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Abstract

Side-channels are unanticipated information flows that present a significant threat to security of
systems. Quantitative analyses are required to measure the rate of information leakage and the
accuracy of information learned through side-channel attacks. To this end, the work presented
in this thesis develops a general model of a side channel, which is represented as a two-input-
single-output system and specified by the probability distribution of the output conditioned
on the inputs. For this model, three quantitative metrics are defined: capacity, leakage, and
reliability rate. The thesis argues that capacity is an ill-suited metric for side channels and rec-
ommends the use of other two metrics to measure the leakage rate and accuracy of information
learned, respectively. These metrics are used to analyze attacks employed in very different ap-
plication areas: private communication detection in VoIP networks, packet schedulers in web
communication, and timing attacks against modular multiplication routines used in public-key
cryptosystems. The analyses presented in this thesis enable us to: 1) determine system param-
eters and user behaviors that preserve privacy, 2) compute the lifetime of private information,
and 3) identify attack strategies that leak most information. More importantly, they enable us
to study the conditions under which existing countermeasures perform as expected and develop
information-theoretic countermeasures against side-channel attacks.
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Resumo

Canais colaterais são fluxos de informao produzidos por um sistema, imprevistos aquando da
sua especificação ou implementação, que constituem ameaas significativas á sua segurana. A
taxa de fuga e exactidão da informação extraı́da através de um ataque a um canal colateral
são medidas através de análises quantitativas. Esta tese apresenta um modelo geral de um
canal colateral, representado por um sistema de duas entradas e saı́da única e especificado pela
distribuição da probabilidade condicional da saı́da dadas as entradas. Este modelo compreende
três métricas quantitativas: capacidade, fuga e taxa de fiabilidade. Esta tese defende que a
capacidade é uma métrica inadequada para canais colaterais e recomenda a utilização das outras
duas métricas para medir a taxa de fuga e exactidão da informação extraáda, respectivamente.
Estas métricas são usadas para analisar ataques aplicados em diferentes contextos: a detecção
de comunicação privada em redes de VoIP; programadores de pacotes em comunicação web;
e ataques de temporização contra rotinas de multiplicação modular, usadas em sistemas de
criptografia de chave pública.

A análise apresentada nesta tese permite: (1) determinar parâmetros do sistema e comporta-
mentos dos utilizadores que preservam privacidade; (2) calcular o tempo de vida de informação
privada; e (3) identificar estratégias de ataque que resultam altas taxas de fuga de informação.
Acima de tudo, a mesma análise permite estudar em que condições as contramedidas exis-
tentes atingem o desempenho esperado; assim como desenvolver contramedidas contra ataques
de canal colateral, baseadas em Teoria de Informação.
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Chapter 1

Introduction

A side channel is an unintended information flow created when the internal functioning of a
system is correlated to a physical attribute, such as timing, power consumption, and electro-
magnetic/acoustic radiation. An attacker who observes any of these attributes can deduce secret
parameters, such as cryptographic keys and private system states. The class of attacks that em-
ploy side channels is known as side-channel attacks (SCAs). To discover a secret parameter
of a system, a side-channel attacker issues inputs to the system and observes corresponding
change in the attribute. Since the presence of a side channel is typically unknown to the design-
ers and hence often left un-countered, it has the potential of leaking private information even
in systems where traditional attacks, like cryptanalysis, fail.

One of the earliest recorded side-channel attacks was performed during the Suez crisis in
1956. In a project code-named ENGULF, the British intelligence agency, MI5, bugged the
Egyptian embassy in London using microphones and recorded clicking sounds of the rotors
of their mechanical ciphers [66]. Using these recordings, MI5 was able to learn positions of
rotor 2 and 3 of the cipher, greatly reducing the complexity of breaking it. They used similar
techniques to break the cipher of the French embassy by observing the electromagnetic leakage
of its tele-printer. Declassified documents from the U.S. National Security Agency (NSA)
revealed a similar program named TEMPEST that used emanations from electro-mechanical
devices to break cryptosystems [20]. While successful, these attacks still required the attacker
to have physical access to the cipher, which limited their practicability. Hence, SCAs received
little mainstream attention in security research historically.

SCAs gained prominence after Paul Kocher used timing attacks to break several modern
asymmetric cryptosystems [37]. In his seminal paper, Kocher showed that asymmetric cryp-
tographic algorithms consume different amounts of time depending on the plaintext and secret
key. He used this vulnerability to break systems, such as RSA [54] and Diffie-Hellman [15],
which have been immune to traditional cryptanalysis. The practical effectiveness of timing
attacks was strongly established when their feasibility was demonstrated remotely against pop-
ular cryptographic libraries, like OpenSSL [6], and devices, such as smart-cards [13].

More recently, the scope of SCAs has increased greatly beyond cryptographic algorithms.
Traffic-analysis attacks that use side-channel observations like packet length and timing char-
acteristics, are potent tools in breaching communication anonymity and privacy. These attacks
have been successfully demonstrated to extract private health and medical information of web-
application users [10]. SCAs can be remotely launched to breach communication anonymity of
internet users [28], even when anonymous networks like Tor [47] are employed. Side channels
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present in communication end-devices have been exploited to reveal call-record information of
user’s of private networks [35] [34]. Additionally, similar attacks have been demonstrated in
new-generation technologies such as cloud-computing [67].

Growing interest in side-channel attacks as means to break secure systems can be attributed
to at least two reasons. First, benign implementation choices for otherwise secure systems
can lead to unanticipated side-channel attacks. Second, side channels often rely on useful
implementation features and hence cannot be prevented; e.g., dynamic scheduling of resources
at network devices. Unlike covert channels, they do not require the presence of a Trojan Horse
or other modifications in the system. These reasons make side-channel attacks more pervasive,
and harder to detect-and-counter.

1.1 A Review of Side-channel Attacks
We provide a brief review of well-known side-channel attacks to highlight the threat they pose
and motivate the need for precise quantitative analyses of their leakage potential.

1.1.1 Side-channel Attacks in Communication Networks

Traffic-analysis refers to the analysis of network traffic meta data, particularly; packet lengths
and timing which allow an adversary to infer private information of communicating parties
or breach their communication anonymity. Traffic analysis has increasingly become an al-
ternative to traditional wiretapping which often fails due to the widespread use of end-to-end
encryption which ensures content confidentiality. However, the threat to privacy and security
caused by traffic-analysis attacks can be as significant. Apart from revealing a user’s private
data, such as passwords, keys, traffic-analysis can also be used to reveal their communication
relationships. Communication relationships provide significant amount of information about a
user’s identity, behavior, and social milieu, and therefore, are highly sought-after information
in law-enforcement community. Numerous side-channel attacks have been developed for these
purposes.

For example, inter-packet timings have been used to successfully learn users’ SSH pass-
word [62]. The SSH protocol transmits each password letter separately as soon as it is entered
and encrypted. Inter-packet timing between transmission of two consecutive letter is domi-
nated by the difference in timing of key-presses on the user’s keyboard which depends on the
relative positions of the two keys. Using the inter-packet timings, the attacker creates a Hidden
Markov Model of the key presses and employs it to significantly improve well-known pass-
word cracking attacks like dictionary attacks. Packet length and timing characteristics have
also been used to identify media-streams [55] and reveal private financial/medical information
of web-application users [10]. In addition to passively observing existing timing discrepan-
cies, the attacker can actively create these differences in certain scenarios. Felten and Schnei-
der [19] described an attack where hidden HTML objects from a different website, Website B,
are embedded by the attacker in his own website, Website A. If a user has browsed the Web-
site B before browsing WebsiteA, these objects are pre-cached and therefore, the loading time
of Website A is considerably less. To prevent leakage of sensitive information through these
attacks, the notion of anonymous networking has been developed [51].

Modern anonymous networks are based on an approach developed by David Chaum to
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create an anonymous e-mail delivery system. This approach, called the mix network [8], is
comprised of the following features: 1) encryption of packet content and addresses, 2) division
of packets in cells of equal size, 3) use of at least one relay node through which all packets are
forwarded, and 4) queuing, delaying, and re-ordering of packets at intermediate nodes. A dis-
advantage of this approach is the introduction of large packet delay which cannot be tolerated
by applications like streaming, VoIP, or browsing. For such applications, specialized anony-
mous networks have been developed, such as Tor [16], Crowds [53], Web Mixes [3]. Unlike a
mix network, these networks do not perform explicit delaying and re-ordering of packets at the
intermediate node. Instead, they rely on large traffic and multiple forwarding relays to create an
effect similar to mixing. One of the most popular examples of low-latency anonymous networks
is Tor [16]. Due to the absence of explicit mixing, low-latency anonymous networks remain
susceptible to global adversaries and traffic matching attacks [52]. For VoIP communication,
which has an even more stringent delay requirement, no widespread anonymous network exists.
Skype is considered to provide anonymity to VoIP users due to its closed-source design. How-
ever, it has recently been proven to be vulnerable to traffic-analysis attacks that reveal either
the identities of the communicating parties [68] or the identify the network path [50].

Low-latency anonymous networks are particularly vulnerable to side-channel attacks. The
sharing of network resources at relay nodes by different traffic streams has an adverse effect
on anonymity. Relays in low-latency anonymous networks, such as Tor, buffer packets belong-
ing to different traffic streams and forward them using round-robin or first-come-first-serve
scheduling policies. This creates dependencies between traffic load of one stream and the
queuing delay of the packets of another stream that shares the relay. This security vulnerability
was exploited by Murdoch and Danezis to learn the secret path taken by an anonymous stream
in Tor [47]. A similar side-channel attack was launched by Gong et al. against home DSL users
to learn the websites browsed by them [28].

The side-channel attacks discussed so far exploit weaknesses in scheduling and other poli-
cies at the relay nodes, which are part of the network’s design. However, side-channel attacks
can be used to breach anonymity even if the network is perfectly private; i.e. does not reveal
user’s identity through any information collected inside the network. This attack, named Pri-
vate Communication Detection, exploits side channels present in a communication end-device
that reveal the device’s busy/idle activity status. For low-latency applications like VoIP, the
correlation between busy/idle activity of two communicating parties is high, which allows an
attacker to reveal their private communication relationships and call-records [35], [34]. Since
the designers of an anonymous network have no control over the end-device, side-channel at-
tacks become feasible even in perfectly anonymous networks.

1.1.2 Timing Attacks against Cryptographic Algorithms

Asymmetric cryptosystems, such as RSA and Diffie-Hellman-Key-Exchange (DH), require re-
peated computation of modular exponentiations. In the case of RSA (described in Algorithm
1), decryption of a ciphertext c requires the computation of cd(mod m), where d is the private
key and m is the publicly-known RSA modulus. In the case of DH (described in Algorithm 2),
a participating party secretly selects a value x and computes gx(mod p), where g is the group
generator and p is the shared prime. The goal of the attacker is to either learn the secret expo-
nent for these cryptosystems or factorize the modulus in the case of RSA. To achieve this, he is
allowed to send chosen ciphertexts and observe the computation time for their exponentiation.
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Data: plaintext message:u; large primes: p and q
m = p.q;
φ(m) = (p− 1)(q − 1);
private key e, such that 1 < e < φ(m) and gcd(e, φ(m)) = 1;
public key d, such that d.e = 1(mod φ(m));
Encryption c = ud(mod m);
Decryption u = ce(mod m);

Algorithm 1: RSA Algorithm

Data: public group generator, g; public prime, p
Alice: select secret x ∈ G;
Alice: compute ma = gx(mod p);
Bob: select secret y ∈ G;
Bob: compute mb = gy(mod p);
Alice→Bob: ma;
Bob→Alice: mb;
Alice: compute mx

b (mod p) = gxy(mod p);
Bob: compute my

a(mod p) = gxy(mod p);
Algorithm 2: Diffie-Hellman Key-Exchange between Two Parties

Successful timing attacks have been demonstrated against these cryptosystems in practice
for the past two decades [6, 13, 37]. These attacks rely on a side channel created due to the
dependence of computation time of a modular exponentiation on the ciphertext, exponent, and
modulus. Such discrepancy is caused by two factors:

• Modular exponentiation algorithms, such as square-and-multiply, read exponent bits one-
at-a-time. Irrespective of the value of the read bit, the temporary variable is multiplied
to itself; i.e. squared. However, if the read bit is set, an additional multiplication of the
temporary variable and the base is performed, resulting in two multiplication operations.
This leads to the operation taking different times for different bit values.

• Modular exponentiation involves repeated modular multiplication which is a computationally-
expensive operation. Specific algorithms, in particular, Montgomery Multiplication [46],
have been developed to perform it efficiently in hardware. Montgomery Multiplication
occasionally requires additional steps for certain values of the multiplicands and mod-
ulus. Since the total computation time of an exponentiation is the sum of computation
time of each constituent multiplication, it varies with the modulus and base of the expo-
nentiation.

In a typical attack, the adversary first measures the total decryption time for the chosen
ciphertext. Using this information, he estimates the most significant bit of the exponent. He
computes the time required for processing the ciphertext with this bit offline and subtracts
it from the total computation time. The next significant bit is estimated and the process is
repeated until sufficient number of bits have been estimated. At this point, the attacker can use
number-theoretic relationships between the modulus and exponent to guess the less significant
bits. This attack was practically demonstrated by Dhem et al. in smart-card devices [13].
Significant optimization using statistical techniques were performed by Schindler [58].
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The above attack has the limitation that the attacker is required to know the modulus, M .
This is usually the case with most implementations, as RSA modulus and DH prime-modulus
are required to be publicly known. However, implementations of RSA that use the Chinese
Remainder Theorem(CRT) (Algorithm 3) do not satisfy this requirement [44]. The primary
reason for employing CRT in RSA is to increase efficiency of decryption. Under CRT, an
exponentiation with large modulus and exponent is replaced with two exponentiations with
smaller modulus and exponents.

Data: ciphertext: c; large primes: p and q
m = p.q;
φ(m) = (p− 1)(q − 1);
dp = d(mod p);
dq = d(mod q);
bp such that bp = 1(mod p) and bp = 0(mod q);
bq such that bq = 0(mod p) and bq = 1(mod q);
cp = c(mod p);
cq = c(mod q);
up = c

dp
p (mod p);

uq = c
dq
p (mod q);

u = (bpup + bquq)(mod m);
Algorithm 3: CRT for RSA decryption

Inadvertently, the use of CRT also prevents basic timing attacks. The modulus used to
perform an exponentiation in CRT is a prime factor of the RSA modulus and unknown to the
attacker. This prevents the attacker from offline computation of intermediate operations. How-
ever, Schindler showed that the probability of extra reduction in a Montgomery Multiplication
depends on the ciphertext, the exponent bit, and the modulus. Since exponents behave as ran-
dom bit-sequences , the total number of squarings and multiplications in an exponentiation is
independent of the exponent. Thus, the total time can modeled as a normal distribution whose
mean and variance are dependent solely on the ciphertext and the modulus. The attacker sends
pairs of ciphertexts such that their average computation time differs by a threshold value. The
attacker is guaranteed to find the prime modulus (or its multiple) in this range. Successive
reductions are performed until the prime modulus can be searched using brute-force. The prac-
tical impact of this attack was intensified when Brumley and Boneh demonstrated it remotely
against a widely-used cryptographic library OpenSSL[6]. Attacks that use other type of side-
channel outputs, like power consumption and acoustic leakage, to break these cryptosystems
have been successfully demonstrated as well [21].

Due to the potential of these attacks in breaking widely-used cryptographic algorithms,
several countermeasures have also been developed and implemented to thwart them. Tim-
ing attacks can be prevented trivially if the decryption oracle always outputs the result after
a constant amount of time. However, this constant value must be greater than the worst-case
decryption time which makes this approach highly inefficient. Köpf and Dürmuth presented
a countermeasure, input-blinding-and-bucketing, where the output of a decryption is revealed
during pre-specified windows of time [39]. This countermeasure hinders timing attacks as more
ciphertext require same amount of decryption time and is more efficient than the constant time
approach.
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One of the most popular countermeasure against timing attacks, exponent blinding, was
proposed by Kocher [37]. Here, a random salt, r, is added to the exponent d. First, an exponen-
tiation is performed using (r + d) as the exponent. An additional exponentiation is performed
using r as the exponent. Division of the results of these exponentiations yields the original out-
come. Since the exponent used for decrypting each ciphertext is random, the attacker cannot
estimate it. Another popular countermeasure, caching, uses memory to thwart timing attacks
without performance penalties. The results of multiplication of numerous pairs of multipli-
cands are pre-computed and stored in memory. When such a pair is encountered during an
exponentiation, the algorithm simply performs a constant-time memory lookup to retrieve the
output. This approach reduces the total number of multiplications performed live during an
exponentiation, reducing timing discrepancy. Despite these measures, timing attacks remain
one of the biggest threats against modern cryptosystems and newer development need to be
resilient to them.

These attacks demonstrate the negative impact side channels can have on a system’s secu-
rity. Detection and mitigation of these attacks is crucial to develop trustworthy and dependable
systems. Although there are several works that demonstrate side-channel attacks in different
setups, very few attempt to provide precise quantitative analyses that are applicable beyond spe-
cific attacks. In the next section, we discuss the advantages, and limitations of past quantitative
approaches to side-channel analyses.

1.2 Quantitative Analysis of Information Leakage

Primary focus of past side-channel research is on detection, demonstration, and mitigation of
specific attacks. However, demonstration of specific attack techniques on a system does not
give much insight on other (and potentially all) possible attacks that use the same vulnera-
bility. Furthermore, they do not provide insights on whether the attacker uses his resources
with most efficiency. For example, side-channel attacks against Tor and DSL routers remain
proof-of-concepts because the bandwidth resources required to launch attacks in real networks
is enormous[18].

In the absence of quantitative analyses, security guarantees of countermeasures cannot be
established. This leads to the use of informal countermeasures which may lead to a false sense
of security. For example, exponent blinding was traditionally believed to prevent all timing
attacks and was adopted into most standard cryptographic libraries. Recent results, however,
show that timing attacks may still be possible [59]. Similarly, use of firewalls and anonymous
networks, traditionally accepted as countermeasures to traffic analyses, have been shown to not
prevent side-channel attacks in communication networks [61],[47],[28].

Quantitative approaches can contribute to all three dimensions of side-channel research:
detection, demonstration, and mitigation of attacks. For example, one of the most powerful
practical attacks against RSA developed by Brumley and Boneh [6], relied on the theoretical
basis developed Schindler [58]. Later in this thesis, we demonstrate how quantitative models
enable the development of optimal attack strategies against packet schedulers for a given attack
budget. These optimal strategies achieve up to 1300% gain in information leakage than proof-
of-concept strategies [27]. Quantitative analyses can also provide system designers the knowl-
edge of system parameters that leak the least amount of information. Several design choices
can also benefit from such analyses. For example, in this thesis we compute the leakage of
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modular exponentiation based cryptographic algorithms and study the impact of Montgomery
reduction parameter on the leakage. This allows us to identify the value of the parameter that
leaks least information.

Quantitative analyses can also help system designers develop provably-secure countermea-
sures. Ghaderi and Srikant developed optimal mixing strategies for preserving anonymity of
users [22]. Mathur and Trappe [43] performed analyzed randomization-based countermeasures
that prevent anonymity leakage through packet length and timing characteristics. Kadloor et
al. developed mathematical models for a shared packet scheduler to develop privacy-preserving
packet scheduling schemes [36]. Similarly, Köpf and Dürmuth proposed a timing bucket-based
countermeasure to timing attacks against RSA and quantify the security provided by it [39].

The first step towards a quantitative analysis is to develop an appropriate model for the
system and select suitable metrics that measure relevant performance parameters. Information-
theoretic metrics have been favored in most existing side-channel analyses. The primary reason
for this choice is that a number of side-channels can be modeled as stochastic systems. That is,
the statistical relationship between side-channel inputs and outputs can be represented as a con-
ditional probability distribution of outputs given the inputs. The behavior of user’s inputs is also
favorably modeled as a random process; e.g., cryptographic keys as uniformly-random binary
strings and packet arrivals as Poisson/Bernoulli-distributed sequences. For such models, infor-
mation theory has a rich set of results and quantities like entropy, mutual-information, capacity,
and error-exponents [11], can be used as metrics for security properties like confidentiality and
anonymity.

Some of the past works on side channels perform information-theoretic analysis of leakage
in both cryptographic algorithms and communication networks. For cryptosystems, Gierlichs
et al. [23] abstracted a side channel as a mapping between the cryptographic key K, the side
channel inputs x1, x2, · · · , xn and the corresponding side channel outputs o1, o2, · · · , on. They
empirically computed the distribution PK(O|X) and used empirical mutual-information as a
classifier; i.e. the key K̂ was the estimate if it maximized the empirical mutual information
max
K

Hk(X)−HK(X|O). Köpf and Basin created an information-theoretic model for adaptive
side-channel attacks on a generic cryptosystem and obtained upper-bounds on the remaining
key-entropy after n uses of the channel [38]. Köpf and Dürmuth used method-of-types results
to show that the number of bits of the cryptographic key revealed by a side-channel attack is
upper-bounded by |O| log2(n + 1), where |O| is the number of possible side channel outputs
and n is the number of observations [39][40]. Mizuno et al. used channel capacity of analog
communication channels; i.e. 1

2

√
1 + signal−power

noise−power , as a metric for attacks that employ power
consumption analysis [45]. Demme et al. used correlation between the user’s behavior and the
attacker’s observation to develop a metric called the side-channel vulnerability factor [12].

In communication networks, information-theoretic metrics have traditionally been used as
anonymity measures. Berthold et al. [4] measured the anonymity of a communication pair
as the size of the anonymity set, which is the set of all pairs that could possibly communi-
cate. However, each communicating pair may not be equally likely to generate a specific
communication activity. For such scenarios, Serjantov and Danezis [60] provided an alter-
nate metric in terms of the Shannon entropy of the probability distribution over the anonymity
set. Under the chosen metric, anonymity leakage is defined as the reduction in anonymity
due to the attacker’s observations. The reduction in anonymity is sometimes normalized with
the a-priori anonymity to account for different starting conditions [14]. Based on these met-
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rics, several works have quantitatively analyzed anonymity systems. Ghaderi and Srikant [22]
quantified the anonymity of a mix node under attacker’s observations and identified the strate-
gies that maximize anonymity under a given delay constraint. Mathur and Trappe [43] per-
formed an information-theoretic analysis of randomization-based countermeasures that pre-
vent anonymity leakage through packet length and timing characteristics. Kesdogan et al. [17]
explored the notion of probabilistic anonymity for anonymous networks and developed a coun-
termeasure, stop-and-go mixing. Chatzikokolakis et al. modeled anonymity protocols as noisy
channels and used channel capacity as an anonymity metric [7]. Gong et al.[27] developed
a mathematical model of shared packet schedulers and computed the information leakage in
terms of the mutual information between user’s packet arrival rate and attacker’s probing rate.

