-
carried dependencies over array elements. Array elements
can be characterized by subscript expressions, which usually
depend on loop index variables. Since our approach is based

! http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf#page=210



on static analysis, if the subscript expression is in the form of
non-affine indices, i.e., A[B[i] ], the bounds of the subscript
cannot be estimated at compile time, therefore, loops with
this type of array access not considered by the parallelization
process. The main goal of an array dependency analysis is to
find the cross-iteration distance vector for each array reference.

There are several tools to perform data dependency analysis,
which use different strategies to decide whether a loop is
parallelizable. AutoPar [14], used in the ROSE compiler [3]],
uses the Gaussian elimination algorithm to solve a set of
linear integer equations of loop induction variables, in the
form of Banerjee-Wolfe inequalities [15]], to identify data de-
pendencies. Other approaches to determine data dependencies
between array accesses use tests such as GCD [16], Extended
GCD [17] and Omega [18]. In AutoPar-Clava, we use
the Omega library [18]] for data dependency analysis. Loop
dependencies are converted into dependency relations in the
form of Presburger arithmetic which are directly analyzed
using the Omega library.

Next, the output dependency analysis for scalar and array
variables within a loop is used to classify each variable into
the proper OpenMP scoping.

1) Privatization: The private clause creates a private vari-
able as temporary data by assigning a separate storage to
each thread in the parallel execution. This resolves many
data dependencies for the target variable if all loop iterations
use the same storage. Privatization has a strong impact on
the performance obtained by loop parallelization, since it
reduces the accesses to shared memory by each thread. We
implemented a simple but effective variable privatizer in our
compiler. The variable privatizer processes usage patterns to
decide which OpenMP scoping should be considered for the
variable. For scalar variables, if the usage pattern is only R,
it can be set as a firstprivate variable, and if the usage
pattern equals to WR or it is a loop index variable, it can be
categorized as a private variable.

Similarly, if a scalar variable has the potential to be
classified as a private variable, alongside the usage pat-
tern equals to R for nextUse attribute, it is categorized into
lastprivate clause.

For array variables, according to OpenMP 4.5 reference
manual [13]], a variable that is part of another variable (as
an array or structure element) cannot appear in a private
clause, otherwise the allocated memory would not be acces-
sible inside the threads and the private pointer would have an
invalid address. Therefore, all array variables which do not
have data dependencies among different iterations of a loop,
are set into firstprivate variable list.

In the example of Figure [I] the array variable y appears in
the reduction clause at line 4, to resolve a data dependency
in the input code. Local arrays are created for each thread to
accumulate partial results. At line 11, the inner loop creates a
new set of nested threads that will update the private copy of
the array y. For this group of threads the array variable y is
classified as firstprivate so that the address of the array
is correctly copied. The OpenMP loop scheduling guaranties

that each thread has a different range of the iterator variable,
so that there in no writing conflicts.

2) Scalar and array reduction: In cases where privatization
does not resolve dependencies, a reduction operation may
enable parallelization of code (e.g., computation of sum over a
variable) by computing a partial result locally by each thread,
and updating a global result only upon completion of the
loop. Reduction variables are those with read and write access
in different iterations which causes a data dependency to be
reported by the dependency analyzer. Generally, the candidate
variables for reduction operation are in the form of var op
= expr or var = var op expr where the reduction-
identifier (i.e., op) can be one of the following operators: +,
- %, & |, ", &&, and | |.

For scalar variables, our recognition analysis detects re-
duction variables and its associated operator that satisfies the
above criteria, and excludes the detected reduction variable
and its dependencies from the loop-carried dependencies.

Reductions on array variables are a potential source of
significant improvements of parallelization performance. How-
ever, following the OpenMP reduction criteria for array vari-
ables is a complex analysis. Our assumption is that all array
subscript expressions are affine functions of the enclosed loop
indices and loop-invariant variables. In order to apply above
criteria for the array variables in Figure [} each access within
the target loop body is considered as a scalar variable in
the detection procedure. Therefore, having similar memory
accesses by means of array subscripts for both source and
destination variables, in the target dependency relation, is an
extra initial condition for array reduction recognition. For
illustrating the process of array variables detection within
loops, consider the code in Figure[I] Among all array variables
accesses, only two array variables tmp and y have write
memory references in their own pattern access. For the first
inner loop at line 9, since the array access tmp[i] is not
a function of the enclosed loop index (i.e., variable j) or
loop-invariant variables, it can be considered as a scalar
variable (i.e., all loop iterations will update the same element
tmp [1]). In this case, as it meets the general reduction form
var op = expr with acceptable OpenMP operator + for
reduction clauses, and does not appears elsewhere in the loop
body, it is classified as a reduction clause for the first inner
loop at line 9 (i.e. reduction (+ tmp[i])).