Despite significant effort on quantitative analyses of side-channel attacks, a number of
limitations to current approaches exist which reduce their impact on practical system design.
Specifically,

• Choice of non-uniform quantitative metrics: There is significant diversity in the choice
of metrics used in the literature. Metrics used for information leakage range from re-
duction in entropy to normalized mutual-information and capacity. Other metrics like
side-channel vulnerability factor, rely on correlation as opposed to entropy. The associ-
ation between these metrics and real-world performance measures, like accuracy of in-
formation learned, has not been established. Additionally, the diversity of metrics makes
it difficult to develop relationships among them and therefore, comparative analysis be-
comes challenging.

• Choice of specific attack strategies: Even when a detailed model of the side channel
is available, several analyses are limited to specific and often simplistic attack strate-
gies. Adaptive strategies, where the attacker uses past information to decide next inputs,
are generally ignored even when adaptive attacks, which are demonstrably stronger, are
feasible. As we report later in the thesis, adaptive attacks can cause significantly more
information leakage for the same resource budget. Thus, even under suitable metrics,
most analyses do not measure the worst-case leakage of the system.

The results reported in this thesis remove these limitations by providing a general side-channel
model which can be used to quantitatively analyze a wide variety of side channels. Under this
model, we define three metrics: 1) capacity, 2) reliability rate, and 3) leakage. We show that
capacity is an ill-suited metric for side-channel as it cannot guarantee accuracy of retrieved
information. Instead, we propose the use of reliability rate and leakage which measure the
accuracy of leaked information and rate of information leakage, respectively. We define notions
of security under both metrics and show that these notions are not equivalent to each other.

1.3 Analysis of Information-leakage Metrics: Capacity, Reli-
ability Rate, and Leakage

In principle, side channels are statistical relationships between the user’s secret, attacker’s in-
puts, and side-channel outputs. This relationship can be represented as a probability distribution
on side-channel outputs conditioned on side-channel inputs. A generalized side-channel model
can be developed by using this description of side channels.
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1.3.1 A General Side Channel Model
A general side channel can be modeled as a discrete-time, two input-single-output system, as
illustrated in Figure1.1. In every time-slot, the attacker and user issue one input each. The side
channel produces one output that depends on the inputs and previous outputs. The attacker
observes this output and uses his observations to estimate of the user’s inputs.

User’s input process: Depending on the scenario, the user’s input can be a single value;
e.g., a cryptographic key, or a sequence of values; e.g., a stream of packets in a network [16].
For the first case, the user’s input is represented by a single value d ∈ D, whereas, for the latter
case, the ith input of the user is represented by di ∈ D.

Usage Mapping: The two scenarios, where the user issues a single input, d, or a sequence
of inputs, dn, are not conceptually distant from each other. The user can make a singular
choice h ∈ H about his true secret; e.g, a website, and the choice of h determines the dn;
e.g., a sequence of packets, that is input to the side channel through a mapping U : h → dn.
For example, in shared packet schedulers, the user may be assumed to generate a sequence of
packets, dn, through a random process; e.g., Bernoulli [27], or to select a website h which then
determines the sequence of packets dn [26]. In the first case, the attacker would aim to learn
the sequence, dn, while the object-of-interest in the later case is h. The mapping U is named
usage mapping because it determines how the system is used for a specific choice made by the
user, for example, the packet arrival pattern of a chosen website. This distinction is important
in distinguishing reliability rate and leakage metrics.

Attacker’s strategy: The attacker strategy is specified by the choice of his inputs. Let
xi ∈ X represents the attacker’s ith input to the system. For a general case, xi might be chosen
as an adaptive function of all the previous inputs the attacker has issued to the system and
corresponding outputs; i.e. xi = f(xi−1, yi−1). After issuing n inputs to the system, xn, and
observing the corresponding side-channel outputs, yn, the attacker applies an estimator g to
produce an estimate d̂ of the user’s secret. The tuple (f, g) collectively specify the attacker’s
strategy. If the attacker’s ith input is independent of past observations, then the strategy is said
to be non-adaptive.

y1, y2, · · ·

USER

d̂

Side channel

ATTACKER

x1, x2, · · ·

d ∈ D
p(yi|xi, yi−1, d) g(xn, yn)

xi = f(xi−1, yi−1)

Figure 1.1: A generic model for side channel

Side-channel model: Let yi ∈ Y be the ith output of the side channel. Then, in the most
general case, yi is dependent on all the previous inputs xi, di, and outputs yi−1. The stochastic
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relationship, represented as a probability distribution P (yi|xi, di, yi−1), specifies the side chan-
nel in entirety. The side channel is assumed to be non-anticipatory or causal; i.e. outputs do not
depends on future inputs. The side channel is called memory-less if yi is statistically indepen-
dent of xi−1, di−1, and yi−1, given xi and di. In cases where the user only makes one input; e.g.,
a secret key, to the system, the side channel is described by the distribution P (yi|xi, yi−1, d).
The goal of the attacker is to learn the user’s input, d or dn (eventually h), depending on the
setup.

Definition 1. The probability of error Pe of an attacker under strategy f(), g() is defined as:

Pe ≡ P (g(xn, yn) 6= d)

Pe serves as a measure of success for any attack strategy as it quantifies reliability of infor-
mation learned under an attack strategy.

We note that Pe may not be a suitable metric in scenarios where the attacker can tolerate
some distortion in the information learned. A different metric, such as average Hamming or
Euclidean distance, must be used in such scenario. For the scope of this work, we limit the
discussion to Pe. With a general stochastic model for side channels, we proceed with our
discussion on the right metrics to quantify information leakage.

1.3.2 Comparison of Quantitative Metrics of Information Leakage

Intuitively, an information flows, such as a side channel, is a statistical relationship between the
inputs and outputs of the flow that allow estimation of the input by observing the output. Other
examples of information flows are classical transmission channels or covert channels which can
be used by a Trojan Horse to cross system’s access control boundaries. For any information
flow, a metric of interest is the size of the flow; i.e. number of bits transferred/leaked per chan-
nel use. At the same time, it is also important to ensure that the information transferred/leaked
is accurate (reliable) and that the metric can be easily generalized to analyze different setups
that use the same channel.

For transmission channels and covert channels, the notion of capacity fulfills all the re-
quirements [25]. It measures the maximum rate (bits per channel use) of information transfer
while satisfying reliability constraints. Capacity also bounds the rate achieved by any com-
munication system which uses the underlying channel. It serves as a performance benchmark
for all encoding-decoding schemes, thus providing a general analysis for the given channel.
While capacity may be an attractive metric for analyzing side channels, to date, no work has
been able to demonstrate a direct relation between side-channel capacity and vanishingly low
Pe. Discouragingly, as we show later in this section, this association is impossible for side
channels.

This motivates us to propose the use of two metrics: reliability rate and leakage, that mea-
sure accuracy of information and leakage rate, separately. Both metrics are applied to distinct
side-channel setups, reliability rate for a single user input and leakage for a sequence of in-
puts from the user. Reliability rate is measured as the optimal error-exponent of the attacker
in a hypothesis-testing framework, where he estimates the underlying user input d ∈ D. A
positive reliability rate ensures that Pe approaches zero as the number of attacker’s inputs ap-
proaches ∞. In contrast, leakage is measured in terms of the asymptotic mutual-information
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rate between the user’s input sequence and the attacker’s input-output sequence. Since leak-
age measurement is independent of the usage mapping, the analysis applies to all mappings,
providing a new metric that is distinct from the reliability rate. Table 1.1 summarizes how
each metric fares along the directions of reliability and generality. We now define each metric
formally, which enables us to provide rigor to intuition.

Metric Reliability Generality
Capacity 3 3

Reliability rate 3 7

Leakage 7 3

Table 1.1: Performance of different metrics on two aspects: reliability of information and generalization
over all security parameters

Capacity

We first review the definition of channel capacity for classical transmission channels and use
it to develop a similar definition for side-channels. In the case of classical transmission chan-
nels, channel capacity measures the maximum number of bits that can be reliably transmitted
through the channel. The transmitter chooses a message, M ∈M, that needs to be transmitted
over a discrete memory-less channel (DMC). The channel takes inputs xi ∈ X and produces
corresponding outputs yi ∈ Y at the receiver. The channel is specified by the stochastic map-
ping P (yi|xi). Given the message, M , the encoder chooses an n-length code word, xn through
an encoding function f : M → X n. The receiver receives a series of outputs, yn, produced
by the channel. Using yn, the receiver estimates the transmitted message M̂ using a decoding
function, g : Yn →M. A error is made if M̂ 6= M . A rate R is said to be admissible, if there
exist a number n, and encoding function, f , and a decoding function, g such that

lim
n→∞

P (M̂ 6= M) = 0 and lim
n→∞

log |M|
n

≥ R

The channel capacity is defined as the maximum achievable rate; i.e.

C = sup
R is admissible

R

For a DMC specified by the probability distribution P (y|x),

C = max
p(x)

I(X;Y ).

We formally define the capacity of a general side channel model along the same lines.

Definition 2. A side-channel rate, R, is said to be admissible if there exists an encoding f()
and an estimator g() such that

(1) lim
N→∞

Pe = 0

(2) lim
N→∞

logm

N
≥ R
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Definition 3. The capacity, C, of the side channel is defined as the supremum of all admissible
rates, i.e.

C = sup
R is admissible

R

This definition essentially provides a measure for the maximum asymptotic rate at which
the user’s information can be learned by the attacker while ensuring reliability of information
learned. However, this definition is ill-suited for a general side-channel for the following rea-
sons.

• The side-channel probability transition function P (yi|xi, d) does not scale with the in-
crease in the user’s input space. For example, the side-channel description for 256-bit
RSA is completely different that for 512-bit RSA. This implies that number of inputs
required to achieve a given Pe need not scale exponentially with the size of the secret.

• Alternatively, if the user’s input space is fixed, then the number of bits that the attacker
needs to learn is finite and therefore, the asymptotic capacity is zero.

• The user’s inputs to the side channel depend on the usage mapping and therefore, cannot
be guaranteed to have a minimum separation required to achieve low probability of error.

• Existence of capacity relies on the existence of sequences (code words) that lead to dis-
joint output sequences. The encoder selects one of such sequences to transmit a specific
message. This, however, requires the knowledge of the message that needs to be trans-
mitted. In the case of side-channel, the choice of the secret is made by the user and is
unknown to the attacker, prohibiting him from selecting optimal code words.

In the absence of a viable definition of side-channel capacity, we formulate alternate metrics:
reliability rate and leakage to measure accuracy and rate of information leakage.

Reliability rate

Irrespective of the form of information of the user, a side channel attack can be modeled as a
multi-hypothesis testing problem. The user’s input to the side channel is either a single secret
d ∈ D or a sequence of inputs, dn which may be specified by his secret h through a usage
mapping, U : h → dn. The attacker issues n inputs, xn to the system (adaptively or non-
adaptively) and observes the corresponding n-output vector yn. Using xn and yn, the attacker
identifies the underlying hypothesis d̂ (or ĥ). The attacker’s probability of error w.r.t. ith

hypothesis is given by
Pe(i) = P [d̂ 6= di|di]

The average probability of error Pe is given by,

Pe =
∑
di

P (di)Pe(i).

The reliability rate of an attack strategy, specified by the input distribution f() and the
classifier g(), is defined as,

reliabilityrate = lim
n→∞

− logPe
n
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Reliability rate essentially measures the asymptotic exponential-rate at which the proba-
bility of error decreases with the number of samples n. The higher the reliability rate, the
faster the probability of error reduces which implies higher accuracy. A positive reliability rate
ensures that the Pe goes to 0 with increasing n. This metric is very effective at comparing
different attack strategies for the same setup. However, the analysis of reliability rate varies
for different D, prior distributions on the hypothesis, or different usage mappings and is not
general. To provide generality of analysis, we next define the leakage metric.

Leakage

Leakage is defined for the scenario when the user issues a sequence of inputs, dn. Leakage
attempts to measure the asymptotic mutual information rate between the user’s input and the
attacker’s observations, xn and yn. This is is defined as follows.

Definition 1. Leakage of a side channel, L, for an attack strategy p(yn|yn, wn), is defined as:

L = lim
n→∞

1− H(Dn||Xn, Y n)

H(Dn||Xn)

where, H( || ) represents causally-conditioned entropy [42]. Leakage has certain favorable
properties:

• L ∈ (0, 1), where leakage of 0 implies no information leakage but leakage of 1 implies
total information leakage

• Since leakage measures the mutual information between the direct inputs and outputs
of the side channel, it is independent of usage mappings. This has an advantage over
reliability rate which is defined for a specific usage mapping and therefore, more general.

• While leakage cannot be used to provide strong bounds on Pe, it can be used to provide
bounds on other performance metrics, such as average distortion.

Although reliability rate and leakage complement each other, in terms of computing the
accuracy and the rate of information leakage, these metrics are not equivalent. Since leakage
quantifies the amount of information leaked about final side-channel inputs from the user, se-
curity under this metric may be considered intuitively stronger. Notions of semantic security
under each criteria can be defined as,

Definition 2. A system is said to be secure under leakage criteria; i.e. L− secure, if the side-
channel leakage is 0. Similarly, a system is said to be secure under the reliability rate criteria;
i.e. R− secure, if the reliability rate is 0.

Then, we have

Theorem 1. 1) The security of a system under the leakage criteria does not imply the security
of system under the reliability rate criteria; i.e.

L− secure; R− secure
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2) The security of a system under the reliability rate criteria does not imply the security of
system under the leakage criteria; i.e.

R− secure; L− secure

That is, neither of these notions of security can guarantee the other.

Proof. We create counterexamples when both of these relationships are true.
1) Consider a channel in which the output of the channel, yi is noiseless for i = {0, · · · , log2 |H|}
and completely random and independent of the inputs for i > log2 |H| . In that case, the user
might leak-out the hypothesis, h during the first log2 |H| by simply leaking the secret. In this
case, since the remaining y are independent of the inputs, the limiting mutual information-rate
will be 0. Thus, the system will be L− secure but not R− secure.

2) To show the lack of a converse, we provide a different counterexample that where the
system is R − secure but not L − secure. Consider the example of side channel in packet
schedulers. Here, the leakage of the system measures the mutual information between the
attacker’s observations and the user’s packet arrival pattern. Assume that the leakage of the
system is 1; i.e. the attacker can learn the user’s packet arrival pattern with complete certainty.
Even in this case, if all websites map to the same the packet arrival pattern; e.g., a constant
bit-rate traffic stream, the attacker cannot distinguish between any two website by performing
a side channel attack; i.e. the system is R − secure but not L − secure. This shows that
R− secure; L− secure, which completes the proof.

This theorem shows that these two criteria for security against side-channel attacks are
different from each other and therefore, the computation of each of them provides different
insights on the security of systems. Using this analysis as a foundation, the thesis makes the
following contributions.

1.4 Contributions
The first contribution of the thesis is the analysis of information leakage metrics presented in
the previous section. We use the reliability rate and leakage metrics to analyze three different
side channels in : a) communication end-devices, b) network components, and c) cryptographic
algorithms.

Side channels in communication end-points

Side channels present in a communication end-point device reveal its busy/idle activity status.
Correlation in such activity among multiple parties can leak private communication relation-
ships represented by call-records. We develop a mathematical model for Private Communi-
cation Detection of two parties where the attacker sends periodically probes each party and
observes their busy/idle status over a period of time. He uses this information to learn call-
records and breach caller-callee anonymity. For this model,

• We compute the reliability rate of the attacker in detecting private communication be-
tween these parties and analyze its relationship with communication parameters and
probing rate of the attacker.
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• For two communicating parties, we compute the leakage of their call-record information
achieved by PCD. We analyze the impact of observation noise on anonymity leakage and
compute the reduction in leakage in terms of the channel capacity of noisy-channel.

• We develop resource-randomization based countermeasures against PCD. These coun-
termeasure work by adding artificial noise in the attacker’s observations. The anonymity
gain of such countermeasures is defined in terms of the normalized reduction in anonymity
leakage of the system. We show that our countermeasures can potentially thwart PCD
completely.

Side channels in network components

Side channel present in network components, such as packet schedulers, allow an attacker
to learn traffic patterns of private traffic streams. Knowledge of these patterns can be used
to identify the source or the path of traffic stream, breaching traffic anonymity. We use the
theoretical model of first-come-first-serve packet scheduler, developed by Gong et al. [27],
to identify optimal attack strategies for leakage of traffic patterns. Optimal strategies make
efficient use of the attacker’s bandwidth resources and allow him to perform large-scale attacks.
In each of the following cases, optimal strategies are identified by solving linear programs
which make it easy for an attacker with moderate capabilities to use them. Specifically,

• We discover optimal non-adaptive attack strategies for a given attack bandwidth and
demonstrate upto 1000% gain in leakage compared to geometric probing of [27].

• We develop a new leakage metric to analyze adaptive strategies and demonstrate upto
30% increase in leakage compared to optimal non-adaptive strategies, highlighting the
importance of analyzing adaptive side-channel attack strategies.

• We identify optimal real-world strategies where the attacker has a limited view of past
outputs and show that they achieve higher leakage compared to non-adaptive strategies
for the same attack bandwidth.

Side channels in cryptographic algorithms

Decryption times of chosen ciphertexts allow an attacker to learn the secret key or modulus
used in a modular exponentiation-based cryptosystems. For quantifying information leakage
in cryptographic algorithms using our metrics, we employ Schindler’s stochastic model for
computation times of a modular exponentiation [58]. In particular,

• We compute the optimal reliability rate of an attacker in estimating secret prime modulus
for RSA with CRT.

• We develop a novel asymptotic model for the timing side channel in Montgomery Multi-
plication and show that the leakage of the algorithm computed under this model provides
an upper bound for the side-channel leakage of any cryptosystem that uses the Mont-
gomery Multiplication routine.

• We finally analyze two well-known countermeasures to timing attacks: exponent blind-
ing and caching. We compute the reduction in leakage under each countermeasure and
identify the conditions under which one outperforms the other.
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In addition to analyzing side-channel attacks and countermeasures under these diverse sys-
tems, this thesis also provides a method for quantitative analysis of side-channel attacks in other
systems.
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Chapter 2

Side Channels in Communication
End-point Devices

Communication records often reveal private relationships between two communicating par-
ties. For example, they capture interaction frequency over time, evidence of recent interaction,
communication reciprocity, and the existence of at least one mutual friend that links the two
parties. These parameters provide a fairly accurate indication of tie strength between two par-
ties [24]. As a consequence, communication-record analysis has been one of the key tools used
by analysts to discover the social milieu of targeted individuals or groups. Naturally, access
to communication records is restricted by law in many countries and carefully controlled by
service providers who collect them [29].

Privacy concerns raised by wholesale collection of VoIP and other call records have led
to question of whether collection of such records could be thwarted by the use of private net-
works. These networks would not merely provide the confidentiality of the call content. Equally
importantly, they could also provide both flow anonymity and user pseudonymity properties,
which would make wholesale collection of call records challenging. However, even if private
networks could support VoIP calls in the future, they would still be vulnerable to a side-channel
attack, known as private communication detection (PCD) [35]. In a PCD attack, an analyst,
henceforth called the attacker, first detects the busy/idle activity status of a target by exploiting
resource-contention side channels present in a target’s VoIP device. He then correlates this
information for multiple targets over a period of time and discovers their pairwise call records.
Such attacks have been demonstrated in a number of common communication technologies
including VoIP, Wi-Fi, 3G, and instant messaging [34] [33]. More importantly, they can be
launched remotely, at low cost, and do not require direct manipulation of the targets’ com-
munication resources. However, they require that an attacker has the ability to send/receive
messages to/from the targeted communication devices without detection. Clearly, the mere
correlation of the activity of different targets may not necessarily imply the existence of a re-
lationship between them. For example, if the attacker’s measurement of a target’s busy/idle
activity status is noisy, the correlation between the observed activities cannot be relied upon.
Furthermore, in the presence of multiple users in the network, two targets may be busy at the
same time while talking to other communication partners and not with each other. Hence,
simplistic analyses might indicate the existence of a relationship when none exists. Accurate
analyses become important both for privacy advocates, who want to quantify the amount of
anonymity leakage caused by PCD and the efficacy of countermeasures, and for the call-record
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Figure 2.1: Network model

collector (i.e., the attacker), who may have to rely on PCD when no other collection means are
available; e.g., in a foreign jurisdiction.

In this chapter, we study the efficacy of PCD for a two-target scenario illustrated in Fig-
ure 2.1. Here an attacker, Eve, periodically probes two targets, Alice and Bob, aiming to collect
enough activity logs and discover whether a relationship exists, with demonstrable accuracy.
We develop a mathematical model to represent the calling behavior of the two targets and the
probing strategy of the attacker. Under this model, we make the following contributions.

• Reliability rate of the attacker in estimating communication relationships: We pro-
vide upper bounds on the probability of an attacker and the reliability rate in accurately
classifying the communication relationship between the two targets (i.e., as existent or
non-existent). We analyze its relationship with parameters like the number of samples
collected, the probe rate, and call parameters.

• Quantitative analysis of the anonymity leakage: Once the communication relation-
ship between the two targets is accurately established, the attacker aims to learn their
communication details; e.g., the time and length of each conversation between them. We
compute the leakage of call-record information due to the knowledge of activity-logs
under the definition presented in Chapter 1.

• Countermeasures and their efficacy: We study the efficacy of practical countermea-
sures, such as resource randomization and firewalls, which thwart PCD attacks in a quan-
tifiable manner. Using our leakage model, we measure the efficacy of a countermeasure
as the reduction in the anonymity leakage. Our analysis shows that resource random-
ization outperforms the use of firewalls and has the potential to completely thwart PCD
by introducing noise in the adversary’s side channel. In some cases, however, the use of
randomization is limited due to system usability constraints.
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2.1 System Description

In this section, we present the employed network and call arrival-service model for analyzing
PCD in a two-target scenario and the reasoning behind the assumptions made for the analysis.
First, we specify the network model and assumptions.

2.1.1 Network Model

We consider a simple communication network consisting of two targets: Alice and Bob, an at-
tacker Eve, and third-parties: FA and FB, as shown in Figure 2.1. Eve is aware of the existence
of a communication relationship between Alice-FA and Bob-FB but does not have any a-priori
information about the existence of the communication relationship between Alice and Bob,
either existent or non-existent. Eve probes both Alice and Bob but is not capable of probing
either FA or FB. While, this model assumes that both Alice and Bob have only one third-party
friend each, under appropriate modeling of call arrival-service, the existence of multiple third-
party friends can be abstracted by that of a single entity, FA or FB. For example, let Alice have
two third-party friends: Carol and David. If Alice speaks to Carol for 5 minutes in an hour over
multiple calls and to David for 15 minutes in an hour, then they both may be represented by
one friend, with whom Alice speaks for 20 minutes in an hour. This abstraction is warranted
because Eve is not interested in the communication relationship or call records between Alice
and her third-party friends, and also explains Eve’s inability to probe FA or FB as they may not
be unique individuals. In Section 2.2, we provide the call arrival-service model that enables us
to use this abstraction.
Remark 1: Realistically, Alice and Bob may have common friends; i.e. FA ∩ FB 6= ∅, but we
assume that Alice and Bob do not talk to a mutual friend simultaneously. This assumption is
justified as we are only interested in the pair-wise communication relationships of the targets
and not in teleconferencing over multiple parties.
Remark 2: The attacker is only required to know the aggregate communication parameters; i.e.
call arrival-service rates between Alice, Bob, and their third-party friends. It is not required to
possess knowledge of either the identities or number of third-party friends of Alice and Bob.
The attacker’s lack of knowledge of the identities of the third-party friends is another reason
for his inability to probe them. This model arises in many real-world scenarios, such as,

• Detecting communication relationships across privacy-preserving jurisdictions: Con-
sider two countries that authorize their law enforcement agencies to perform bulk domes-
tic call records collection, and assume that these agencies cooperate to detect communi-
cation relationships between selected individuals across their national border. However,
privacy protection laws may prevent exchanging call records across national borders,
but allow the sharing of aggregate communication parameters, since they do not reveal
individuals’ identities or call patterns. Our PCD model enables the detection of call re-
lationships between such individuals without requiring exchanges of private foreign call
records.

• Detecting communication relationships using past call records: Legally-authorized,
bulk call record collection is typically restricted in time; e.g., six months. Suppose that re-
tention of derived aggregate communication parameters beyond the temporary call record
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authorization is not prevented, since it does not reveal individuals’ identities or call pat-
terns. Under these circumstances,our PCD model enables the detection of communica-
tion relationship between two selected individuals based on past aggregate communica-
tion parameters, since PCD can be performed without any legal restrictions; i.e., access
to public signals cannot be prevented.

The above examples show that even when individuals’ identities or call patterns are not re-
vealed by innocuous aggregate communication parameters, PCD can in fact lead to call record
collection. Next, we specify the call arrival-service model and assumptions.

2.1.2 Call Arrival-Service Model

Call arrival process: Call arrivals between any two communicating parties follow the Poisson
call arrival process with a corresponding arrival rate. The Poisson arrival process has been used
extensively to model call-arrivals in telephony systems in the literature. Empirical studies have
also verified that the Poisson distribution models call arrivals at a real telecommunication node,
such as a telephone exchange, accurately [65]. Additionally, we assume that all communicating
parties are non-colluding and no ancillary information about the social graph of third-parties is
available. Under these conditions, calling behavior of different parties is independent of each
other.

Call service model: The service time for each call, or the call duration, is assumed to follow
the i.i.d exponential distribution with an appropriate rate parameter.

Time in the system is discretized into blocks of length “∆” seconds, which serves as the
fundamental unit of time in the system. ∆ is assumed to be sufficiently small so that the device
can only undergo one transition per time-slot.

A simple example: Consider a device A that only has a single communication partner B.
Calls arrive on this line following the Poisson arrival process with rate λ. Thus, the inter-arrival
time between consecutive calls follows an i.i.d. exponential distribution. Also, call duration
follows the exponential distribution with parameter µ. In any given time-slot, A can be on a
call with B (busy) or not (idle). If A is idle in the current time-slot, then it remains idle in the
next time-slot if there is no call arrival in the next ∆ seconds; i.e. with probability e−λ∆. A
transitions to busy in the next time-slot with probability 1 − e−λ∆. Similarly, if A is busy in
the current time-slot, then it remains busy in the next time-slot if the remaining call duration is
greater than ∆ seconds; i.e. with probability e−µ∆. A transitions from busy to idle in the next
time-slot with probability 1−e−µ∆. Due to the memorylessness of the call service time and call
inter-arrival time distribution (both exponential), the calling behavior of A can be represented
as a stationary first-order Markov chain, as depicted in Figure 2.2.

e−µ∆ 1− e−µ∆
e−λ∆

1− e−λ∆

BUSY IDLE

Figure 2.2: Transition diagram for a single device

34



Another salient feature of the Poisson arrival model is that it satisfies the condition men-
tioned in Section 3.1, i.e. capturing the effect of multiple third-party friends in a single third-
party with appropriate modifications in the rate parameters. Specifically, if Alice has two
friends Carol and David, and Alice speaks to Carol with a rate λC and to David with a rate
λD, then the probability that Alice remains idle in the next time-slot equals the probability of
no call arrivals from either Carol or David: i.e. e−λC∆e−λD∆ = e−(λC+λD)∆ (due to indepen-
dence of call-arrivals from different parties). This makes the existence of Carol and David
equivalent to a single third party friend who speaks to Alice with a call rate λC + λD. Similar
abstraction can be done for call duration.

Now, we extend this model to represent the calling behavior of Alice and Bob in two sce-
narios: a) when they do not have a communication relationship with each other and b) when
they have a communication relationship with each other. In scenario a), Alice and Bob have
social relationships with FA and FB respectively but not with each other. Therefore, their iso-
lated individual behavior can be represented by the model in Figure 2.2 albeit with different
parameters (λA, µA) and (λB, µB). In the absence of a communication relationship between
them, the behavior of Alice and Bob is independent of each other and therefore, the collective
transition probabilities are the product of respective individual transition probabilities. Alice
and Bob can have four possible states: (Alice is idle, Bob is idle), (Alice is idle, Bob communi-
cates with FB), (Alice communicates with FA, Bob is idle), and (Alice communicated with FA,
Bob communicates with FB) which are represented as (0,0), (0,1), (1,0), and (1,1) respectively.
The collective state transition diagram is shown in Figure 2.3.

10

e−(λA+µB)∆

e−(λA+λB)∆ e−(µA+µB)∆

e−(µA+λB)∆

e−λA∆(1− e−λB∆)
e−λA∆(1− e−µB∆)

e−λB∆(1− e−λA∆)

e−µB∆(1− e−λA∆)
e−µB∆(1− e−µA∆)

e−µA∆(1− e−λB∆)

e−µA∆(1− e−µB∆)

00

01

11

e−λB∆(1− e−µA∆)

Figure 2.3: Joint transition diagram when no relationship exists between Alice and Bob

The stationary distribution (π) of this Markov chain can be calculated as:

π(00) =

(
1− e−µA∆

) (
1− e−µB∆

)
(2− e−λA∆ − e−µA∆) (2− e−λB∆ − e−µB∆)

π(01) =

(
1− e−µA∆

) (
1− e−λB∆

)
(2− e−λA∆ − e−µA∆) (2− e−λB∆ − e−µB∆)

π(10) =

(
1− e−λA∆

) (
1− e−µB∆

)
(2− e−λA∆ − e−µA∆) (2− e−λB∆ − e−µB∆)
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π(11) =

(
1− e−λA∆

) (
1− e−λB∆

)
(2− e−λA∆ − e−µA∆) (2− e−λB∆ − e−µB∆)

In scenario b), Alice and Bob have a communication relationship with each other and there-
fore, their behavior is not independent of each other, specifically when they are on a call with
each other. Let (λAB, µAB) be the call arrival-service parameters for communication between
Alice and Bob. Alice and Bob can jointly be in 5 possible states: (Alice is idle, Bob is idle),
(Alice is idle, Bob is communicating with FB), (Alice is communicating with FA, Bob is idle),
(Alice is communicating with FA, Bob is communicating with FB), and (Alice communicates
with Bob) which are represented as (0,0), (0,1), (1,0), (1,1), and (1, 1) respectively. When Al-
ice and Bob speak to each other, they must return to the idle state before establishing any other
call as “∆” is assumed to be sufficiently small to prohibit multiple transitions in one time-slot.
In the case of a collision between calls from different parties arriving in the same time-slot,
preference is given to calls between Alice and Bob; i.e., they can establish calls to third parties
in a time-slot only if they do not receive a call from each other. This assumption is required to
ensure that sum of transition probabilities equals 1 but does not particularly impact or favor our
analysis. This is the case because ∆ is sufficiently small such that the likelihood of independent
call-arrivals from different parties to the same user in the same time-slot is small. The analysis
can be done under an alternate assumption; e.g., priority to calls from third-parties, with minor
modifications to the state transition probabilities. The collective state transition diagram for
Alice and Bob’s activity when they have a communication relationship is shown in Figure 2.4.

00

e−λAB∆e−λA∆(1− e−λB∆)

1− e−µAB∆

e−µAB∆ 1− e−λAB∆

e−λAB∆e−λB∆(1− e−λA∆)
10

01

1̄1 11

Figure 2.4: Joint transition diagram when a relationship exists between Alice and Bob

The stationary distribution (πi) of this Markov chain can be calculated as:

π00 =
1

1 +
∑

i∈{01,10,11,11}

πi

π00

where,

π01 =
e−λAB∆

(
1− e−µA∆

) (
1− e−λB∆

)
(1− e−µA∆) (1− e−µB∆))

π00

π10 =
e−λAB∆

(
1− e−λA∆

) (
1− e−µB∆

)
(1− e−µA∆) (1− e−µB∆)

π00
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π11 =
e−λAB∆

(
1− e−λA∆

) (
1− e−λB∆

)
(1− e−µA∆) (1− e−µB∆)

π00

π11 =
1− e−λAB∆

1− e−µAB∆
π00

Finally, Eve does not get to observe the actual calling behavior but only the activities of both
the targets. In that case, it cannot distinguish between the states (1,1) and (1, 1). We denote
“busy” as 1 and “idle” as 0 to represent the activity of a device, which makes the mapping from
the calling status to activity-logs as shown in Figure 2.5.

Call	
  behavior	
  
	
  
	
  

(idle,	
  idle)	
  
	
  
	
  

(idle,	
  FB)	
  
	
  
	
  

(FA,	
  idle)	
  
	
  
	
  

(FA,	
  FB)	
  
	
  
	
  

(A-­‐B)	
  

Ac5vity	
  
	
  
	
  

(0,0)	
  
	
  
	
  

(0,1)	
  
	
  
	
  

(1,0)	
  
	
  
	
  
	
  

(1,1)	
  

Figure 2.5: Mapping from calling behavior to activities

With the network and call arrival-service model specified, we move to the modeling of the
busy/idle probing process of the attacker, in the next section.

2.2 Probing
The core of private communication detection is the detection of the busy/idle activity status of
a target device. Side channel attacks can be employed to achieve this goal. In session initiation
protocol (SIP) based VoIP networks, a resource saturation side channel can be exploited by an
ordinary user of the network; i.e. without any special privileges, to acquire busy/idle activity
status information for other users [35]. Every SIP device maintains a finite buffer that is used
to store the context of protocol negotiation until a response is generated for the corresponding
request. Each SIP request occupies one slot on the buffer. If the buffer gets full, the full-
buffer-condition can be learned by the attacker due to generation of a different response by the
target device. To perform busy/idle status detection, the attacker sends periodic SIP requests or
probes (modified so that they don’t alarm the target by ringing the device) to the target device
and counts the number of probes required to cause the full-buffer-condition. Depending on
the number of probes and the size of the buffer (as per the device specification), the attacker
can learn if the device has an existing SIP request or not, thus revealing the busy/idle status of
the device. Similarly, in Wi-Fi networks, the attacker can perform busy/idle status detection
either by computing delay of his probes, as VoIP packets get priority, or sensing the Wi-Fi
channel [33, 34].
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Periodic probing strategy: To accurately model the periodic probing process of real-world
attacks demonstrated by Jong and Gligor [34, 35], we assume that Eve sends probes to both
Alice and Bob every T seconds and obtains their busy/idle status information over n samples.
The time-gap between consecutive probes, T , is restricted to being an integer multiple of ∆;
i.e. T = r∆ for some integer r. The probe rate of the attacker is defined as 1/T . If r > 1,
then the attacker only gets to observe the activity of Alice and Bob every r transitions. If M
represents the probability transition matrix of calling behavior over consecutive time-slots, then
the probability transition matrix over every r time-slots can be computed as M r. As r → ∞,
M r tends to the stationary distribution of the Markov chain. This implies that for small probe
rate of the attacker, the observed activity at a given probe instance is independent of the activity
observed in the past.

Observation noise: In the case of SIP-based VoIP networks, busy/idle status detection is
done by observing the full-buffer-condition. This technique has no significant source of noise
except packet drop which can be ignored for a wired medium. Therefore, we assume that the
probing process of the attacker is noiseless. This assumption may not be true for other busy/idle
detection mechanism, such as in Wi-Fi networks. However, modeling of noise in the attacker’s
observation process can always be done separately as a noisy channel between the true activity
status and the activity status observed by the attacker.

Probe timeliness: Another assumption of this analysis is the timeliness of the probes, i.e.
the probes do not incur significant propagation delay and notify the attacker about the instanta-
neous activity of the target. In the case of SIP-based VoIP networks, where packets are required
to have transmission delay of less than 400 ms, this assumption is reasonable because the scale
of call arrival-service is typically much larger than 400 ms. For example, a typical conversation
lasts at least 30 seconds. Similarly, in the case of Wi-Fi networks where busy/idle detection can
be done by sensing the channel, the probing delay is small to not cause any significant shift in
the time-series of the activities of the two targets. Therefore, this assumption is justified.

Table 2.1: Notation

P r Probability transition matrix over joint calling
behavior in the case of no communication relationship
and probe rate 1/r∆

pri→j Individual transition probability
from state i to j under P r

πi Steady state probability of state i under P
pr(crn) Probability of observing a given

call record crn under P r

P
r

Probability transition matrix over joint calling
behavior in the case of communication relationship
and probe rate 1/r∆

pri→j Transition probability
from state i to j under P

r

πi Steady state probability of state i under P
pr(crn) Probability of observing a given

call-record (crn) under P
r

T (aln) Set of all call-record (crn) that map to aln

38



Table 2.1 lists the notation used in this analysis. With the system model and assumptions in
place, we analyze the accuracy of the attacker in detecting communication relationships in the
next section.

2.3 Estimation of Communication Relationships
With the information gathered through a PCD attack on Alice and Bob, the first analysis that the
attacker Eve can perform is to learn whether Alice and Bob have a communication relationship
or not. This analysis can be formulated as a binary hypothesis testing problem where the null
hypothesis (H0) assumes that there is no relationship and the alternate hypothesis (H1) assumes
that a communication relationship exists. The Markov models shown in Figure 2.3 and 2.4 can
be used to describe calling behavior of Alice and Bob under H0 and H1 respectively.

2.3.1 Analysis of the Maximum A-posteriori Probability (MAP) Detector
In the absence of gathered information; i.e. a-priori, Eve may have unequal biases towards H0

and H1. For example, in social scenarios, a suspicious person may have a strong reason to
believe in the existence of the relationship between his/her partner and another person, which
leads to him/her using PCD. In law-enforcement scenarios, intelligence received from other
sources may indicate the existence of a relationship between Alice and Bob which requires
confirmation by PCD. We denote, the a-priori probability of H0 and H1 as η and 1− η respec-
tively, where 0 < η < 1. After observing a n-length activity-log sequence (aln) for Alice and
Bob, the attacker can choose any detection rule D to detect the underlying hypothesis.

Definition 4. The probability of error Pe achieved by a detection rule, D, is defined as the
probability that the attacker’s estimate is incorrect.

Pe = P (D(aln) 6= the true hypothesis)
= P (H0)P (D(aln) 6= H0|H0) + P (H1)P (D(aln) 6= H1|H1)

The choice ofD to minimize Pe is the maximum a-posteriori probability (MAP) rule, which
is specified as

MAP (aln) =

{
H0 if(1− η)P (aln|H0) ≥ ηP (aln|H1);

H1 if(1− η)P (aln|H0) < ηP (aln|H1)

The Pe achieved by the MAP rule can be bounded on the above, in terms of the system
parameters, as follows:

Pe = (1− η)
∑
aln

min

(
P (aln|H0);

η

1− η
P (aln|H1)

)
a

≤
√
η(1− η)

∑
aln

√
P (aln|H0).P (aln|H1)

≤
√
η(1− η)

∑
aln

√
pr(aln).

∑
crn∈T (aln)

pr(crn)
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b

≤
√
η(1− η)

∑
aln

 ∑
crn∈T (aln)

√
pr(aln).pr(crn)


c
=

√
η(1− η)||VX(r)n||1 (2.1)

where || ||1 is the l1 vector norm,

V = [
√
π00π00

√
π01π01

√
π10π10

√
π11π11

√
π11π11]

and X(r) is a 5× 5 matrix
[
x

(r)
i,j

]
such that,

x
(r)
i,j =


√
pri→jp

r
i→j for i, j ∈ {00, 01, 10, 11};

√
pri→4p

r
i→5 for i ∈ {00, 01, 10, 11}, j = 11;√

pr4→jp
r
5→j for i = 11, j ∈ {00, 01, 10, 11};

√
pr4→4p

r
5→5 for i = j = 11;

a) Application of Bhattacharya bound; i.e. min(a, b) ≤
√
ab, for a, b > 0.

b) For a, b > 0,
√
a+ b ≤

√
a+
√
b.

c) Representation of sum in terms of matrix multiplication.
Equation (2.1) shows that the upper-bound on Pe for the MAP rule is a concave function

of η and is maximized for η = 1/2. This could lead to an incorrect assertion that the efficacy
of PCD increases with increased bias of the attacker. In the case of PCD, another equally-
important performance metric to consider is the probability of false positives; i.e. probability
of incorrectly estimating communication between Alice and Bob even when there is none. In
particular, if communication relationships revealed by PCD analysis are used as judicial evi-
dence, then a threshold performance with regards to P (false− positives) may be mandated by
law to prevent false indictments. We provide an upper-bound on P (false− positives) achieved
by the MAP detector in terms of the communication and probing parameters, and the number
of collected samples, n.

Theorem 2. The probability of false positives, P (false− positives) ≡ P (MAP (ALn) =
H1|H0), of a MAP detector is upper-bounded by:

P (false− positives) ≤
√

η

1− η
||VX(r)n||1

Proof. P (false− positives) is equal to the probability of the algorithm estimating H1 whereas
H0 is the true hypothesis.

Pe = P (H0)P (MAP (aln) = H1|H0) + P (H1)P (MAP (aln) = H0|H1)

≥ (1− η)P (MAP (aln) = H1|H0)

This implies P (false− positives ≤ Pe/(1−η)). From equation (1), we get the final inequality.

Theorem 2 implies that to the attacker needs to collect more samples to achieve the same
upper-bound on P (false− positives) as his a-priori bias towards H1 increases. This ensures
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Figure 2.6: Upper bound on P (false− positives) vs the number of samples (n)

that the attacker bias does not dominate observed data, and acts as a safeguard. It is also im-
portant to understand the impact of other parameters, particularly the time gap between the at-
tacker’s probes, r, and the call arrival rate between Alice and Bob, λAB, on P (false− positives).
Figure 2.6a shows that the upper-bound on the probability of false-positives decreases with in-
creasing r. This is because for the same number of probes, n, a lower probe rate regime (higher
r) observes the system for a longer time and is more likely to capture a communication between
Alice and Bob. However, if the time-frame for the attack is fixed, a higher probe rate regime ac-
quires higher number of samples and achieves higher accuracy. The plot of the accuracy of PCD
for that case is not shown here. Figure 2.6b shows the plot of the probability of false-negatives
vs λAB. Here, for a constant probe rate, the accuracy of PCD increases with λAB as the attacker
is more likely to capture a conversation between Alice and Bob. Figures 2.6a and 2.6b were
generated with the following parameter values: ∆ = 0.5 seconds, µAB = µA = µB = 300
seconds, λA = λB = 1 call/hr, and η = 0.0001.

2.3.2 Analysis of the Neyman-Pearson Detector

While the MAP rule minimizes the average probability of error (Pe), in certain scenarios, it
is relevant to minimize P (false− positives) and P (false− negatives) individually. As stated
earlier, if communication relationships revealed by PCD are to be used as judicial evidence,
then law may mandate a upper-limit, α ∈ (0, 1) on P (false− positives). The attacker, which
may be a law-enforcement agency, may wish to minimize the P (false− negatives), subject
to an upper-limit on P (false− positives). The decision rule that achieves this goal is the log-
arithmic ratio test (LRT), also known as the Neyman-Pearson detector [9], which is defined
as

LRT (aln) =

{
H0 if log2

P (aln|H1)
P (aln|H0)

≥ γ;

H1 if log2
P (aln|H1)
P (aln|H0)

< γ

γ is selected so that P
[
log2

P (aln|H1)
P (aln|H0)

< γ|H0

]
= α. As the number of samples grows, P (false− negatives)

reduces exponentially and the performance of the detector is measured in terms of the reliability
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rate, which is defined as:

reliability rate = lim
n→∞

− 1

n
log2 P (false− negatives)

For the LRT (or Neyman-Pearson detector), reliability rate can be computed as the Kullback-
Leibler divergence rate [9],

reliablity − rate = lim
n→∞

D(P (ALn)||P̄ (ALn))

n
.