For the outermost loop at line 5, the dependency analysis
detects output dependence relations for two array variables
tmp and y, which cannot be solved by a privatization process.
For array variable tmp, as the subscript expressions (i.e.,
tmp[i]) is a function of the outermost loop iterator (i.e.,
variable i), all related dependencies can be removed from
analysis for the outermost loop. From the outer loop point
of view, array variable y within element range of [0,--- , n]
is updated at each individual iteration. Since the update
statements at line 13 (i.e., y[Jj] += expr) satisfies the
criteria of OpenMP reductions, it can be classified as an array
reduction variable. However, unlike the reduction on scalar
variables, for reduction on array variables, we must specify the



lower and upper bound for each dimension of the target array,
here array y. Therefore, if the array size can be obtained by
static analysis, it is classified to perform a reduction operation,
otherwise, the loop is marked as non-parallelizable due to the
lack of static information.

The implemented dependency analyzer has more complex
checking conditions, and for the sake of simplicity, only some
conditions that are applied for the example presented here, are
mentioned.

C. Farallelization engine

This module is the main core of the AutoPar-Clava
compiler. It accepts, as input, an input application code (e.g.,
avoids requiring as input only the loops, previously annotated
code or imposing limitations on the source code, such as, not
allowing the usage of macros), and generates a parallelized
C + OpenMP code version as the output file. It controls
other modules such as preprocessing, dependency analysis,
and code generation. Most static auto parallelization tools do
not consider loops for parallelization when they contain user’s
function calls. The current version of AutoPar-Clava
does not include interprocedural data dependency analysis.
It performs function call inlining, whenever possible, during
the analysis phase, which allows a significant improvement on
the ability to detect parallelism. The current implementation
does not support functions with multiple exit points, recursive
functions, or calls to functions whose implementation code
is not available. Function inlining is only used during the
analysis phase, and all changes in the code due to inlining are
discarded before generating the code with OpenMP pragmas.
Additionally, in order to not miss loop parallelization opportu-
nities due to system function calls, AutoPar—-Clava uses a
simple reference list which contains functions that are known
to not modify their input variables or that do not have any /O
functionality (e.g., sgrt, sin).

D. Farallel code generation

As the last step, after determining if the loop can
be parallelized, the output code is generated by adding
OpenMP directives for the detected parallelizable loops. The
AutoPar-Clava AST represents all the information nec-
essary to reconstruct the original source-code, including text
elements such as comments and pragmas. AutoPar—-Clava
separates implementation files (e.g., .c) from header files (e.g.,
.h) and is able to regenerate them from the AST.

III. EXPERIMENTAL METHODOLOGY

In this section, we provide details about the evaluation
platform, experimental methodology, comparison metrics, and
benchmarks used throughout the evaluation.

A. Platforms

The evaluation of the compiler was performed on a Desktop
with two Intel Xeon E5-2630 v3 CPUs running at 2.40GHz
and with 128GB of RAM, using Ubuntu 16.04 x64-bits as
operating system. In order to reduce variability in the results,

the Turbo mode and the NUMA feature were disabled. Also,
OMP_PLACES and OMP_PROC_BIND are set to cores and
close, respectively.

B. Benchmarks

The Polyhedral/C 4.2E] Benchmark Suite [19] is used for per-
formance evaluation. It contains many patterns commonly tar-
geted by parallelizing compilers. The largest dataset sizes were
considered, namely the MEDIUM, LARGE and EXTRALARGE
datasets.