Theorem 3. The reliability rate, measured as the error-exponent of P (false− negatives),
achieved by the Neyman-Pearson detector is computed as:

lim
n→∞

DALn(P ||P̄ )

n
= −

∑
x,y

πx

[
prx→y log

(
p̄rx→y
prx→y

)]

−
∑
x,y

πx

[
∞∑
k=1

p(x− (11)k − y) log

(
p̄(x− (11/11)k − y)

p(x− 11k − y)

)]

where, x, y ∈ {00, 01, 11}.

Proof. For concision, we present an intuitive argument for the proof. The probability of ob-
serving an activity-log (aln) under H0 is computed simply under the Markov model shown in
Figure 2.3. Probability of aln under H1 is the sum of probabilities of all call records (crn) that
map to aln. However, the only sub-sequences of aln that can be generated under different crn

are of the type x−(11)k−y, for x, y ∈ {00, 01, 10}, as these can be caused by call records sub-
sequences of the type x−(11/11)k−y. p̄(aln) can be easily written in terms of the probabilities
of these sub-sequences. Detailed steps are presented in the Appendix A.1.
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Figure 2.7: Reliability rate versus the probe time gap, r, plotted for different values of λAB

Figure 2.7 plots the reliability rate versus the probe time gap, r, for different values of call-
ing rate between Alice and Bob, λAB. The plot was generated with the following parameter
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values:∆ = 0.5 seconds, µAB = µA = µB = 300 seconds and λA = λB = 1 call/hr. Fig-
ure 2.7 clearly illustrates that the reliability rate increases with increasing calling rate between
Alice and Bob, λAB. This is the case because higher calling rate implies greater separation
between the Markov model for the two hypotheses. Similarly, the reliability rate increases with
increasing probe time-gap, r, as the attacker observes the system for longer time periods.

In this section, we analyzed the accuracy of the attacker in detecting private communication
between two targets and the effect of different parameters on it. We showed that the attacker’s
accuracy, measured in terms of average probability of error or probability of false-positives can
be very high, demonstrating the threat of PCD. In the next section, we study the efficacy of
PCD in revealing the private call records (length and time of calls) between Alice and Bob.

2.4 Estimation of Call Records
Once the attacker has been able to positively establish a communication relationship between
Alice and Bob, he may wish to learn the call records of these targets, specially when they
talk to each other. This knowledge allows the attacker to learn the frequency and pattern of
the communication between Alice and Bob, providing further pertinent information about their
identities and social relationships. In this section, we quantify the amount of information about
call records leaked due to the activity logs collected by the attacker. On the one hand, this
analysis can be used by the attacker to measure the reliability of the call records information
he infers. On the other hand, this analysis enables a user, who cherishes his/her anonymity, to
quantify the privacy provided by the communication system and compare it with other systems.
To this end, we propose a metric to quantify the anonymity leakage (L) of the system, based
on the mutual information between the call records CRn and the observed activity-logs ALn.

Definition 5. The anonymity leakage of a communication system for the two-target scenario is
defined as:

L = lim
n→∞

I(CRn;ALn)

H(CRn)

where I() represents the mutual information and H() represents the Shannon entropy of the
random variable concerned [11].

The use of mutual information captures the reduction in uncertainty about the call records
due to the knowledge of the activity-logs. At the same time, the mutual information is nor-
malized with the a-priori entropy of the call records to provide a fair comparison between the
different calling behaviors of the targets. This normalization also implies that L ∈ [0, 1]. Fi-
nally, the limit is taken to observe the system in its steady state.

2.4.1 Anonymity Leakage with Noiseless Observations
We first compute the anonymity leakage when the attacker’s busy/idle observation process is
noiseless, as is the case with SIP-based VoIP networks. The leakage of the system under noise-
less observation process also forms the worst-case scenario for the user’s privacy and therefore,
can be used to benchmark the weakness of the system. Any reduction in anonymity leakage due
to a specific countermeasure can then be compared with the anonymity leakage under noiseless
observations to measure the efficacy of the countermeasure. The underlying calling behavior
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for the two-target scenario is as depicted in Figure 2.4.

Theorem 4. The anonymity leakage of the system under noiseless observations is given by

L = 1−

∑
x,y

π̄xp̄
r
x→y log p̄rx→y

−
∑
i
πi
∑
j
pri→j log pri→j

−

∑
x,y

∞∑
k=1

π̄xp
r(x− (11/11)k − y) log pr(x− (11/11)k − y)

−
∑
i
πi
∑
j
pri→j log pri→j

where, x, y ∈ {00, 01, 11}.

Proof: The denominator limn→∞H(CRn)/n can be simply computed as the entropy-rate
of the first-order Markov chain. To compute the numerator, I(ALn;CRn) can be written as
H(ALn) − H(ALn|CRn). As the mapping from crn → aln is a many-to-one mapping, the
conditional entropy H(ALn|CRn) = 0. The entropy H(ALn) = −

∑
p(aln) log2 p(al

n).
Detailed steps for computing p(aln) are shown in the Appendix A.1.
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Figure 2.8: Plot of the leakage of the system vs the probe rate of the attacker, r, and calling rate between
Alice and Bob, λAB

Figure 2.8 illustrates the plot of the leakage vs probe time gap, r and calling rate between
Alice and Bob, λAB. The plot is generated under the following parameter values, ∆ = 1
second, µAB = µA = µB = 300 seconds, and λA = λB = 2 calls/hr. The following inferences
can be drawn from Figure 2.8

• The leakage of the system is very high, ≈ 1, which means that the attacker can get
significant information about the call records by analyzing activity-logs.

• The system’s leakage is high when call-arrival rate between Alice and Bob, λAB, is either
lower or much higher than with their third-party friends. For preserving privacy against
PCD attackers, users should homogenize their calling parameters among different parties
so that communication with a particular party cannot be easily identified. This finding
is validated by the real-world approaches employed by criminals in which they make
spurious calls to other parties, in order to hide communication with a crime partner.
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• The leakage of the system decreases as the probe time gap increases. However, even for
a very large probe time gap, the system’s anonymity leakage does not fall below 95%.
This implies that PCD cannot be countered by restricting the attacker’s probe rate.

2.4.2 Anonymity Leakage with Noisy Observations
The analysis so far assumed that the attacker’s observation process is noiseless. Now, we
study the impact of observation noise on the system’s anonymity leakage. Such noise may
be inherently present in the busy/idle observation process; e.g., in Wi-Fi networks, or may be
intentionally introduced by countermeasures employed by the target device. We characterize
this noise in the form of a communication channel C between the true busy/idle activity-log
(aln) and the observed busy/idle activity-log (âl

n
), specified by the probability distribution

p(âl
n
|aln). If the channel C has a capacity cap(C), then due to the definition of capacity [11]

I(ALn; ÂL
n
) ≤ max

p(aln)
I(ALn; ÂL

n
) = n× cap(C).

The system anonymity leakage LC under a noisy observation channel C is defined as,

LC = lim
n→∞

I(CRn; ÂL
n
)

H(CRn)

As CRn → ALn → ÂL
n

form a Markov chain, we have I(CRn;ALn) ≥ I(CRn; ÂL
n
)

or L ≥ LC . This corresponds with intuition that observation noise reduces anonymity leakage
and enhances the user’s anonymity.

Definition 6. The anonymity gain GC due to the presence of a noisy channel C between the real
and observed activity-logs is given by:

GC =
L − LC
L

We immediately have,

Theorem 5. For any channel C with channel capacity cap(C)

GC ≥ 1− cap(C)
L ×HR(CR)

where L is the leakage of the system with noiseless observations and

HR(CR) =
∑
i

πi
∑
j

pri→j log
1

pri→j

is the entropy rate of the call records.

Proof: As CRn → ALn → ÂL
n

form a Markov chain:

lim
n→∞

I(CRn; ÂL
n
)

n
≤ lim

n→∞

I(ALn; ÂL
n
)

n
≤ cap(C)
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Theorem 5 relates the anonymity gain of a noisy channel to its channel capacity. Lower
capacity of a channel is a sign of more noise and leads to higher reduction in the leakage of the
system.

So far, we have demonstrated the fact that PCD poses a major threat to user’s anonymity.
It can be used to detect private communication between users with high accuracy as well as
to reliably learn their call records, even with low probe-rate of the attacker. Additionally, the
capabilities required of an attacker to perform PCD are moderate: the attacker has to be a
regular user of the communication network and has to know the contact information of the tar-
gets. This implies that unlike attacks which require substantial resources only governments or
large organizations can provide, PCD can be launched by rogue individuals, putting anonymity
of citizens at risk. It is vital to develop countermeasures that thwart PCD and protect user’s
privacy, as well as to quantify the efficacy of these countermeasure. In the next section, we
analyze the same.

2.5 Countermeasures and their Analysis
There are a number of existing countermeasures to traffic-analysis attacks, such as firewalls,
anonymous and virtual private networking. First, we analyze the efficacy of these countermea-
sures in preventing PCD and show that these countermeasures enjoy little or limited success in
thwarting PCD.

2.5.1 Performance of Existing Traffic-analysis Countermeasures against
PCD

Firewalls: Firewalls are typically used to block unwanted or suspicious packets/traffic patterns.
As PCD works by sending periodic probes to the target device, blocking probe packets or probe
traffic streams with the use of firewalls was proposed as a possible countermeasure against
PCD [35]. However, setting up of firewall rules to block certain packet types is difficult as
probe packets are indistinguishable from normal control packets. Under a different approach,
firewalls can be used to block traffic patterns or rates that resemble the probe traffic. As the
attacker sends periodic probes, the simplest approach is to block any traffic burst above a certain
threshold, Rt. Rt must be suitably chosen to support legitimate voice packet streams and allow
the normal functioning of the VoIP device. CODECS used for VoIP calling, such as the G.711,
use a standard transmission rate of 50 packets/sec and therefore, it serves as a possible candidate
for Rt. In the case SIP-based VoIP, different VoIP devices use different protocol buffer sizes B:
B = 32 for Linksys PAP2 and 8 for Cisco 7490G [35] and therefore, the highest rate at which
the attacker can probe the device is 50/B times per second. This limit on the maximum probe
rate also enforces a limit on the maximum leakage of the system. Regrettably, even at such low
probe rates the leakage of the system can still be significantly high, as shown in Figure 2.8.
This, in effect, shows that the approach of limiting the attacker’s probe rate does not hamper
PCD but only reduces the accuracy of call records estimation marginally.

Virtual private networks (VPNs): VPNs allow users to securely access private networks
from outside the network. However, they fail to prohibit PCD for two reasons. One, a VPN
user is vulnerable to PCD being performed by another user within the VPN. In fact, the primary
feature of PCD is that private call records information can be acquired by a network peer
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without the requiring special network privileges. As specified earlier, the PCD attacker in this
analysis is a user of the network. Second, even if the attacker is outside the VPN, he can
perform PCD as long he can send probes and receive responses from the target device.

Anonymous networking: While low-latency anonymous networks protect information leak-
age through wiretapping and analysis of packet length/timing characteristics, they fail to pre-
vent PCD as it exploits weaknesses present at the communication end-devices. Furthermore,
the low-latency requirement of VoIP traffic ensures that irrespective of countermeasures de-
ployed inside the network, the activity behavior of communicating end-devices is synchronous,
enabling PCD.

As existing countermeasures to traffic-analysis are not effective against PCD, we develop a
new countermeasure technique resource-randomization and prove its security. This technique
is motivated by the analysis in Section 6.2 which shows that noise in the attacker’s observa-
tion process reduces system anonymity leakage, decreasing the reliability of the information
inferred by the attacker. Resource-randomization operates by randomizing the resource that
is used for side channel observations, such as SIP buffer-size or packet delay. We develop
and analyze countermeasures based on this technique for SIP-based VoIP networks and Wi-Fi
networks.

2.5.2 Resource-randomization in SIP-based VoIP Networks

In the case of SIP-based VoIP networks, the busy/idle status detection is done by forcibly
overflowing the SIP protocol buffer of the target device. Due to the use of a fixed-size buffer, the
number of probes required to cause the full-buffer-condition (and receive an error message) has
one-to-one correspondence with the activity status of the device which can then be estimated
without error.

However, if the device is designed to randomly change the used buffer size at every time-
slot, then the attacker will not be able to infer the underlying activity with the same accuracy.
To highlight this, we start with a simple example. Let, the used buffer size Bu in a given time-
slot be a random variable that takes the value B with probability 0.5 and B−1 with probability
0.5. In this case, the following inferences can be made by the attacker:

• Error after B + 1 probes: The device is idle and Bu = B.

• Error after B − 1 probes: The device is busy and Bu = B − 1.

• Error after B probes: Either the device is idle and Bu = B− 1 , or the device is busy and
Bu = B.

While the attacker can still make the correct inference when the error message is received
after B + 1 or B − 1 probes, it cannot infer the activity status of the target correctly when the
error message is received after B probes. Thus, this strategy creates a noisy channel between
the activity status of the device and the number of probes required for buffer overflow, reducing
leakage. From the analysis in the previous section, we know that the capacity of this noisy
channel puts a limit on the leakage of the system. We compute the capacity of the channel
by considering that the device is busy with probability p and idle with probability 1 − p. The
probability p can be interpreted as the stationary probability of the target being idle/busy under
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the Markov model of Figure 2.4. However, computation of channel capacity is done over all
possible values of p. We have:

I(AL; ÂL) = H(p/2, 1/2, (1− p)/2)− 1

The capacity of the channel is maxp I(AL; ÂL) = 0.5, achieved for p = 0.5. This example
illustrates that even with two possible choices for the used buffer size, the system anonymity
leakage be reduced substantially.

The technique explained above can be extended to achieve further anonymity gains by
choosing Bu randomly from a larger set of values {Bmin, Bmin + 1, · · · , Bmax} s.t. Bmax −
Bmin = q with the uniform distribution. The noisy channel between the real activity status of
the target and number of probes required to cause an error message is as shown in Figure 2.9.
We again calculate the capacity of the channel in order to limit the system’s leakage:
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Figure 2.9: A visualization of the buffer randomization channel in SIP-based VoIP devices

Theorem 6. The capacity of the buffer randomization channel visualized in Figure 2.9 is given
by:

cap(buffer− randomization) =
1

Bmax −Bmin + 1

Proof: Simple calculation of the capacity of a discrete memoryless channel.
Theorem 6 proves that system designers can form a channel with an arbitrarily low capacity

by simply increasing the size of the set from which the used buffer size can be chosen. From
Theorem 5, as the capacity of the channel goes to 0, the anonymity gain G goes to 1, i.e. the
system provides perfect anonymity against PCD attacks.

2.5.3 Resource-randomization in Wi-Fi Networks
In Wi-fi networks, the busy/idle status detection can done by sending periodic probe requests
to the target and measuring delay in the probe responses. If a target is busy on a VoIP call,
the probe requests will be served after the VoIP packets and therefore, the reply will take more
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time compared to a device that is idle. In a practical setting, this difference in timing is variable
due to the presence of network jitter and other delays in the network. We create an ideal attack
scenario for the attacker by assuming that such variations are absent, and show that even in this
case, randomization can be used to reduce the leakage of the system. Let T1 be the time taken
by the reply when the device is idle and T2 > T1 be the time taken by the reply when the device
is busy. The attacker can identify the activity status of the device by simply checking the time
taken by the reply, making the busy/idle status detection process noiseless.

To prohibit this, a random delay is added to the reply to introduce noise in the attacker’s
observation process. Let the random delay D be chosen uniformly from the range (0, Dmax).
Then, the time taken by the reply T is T1 + D or T2 + D depending on the state of the de-
vice. Figure 2.10 visualizes the noisy channel in the busy/idle detection process. Let p be the
probability of the device being busy and 1− p be the probability of the device being idle. The
mutual information between the input and the output of the channel, i.e. the status of the device
and the time taken by the reply respectively, equals H(p)

(
T2−T1
Dmax

)
. The maximum value of the

mutual information or the channel capacity is achieved for p = 1/2. This result shows that the
capacity of the channel can be made arbitrarily small by increasing the maximum delay Dmax

and therefore PCD can be completely thwarted by adding large random delay.

Ac#vity	
  
	
  
	
  

Idle	
  (T1)	
  
	
  
	
  
	
  

Busy	
  (T2)	
  
	
  
	
  

Time	
  taken	
  by	
  the	
  reply	
  

T1	
  

T2	
  

T1+	
  Dmax	
  

T2+	
  Dmax	
  

400	
  msec	
   Frac#on	
  of	
  	
  
packets	
  	
  
dropped	
  

Dmax	
  

Delay	
  added	
  by	
  the	
  countermeasure	
  

Figure 2.10: A visualization of the noise in the busy/idle status detection in Wi-Fi networks introduced
by the countermeasure

However, in this case, resource randomization suffers from practical considerations. Addi-
tion of large delay might make packets useless for certain purposes. For example, the network
delay of VoIP packets must be less than 400 ms as per the ITU-T recommendations. Addi-
tion of random delay by the countermeasure would lead to the total delay of packet crossing
the 400 ms limit and being dropped. The choice of the maximum delay Dmax must be made
in such a way that the fraction of the packets dropped is within the acceptable threshold as
per the system specification. For specified values of T1, T2 < 400 ms and Dmax, the fraction
of packets dropped due to the addition of the random delay by the countermeasure is given
by 1

2

(
Dmax+T1−400

Dmax
+ Dmax+T2−400

400

)
. If θ > 0 is the maximum fraction of packet drops for

acceptable service, then the maximum permissible value of Dmax is given by:

Dmax =
400− T1+T2

2

1− θ
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This in turn, provides a lower bound on the capacity of the noisy channel or a cap on the efficacy
of the countermeasure.

The analysis done in this section shows that resource-randomization can successfully thwart
PCD. At the same time, its practical implementation in real-world communication devices is
easy. Together, these features of resource-randomization have positive implications on the
privacy of users against PCD. The success of this technique also implies that while designing
practical communication devices, the amount of resources allocation to a particular task should
not be deterministic to ensure that usage of these resources cannot be attributed to a specific
behavior of the device, preventing side-channel attacks.

2.6 Conclusions
Private communication detection can be a powerful tool for governments, corporations, and
rogue individuals that wish to extract information such as communication relationships of their
targets and might be desirable for its low cost. As information extracted by this attack might be
used in the future as actionable evidence for further privacy breach, it is important to understand
the strengths and limitations of this attack, and provide performance guarantees. In this work,
we have developed a quantitative framework to understand the impact of the probing strategy
of the attacker and the calling behavior of the users on the efficacy of PCD in determining
communication relationships and call records. We have developed mathematical guarantees on
the efficacy of communication relationship classification and the leakage of the communication
record information. At the same time, we have analyzed the efficacy of different countermea-
sures, such as resource randomization and firewalls, in thwarting PCD attacks under the same
leakage model. Our results show that resource randomization outperforms firewall protection
as it introduces noise in the side channel used to observe communication activity. This analysis
provides a set of tools that can help system designers in building provably secure systems.
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Chapter 3

Side Channels in Shared Network
Components

In the presence of end-to-end encryption of packet contents and headers; e.g., in TLS and IPSec,
the focus of security attacks is shifting towards traffic-analysis. Packet schedulers form an
integral part of the Internet infrastructure and are used for tasks ranging from packet forwarding
to traffic management. Due to the amount of traffic handled by them, packet schedulers have
become valued targets for traffic-analysts. Even if the correlation of incoming and outgoing
traffic at routers and forwarding node is removed with the use of anonymizing techniques, side-
channel attacks can been used to de-anonymize traffic. Packet schedulers have finite resources
so they queue packets belonging to different traffic streams and forward them using policies
such as first-com-first-serve (FCFS). This limitation leads to dependence between the packet
delay of one stream and the traffic generated by another stream. An attacker can use the delay
information of his packets and estimate the traffic pattern of a private stream. Learned traffic
patterns can be used to cause significant privacy and anonymity breaches. For example, Gong
et al. used estimated traffic patterns of a user’s traffic stream at a DSL router and compared
them with traffic patterns of known websites to reveal the identity of the website [28]. Similarly,
Murdoch and Danezis demonstrated an attack where the attacker can reveal the secret path used
by an anonymous stream in Tor. This is achieved by transmitting a specific traffic pattern on the
user’s chosen OR path and using side channels to identify if sent traffic pattern is forwarded by
a target OR. In both attacks, the attacker periodically probes the target device and correlates the
delay of probe responses with known traffic patterns. Figure 3.1 illustrates the general attack
setup.

A novel information-theoretic analysis of this side channel was performed by Gong et
al. [27] for a two-user shared FCFS packet scheduler. In their analysis, the user’s traffic stream
and attacker’s probe stream were modeled as Bernoulli-distributed random processes and the
scheduler was assumed to serve one packet per time-slot. They measured the vulnerability of
the scheduler in terms of the leakage of user’s packet arrival pattern due to attacker’s knowledge
of his probes’ delay. Their results showed that the leakage of the scheduler approaches maxi-
mum; i.e. 1, when the attacker probes at the fastest possible rate. While these attack examples
and analysis highlighted the threat posed by this side channel, they were limited in the sense of
considering the worst-case impact. The two attack demonstrations are performed in laboratory
settings which were favorable to the demonstrations. For example, Murdoch and Danezis used
a small Tor network that comprised of 13 Onion Routers and Gong et al. assumed that the user
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Figure 3.1: Privacy breach through side channel attack on a shared packet scheduler

only visits one website at a given time without any background traffic. These assumptions don’t
hold in practice; e.g., a real-world Tor network comprises of around 1300 ORs. To successfully
launch these attacks in a real setting requires significant bandwidth resources from the attacker.

This limitation exists, mainly due to the inefficient use of bandwidth by the attacker in both
cases. Periodic probing is a simplistic strategy but it requires the same probe rate even if the
scheduler is already fully-clogged. Intuitively, a more intelligent and adaptive attacker will stop
sending probe traffic in that circumstance and save up on bandwidth. Excessive and periodic
probing as used in the literature is also more likely to be identified and blocked, defeating the
purpose of the attack. A natural question that arises from this discussion is whether the attacker
can find better, yet optimal, probing strategies for a given bandwidth budget and how much
benefit can be extracted by such strategies. Clearly, this question is pertinent to other, possibly
all, side-channel attack setups. In this chapter, we use the example of packet schedulers and
build on the model developed by Gong et al. to answer both questions positively. Specifically,

• We show that a non-adaptive attacker; i.e. one that does not rely on previously collected
information to decide future inputs, can achieve upto 1000% enhancement in information
leakage for the same bandwidth budget as Geometric probing strategy used by Gong et
al.