C. Compared tools and configurations

Taking into account that AutoPar—-Clava performs au-
tomatic static parallelization over unmodified source-code,
among all automatic parallelization approaches presented in
Section the ones closest to our target are ROSE [3],
Cetus [6], and TRACO [4, |5]]. As part of the ROSE compiler,
autoPar [[14] can automatically insert OpenMP pragmas in
C/C++ code. The autoPar version used is 0.9.9.199. The
TRACO and Cetus version 1.4.4 are used in our experiments.
The Intel C/C++ Compiler (i.e., icc), as a well-known com-
mercial approach, is used, in the version 18.0.0 free academic
license. Additionally, since our target in this study is to recon-
struct the original source-code, including OpenMP annotation,
polyhedral compilers such as PLUTO [20], by applying loop
transformation (e.g., tiling and loop fusion), change the loop
structure in the generated output code, therefore, they are not
considered in our study and can be seen as compilation.

For both the original serial code and the parallel OpenMP
versions (i.e., parallelized with AutoPar-Clava, icc,
Cetus, TRACO and ROSE), we use icc to compile the
target C code, using —02. The optimization flag —02 is used
instead of —03 because: 1) —02 is the generally recommended
optimization level by Inteﬂ; and 2) to be able to do a fair
comparison between serial code and parallel code annotated
with OpenMP pragmas, since we detected that in some cases,
using the flag —gopenmp in serial code without OpenMP
pragmas slows down the performance of code compiled with
—-03 to the same level as —OZE} To generate the parallelized
versions by icc we use the flag -parallel.

For each benchmark, each experiment was repeated 30
times and the average of execution time was used. For
each data size, we have run the programs with 4, 8, and
16 threads. Additionally, we verified the output of all gen-
erated parallelized versions from each tool, by using the
flag ~-POLYBENCH_DUMP_ARRAYS that dumps all live-out
arrays, and comparing it with the equivalent output of the
sequential versions, and only parallel implementations with
similar results are reported.

Note that, only icc, AutoPar—-Clava and ROSE com-
pilers were able to compile the original source files without
imposing any limitations on the source code. Therefore, to

2hltps://sourceforge.net/projects/polybench/

3 https://software.intel.com/en-us/articles/step-by-step-optimizing-with-intel-c-
compiler
4https://snftware.imel.com/en—u s/forums/intel-c-compiler/topic/755677



provide a compatible input file for TRACO and Cetus, we
modified the input code according to the restrictions of each
of these compilers.

D. Evaluation metrics

The evaluation is focused on the speedup obtained with the
parallel generated code, which is defined as the ratio of the
execution time of the sequential code to that of the parallelized
version. Additionally, in order to evaluate the ability of each
compiler to detect parallelism, the number and type (i.e., inner
or outer) of parallelized loops in the generated output code is
reported.

IV. EXPERIMENTAL RESULTS

This section starts by showing detailed performance results
for all benchmarks, then average results are presented and it
ends with a comparison to Pluto, as polyhedral approach for
code parallelization.

A. Performance results

Table shows the loops parallelized by each auto-
parallelization compiler, as well as the type of the loops
detected, i.e, inner or outer. When a nested loop is identified
to be parallelized, only the outermost one is marked to be
parallelized.

Based on the parallelization report, icc also applies loop
transformations such as loop fission. For simplicity, we refer
to autoPar tool in ROSE compiler as ROSE in Figure 2] and
Table [

In terms of the compilation time, AutoPar—-Clava was
able to parallelize each input source files with an average of
2.5 seconds for all tested benchmarks, while icc required 0.5
seconds.

Figure [2] shows the speedups of the parallelized versions
relative to the sequential versions, for each compared ap-
proach. Due to space limitations, we only present benchmarks
with significant difference in terms of obtained speedup,
whereas for other benchmarks the ratio improvements are
similar for all compared tools. In Figure |2 each chart shows a
PolyBench benchmark and contains a red zone that represents
slowdowns. Values above the red zone represent performance
improvements over the sequential version. Bellow we discuss
the results achieved for each individual benchmark.

2mm and 3mm : they perform Matrix Multiplications with
2 individual nested loops, respectively. The outermost loop
at each nested loop is parallelized by all auto-parallelization
tools. However, as shown in Figure Eka), for 2mm, the perfor-
mance improvements are not similar. The reason can be ex-
plained by the variable classification into the proper OpenMP
scoping performed by each tool. Among all compared tools,
TRACO has the fewest variable scoping, i.e., it just finds
parallelizable loops and inserts the OpenMP parallel for
pragma without any variable scoping. The ROSE compiler
only supports variable scoping for scalar variables. Cetus
applies more analysis on used variables, for both scalar and
array variable types. By comparing the generated OpenMP

TABLE I
NUMBER AND TYPE OF THE LOOPS PARALLELIZED BY EACH

COMPILER

ROSE AutoPar-

Clava

Cetus

Benchmark
Name

Isuur

2mm

w | N [ x9300
w | [ T9300
w | v | x9300

3mm
adi - 2

N
I

atax 1 1

bicg 1 -

cholesky x

correlation

covariance

oW |
|

deriche

doitgen - 2

durbin - 2
fdtd-2d 4
gemm

gemver

s e |
|

gesummv

gramschmidt x
heat-3d -
jacobi-1d -
jacobi-2d -

Iu -

SR ELSEESEEN

ludemp -

mvt 2
seidel-2d -
symm 3

syr2k 1 -
syrk 1 -

trisolv -

- 1
28 25

- 1
28 27

trmm - 1 - 1

32 27

Total 30 19

A : The input source code is modified by transforming the loop structure
% : No output file generated by the tool
(& : the code is changed and modified by the tool

directives provided by each tool, our proposed tool has a
widely range of variable scoping. As it is shown in Figure [I]
our approach categorizes each variable of type array based on
its usage pattern. For instance, since array A has read only
pattern accesses inside of the outermost loop, it is categorized
as firstprivate in the clause variable list. This avoids
accessing the variable by dereferencing a pointetﬂ In terms
of performance, AutoPar—Clava and Cetus show the best
improvements for 2mm. For 3mm, since all three outermost
loops are parallelized by each tool as shown in Table |I} the
relative speedup improvement is similar to 2mm.

atax and bicg : both contain 2 individual nested loops. In
both cases, the first outermost loop does a simple initial-
ization of an array, and the second loop, which consumes
more time, computes the mathematical operations. Both ROSE
and TRACO compilers parallelize the same loop. Since both
approaches only parallelize the first nested loop in bicg, and

Shitps://docs.oracle.com/cd/E19059-01/stud.10/819-0501/7_tuning.html
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Fig. 2. Speedups for PolyBench benchmarks obtained by each compared tool

be explained by parallelizing the inner loop from the second

could not parallelize the second loop which has higher influ-
ence on execution time improvement, the obtained speedup is

near to 1 (i.e., similar execution time to sequential code), as

nested loop, which causes a higher time overhead of threads
starting and releasing at each iteration. Since our proposed ap-

shown in Figure 2)(c). For atax in Figure 2{b), both ROSE and  proach supports the OpenMP array reduction feature, for both

benchmarks, the AutoPar-Clava could obtain a significant

TRACO approaches show performance slowdowns. This can



speedup of 10x and 25x for atax and bicg, respectively. The
parallelized output of our approach for arax is presented in
Figure

Correlation and covariance : the best speedup is obtained
by Intel icc which achieved speedup of 18x and 17X for
correlation and covariance, respectively. Since that other auto-
parallelization tools marked the similar loops as parallelization
target in their output, they demonstrate a similar performance
for different input datasets and number of threads. However,
AutoPar-Clava and Cetus show slightly better improve-
ments for lower dataset sizes, as shown in Figure Ekd) and
(e).

Doitgen and durbin : the obtained speedup by Intel icc in
Figure [2[f) and (g) indicates no loop parallelization for both
benchmarks. The other auto-parallelization tools parallelized
the same loops. The only exception is the parallelized output
generated by Cetus, which did not pass the verification step
as it is noted in Table [}

Gemm and gemver : for both benchmarks,
AutoPar-Clava, ROSE, Cetus, and TRACO parallelized
the same loops. However, due to the wide range of variable
scoping, our approach obtains better performance compared
to other tools. In the case of Intel icc, the obtained speedup
ranks the second place for gemm, and the last place without
any parallelization for gemver.