• We discuss the limitations of leakage metrics used in the literature and give rationale
behind the use of causally-conditioned entropy in the leakage metric defined in Section
1.

• Under our metric, we show that an adaptive attacker; i.e. one that uses past observa-
tions to decide future inputs, can achieve a further 30% gain over optimal non-adaptive
strategies.
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• Finally, we find optimal real-world strategies that incorporate delay in feedback present
in a real-world setup and compute their leakage.

In each case, we show that optimal strategies can be identified by solving linear programs
that bring them under the reach of a computationally-constrained attacker. Such enhancements
on leakage show that side-channel attacks on packet schedulers have the potential of break-
ing anonymity in real-world and large-scale networks. They also highlight the limitation of
countermeasures, such as privacy-preserving scheduling [36], which only consider specific
and non-optimal attack strategies. We now describe the theoretical model developed by Gong
et al. [27] with modifications to generalize attack strategies.

3.1 System Description

The basic setup consists of a user and an attacker that share a FCFS packet scheduler. Time is
discretized into fix-sized time-slots and packet arrivals occur only at the beginning of a time-
slot. In case of a collision between the user’s packet and attacker’s packet arriving on the
same time-slot, priority is given to the attacker’s packet. The scheduler serves one packet per
time-slot following FCFS scheduling and service for each packet take exactly one time-slot.

Let,

• ti represent the time of arrival of the ith probe to the queue,

• t′i represent the time of departure of the ith probe from the system,

• ai = ti − ti−1 represents the inter-arrival time for the ith probe,

• di = t′i − ti represents the delay of the ith probe including the fixed service time of one
time-slot,

• xi represent the number of user’s packets arriving to the system in the time interval
[ti−1, ti),

• tn, t′n, an, dn, xn represent the collection of respective items for n probes. item Capital
letters represent random variables and small letter their realization.

3.1.1 User’s Packet Arrival Process

Packets arrive from the user following a Bernoulli arrival process with rate λ1. That is, in
each time-slot a maximum of one packet arrives from the user to the scheduler with probability
λ1 and no packet arrives with probability 1 − λ1. Packet arrivals in different time-slots are
independent and identical random processes. Thus, given a specific time interval [t1, t2), the
number of packets arriving from the user x ∈ {0, 1, · · · , t2 − t1} with

p(x|t2 − t1) =

(
t2 − t1
x

)
λx1(1− λ1)t2−t1−x
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3.1.2 Attacker’s Probing Strategy
The attacker’s probing strategy is characterized by his choice of the probability distribution on
the inter-arrival times of his probes (ai) for ai ∈ [1, 2, · · · ,∞). The attacker may choose the
inter-arrival time of the nth probe, an, by considering all the previous observed inter-arrival
times, an−1 and queuing delays, dn−1 ; i.e. through a probability distribution p(an|an−1, dn−1).
This represents the most general form of feedback in the side channel. The attacking strategy
is, however, limited by the average probe arrival rate (λ2). The average probe arrival rate is
computed as the inverse of the average probe inter-arrival time

λ2 =
1∑

a ap(a)

In case of non-adaptive attacks, the attacker may choose any time-invariant strategy p(An =
a) = p(a). The inter-arrival times for different packets are identical and independent random
processes. Gong et al. analyzed the system leakage for an non-adaptive Bernoulli attack pro-
cess; i.e.

p(An = a) = (1− λ2)a−1λ2

3.1.3 System Leakage
The leakage L of the system is defined as [27]:

L = lim
n→∞

1− H(Xn|T n, T ′n)

H(Xn|T n)

where H() represents the Shannon entropy of the input random variable [11].

3.1.4 Side-channel Model
The value of xi depends only on the inter-arrival time for the ith packet, the service delay of
the i − 1th and the ith packet; i.e. ai = ti − ti−1, di−1 = t′i−1 − ti−1, and di = t′i − ti
respectively [27]. Due to this relationship, we can model the side channel as a two-user system
shown in Figure 3.2. The input of the attacker to the side channel is ai which is the inter-arrival

ai = f(ai−1, di−1)

ATTACKER

SIDE CHANNELUSER
x1, x2, · · ·

d1, d2, · · ·
di = [xi + di−1 − ai]+ + 1

a1, a2, · · ·

Figure 3.2: A model for the side channel at a FCFS packet scheduler
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time for the ith probe chosen according to a chosen distribution p(a). The input of the user
to the side channel is xi ∈ {0, · · · , ai} which is the number of user’s packet that arrive to the
scheduler in the period ti generated following the Bernoulli process. The output of the side
channel is di which is the delay for the ith packet. This output is made available to the attacker
who may or may not use it to generate the next input ai+1. The delay-traffic side channel is
then defined as the fundamental relationship between the inputs to the channel and the output:

di = [xi + di−1 − ai]+ + 1 (3.1)

In the next section, we formulate the information leakage for all non-adaptive attacking
strategies and identify the strategies that cause the maximum possible leakage.

3.2 Optimal Non-adaptive Strategies for Information Leak-
age

3.2.1 Leakage of General Non-adaptive Strategies

To identify the optimal non-adaptive strategy for a given probe rate, we first analyze the leakage
of a general attack strategy. A non-adaptive attacker chooses a time-invariant attack strategy
that picks the inter-arrival time for each probe independently of previous probes and side-
channel observations. That is, the inter-arrival time of the nth probe, p(an = a) = p(a) for any
n. The chosen distribution is subject to an average probe rate constraint of λ2; i.e.∑

a

ap(a) =
1

λ2

For such strategies, leakage can be computed as,

lim
n→∞

1− H(Xn|An, Dn)

H(Xn|An)
= 1− lim

n→∞

H(Xn|An, Dn)

H(Xn|An)

= 1−
limn→∞

H(Xn|An,Dn)
n

limn→∞
H(Xn|An)

n

This implicitly assumes that the denominator is non-zero. The limits in the numerator and
denominator can be further computed using Césaro’s Mean Theorem [48], which states that if

a sequence {zi} converges to z, then the running-average

n∑
i=1

zi

n
also converges to z. We first

compute the denominator, H(Xn|An), as

H(Xn|An) =
n∑
i=1

H(Xi|Ai)

= n
∞∑
a=1

p(a)HB(λ1, a)
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lim
n→∞

H(Xn|An)

n
=

∞∑
a=1

p(a)HB(λ1, a)

where, HB(λ1, a) represents the entropy of the binomial distribution with success probabil-
ity λ1 and number of trials a. This is because the given the knowledge of the time-period, the
number of user’s packet arrival follow the binomial distribution. HB(λ1, a) is easily computed
as 1

2
log2(2πeaλ1(1− λ1)) +O( 1

a
).

Similarly, for the numerator

H(Xn|An, Dn) = H(Xn|An, Dn)

=
n∑
i=1

H(Xi|X i−1, An, Dn)

=
n∑
i=1

H(Xi|Ai, Di, Di−1)

This is because of the mathematical relationship between xi, ai, di, and di−1 which derives
from the basic distributions of the side channel (Equation 3.1). Moreover, if di > 1, xi can
be determined in terms of other parameters with certainty. That is, H(Xi|ai, di > 1, di−1) =
0. This implies that the entropy of the attacker in estimating Xi is non-zero only if a probe
arrives to experience an empty queue. If di = 1, then from Equation 3.1 we can see that
xi ∈ {0, · · · , ai − di−1}. H(Xi|ai, di, di−1) can be computed as

H(Xi|Ai, Di, Di−1) =
∑
ai,di−1

P (ai)P (di−1)P (di = 1|ai, di−1)H(Xi|ai, di = 1, di−1)

=
∑
ai,di−1

P (ai)P (di−1)PEQ(ai, di−1)H(Xai,di−1
)

where,

• PEQ(ai, di−1) represents the probability of observing an empty queue given delay of the
previous probe and the inter-arrival time of the current probe. PEQ(ai, di−1) = P (Xi ≤
ai − di−1)

• Xai,di−1
is a random variable that represents the number of user’s packets that arrive

between two consecutive probes such that an empty queue can be caused. Then,

P (Xai,di−1
= x) =

(
ai
x

)
λx1(1− λ1)ai−x∑ai−di−1

x=0

(
ai
x

)
λx1(1− λ1)ai−x

for x ∈ {0, 1, · · · , ai − di−1}.
Again, Césaro’s mean theorem can be applied to compute

lim
n→∞

H(Xn|An, Dn)

n
= lim

n→∞
H(Xn|An, Dn, Dn−1)

provided the limit of each term in the expansion of H(Xn|An, Dn, Dn−1) exists. Since the
probe distribution, p(a), is time-invariant and both PEQ(an, dn−1),H(Xan,dn−1) depend entirely
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on the values of an and dn−1, and are independent of the other parameters. Now, we show that
the queue length behaves as a first-order, irreducible Markov chain and therefore, the limiting
distribution limn→∞ P (dn−1) exists and equals the stationary distribution of the Markov chain.
Let, πq denote the stationary probability of the queue length being q.

Theorem 7. The stationary probability “πq” of a probe experiencing a delay of q ∈ {1, · · ·∞}
upon its arrival is given as πq = αq−1(1− α), where α is the solution of the equation

α =
∞∑
a=1

p(a)(λ1 + α(1− λ1))a

For binomial probing with rate parameter λ2 used in [27],

α =
λ1λ2

(1− λ1)(1− λ2)
.

Proof. Let the queuing delay experienced by the nth probe Dn = a. Then, the queuing delay
experienced by the n + 1th probe, Dn+1 ∈ {1, · · · , a + 1}. This is because either the inter-
arrival time for the n + 1th probe, an+1 is large and the number of packets of the user xn+1

small enough for the queue to drain, or a packet arrives from the user in each time-slot: i.e.
xn+1 = an+1 so that the queue length increases by one. Importantly, the queue length cannot
increase more than one between two consecutive probes, and the queue length cannot reduce
by more than an+1 between consecutive probes. Define

γi :=
∞∑
a=i

p(a)

(
a

i

)
(1− λ1)iλa−i1

and transition probability P (Dn+1 = b|Dn = a) := pba Then,

pba =

{
γa−b+1 for b > 1∑∞

i=a+1 γi for b = 1

As the state transition probability is independent of n and depends only on the previous state,
this stochastic process is essentially a first-order stationary Markov process. Also, the transition
probabilities imply that the the Markov chain is a-periodic and irreducible. Therefore, a unique
stationary distribution for the Markov chain exists [30]. Let, π1, π2, · · · represent the stationary
distribution of the process. Then, the global balance equations for the Markov chain are give as


p1

1 p1
2 p1

3 · · ·
p2

1 p2
2 p2

3 · · ·
0 p3

2 p3
3 · · ·

0 0 p4
3 · · ·



π1

π2

π3
...

 =


π1

π2

π3
...


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Replacing pba with γa−b+1 for b > 1, we get


γ0 γ1 γ2 γ3 · · ·
0 γ0 γ1 γ2 · · ·
0 0 γ0 γ1 · · ·
0 0 0 γ0 · · ·



π1

π2

π3

π4
...

 =


π2

π3

π4

π5
...


For πi = π1α

i−1, all the above balance equations convert to a single balance equation

γ0 + αγ1 + α2γ2 + · · · = α

Additionally, due to the condition
∑

i πi = 1, we have π1 = 1−α and πi = αi−1(1−α), where
α ∈ [0, 1] to maintain πi ∈ [0, 1]. Rewriting the above equation, we get

α =
∞∑
i=0

γiα
i

=
∞∑
i=0

(
∞∑
t=i

p(a)

(
a

i

)
(1− λ1)iλa−i1

)
αi

=
∞∑
i=0

(
∞∑
t=i

p(a)

(
a

i

)
(α(1− λ1))iλa−i1

)

=
∞∑
a=1

p(a)

(
a∑
i=0

(
a

i

)
(α(1− λ1))iλa−i1

)

=
∞∑
a=1

p(a)(λ1 + α(1− λ1))a

Equivalently, α = β−λ1
1−λ1 , where β is the solution of the equation

β − λ1

1− λ1

= Gp(β)

Here, Gp() represents the standard probability generating function of the inter-arrival distribu-
tion.

With this, we can simplify leakage for a general non-adaptive strategy, p(a), as

lim
n→∞

1− H(Xn|An, Dn)

H(Xn|An)
= 1−

∑
a,d

p(a)π(d)PEQ(a, d)H(Xa,d)∑
a

p(a)HB(λ1, a)

3.2.2 Optimal Non-adaptive Strategies
To find the optimal non-adaptive strategy, specified as the inter-arrival distribution p(a), we
first fix an α which converts the balance equations for the stationary distribution into a linear
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Figure 3.3: Leakage with optimized non-adaptive attacks vs binomial probing

constraint in terms of the control variables p(a). Similarly, the average probe rate constraint∑
ap(a) = 1/λ2 is another linear constraint in p(a). For a given α, the optimal strategy is

found as:

Maximize∑
a,d

p(a) {π(d) (HB(λ1, a)− PEQ(a, d)H(Xa,d))}∑
a

p(a)HB(λ1, a)

Subject to

1: 0 ≤ p(a) ≤ 1, for all a

2:
∞∑
a=1

p(a = 1) = 1

3:
∞∑
a=1

ap(a) = 1/λ2

4:
∞∑
a=1

p(a)(λ1 + (1− λ1)α∗)a = α∗
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where α∗ is the maximum α ∈ (0, 1) such that the above linear program has a solution. The
reason to choose the largest α is because it ensures higher probability of a clogged queue and
therefore, increases leakage.

Note that the objective function here is a linear-fractional function: i.e. the numerator
and denominator are linear function of the control variables. Linear fractional functions are
quasi-linear and therefore, have a unique maximum (or minimum value) which can be dis-
covered by solving an equivalent linear program [5]. Simply, to maximize

∑
i gixi∑
i hixi

subject to
linear constraints

∑
i kixi = 0, one needs to find the largest t such that the linear system∑

i(gi − thi)xi = 0 and
∑

i kixi = 0 has a solution. This solution is the optimal strategy
and corresponding leakage is the maximum leakage. As an example, for λ1 = 0.1, λ2 = 0.1,
and 1 ≤ a ≤ 50, the distribution that achieves the maximum leakage is p(1) = 0.8075,
p(2) = 0.0090, and p(50) = 0.1835 and the corresponding leakage is 0.4. For the same λ1, λ2,
geometric probing achieves a leakage of 0.0361. Figure 3.3 illustrates the leakage of the op-
timal strategies (solid lines) and geometric probing (dotted lines) versus the specified average
probe arrival rate of the attacker (λ2). The comparison is done for five different average packet
rate of the user λ1 = {0.1, 0.2, 0.3, 0.4, 0.5}. Clearly, the leakage under optimal non-adaptive
attack strategies is significantly higher than for geometric probing for the same average probe
rate.

Next, we show that an adaptive attacker; i.e. one that uses previous observations to de-
termine future inputs, can potentially achieve even more leakage than optimal non-adaptive
attacker. However, we first highlight some limitations of the leakage metric used by Gong et
al. [27] in analyzing adaptive strategies. These limitations stem from the processing of causal
information which, while not being important for non-adaptive strategies, leads to erroneous
measurement of leakage for adaptive strategies. To recommend necessary changes in the leak-
age metric to overcome these issues.

3.3 Causal Leakage: a New Leakage Metric for Adaptive At-
tack Strategies

To drive the discussion on leakage metrics, we first discuss the intuition behind them. The leak-
age metric intends to capture the reduction in entropy of the user’s input given the attacker’s
knowledge of side-channel outputs. Basically, the metric quantifies amount of additional infor-
mation about user’s inputs that is provided due to the attacker knowing side-channel outputs.
Baseline comparison is performed with the a-priori information that the attacker has about the
user’s input when he only knows his own inputs. This is represented in the denominator of
the leakage expression, H(Xn|An). It is important to point out that the side channel is causal;
i.e. an output depends only on past inputs and independent of future inputs to the side channel.
Using the chain rule of entropy [11], we get

H(Xn|An) =
∑
i

H(Xi|X i−1, An)

For non-adaptive strategies, the denominator indeed captures the baseline (a-priori) infor-
mation possessed by the attacker. As future inputs are independent of past inputs/outputs,
Xi depends only on the past information; i.e. Âi which leads to the reduction H(Xn|An) =
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∑
iH(Xi|Ai). Such independence does not exist for adaptive strategies because the knowl-

edge of future side-channel inputs inadvertently implies knowledge of past outputs as the attack
strategies depends on it. Therefore, the baseline information of the attacker is miscalculated and
must be rectified. These statistical relationships are more easily understood using the concept
of functional-dependence graphs (fd-graphs). We first review this concept briefly, in particular
the implication of connectivity between nodes of a fd-graph on independence of corresponding
random variables [41].

3.3.1 A Review of Functional-Dependence Graphs
A functional-dependence graph, or fd-graph, is a representation of a stochastic system in the
form of a directed graph where random variables are represented as nodes of the graph and a
directed edge between two nodes represents the existence of a direct causal statistical relation-
ship between the corresponding random variables. If two random variables are independent
then no directed edge connects them. Nodes with no incoming edges are known as source
nodes. In a fd-graph G with disjoint subsets of nodes A, B, and C, the subset B is said to d-
separate subsets A and C if no path exists from the nodes in A to nodes in C after the following
manipulations have been performed

1: Create a sub-graph G ′ of G by considering only the links encountered while traveling
backwards for any node in A, B, or C

2: Remove all the edges in G ′ outgoing from the nodes in B

3: Remove the directions from all remaining edges in G ′

fd-graphs simplify the analysis of statistical relationships between random variables, mainly
due to the result that if B d-separates A and C, then A and C are independent conditioned on
B; i.e. I(A;C|B) = 0 [41]. The fd-graphs for non-adaptive and adaptive attack strategies
are presented in Figure 3.4a and 3.5a, respectively, which will be used to analyze the statistical
relationship between different random variables in the leakage expression.

3.3.2 Statistical Relationships in Non-adaptive Strategies
Figure 3.4b shows the fd-graph between Xi and A’s conditioned upon Ai. It can be clearly
seen that no edge exists between Xi and any Aj for j 6= i. This implies that conditioned on
Ai, Xi is independent of all future and past Aj . Similar argument can be made for statistical
relationship between Xi and Xj . Therefore,

H(Xi|X i−1, An) = H(Xi|Ai)

Similarly, from Figure 3.4c shows that Xi is independent of all other variables when condi-
tioned on Ai, Di, and Di−1. This implies,

H(Xi|X i−1, An, Dn) = H(Xi|Ai, Di, Di−1)

Next, we use the same tools to show that these relationships do not exist for adaptive attack
strategies.
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Figure 3.4: Strategies without feedback
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3.3.3 Statistical Relationships in Adaptive Attack Strategies

In the case of adaptive attack strategies, we first analyze the numerator; H(Xi|X i−1, An, Dn).
As can been seen in Figure 3.5c, conditioned onAi, Di andDi−1, Xi is independent of all other
variables. This implies

H(Xi|X i−1, An, Dn) = H(Xi|Ai, Di, Di−1)

In contrast , Figure 3.5b that when conditioned on Ai, Xi and Aj for j > i remains con-
nected. This implies that these random variables are not independent and therefore,

H(Xi|X i−1, An) 6= H(Xi|Ai)

This can be explained by the fact that in the case of adaptive strategies, knowledge of fu-
ture inputs already includes knowledge of future outputs, and therefore entropy cannot be used
to compute the baseline uncertainty of the attacker. This theme is recurrent in information-
theoretic discussion on channels with feedback and specific concepts, such as causally-conditioned
entropy and directed information, to deal with these scenarios. The definition we provided for
the leakage of a general side channel in Chapter 1 incorporates these concepts already. Next,
we use formalize the new definition of leakage that is appropriate for adaptive strategies and
reduces to Gong et al.’s definition for non-adaptive strategies.

3.3.4 Causal Leakage

We introduce the notion of causal leakage for strategies with feedback that resolves this issue.
To avoid an indirect use of side channel outputs in measuring the a-priori uncertainty of the
attacker we employ the notions of causally-conditioned entropy [41]. We define the causal
leakage Lc for feedback strategies:

Lc = lim
n→∞

1− H(Xn||An, Dn)

H(Xn||An)
,

where H(An||Bn) =
∑

iH(Ai|Ai−1, Bi−1) is the entropy of the random sequence An

causally-conditioned on the random sequence Bn [41]. Using this definition, we can easily
find that

H(Xn||An) =
∑
i

H(Xi|Ai)

and
H(Xn||An, Dn) =

∑
i

H(Xi|Ai, Di, Di−1)

The use of causally-conditioned entropy ensures the causal availability of information in
the measurement of uncertainty and therefore, the metric is has better suitability. Now, we use
this metric to find optimal adaptive attack strategies. 1

1The use of the original definition L may overestimate the true information leakage of the system for adaptive
strategies. This is because

H(Xn|Tn) ≤ H(Xn||Tn)
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3.4 Optimal Adaptive Strategies for Information Leakage

To identify optimal adaptive attack strategies, we first compute the leakage of a general adaptive
attack strategy. The reason to analyze these strategies stems from the fact that in a side-channel
attack, the attacker issues one of the inputs and observes the output. It is natural to consider the
case when the attacker uses previous observations to decide future inputs; i.e. be adaptive. Not
surprisingly, a number of real-world side-channel attacks are adaptive [6].

3.4.1 Leakage of a General Adaptive Strategy

A general adaptive attack strategy can be described a sequence of probability distributions,
{p(ai|ai−1, di−1)}∞i=1, where the ith distribution is used to choose the packet inter-arrival pattern
of the ith packet. This strategy is subject to an average probe rate constraint∑

i

∑
ai

aip(ai|ai−1, di−1) =
1

λ2

Strategies that use complete history in the determination of next input are impractical as
their memory and computational requirements grow exponentially with the number of packets.
Additionally, theoretical analysis of such strategies is not possible in a general case. We remove
this hurdle first by showing that to find optimal adaptive strategies, the attacker does not need
to use entire history. In fact, he only needs to store and use the latest side-channel output.