Heat-3d, jacobi-1d, and jacobi-2d : all compared auto par-
allelization tools, except icc, annotated the similar inner loop
in their generated output code. There is a degradation of
performance for jacobi-1d benchmark which can be explained
by the amount of work (i.e., dataset size) performed by the
inner loop. As the parallelized inner loop has low computing
work, the overhead of allocating and releasing threads has
a significant influence on the execution time, as shown in
Figure 2[k). In contrast, for jacobi-2d with higher amount of
computation work, even by parallelizing an inner loop, we
could achieve better execution time, as shown in Figure [2[1).
For heat-3d, AutoPar—-Clava, ROSE, Cetus, TRACO show
similar performance improvements.

Lu, ludcmp, and symm : for all these benchmarks, the par-
allelized loop is the inner one, and similar in the output code
generated by each tool. The only exception is the ROSE com-
piler, which did not parallelize any loop in /u. The differences
between parallelized inner loops among these benchmarks are
the rank of the selected loop for parallelization. For instance,
in the case of ludcmp, Figure 2[n), the same innermost loop is
parallelized by each tool, which causes a significant overhead
in the execution time. For /u, the parallelized inner loop has
a nested loop structure with high amount of computational
work, which causes improvements on execution time, as shown
in Figure 2(m). Also, in case of symm, the output code is
changed and modified by TRACO, and since it did not pass
the verification step, no parallelization is considered as it is
shown in Figure [J[0).

B. Average performance

To illustrate the overal results, Figure |3| presents a boxplot
chart of speedup as a function of the number of threads and
dataset size among all PolyBench benchmarks.

[ AutoPar-Clava M icc [ ROSE
[ Cetus @ TRACO
30
5
= 20
)
Q
=}
| s B s
Threads 4 8 16 4 8 16 4 8 16
Dataset MEDIUM LARGE EXTRALARGE

Fig. 3. Average speedup obtained by each tool

In addition to geomean value, the geomean value is also
indicated by an individual diamond symbol in each boxplot.
We can see that AutoPar-Clava has the highest average
speedup with a wider dispersion in the distribution of the
results. This is an important finding because with the proposed
approach, we improved the speedup and also achieved high
values of performance, in most cases as it is shown in Figure

C. Comparison to Polyhedral approach

The polyhedral approach is used to solve data dependencies,
to produce parallel versions of the sequential code, possibly
including loop transformations. Pluto [20]] is a fully automatic
source-to-source compiler which uses the polyhedral model for
loop transformations. To evaluate the impact in performance
of using loop transformations in the parallelization strategy,
the proposed AutoPar—-Clava approach is compared with
Pluto. Figure |4 presents the obtained geomean speedup by
these two approaches for all datasets and considering 4, 8 and
16 threads.

Among all benchmarks available the Polyhedral Suite [[19],
generated parallelized output code by Pluto did not passed
verification stelﬂ for adi, deriche, ludcmp, and nussinov, which
are excluded from Figure

As it is shown in Figure @ among all 225 combinations
of the 25 benchmarks, 3 dataset sizes and 3 thread con-
figurations, the proposed AutoPar—-Clava approach could
obtained better performance for 101 cases with geometric
mean speedup of 6.73x against 2.35x speedup of Pluto. In
same way, Pluto shows better improvements for 123 cases with
geometric mean speedup of 5.76x against 1.8x speedup of
AutoPar-Clava.

Sdumping all live-out arrays by using the flag
-POLYBENCH_DUMP_ARRAYS, and comparing it with the equivalent
output of the sequential versions)
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Fig. 4. Speedups for PolyBench benchmarks

V. RELATED WORK

The efficient utilization of modern computing systems re-
quires the appropriate usage of the computing cores available
in current processors. Many efforts have been made in order to
transform sequential code into scalable parallel versions, either
automatically or by giving support to the programmer with
the required transformations. For example, Larzen et al. [1]
propose an interactive compilation feedback system that guides
programmers to iteratively modifying application source code,
in order to obtain better results with auto-parallelization tools.
Bagn et al. [2] present a framework that allows users to
accept or modify polyhedral transformations suggestions to
be applied to the application. In this case, the loops in the
output code could be restructured from the initial version.
Recently, Memeti et al. [21]] developed a system with cognitive
properties in order to assist the programmers to avoid common
OpenMP mistakes.