Theorem 8. For any adaptive strategy that uses entire history, described as p(ai+1|ai, di), there
exists an adaptive strategy that only uses the queuing delay of the previous probe; i.e. p(ai+1|di)
and achieves the same information leakage.

Proof. The behavior of the queue can be modeled as a Markov Decision Process (MDP) where
states are tuples (ai, di−1) where the reward, measured in terms of mutual information between
inputs and outputs, depends only on ai and di−1. The transition between states depends only
one the previous state and the action which the choice of the next input. For MDPs, a standard
result known as the dominance of Markov policies [1] states that maximum reward is achieved
by a Markovian strategy which chooses current action based solely on current state.

Therefore, we will now restrict our analysis to strategies that can be specified as p(ai|di−1).
Furthermore, we limit the discussion to time-invariant strategies; i.e p(ai = a|di−1 = d) =
p(a|d). We can compute leakage by separately computing numerator and denominator. From

and therefore,
L ≥ Lc

Intuitively, use of H(Xn|Tn) inadvertently considers information imparted by future side channel inputs which
within them contain information imparted by side channel outputs, thus understating the a-priori uncertainty of
Xn.
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the definition of causally-conditioned entropy

H(Xn||An) =
∑
i

H(Xi|X i−1, Ai−1)

=
∑
i

H(Xi|Ai)

=
∑
i

∑
ai

p(ai)H(Xi|ai)

=
∑
i

∑
ai

p(ai)HB(λ1, ai)

=
∑
i

∑
ai

p(di−1)p(ai|di−1)HB(λ1, ai)

The limit lim
n→∞

H(Xn||An)
n

can be computed using Césaro’s mean theorem if individual limiting
probabilities exist. Since the choice of attack strategy is time-invariant, we only need to prove
the existence of lim

n→∞
p(dn−1). Similarly for the numerator,

H(Xn||An, Dn) =
∑
i

H(Xi|X i−1, Ai, Di)

=
∑
i

H(Xi|Ai, DiDi−1)

=
∑
i

∑
ai,di−1

p(di−1)p(ai|di−1)PEQ(ai, di−1)H(Xai,di−1
)

Again, to compute lim
n→∞

H(Xn||An,Dn)
n

using Césaro’s mean theorem, we only need to show

the existence of lim
n→∞

p(dn−1). In essence, the above computations are similar to the analysis
of non-adaptive strategies except that the probability distribution of probe inter-arrival times
depends on the queuing delay of the probe. To show that lim

n→∞
p(dn−1) exists, we only have to

show that even in this case, queuing delay faced by a probe behaves as a first-order, irreducible
Markov chain. If so, lim

n→∞
p(dn−1) is simply the stationary distribution of the Markov chain.

Let Dn represent the state of system in the nth time-slot. Then the transition probability,
p(Dn+1 = g|Dn = h), denoted as pgh, can be derived as

pgh =


0 g > h+ 1
∞∑

A=h−g+1

p(A|h)
(

t
h−g+1

)
(1− λ1)h−g+1λ

A−(h−g+1)
1 for g ∈ {2, · · · , h+ 1}

∞∑
i=h+1

∑∞
A=i p(A|h)

(
t
i

)
(1− λ1)iλA−i1 for b = 1

From the transition probabilities, it can be seen that the Markov chain is first-order, and ir-
reducible because each state can be reached for every other state. Therefore, the stationary
distribution of the Markov chain exists. Let π(D) be the stationary probability of the queuing
delay being D. Then, the leakage of a general adaptive strategy specified by the distribution
p(Ai+1 = a|Di = d) can be computed as
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Lc = 1−

∑
a,d

π(d)p(a|d)PEQ(a, d)H(Xa,d)∑
a,d

π(d)p(a|d)HB(λ1, a)

3.4.2 Optimal Adaptive Strategies
The optimal strategy is found by solving the following linear program:

Maximize

∑
a,d

p(a, d) {HB(λ1, a)− PEQ(a, d)H(Xa,d)}∑
a,d

p(a, d)HB(λ1, a)

Subject to

1: 0 ≤ p(a, d) ≤ 1, for all a, d

2:
∑
a

p(a, d) = π(d) for all d

3: π(d = h) =
∑∞

g=h−1 π(d = g)phg , for all h ∈ {0, 1, · · · }

4:
∑
a,d

ap(a, d) = 1/λ2

5:
∑
d

π(d) = 1

6: 0 ≤ π(d) ≤ 1, for all d

Due to the lack of a general form for the stationary distribution, the search for the opti-
mal strategy that maximizes leakage using the above-mentioned linear program must treat the
stationary distribution π(d) and the joint distribution p(a, d) as the control variables. The ac-
tual attack strategy can be determined as p(a|d) = p(a,d)

π(d)
. Again, the objective function is a

linear-fractional in terms of the control variables and the constraints are linear. Therefore, the
linear program has a unique maximum value. Figure 3.6 illustrates the percentage enhance-
ment achieved by optimal adaptive strategies over optimal non-adaptive strategies for the same
bandwidth budget. Clearly, adaptive strategies achieve significant higher leakage and therefore,
need to be part of a thorough side-channel analysis.

Similar to non-adaptive scenario, the stationary distribution that provides maximum leakage
is the one that is biased towards a full queue. Intuitively, the adaptive attack strategy will ensure
low probe inter-arrivals times when the queue is empty and large probe inter-arrival times when
the queue is clogged. This ensures that queue remains full and therefore, the leakage is higher
compared to non-adaptive strategies that have the same distribution on probe inter-arrival times
irrespective of the queue lengths. For λ1 = 0.1 and λ2 = 0.1, the maximum leakage achieved
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the optimal adaptive strategy is 0.43 as opposed to the maximum of 0.40 for non-adaptive
strategies. The increment in leakage is smaller for lower λ1 because the restriction on the
average probe rate does not allow very short probe intervals even when the queue is empty.
Figure 3.6 shows the performance enhancement in system leakage when full feedback is used
by the attacker. It is clearly seen that a performance enhancement of nearly 28 % can be
achieved for λ1 = 0.5 and λ2 = 0.1. Table 3.1 shows the optimal attack strategy for λ1 = 0.1
and λ2 = 0.1.

Dn−1|An 1 2 3 4 5 · · ·
1 0.0281 0.0394 0.0360 0.0350 0.0342 · · ·
2 0.9982 0 0 0 0 · · ·
3 0.7639 0.2339 0 0 0 · · ·
4 0.8243 0.1716 0.0010 0 0 · · ·
5 0.8341 0.1586 0.0018 0 0 · · ·
6 0.8548 0.1131 0.0207 0.0038 0 · · ·
· · · · · · · · · · · · · · · · · · · · ·
45 0 0 0.9937 0.0024 0 · · ·
46 0 0 0 0.0141 0.9855 · · ·
47 0 0 0 0 0.0030 · · ·
48 0 0 0 0 0 · · ·
49 0 0 0 0 0 · · ·
50 0 0 0 0 0 · · ·

Table 3.1: Adaptive attack strategy for λ1 = 0.1, λ = 0.1, 1 ≤ a ≤ 50, and 1 ≤ d ≤ 50

This example clearly validates the argument presented earlier. When the queue is empty,
the inter-arrival time for the next packet is reduced to clog the queue. If the queue is clogged,
the inter-arrival times may be increased without emptying the queue completely and ensuring
low average probe rate.
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Figure 3.6: Percentage enhancement in system leakage due to feedback
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3.5 Optimal Real-world Adaptive Attack Strategies

Adaptive strategies presented in the previous section allow the attacker to use all the previous
information. That is, to decide the inter-arrival time for the nth, the attacker can use inter-
arrival times and queuing delays for all previous packets (from 1 to n − 1). As the system is
assumed to be causal, this is the maximum information that can be available to the attacker
and therefore, optimal strategies that use this information remain globally optimal. Availability
of this information, however, in not possible in practice. The time to decide the inter-arrival
time of the nth probe is when the n− 1th probe is delivered to the scheduler. Since each probe
requires at least one time-slot to be processed by the scheduler, the queuing delay of the n−1th

probe cannot be known to the attacker eve if the queue is empty. Moreover, if the queue is
clogged, a higher number of probes are stuck and their delays are unknown to the attacker.
Realistically, the attacker can only use the queue delay of probes that have been served by the
scheduler. However, he can use the inter-arrival times of all probes upto probe n− 1.

Let sn−1 denote the separation-of-index between the n − 1th probe and the latest probe
which left the system when the n− 1th probe entered the system; i.e. at time-slot tn−1. That is,
the index of the latest probe which left the system at time-slot tn−1 is n−1−sn−1. As the inter-
arrival time for the nth probe, an, is decided at this moment, the attacker possesses the queuing
delay information of all probes from 1 to n−1−sn−1 but not for any later probe as they are still
in the queue. Additionally, the attacker knows the inter-arrival time ai for all i ∈ {1, · · · , n−1}.
Thus, the inter-arrival time of the current probe, an can be chosen as a function of the available
information under the probability distribution p

(
an|sn−1, [aj]

n−1
1 , [Dj]

n−1−sn−1

1

)
which spec-

ifies the attack strategy. Let qn−1 ≡ sn−1, [dj]
n−1
1 , [dj]

n−1−sn−1

1 represent the collection of all
parameters known to the attacker at time-slot tn−1. We assume that the attacker maintains this
as an internal state. We can analyze denominator and numerator of the leakage function similar
to previous sections.

H(Xn||An) =
∑
n

H(Xn|An)

H(Xn|An) =
∑
an

p(an)H(Xn|an)

=
∑

an,qn−1

p(qn−1)p(an|qn−1)H(Xn|an)

=
∑

an,qn−1

p(qn−1)p(an|qn−1)HB(λ1, an)

and

H(Xn||An, Dn) =
∑
n

H(Xn|An, Dn, Dn−1)

=
∑

an,dn−1

p(an, dn−1)PEQ(an, dn−1, )H(Xan,dn−1)

=
∑

an,dn−1,qn−1

p(qn−1)p(an, dn−1|qn−1)PEQ(an, dn−1)H(Xan,dn−1)
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Figure 3.7: Real-world adaptive strategies

A generic strategy that uses complete history has unrealistic memory requirement because
with increasing n the state-space of qn increases exponentially. We overcome this limitation by
showing that to achieve maximal leakage, the attacker does not need to store entire past. Addi-
tionally, we prove a set of results that enable the identification of optimal real-world strategies
while using partial feedback. Specifically,

Theorem 9. Let q̄n−1 ≡ sn−1, [aj]
n−1
n−sn−1

, dn−1−sn−1 . Then,
1) The optimal real-world adaptive strategy; one which is limited to use the delay of packets
served by the scheduler, only requires to use the parameters q̄n−1 to determine an.
2) For the limit Lc = lim

n→∞
1 − H(Xn||An,Dn)

H(Xn||An)
exists if limiting distributions lim

n→∞
p(q̄n−1) and
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lim
n→∞

p(dn−1|q̄n−1) must exist.

3) For any time-invariant adaptive strategy; i.e. p(an = a|q̄n−1 = q̄) = p(a|q̄), lim
n→∞

p(q̄n−1)

and lim
n→∞

p(dn−1|q̄n−1) exist.

4) q̄n for an irreducible and commuting Markov chain and therefore, lim
n→∞

p(q̄n) can be com-
puted as the stationary distribution of the Markov chain.

Proof. The proof relies on the relationship between the queuing delay of two probes di and dj ,
where i < j without loss of generality. For these probes, we have

dj = di +

j∑
k=i+1

(xk + 1− ak)

Due to this, when analyzing the delay of a probe, the attacker only needs to store the delay
of last-available probe and the inter-arrival times of all probes in-between. If the latest probe
served by the system is n − sn, then the delay of all probes j > n − sn is independent of past
delay observations. This fact is illustrated in Figure 3.7a and 3.7b.

If the attacker stores the information q̄n ≡ sn, dn−sn , [a]nn+1−sn , then q̄n+1 depends only
the choice of an+1 and q̄n. The constituent terms of H(Xi|Ai) and H(Xi|Ai, Di, Di−1) also
depend only on these factors and the system can be modeled as a Markov Decision Process.
The dominance of Markov policies immediately proves 1). 2), 3), and 4) can be proven using
the relationship between delays. Detailed proofs are provided in the Appendix B.1.

The optimal real-world strategy can be found by solving the linear program

Maximize

1 −

∑
qi,ai+1,di

p(di+1|qi)p(ai+1, qi)PEQ(di, ai+1)H(Xdi,ai+1
)∑

qi,ai+1

HB(λ1, ai+1)

Subject to

1: 0 ≤ p(ai+1, qi) ≤ 1, for all Ai+1, qi

2:
∑
ai+1

p(ai+1, qi) = π(qi) for all qi

3: π(qi = j) =
∑∞

j=i−1 π(qi = k)pjk, for all j ∈ {0, 1, · · · }

4:
∑
qi,a

ai+1p(Ai+1, qi) = 1/λ2

5:
∑
q

πq = 1

6: 0 ≤ πq ≤ 1, for all q

Unlike previous scenarios, the number of variables in the linear program to compute op-
timal real-world adaptive strategies are prohibitively large. For a ∈ {1, 2, · · · , |A|}, s ∈
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{1, 2, · · · , |S|}, d ∈ {1, 2, · · · , |D|}, the number of possible states |Qn| ≈ |D| × |A||S|−1.
The size of probability transition matrix, p(An+1|Qn), is O(|D| × |A||S|). For typical values
of |A| = |D| = 50 and |S| = 10, the number of control variables in the linear program grow
to ≈ 1018. This dimension is significantly high to be solved in reasonable time with any real-
world attacker’s computational power. Alternate methods and approximations may be required
to solve this linear program realistically. Unfortunately, they are out of the scope of this thesis.

3.6 Conclusions
Results presented in this chapter demonstrate that quantitative modeling of side channels can
even allow an attacker to develop optimal attack strategies. Optimal utilization of attack re-
sources is important to launch real-world attacks against large systems such Tor. The enhance-
ment in leakage due to such strategies can be very high to ignore. For the setup analyzed in
this chapter, we were able to increase the leakage of the system upto 1000% over Geometric
probing, despite not using feedback. With feedback, we were able to demonstrate a theoretical
increase of upto 30% over non-adaptive strategies. While real-world optimal adaptive strate-
gies require solving a large linear program, a determined attacker can either find the resources
to it or find sub-optimal strategies that require less information.

At this point it is important to discuss the limitation of this analysis to a very specific packet
arrival model from the user’s side and the implication of a different model on leakage and
optimal strategies. Optimal adaptive strategies identified in this chapter satisfy the intuition
that adaptive strategies allow the attacker to probe at a faster rate when the queue is empty
and probe slowly when queue is full. This intuition is likely to hold for alternative arrival
process for user’s packets. While more accurate models for real-world packet traffic exist, the
leakage of the system under those models is likely to be higher due to the dependence between
packet arrivals. Therefore, Bernoulli distribution for user’s packet arrival forms the worst-case
scenario from the attacker’s point-of-view.
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Chapter 4

Side Channels in Cryptographic
Algorithms

Asymmetric cryptosystems, such as RSA [54] and Diffie-Hellman Key-Exchange [15], require
computationally-intensive modular exponentiation/multiplication operations. This limits their
applicability on devices with low processing capabilities or in services which require significant
data processing rates. To address this issue, several algorithms have been developed to perform
modular multiplications efficiently in hardware. One of the most efficient and widely-used
algorithms, named Montgomery Multiplication (MM) (Algorithm 4), was devised by Peter
Montgomery [46]. Montgomery Multiplication replaces computationally-expensive divisions
with the modulus M to multiplications/divisions with the Montgomery reduction parameter R.
R is chosen to be a power of two; i.e. R = 2x for some integer x, and therefore, multiplications
and divisions with R are computationally-inexpensive bit-shifts. However, Montgomery Mul-
tiplication occasionally requires an extra reduction step depending on the relative values of the
multiplicands and modulus, which causes a discrepancy in the amount of time required for the
multiplication. This leads to the creation of a side channel which has been exploited to break
several cryptosystems [37],[6],[13].

Goal of timing attacks against modular exponentiation-based cryptosystems is to either
learn the secret key/exponent in the case when modulus is known or to learn the modulus in
case it is unknown. The second scenario arises under RSA implementation with Chinese Re-
mainder Theorem which uses RSA prime factors to perform exponentiation. In this analysis,
we compute the leakage of secret key/exponent-bits through this side channel and the accuracy
of the attacker in learning the secret modulus for the latter case. Our quantitative analysis is
based on the theoretical model developed by Schindler and others [58],[57],[56]. This model
relies on the computation of probability of an extra reduction in individual Montgomery Mul-
tiplications. Using this modeling, we make the following contributions in this analysis:

• Reliability rate for estimation of unknown prime modulus: We compute the reliability
rate of an attacker that aims to learn the modulus used in a modular exponentiation. This
scenario arises in RSA implementation that use CRT. In such cases, the modulus is one of
the prime factors of the RSA modulus. We compute the reliability rate for this scenario
and discover the relationship between reliability rate, Montgomery reduction parameter,
and the size of the RSA prime.

• Key/exponent leakage in the Montgomery Multiplication routine: We develop a new
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model for the timing side channel in the Montgomery Multiplication routine and provide
lower and upper bounds on the leakage of the routine for non-adaptive strategies. We
show that the leakage of the routine decreases with increasing Montgomery parameter.

• Analysis of countermeasures and their performance trade-offs: Lastly, we employ our
leakage model to quantify the efficacy of two popular countermeasures against timing
attacks, namely, exponent blinding and caching. We compute the reduction in leakage of
the Montgomery Multiplication routine in the presence of each countermeasure and their
performance trade-offs with resource budgets. Importantly, we identify the conditions
under which one countermeasure outperforms the other.

First, we briefly review the specifics of exponentiation algorithms and the Montgomery
Multiplication routine.

4.1 Preliminaries
One of the key operations in modular exponentiation based cryptographic algorithms, such
as RSA and DH, is to compute yd(mod M), where y is the ciphertext, d is the exponent,
and M is the modulus. This operation is performed by a series of multiplications, where the
multiplicands depend on the exponent bit. A typical modular exponentiation is performed using
the square-and-multiply algorithm:

Data: input: y, exponent: d, modulus: M
Result: c = yd(mod M)
temp := y;
for i=2:|d| do

temp := temp2(mod M);
if bi == 1 then

temp = temp ∗ y(mod M);
end

end
Algorithm 4: Square-and-multiply algorithm for exponentiation

If the exponent bit is 0, the only operation performed is squaring of the temp value. If
the exponent bit is 1, an additional multiplication with the ciphertext y is performed. Each
of these multiplications is performed using an optimized modular multiplication algorithm:
Montgomery Multiplication (Algorithm 4). This algorithm succeeds in performing modular
multiplication efficiently because it transforms multiplication/division operations under an odd-
modulus M with similar operations under another base R which is chosen to be a power of
two; i.e. R = 2x, for some x. Such operations are simple bit-shifts and therefore, compu-
tationally fast. Let R−1 represents the multiplicative inverse of R modulo M and M∗ is an
integer such that RR−1 − MM∗ = 1. Montgomery Multiplication invokes two transforms:
Ψ(a) = aR(mod M) and Ψ−1(a) = aR−1(mod M).

To multiply two numbers a and b, the Montgomery Multiplication routine takes Ψ(a), Ψ(b)
as inputs and outputs Ψ(c), where c = a× b(mod M).

An important advantage of using the Montgomery Multiplication routine for modular multi-
plication is that the output is already in the form suitable for the next multiplication. Therefore,
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Data: Ψ(a), Ψ(b), M
Result: Ψ(c), where c = a× b(mod M)
Step 1: z := Ψ(a)Ψ(b);
Step 2: z′ := (z(mod R)M∗)(mod R);
Step 3:Ψ(c) := (z+z′M)

R
;

if Ψ(c) ≥M then
Step 4: Ψ(c) := Ψ(c)−M ;

end
Algorithm 5: The Montgomery Multiplication routine

the transforms Ψ and Ψ−1 are invoked only once during a modular exponentiation. Step 4 of
the Montgomery Multiplication routine is known as the extra-reduction step and is the cause of
timing variations in the Montgomery Multiplication routine. Since a modular exponentiation is
simply a series of Montgomery Multiplications, the timing discrepancy of a modular exponen-
tiation depends on the number of extra reductions in these Montgomery Multiplications. Next,
we review the probability of an extra reduction in each individual Montgomery Multiplication
and stochastic behavior of total timing for a modular exponentiation.

4.2 Stochastic Modeling for Timing Side Channel

The building block of the stochastic modeling of modular exponentiation is the probability of
observing an extra reduction in each individual (or constituent) Montgomery Multiplication
operation. This probability depends on the value of the temp variable, the ciphertext y, and the
current bit of the exponent b as it decides whether is multiplication is temp2 or temp× y. We
first start by computing the probability of an extra reduction in each case. This computation is
based on results developed by Schindler [57, 58], Sato et al. [56], and Walter [64].

4.2.1 Probability of an Extra Reduction in a Single Modular Multiplica-
tion

The following lemma describes the conditions under which an extra reduction in Montgomery
Multiplication is required.
Lemma 1. [56, 58, 63, 64]
i. a) Montgomery Multiplication of ciphertext y and temp modulo M requires an extra reduc-
tion step iff

y × temp
RM

+
(y × temp×M∗)(mod R)

R
≥ 1

i. b) From square-and-multiply and the Montgomery Multiplication routine, we have

tempi
M

=

(
y tempi−1

M2

M

R
+
y tempi−1M

∗(mod R)

R

)
(mod1)
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An extra reduction is carried out iff

tempi
M

<
y

M

tempi−1

M

M

R

Similarly,
ii.a) Montgomery Multiplication of temp and temp modulo M ; i.e. squaring, requires an extra
reduction step iff

temp2

RM
+

(temp2 ×M∗)(mod R)

R
≥ 1

ii.b) From square-and-multiply and the Montgomery Multiplication routine, we have

tempi
M

=

(
temp2

i−1

M2

M

R
+
temp2

i−1M
∗(mod R)

R

)
(mod1)

An extra reduction is carried out iff

tempi
M

<
temp2

i−1

M2

M

R

Proof. The proof is a direct implication of Step 4 in Algorithm 2 and properties of modulo
1.