As the objective of this paper is to propose a automatic
source-to-source automatic parallelization compiler, we mainly
focus on parallelization tools which are not guided by runtime
information from program execution or by additional guid-
ances provided from the user. Next, we briefly discuss tools
which perform automatic loop parallelization by static analysis
of the input source code.

Cetus [6] is a source-to-source compiler for ANSI C pro-
grams. Cetus uses static analyses such as scalar and array
privatization, reduction variables recognition, symbolic data
dependency testing, and induction variable substitution. It uses
the Banerjee-Wolfe inequalities [15]] as a data dependency test
framework, also contains the range test [22] as an alternative
dependency test. Cetus provides auto-parallelization of loops
through private and shared variable analysis, and automatic
insertion of OpenMP directives.

Pluto [20] is a fully automatic polyhedral source-to-source
program optimizer tool. It translates C loop nests into an
intermediate polyhedral representation called CLooG [23]
(Chunky Loop Generator). With the ClooG format, the loop
structure and its data dependency and memory access pattern
are kept, without its symbolic information. By using this
model, Pluto is able to explicitly model tiling and to extract

achieved by AutoPar-Clava and Pluto

coarse grained parallelism and locality, and finally to transform
loops. However, it only works on individual loops, which have
to be marked in the source code using pragmas.

ROSE [3] is an open source compiler, which provides
source-to-source program transformations and analysis for
C, C++ and Fortan applications. ROSE provides several
optimizations, including auto-parallelization, loop unrolling,
loop blocking, loop fusion, and loop fission. As a part of
ROSE compiler, autoPar [14] is the automatic parallelization
tool used to generate OpenMP code versions of sequential
code. For array accesses within loops, a Gaussian elimination
algorithm is used to solve a set of linear integer equations of
loop induction variables.

The auto-parallelization feature of the Intel Compiler
icc [24]] automatically detects loops that can be safely and
efficiently executed in parallel and generates multi-threaded
code of the input program. To detect loops that are candidates
for parallel execution, it performs data-flow analysis to verify
correct parallel execution, and internally inserts OpenMP
directives. icc support variable privatization, loop distribution,
and permutation.

TRACO [4} |5] is a loop parallelization compiler, based on
the iteration space slicing framework (ISSF) and the Omega
library, while loop dependence analysis is performed by means
of the Petit [25]] tool. Output code contains OpenMP directives.

Our parallelization strategy distinguishes to these ap-
proaches in the following aspects: (i) produced functionally
correct parallelized output code for all the evaluated bench-
marks, similarly to the ROSE compiler (see Table m); (i)
considers a wider set of OpenMP scoping; (iii) it is not limited
by the input code size, as occurred with TRACO and Cetus
(see Table [I); and (iv) it supports reduction for arrays and at
the array element level.

VI. CONCLUSION

This paper presented the AutoPar-Clava compiler,
which provides a versatile automatic parallelization approach
for Clava, a C source-to-source compiler. The compiler is cur-
rently focused on parallelizing C programs by adding OpenMP
directives. The proposed source-to-source compiler deals with
the original code, and inserts OpenMP directives (mainly



parallel-for and atomic directives) and the necessary clauses.
The main contribution of our approach, in comparison to other
compilers, is its versatile mechanisms to evaluate and add new
parallelization strategies, from the analysis of the programs
being compiled to the selection and insertion of OpenMP
directives and clauses. The parallelization strategy presented
in this paper, and fully integrated in the AutoPar—-Clava
compiler, considers array reduction to significantly improve
the execution time.

The experiments provided show promising results and
improvements regarding other auto-parallelization compilers
when targeting a multicore x86-based platform. With the Poly-
hedral Benchmark suite, AutoPar—-Clava achieved better
performance for 11 benchmarks, equal for 15 and worse in 3
cases. In average, AutoPar—-Clava obtains higher speedups
among all benchmarks compared to other tools (3).

Our ongoing work is focused on the evaluation of the
compiler with other benchmarks. As future work, we plan
to include additional parallelization strategies (e.g., to deal
with task parallelism) and techniques to orchestrate the paral-
lelization with code transformations provided by our source-
to-source compiler and by using, e.g., polyhedral model ap-
proaches. In addition, we intend to research a cost-based
analysis for guiding decisions.
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