As repeated multiplications are performed for an exponentiation, the behavior of tempi
can be modeled as a random-variable which equi-distributed on Zm. This implies that the
occurrence of an extra reduction in a Montgomery Multiplication is also random. We have,
Lemma 2. [58] a) Let temp be random variable equi-distributed on ZM and y be a fixed
ciphertext. Then,

Prob( extra reduction in y × temp(mod M)) =
y(mod M)

2R

b) Let temp be random variable, equi-distributed on ZM . Then,

Prob(extra reduction in temp2(mod M)) =
M

3R

Proof. The proofs rely on the fact that the terms temp
M

, (y×temp×M∗)(mod R)
R

, and (temp2×M∗)(mod R)
R

behave like i.i.d. random variables, uniformly-distributed over (0, 1). Detailed steps can be
found in Appendix C.1.

Let Si ≡ tempi
M

and Wi ∈ {0, 1} be a random variable that represents the occurrence of an
extra reduction (wi = 1) or not (wi = 0). tempi in a modular exponentiation behaves like an
i.i.d. random variable equi-distributed over ZM [56, 57]. Therefore, Si behaves like an i.i.d.
random variable uniformly-distributed over the set (0, 1). Using the conditions presented in
Lemma 1, we compute the conditional probability distribution p(w|b, y) as:

The stochastic model presented in Table 4.1 forms the basis of stochastic model for total
decryption timing and leakage analysis in Section VI. Next, we present the stochastic modeling
of total timing behavior of a modular exponentiation.
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P (W |B, Y ) Bi = 0 Bi = 1

Wi = 0 P
(
Si ≥

S2
i−1M

R

)
P
(
Si ≥ Si−1yiM

R

)
Wi = 1 P

(
Si <

S2
i−1M

R

)
P
(
Si <

Si−1yiM
R

)
Table 4.1: Conditional probability distribution, P (W |B, Y )

4.2.2 Timing Behavior of Modular Exponentiation

For the same exponent d, the number of squarings and multiplications performed in an expo-
nentiation is the same. However, the probability of observing an extra reduction in each Mont-
gomery Multiplication depends on both y and M . This probability also depends on whether
the Montgomery Multiplication is a squaring or a multiplication. Let |d| and d1 denote the total
number of bits and the total number of 1’s in the in the binary representation of the exponent
d, respectively. Then, in the modular exponentiation yd(mod M), a total of |d| squarings and
d1 multiplications are performed. We assume that each of these operations requires c units of
times. An additional cER units of time are required if an extra reduction is performed. The
conditions and probabilities of observing an extra reduction in these operations are described
in Lemma 1 and Table 4.1.

Let, Wi ∈ {0, 1} denote the requirement of an extra reduction for the ith Montgomery
Multiplication, then the total time required to compute yd(mod M), T (y) is given by

T (y) =

|d|∑
i=1

(c+ cERwi) +

d1∑
i=1

(c+ cERwi).

From Table 1, it can be seems that the probability of wi = 0/1 depends on bi, y, si and
si−1. Therefore, random variables Wi’s are neither independent nor identically distributed as
their distribution depends on the operation being a squaring or a multiplication. They are also
dependent on the value of the previous state of the algorithm; i.e. Si−1. Still, the total timing of
a decryption, T (y), is the sum of a large number of dependent random variables. Its p.d.f. can
be computed using the central limit theorem [32].
Theorem 10. [57] The total time T (y) to compute yd(mod p) can be represented by a normally-
distributed random variables N (µ, σ2), where

µ = c(|d|+ d1) + cER|d|
M

3R
+ d1

y

2R

and

σ2 = c2
ER

{
|d|

(
M

3R
−
(
M

3R

)2
)

+ d1

(
y

2R
−
( y

2R

)2
)

+2(d1 − 1)CovSM + 2d1CovMS + 2(|d| − d1)CovSS

}
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where,

CovSM =
1

10

M2

R2

y

R
− M

3R

M

2R

CovMS =
1

12

y3

R3

M

R
− M

3R

M

2R

CovSS =
1

21

M4

R4
− M

3R

M

2R

Proof. A consequence of central limit theorem for weakly-dependent variables. Detailed steps
are presented in Appendix C.2.

4.3 Reliability Rate for Timing Attacks on Modular Expo-
nentiation with Unknown Exponent

In certain cases, the goal of the attacker is to learn the modulus being used in a modular ex-
ponentiation. For example, this scenario occurs in RSA implementations that use the Chinese
Remainder Theorem (CRT) (Algorithm 3). CRT is used because it reduces the computation
of yd(mod M), with two exponentiations albeit with smaller exponents and modulus, which
are unknown. As the modulus is unknown, timing attacks that reveal the secret key are not
possible. However, the secret modulus itself can be learned as computation times depend on it.
Knowledge of exponentiation modulus in this scenario allows the attacker to break RSA as the
modulus is one of the prime factors of the RSA modulus. We compute the optimal reliability
rate of an attacker in learning this information.

4.3.1 Problem Formulation
We formulate the problem of estimating the unknown modulus as a multi-hypothesis testing
problem. Let the modulus, M , be chosen from an ordered set of possible modulus M. The
attacker sequentially sends ciphertexts yi to the oracle which then decrypts the ciphertext with a
secret exponent, d, and modulus,M . The side-channel outputs the time taken for this operation,
T (yi), to the attacker. The attacker uses his previously issued inputs and observed outputs to
decide the next ciphertext through a function yi = f(yi−1, T i−1(y)); i.e. is adaptive. After
sending n inputs and observing the corresponding outputs, the attacker produces an estimate
of the underlying modulus, M̂ , using an estimator g(yn, T n(y)) The attacker makes an error if
M̂ 6= M . The optimal reliability rate of the attacker, R∗opt is measured as:

R∗opt = max
f,g

lim
n→∞

− log2 P [M̂ 6= M ]

n

For given yi and M , T (yi) behaves like a normally-distributed random variable, where the
mean, µyi,M , and variance, σ2

yi,M
, are described in Theorem 10. Since the difference between

variance of T (y) for different parameter values is not significant, we assume it to be a constant
value σ2. With the model of this hypothesis test available, we use Naghshvar and Javidi’s
work on the optimal error-exponent for a general multi-hypothesis testing problem [49]. This
computation consists of the following steps.
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i) For each modulus Mi ∈ M and a given probability distribution on the input ciphertexts,
Q(y), minimum expected KL divergence is computed with respect to all Mj 6= Mi. That is,

R(i, Q) = min
j 6=i

∑
y

q(y)D
[
N (µy,Mi

, σ2)||N (µy,Mj
, σ2)

]
ii) Next, a probability distribution Q∗(i) is computed that minimizes R(i, Q). The corre-

sponding expected KL-divergence, R̄(i) is computed as,

R̄(i) = max
Q

R(i, Q)

iii) Finally, the harmonic mean of all R̄(i) is computed over all Mi ∈ M. This value is the
optimal error exponent R∗opt

R∗opt =
1∑
i

1
R̄(i)

R∗opt is the maximum error-exponent that can be achieved by any sequential and adaptive
adversary and therefore, is the optimal reliability rate.

We start by computingR(i, Q) for theMi ∈M. The KL divergence between two normally-
distributed random variables with different means and same variance,N (µa, σ

2) andN (µb, σ
2)

can be computed as:

D
[
N (µa, σ

2)||N (µb, σ
2)
]

=
(µa − µb)2

2σ2

Lemma 3. For Mi ∈M and given probability distribution, Q, on y, we have

R(i, Q) =
|d|2

2σ2R2
min{Rl(i, Q), Ru(i, Q)}

where,

∆i−1 = Mi −Mi−1

∆i+1 = Mi −Mi+1

Rl(i, Q) = ∆2
i−1

[
1

9
− 5

48
Q(y > Mi))

]
+

[
Mi−1∆i−1

6
+
M2

i−1

16

]
Q(Mi−1 < y < Mi)

Ru(i, Q) = ∆2
i

[
1

9
− 5

48
Q(y > Mi+1))

]
+

[
Mi∆i

6
+
M2

i

16

]
Q(Mi < y < Mi+1)

Detailed proof of Lemma 3 is provided in Appendix C.3. The importance of Lemma 3 is
that it reduces the search of minimum KL divergence over the entire setM to two elements of
the set, namely the lower and higher elements with respect to Mi. To compute the probability
distribution Q that maximizes R(i, Q), we need an ordered list of elements in M that can
allows to compute the preceding and succeeding elements of Mi. This implies that the analysis
has be to be performed separately for differentM. We compute the reliability rate when the
modulus is prime number of a certain size, as this scenarios arises in RSA with CRT.

Analysis for prime modulus: Although there is no maintained (or maintainable) list of
primes of a given size: |d|-bits, we still proceed with this analysis by approximating the prime
gaps between two consecutive |d|-bit primes with the average prime gap for such primes.
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Lemma 4. The number of primes of length |d|-bits is (2|d|−2|d|−1)
|d| log2 e

, and their average prime gap
is |d| log2 e.

Proof. A corollary of the prime counting theorem [31].

Assuming, ∆i−1, ∆i ≈ |d| log2 e, we get

Lemma 5.
R̄(i) ≡ max

Q
R(i, Q) ≈ |d|2p2

i

32σ2R2
.

where pi is the ith prime of length |d| bits.

Detailed proof of Lemma 4 can be found in Appendix C.4. Finally, substituting R̄(i), we
have

Theorem 11. The optimal error-exponent, R∗opt for detecting underlying RSA primes of |d| bits
while using Montgomery reduction parameter, R, can be computed as

R∗opt =
|d|2

32σ2R2

 |P|d||∑
p∈P|d|

1
p2


where P|d| is the set of all primes of length |d|-bits.

Theorem 11 computes the optimal reliability rate that can be achieved by an attacker who
estimate the underlying prime modulus. We can draw two conclusions from this analysis. One,
that the optimal reliability rate is positive and therefore, the attacker can learn the secret prime.
Second, that the optimal reliability rate is inversely proportional to the Montgomery reduction
parameter, R. Since R has to be larger than the modulus, system designers should select the
value of the R as the largest power of 2 that is permissible by the underlying computing ar-
chitecture. A limitation of this analysis is that it needs to be performed separately for different
M. To perform a general analysis, we compute the leakage of the Montgomery Multiplication
routine itself in the net section.

4.4 Leakage of the Montgomery Multiplication Routine
The root cause of the timing side channel in modular exponentiation-based cryptosystems is the
inconsistency of extra reductions in the underlying multiplication routine; i.e. the Montgomery
Multiplication routine. Most existing analyses, including that performed in the previous sec-
tion, focus on the analysis of specific attacks. However, the analysis of information leakage in
the Montgomery Multiplication routine itself can be of great importance as it can allow general-
ization of analysis for all cryptographic algorithms that employ the Montgomery Multiplication
routine. Simultaneously, this analysis can allow system designers to implement countermea-
sures directly in the implementation of the Montgomery Multiplication routine and also analyze
their performance. In this section, we develop a model for the timing channel present in the
Montgomery Multiplication routine and compute its leakage.
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4.4.1 A Side-channel Model for the Montgomery Multiplication Routine

The side-channel model for the Montgomery Multiplication routine is developed in line with
the general side-channel model presented in Chapter 1. The algorithm is abstracted as a
discrete-time, two-input-single-output system. In every time-slot, the user issues a binary in-
put, bi ∈ {0, 1}, which is the current exponent bit. The attacker issues a corresponding input
ciphertext, yi ∈ ZM , to the side channel. The Montgomery Multiplication routine maintain a
state Si ≡ tempi

M
in each time-slot. The variable tempi is the temporary variable maintained

by a square-and-multiply algorithm. Depending on bi, the Montgomery Multiplication routine
is used to either perform temp2

i (mod M) (for bi = 0) or yi × tempi(mod M) (for bi = 1).
The side channel produces a corresponding output bit wi ∈ {0, 1} with the attacker observes.
wi = 0 implies that the ith Montgomery Multiplication operation did not require an extra re-
duction, whereas wi = 1 implies that an extra reduction was required. Figure 4.1 illustrates the
side-channel model.

Side channel

Attacker

User
bi ∈ {0, 1}

yi ∈ ZM

P (wi|wi−1, yi, bi)

yi = f(yi−1, wi−1)

wi ∈ {0, 1}

Figure 4.1: Timing side channel in the Montgomery Multiplication routine

The stochastic relationship between the side-channel inputs, output, and internal state vari-
ables is as specified in Table 4.1, where Si’s behave as i.i.d. random variables, uniformly-
distributed over (0, 1). The goal of the attacker is to estimate the user’s input bit-sequence
Bn, given the knowledge of his inputs, Y n and the side-channel outputs, W n. The attacker
may be adaptive; i.e. choose his next input, yi, based on previously issued inputs, yi−1, and
observed outputs, wi−1, using a stochastic function p(yi|yi−1, wi−1). If the probability distri-
bution on the attacker’s inputs p(yi) is independent of the past, then the attacker is said to
be non-adaptive. The leakage of the Montgomery Multiplication routine, LMM , for an attack
strategy, p(yn|yn, wn) is defined as

LMM = lim
n→∞

1− H(Bn||Y n,W n)

H(Bn)

Next, we compute the side-channel leakage of the Montgomery Multiplication routine for
non-adaptive strategies under this model.
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4.4.2 Bounds on the Leakage of the Montgomery Multiplication Routine
for Non-adaptive Strategies

First, we compute a lower-bound on the information leakage of the Montgomery Multiplication
routine to show that leakage is non-trivial; i.e. LMM ≥ 0. This suffices to demonstrate that
information is leaked through this side channel at a positive rate.

Theorem 12. For a non-adaptive strategy, specified by the probability distribution p(y)

LMM ≥ 1− Ey

[(
y

4R
+
M

6R

)
H

(
y

4R
y

4R
+ M

6R

)
+

(
1− y

4R
− M

6R

)
H

(
1− y

4R

1− y
4R

+ M
6R

)]

Proof. To compute a lower bound onLMM , we compute an upper-bound onH(Bn|Bn−1, Y n,W n).
We have H(Bn||Y n,W n) =

∑
nH(Bn|Bn−1, Y n,W n). Using Césaros’s mean theorem [48],

lim
n→∞

H(BN ||W n, Y n)

n
= lim

n→∞
H(Bn|Bn−1, Y n,W n)

Further, we have

Hcon(n) ≤ H(Bn|Wn, Yn)

=
∑
yn,wn

p(yn)p(wn|yn)H(Bn|wn, yn)

=
∑
yn

p(yn)

[(
yn
4R

+
M

6R

)
H

(
yn
4R

yn
4R

+ M
6R

)
+

(
1− yn

4R
− M

6R

)
H

(
1− yn

4R

1− yn
4R
− M

6R

)]

Here, we have assumed that the attacker’s input strategy is non-adaptive. However, the
maximum leakage achieved by adaptive strategies can only be higher than that achieved by
non-adaptive strategies and therefore, the lower-bound on leakage still holds.

An upper-bound on the leakage of a non-adaptive strategy is computed next. Upper-bounds
can be used to evaluate performance of countermeasures as will be shown in the next section.

Theorem 13. The leakage of the Montgomery Multiplication routine, LMM , for a given prob-
ability distribution P (y) can be computed as

LMM ≤
∑
y

p(y)

[
y

2R
− M

3R
− y3

3M2R

]

Proof. Again, let Hcon(Bn) = H(Bn|Bn−1,W n, Y n). Then,

Hcon(Bn)
(a)

≥ H(Bn|Bn−1,W n, Y n, Sn)
(b)
= H(Bn|Wn, Yn, Sn−1, Sn)

(a): Conditioning can only reduce entropy.
(b): Given wn, sn, sn−1, and yn, bn is independent of the past (Table 4.1).
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From the stochastic relationship between these variables, presented in Table 4.1, one can
see that wn = 0, irrespective of the value of bn, iff sn > max{ s

2
n−1M

R
, sn−1ynM

R
}. Hence, if this

relation is satisfied, the attacker cannot guess the user’s bit and Hcon(Bn) = 1. Similarly, if
sn ≤ min{ s

2
n−1M

R
, sn−1ynM

R
}, wn = 1 irrespective of the value of bn.

Therefore, the attacker can only learn the user’s bit with certainty is min
{
s2n−1M

R
, sn−1ynM

R

}
<

sn ≤ max
{
s2n−1M

R
, sn−1ynM

R

}
. For every other case, Hcon(Bn) = 1. This relationship can be

simplified by considering two different ranges of sn−1: a) sn−1 ∈
(
0, yn

M

)
and b) sn−1 ∈

(
yn
M
, 1
)
.

Hcon(Bn) ≥ 1−
∑
y

p(y)

∫ y
M

0

∫ sn−1ynM

R

s2n−1M

R

dsndsn−1 +

∫ 1

y
M

∫ s2n−1M

R

sn−1ynM

R

dsndsn−1


= 1−

∑
y

p(y)

[
M

3R
− y

2R
− y3

3M2R

]
LMM ≤

∑
y

p(y)

[
M

3R
− y

2R
− y3

3M2R

]
This concludes the proof.

In the next section, we show that this model not only allows designers to quantify the
leakage of their vanilla implementations but also to incorporate different countermeasures and
quantify the security guarantees provided by them.

4.5 Countermeasures

A number of countermeasures have been developed to prevent information leakage in cryp-
tosystems. We focus on the two most popular countermeasures: a) exponent blinding and b)
caching. Exponent blinding thwarts timing attacks by adding a different random value to the
exponent for each exponentiation. In contrast, caching thwarts such attacks by pre-computing
the output of certain multiplicand pairs; i.e. maintaining multiplication table. The algorithm
does a look-up for all such pairs and therefore, reduces the number of extra reductions. Despite
the mainstream belief of the strength of these countermeasures, not many quantitative guaran-
tees are available in the literature. In this section, we quantify the security guarantees of both
countermeasures and study their performance trade-offs under resource constraints.

4.5.1 Exponent Blinding

In his seminal paper on timing attacks in cryptosystems [37], Paul Kocher also proposed a
countermeasure against such attacks, named exponent blinding. In this countermeasure, the
exponent, d, is added with a random multiple of the Euler’s totient function, φ(M) of the mod-
ulus M . As opposed to decrypting a ciphertext y by computing yd(mod M), two exponentia-
tions are performed with random exponents. First, yd+rφ(M)(modM) is computed, followed by
yrφ(M)(modM). The results of these computations are divided to obtain yd(modM). The salt,
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r, is chosen randomly for each ciphertext. As each of these operations is performed with ran-
dom exponents selected fresh for each ciphertext, original timing attacks are hindered. While
traditionally, it was believed that exponent blinding completely defeats all timing attacks, re-
cent works have shown that timing attacks are still possible under this countermeasure albeit
with significantly higher number of measurements [2, 59].

We study the efficacy of exponent blinding by accommodating it in the leakage model from
previous section. To emulate the effect of a random salt, we assume that along with the user’s
input bit bi, a random bit ri is generated which remains unknown to the attacker. Two Mont-
gomery Multiplication operations are performed for each ciphertext yi. First multiplication is
performed using bi⊕ri as the exponent bit and emulates yd+rφ(M)(modM) operation. This op-
eration reveals a binary value w1

i to the attacker, where w1
i = 1 if an extra reduction is required

and 0 otherwise. Second multiplication is performed using ri as the exponent bit and emulates
yrφ(M)(mod M). This operation reveals another binary value w2

i to the attacker, where w2
i = 1

if an extra reduction is required and 0 otherwise. Given, his knowledge of yi and w(1,2)
i , the

goal of the attacker is to learn the user’s input bit bi. The leakage of the system under this
countermeasure is measured as:

Lblind := lim
n→∞

1− H(Bn||Y n,W (1,2)n)

H(Bn)

The computation of Lblind can be performed similarly to the computation of LMM because
the probability of observing an extra reduction in each multiplication is independent of the
other. bi is only estimated correctly if both ri ⊕ bi and ri are estimated correctly. Therefore,
conditional entropy of Bi given Yi and W (1,2)

i is only dependent on the conditional entropy of
ri ⊕ bi and ri, which are identical. Specifically,

Theorem 14. The upper-bound on the leakage of the Montgomery Multiplication routine for a
non-adaptive attack strategy, p(y), under exponent blinding can be computed as

Lblind ≤
∑
y

p(y)

(
M

3R
− y

2R
− y3

3M2R

)2

Proof. In line with the proof of Theorem 13, we have

H(Bi|Yi,W (1,2)
i ) ≥ H(Bi|Yi,W 1,2

i , S
(1,2)
i , S

(1,2)
i−1 )

Now, bi is computed with certainty if both bi ⊕ ri and ri are computed with certainty. In
any other case, H(Bi| · · · ) = 1. Therefore, we only need to compute the probability that both
exponent bits are learned with certainty. Since the stochastic process for either multiplications
is i.i.d. given yi,

P (bi learned with certainty) = P 2(rilearned with certainty)

Given yi, P (ri is learned with certainty) is identical to P (bi is learned with certainty) in the
proof of Theorem 13. This probability is computed as.

P (ri is learned with certainty) =
M

3R
− y

2R
− y3

3M2R
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Combining these results we have,

H(Bi|Yi,W 1,2
i , S

(1,2)
i,i−1) = 1−

∑
y

p(y)

[
M

3R
− y

2R
− y3

3M2R

]2

Consequently,

Lblind =
∑
y

p(y)

[
M

3R
− y

2R
− y3

3M2R

]2

Since
(
M
3R
− y

2R
− y3

3M2R

)
≤ 1, it is clear that Lblind ≤ LMM . This establishes that blinding

does reduce the side-channel information leakage but does not prohibit it entirely. This finding
is consistent with the existence of attacks in the presence of blinding.

4.5.2 Caching
Caching thwarts timing attacks by pre-computing the product for certain pairs of multiplicands
and caching it in memory. When any such pair is encountered during a Montgomery Multipli-
cation operation, the algorithm looks-up in the table and retrieves the output. This is an O(1)
operation and does not contribute towards the total computation time. It is assumed here that
the attacker does not know the contents of the pre-computed multiplication table and cannot
select specific ciphertexts to avoid look-ups in the table. We compute the security guarantees
provided by this countermeasure under our leakage model and study the performance trade-offs
with the amount of memory dedicated to caching.

To accommodate this countermeasure in our leakage model, we assume that whenever a
pre-computed multiplication is required, the attacker does not know if a reduction is required
or not. In such cases, the output of the side channel, wi, is neither 0 or 1 but an erasure which
is denoted by e. The probability that the attacker observes an erasure depends on the size of
the multiplication table. If the scheme has a memory budget which allows the system to store
Θ number of multiplicand pairs, the given two randomly chosen inputs the probability of the
attacker observing an erasure equals Θ

M2 . We define the leakage of the modular multiplication
routine under this countermeasure as

Lcache = lim
n→∞

1− H(Bn||Y n,W n)

H(Bn)

where w ∈ {0, 1, e}.

Theorem 15. The upper-bound on the leakage of the Montgomery Multiplication routine for a
non-adaptive attack strategy, p(y), when caching is employed can be computed as,

Lcache ≤
(

1− Θ

M2

)
LMM .

Proof. The leakage of this implementation is the same as the vanilla Montgomery Multiplica-
tion routine if the multiplicands are not cached. When the multiplicands are cached, the attacker
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observes an erasure and does not gain any information about the user’s input bit. Averaging
both cases, we get Lcache = (1− α)LMM .

An important implication of Theorem 14 and Theorem 15 is that the reduction in leakage
achieved by both countermeasures is inherently different in nature. Caching reduces the leakage
by a constant multiplier that depends on the memory budget. In contrast, blinding reduces the
leakage of the system by an order, Lblind ≈ L2. Therefore, the choice of countermeasure must
depend on the leakage of the vanilla implementation alongside other factors such as the memory
budget. If the leakage of the vanilla implementation is already low; i.e., L → 0, using blinding
reduces it further. For this case, caching requires very high memory budget to reduce the
leakage at the same level as blinding. In contrast, if the leakage of the vanilla implementation
is high; i.e., L → 1, reduction in leakage achieved by blinding is not significant and therefore,
caching is a preferred countermeasure for such scenarios.

4.6 Conclusions
We employed stochastic models developed for the Montgomery Multiplication routine to an-
alyze reliability rate of an attacker who attempts to learn the underlying secret modulus. Our
results show that the reliability rate is non-zero and inversely proportional to the Montgomery
Multiplication reduction parameter, R. Additionally, we developed a new side-channel model
for Montgomery Multiplication that allows us to measure the asymptotic leakage of the side
channel. Under this model we are able to quantify the security provided by well-known coun-
termeasures: exponent blinding and caching. We show that the reduction in leakage achieved
by both countermeasures are fundamentally different. While exponent blinding reduces leakage
by an order, caching reduces the leakage by a constant factor that depends on the memory bud-
get of the countermeasure. This led to identify the conditions under which one countermeasure
outperforms the other.
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Chapter 5

Conclusions and Future Work

This thesis has shown that quantification of information leakage through side-channel attacks
helps find parameters that leak least information, optimal attack strategies that increase the
impact of an attack several folds, and finally, countermeasures that are practical and provably-
secure. The key to this quantitative analysis is the modeling of a side channel and choice of
leakage metrics. We have developed a model that treats a side channel as a two-input-single-
output system where the statistical relationship between inputs and outputs defines the side-
channel. We showed how this model can be used to define precisely a variety of side-channels
attacks, such as private communication detection, privacy attacks against packet schedulers,
and timing attacks against cryptosystems.

In this thesis, we analyze three types of metrics: capacity, reliability rate, and leakage. We
show that capacity is an ill-suited metric as it cannot be associated with a negligible probability
of error of an attacker. Reliability rate is computed in terms of the error-exponent of an attacker
is estimating user’s secret, whereas leakage is measured in terms of the mutual-information rate
between side-channel output and inputs. Reliability rate quantifies the accuracy with which the
attacker learns the secret whereas leakage quantifies the amount of information leaked per-side
channel input. These two metrics are distinct; that is, security of a system under leakage criteria
does not imply its security under reliability rate criteria, and vice versa.

With a useful model and metrics in place, we analyzed three different side-channel at-
tacks. We developed a new stochastic definition of private communication detection between
two parties and used system models available in the literature for packet schedulers and mod-
ular multiplication based cryptosystem. Under these models, we computed the reliability rate
of an attacker in estimating private communication relationships and secret RSA primes. We
were able to study the effect of different parameters choices on these reliability rates, such as
probing and communication rates in PCD and the Montgomery reduction parameter in modular
multiplication. We showed that while reliability rate measures the accuracy of an attacker in es-
timating secret information, its analysis is specific to an attack setup and cannot be generalized.
For generalized analyses we need the leakage metric.

Using our leakage metric, we were able to compute the rate as which activity-logs leak
information about call-records in Private Communication Detection, the rate at which optimal
strategies leak information about packet arrivals at a scheduler, and the rate at which extra
reductions in the Montgomery Multiplication routine leak information about secret exponent
bits. For packet schedulers, we show that an non-adaptive adversary is able to find optimal
strategies that cause 1000% more leakage than previously reported in literature. Furthermore,
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we showed that adaptive strategies lead to even higher leakage and therefore, must be con-
sidered in side-channel analyses. For the Montgomery Multiplication routine, we introduced
a unique side-channel model which allowed computation of asymptotic leakage. Due to high
memory of this channel, we were not able to compute or identify optimal attack strategies but
we developed lower and upper-bounds on leakage of non-adaptive strategies.

Analysis of information leakage also allowed us to develop strong countermeasures, such
as resource-randomization against PCD, and analyze the efficacy of known countermeasures
under practical conditions. We proposed addition of noise in the PCD side-channel by ran-
domizing the use of allocated resources and showed that this countermeasure can be used to
prevent any leakage from the side channel. For timing attacks against cryptosystems, we were
able to differentiate between two well-known countermeasures, exponent blinding and caching,
and explain the differences between their security behavior. Lastly, we were able to identify
conditions under which one outperforms the other.

Several interesting questions are left for future research.
Q1: First question pertains to studying the relationship between leakage and reliability rate

metrics. In particular, it seems intuitive that security of a system under leakage criteria implies
that the attack cannot distinguish between user’s side-channel inputs. This is likely to shed
new light on the reliability rate that can be achieved by an attacker. It would be of interest to
study the side-channel conditions and usage mappings under which such relationships can be
established.

Q2: For the timing side channel in modular exponentiation-based cryptographic algorithms,
it is important to associate the leakage of the Montgomery Multiplication routine with the
leakage of a general cryptographic algorithm. Intuitively, the amount of information provided
due to the knowledge of individual extra reductions is higher than when the attacker only knows
their sum; i.e. total computation times. However, the scaling of leakage with the key-size is still
not established for a general attack strategy. Finally, the analysis of leakage of the Montgomery
Multiplication routine for all adaptive strategies is required to compute its worst-case leakage.

While the side-channel model proposed in this thesis fits a number of real-world scenarios,
certain extensions of it are of interest to the research community.

E1: Consider the scenario in which the attacker manages to insert a Trojan horse in the sys-
tem or the user’s device, which leaks information to the attacker through a parallel, low-capacity
covert channel mechanism. In such case, the definition of joint side-covert side channel capac-
ity becomes necessary to compute the leakage of the system under this setup. Intuitively, the
joint leakage would be higher than the case without the covert channel and method is necessary
to quantify it.

E2: Another extension relates to the design and analysis of adaptive countermeasures.
The countermeasures presented in the literature and this thesis are typically deterministic and
operate assuming the worst-case behavior from the attacker. An interesting research question
is to design and compute the efficacy of adaptive countermeasures which observe previous
behavior from the attacker to adjust countermeasure parameters in a way. This has the potential
to thwart most/all attacks with minimal performance penalties. In the most general case, the
attacker and the defender can both be adaptive. Game-theoretic formulations may be required
to analyze such systems.
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Appendix A

Anonymity leakage in communication
systems

A.1 Probability of call-records given activity-logs

If Alice and Bob communicate with each other, the probability of observing a joint activity-log
(aln) is equal to the sum of probabilities of all call records, crn, under the Markov model shown
in Figure 2.4 which lead to the same aln. Let, T (aln) ≡ {crn, s.t. crn map to aln}. Then,

P (aln|H1) ≡ pr(aln) =
∑

crn∈T (aln)

pr(crn).

From Figure 2.5, we can deduce that the only communication states that lead to confusion
in activity status are 11 and 11. P (aln|H1) depends only on the number of transitions of
the type x → y (O(x → y)), and the number of sub-sequences of the type x − (11)k − y:
(O(x− (11)k− y)), for x, y ∈ {00, 01, 11} and k ∈ {1, · · · , n− 2}. Therefore, P (aln|H1) can
be written using these parameters as:

p(aln) = π0

∏
x,y,k

pO(x→y)
x→y p(x− (11/11)k − y)O(x−(11)k−y)

Here, we can ignore the initiating and terminating sub-sequences, 11k − y and x− 11k, as
they can only occur once in the sequence and therefore, their asymptotic contribution is zero.
Similarly, an all 11n activity-log sequence can be ignored. The probability of the sub-sequence
x− (11)k − y

p(x− (11/11)k − y) =

πx
[
prx→11 pr

x→11

] [ pr11→11 pr
11→11

pr
11→11

pr
11→11

]k [
pr11→y
pr

11→y

]
Finally, the KL divergence D(P (aln|H0)||P (aln|H1)),

= −
∑
aln

p(aln) log
p(aln)

p(aln)
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= −
∑
aln

∑
x,y

p(aln)O(x→ y) log
px→y
px→y

−
∑
aln

∑
x,y,k

p(aln)O(x− (11)k − y) log
p
x−(11/11

k
)y

px−(11)k−y

Finally,

lim
n→∞

∑
aln
p(aln)O(x→ y)

n
= πxpx→y

and

lim
n→∞

∑
aln
p(aln)O(x− (11)k − y)

n
= px−(11)k−y.
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Appendix B

Proof of Theorem 9

The analysis is restricted to time-invariant probability distributions, p(an = a|q̄n−1 = q) =
p(a|q̄).

Proof. The proof is performed in four parts: 1) We show that it suffices for the attacker to
use partial history q̄n to determine an+1, 2) We identify the conditions required for leakage
to have an asymptotic limit, 3) We show that this conditions are satisfied for time-invariant
distribution, and 4) We show that limiting distribution of the state q̄n can be computed as the
stationary distribution of a Markov chain. We start with the proof of 1).

1) As can be seen from the functional-dependence graphs in Figure 3.7a and 3.7b, given the
queuing delay of a packet, the queuing delays of all future packets depend only of the delay of
the current packet and inter-arrivals of future packets. Thus, the queuing delay and inter-arrival
times of past packets can be ignored. This implies that the system’s behavior can be represented
as a MDP. At the same time, rewards in this MDP depend only of the previous state, q̄n and
the action an+1. We can again apply dominance of Markov policies to show that the optimal
strategies in this MDP is also Markovian; i.e., of the form p(an+1|q̄n).

Next, we determine the conditions for lim
n→∞

H(Xn||An) and lim
n→∞

H(Xn||An, Dn) to exist
and be computable under Césaro’s mean theorem.

2) First,

lim
n→∞

H(Xn||An) = lim
n→∞

∑
n

H(Xn|An)

= lim
n→∞

∑
an

p(an)H(Xn|an)

= lim
n→∞

∑
q̄n−1,an

p(q̄n−1)p(an|q̄n−1)H(Xn|an)

=
∑

q̄n−1,an

(
lim
n→∞

p(q̄n−1)
)
p(an|q̄n−1)HB(λ1, an)

This is because, p(an|q̄n−1) is assumed to be time-invariant and HB(λ1, an) depends only on
an. Similarly,

lim
n→∞

H(Xn||An, Dn) = lim
n→∞

∑
n

H(Xn|An, Dn, Dn−1)
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= lim
n→∞

∑
an,dn−1

p(an, dn−1)PEQ(an, dn−1)H(Xan,dn−1))

= lim
n→∞

∑
q̄n−1,an,dn−1

p(q̄n−1)p(Dn−1|q̄n−1)p(an|q̄n1)

PEQ(an, dn−1)H(Xan,dn−1)

=
∑

q̄n−1,an,dn−1

(
lim
n→∞

p(q̄n−1)
)(

lim
n→∞

p(dn−1|q̄n−1)
)
p(an|q̄n−1)

PEQ(an, dn−1)H(Xan,dn−1)

Clearly, the limit Lc exists only if the required limiting distributions exist. Now we show that
these limiting distributions exist for strategies under consideration.

3) We show that lim
n→∞

p(dn−1|q̄n−1) exists. Given q̄n−1 ≡ sn−1, dn−1−sn−1 , [aj]
n−1
n−1−sn−1

,
dn−1 can be simply determined as

dn−1 =

dn−1−sn−1 +
n−1∑

j=n−sn−1

(xj + 1− aj)

+

.

Given, aj , xj is statistically independent of other parameters. Therefore, for an−1 6= 0,

p(dn−1|q̄n−1) =

(∑
j aj
x∗

)
(1− λ1)

∑
j aj−x∗λx

∗

1 ,

where x∗ = dn−1 − dn−1−sn−1 +
∑

j(aj − 1).

For, dn−1 = 1,

p(dn−1 = 1|q̄n−1) =
∞∑
d=1

p(dn−1 = d|q̄n−1)

Clearly, dn−1 depends only on the value of q̄n−1 and is independent of n. Therefore, the limiting
distribution is given trivially by the above equation.

4) Finally, we show that the generation of the sequence q̄1, q̄2, · · · is a first-order, irreducible,
and a-periodic Markov-chain. Therefore, the limiting distribution limn→∞ p(q̄n) exists and
equals the stationary distribution of the Markov chain. We start by showing that conditioned
on q̄n, q̄n+1 is independent of q̄n−1, q̄n−2, · · · . The inter-arrival time an+1 is determined by the
attack strategy on the basis of q̄n and therefore, is entirely dependent on it. sn+1 is completely
determined by the following relation.

dn−sn +

n+1−sn+1∑
j=n+1−sn

(xj − aj + 1) ≤ an+1 ≤ dn−sn +

n+1−sn+1∑
j=n+1−sn

(xj − aj + 1) + xn+2−sn+1

Similarly, given sn+1, an+1−sn+1 is determined by the following relation

dn+1−sn+1 =

[
dn−sn +

n+1−sn+1∑
j=n+1−sn

(xj − aj + 1)

]+

92



Clearly, all the terms in the above relation are either constituents of q̄n or are determined by
it. This shows that the stochastic process q̄1, q̄2, · · · is a first-order Markov chain. The same
can be confirmed by analyzing the fd-graph between the states for this strategy as shown in
Fig.3.7a and 3.7b where it can be readily seen that qn d−separates qn+1 from qn−1, · · · . The
state transition probabilities for the Markov chain are given as

p(q̄n+1|q̄n) = p(sn+1, dn+1−sn+1 , [aj]n+1−sn+1
n+1
|q̄n)

= p(an+1|q̄n)p(sn+1, dn+1−sn+1|qn, an+1)

For dn+1−sn+1 ≤ an+1 and xn+2−sn+1 ≥ an+1 + 1− dn+1−sn+1 , p(sn+1, dn+1−sn+1|qn, an+1)

=

(∑n+1
j=n+1−sn aj

x∗

)
(1− λ1)

∑n+1
j=n+1−sn

aj−x∗λx
∗

1

where, x∗ = dn+1−sn+1 − dn−1−sn−1 +
∑

j(aj − 1)
For all other pairs (qn+1, qn), p(qn+1|qn) = 0. It can be seen easily from the transition prob-

abilities that the Markov chain is a-periodic and is a single communicating class, and therefore
irreducible. Therefore, the limiting distribution exists and equals the stationary distribution of
the Markov chain.
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Appendix C

Analysis of Modular Multiplication-based
Cryptographic Algorithms

C.1 Proof of Lemma 2

Proof. Since temp behaves like a random variable equi-distributed on ZM , the behavior of
temp
M

is like a random variable uniformly distributed in the range (0, 1). Similarly, the second
summand y×temp×M∗(mod R)

R
also behaves as random variable uniformly distributed in the range

(0, 1). These variables are independent of each other.

Let U := temp
M

and V := y×temp×M∗(mod R)
R

. Then, an extra reduction in the computation of
y × temp(mod M) is performed if y(mod M)

R
U + V ≥ 1. This probability of this event can be

computed as follows.

Pr

[
y(mod M)

R
U + V ≥ 1

]
=

∫ 1

0

∫ 1

1− y(mod M)
R

u

dv du

=

∫ 1

0

y(mod M)

R
u du

=
y(mod M)

2R

Similarly, an extra reduction in the computation of temp2(modM) is performed is M
R
U2+V ≥

1. The probability of an extra reduction in this case can be computed as

Pr

[
M

R
U2 + V ≥ 1

]
=

∫ 1

0

∫ 1

1−M
R
u2
dv du

=

∫ 1

0

M

R
u2 du

=
M

3R
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C.2 Timing Behavior for Modular Exponentiation with Un-
known Modulus

We assume that a regular multiplication requires c seconds in the absence of an extra reduction.
Extra reduction adds cER seconds to a multiplication operation. Let, |d| and d1 be the total
number of bits and total number of ones in the binary-representation of the exponent d. In the
computation of yd(mod M), the total number of temp2(mod M) operations equal |d| and total
number of y× temp(mod M) operations equal d1. For cryptographic exponents, d1 ≈ |d|

2
. The

probability of an extra reduction is different for each type of multiplication. On average, the
number of extra reductions equal |d| m

3R
+ d1

y(mod M)
2R

.
We now focus on the sequential Montgomery Multiplications that are performed in modular

exponentiation using the square-and-multiply algorithm. Let, Si := tempi
R

before the i + 1th

multiplication and Vi+1 represent a random variable uniformly-distributed on (0, 1). We have,

Si+1 =

{
M
R
S2
i + Vi+1 for MM(tempi, tempi)

y
M

M
R
Si + Vi+1 for MM(tempi, yi)

Similarly, let Wi+1 ∈ {0, 1} represent a binary random variable that represents whether
i+1th multiplication required an extra reduction. Si’s behave as independent random variables,
uniformly-distributed over (0, 1). From Lemma 2, the random variable Wi is defined as:

Wi =

{
1Si<

M
R
S2
i−1

for MM(tempi, tempi)

1§i< y
M

M
R
Si−1

for MM(tempi, y)

Then, the total time T (y) to compute yd(mod M) can be expressed as

T (y) = c|d|+ cER

|d|+d1∑
i=1

Wi

We have, the expected value of Wi

E[Wi] =

{
M
3R

for MM(temp, temp)
y(mod m)

2R
for MM(temp, y)

and the variance of Wi

V ar[Wi] =

{
M
3R
−
(
M
3R

)2 for MM(temp, temp)
y

2R
−
(
y

2R

)2 for MM(temp, y)

However, the sequence of random variables {Wi} are neither independent nor identically dis-
tributed. The co-variance between Wi,Wi+1 can be computed in the following way for three
different cases:
Case I: (Wi ⇐MM(tempi, tempi) and Wi+1 ⇐MM(tempi+1, y))

CovSM = E(WiWi+1)− E(Wi)E(Wi+1)

= E(WiWi+1)− M

3R

y

2R
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= Pr[Wi = 1 ∩Wi+1 = 1]− M

3R

y

2R

=

∫ 1

0

∫ M
R
s2i−1

0

∫ y
R
si

0

dsi+1dsidsi−1 −
M

3R

y

2R

=
1

10

M2

R2

y

R
− M

3R

M

2R

Case II:(Wi ⇐MM(temp, y) and Wi+1 ⇐MM(temp, temp))

CovMS = E(WiWi+1)− E(Wi)E(Wi+1)

= E(WiWi+1)− y

2R

M

3R

= Pr[Wi = 1 ∩Wi+1 = 1]− y

2R

M

3R

=

∫ 1

0

∫ y
R
si−1

0

∫ M
R
s2i

0

dsi+1dsidsi−1 −
y

2R

M

3R

=
1

12

y3

R3

M

R
− M

3R

M

2R

Case III:(Wi ⇐MM(temp, temp) and Wi+1 ⇐MM(temp, temp))

CovSS = E(WiWi+1)− E(Wi)E(Wi+1)

= E(WiWi+1)− M

3R

M

3R

= Pr[Wi = 1 ∩Wi+1 = 1]− M

3R

M

3R

=

∫ 1

0

∫ M
R
s2i−1

0

∫ M
R
s2i

0

dsi+1dsidsi−1 −
M

3R

M

2R

=
1

21

M4

R4
− M

3R

M

2R

It is easy to see that Cov(Wi,Wj) = 0, iff |i − j| > 1. Thus, we can invoke the central limit
theorem for loosely-independent random variables to model the sum

∑|d|+d1
i=1 Wi.

C.3 Proof of Lemma 3

For a given probability distribution Q in y,

R(i, Q) =
1

2σ2
min
j 6=i

∑
y

q(y)[(µy,Mi
− µy,Mj

)2].
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Substituting µy,Mi
and µy,Mj

, we get

(µy,Mi
− µy,Mj

)2 = c2
ER

[
|d|(Mi −Mj)

3R
+
d1(y(mod Mi)− y(mod Mj))

2R

]
Define, ∆M := Mi −Mj and ∆y(mod M) = y(mod Mi)− y(mod Mj).

R(i, Q) =
c2
ER|d|2

2σ2R2
Ey
[

∆M

3
+

∆y(mod M)

4

]2

=
c2
ER|d|2

2σ2R2

[
∆M2

9
+

∆MEy(∆y(mod M))

6
+

E2
y(∆y(mod M))

16

]
The value of ∆y(mod M), depends on whether Mj < Mi and Mi < Mj . We focus only on

values 0 < y < maxM . This restriction ensures that y < 2Mj since Mi and Mj have the same
number of bits.
Case I: (Mj < Mi)

∆y(mod M) =


0 if y ≤Mj − 1
Mj if Mj ≤ y ≤Mi − 1
−∆M if Mi ≤ y

Ey(∆y(mod M)) = Mj{FQ(Mi − 1)− FQ(Mj)} −∆M{1− FQ(Mi)}
E2
y(∆y(mod M)) = M2

j {FQ(Mi − 1)− FQ(Mj)}+ ∆2M{1− FQ(Mi)}

Substituting these values in (4), we get

R(i, Q) =
c2
ER|d|2

2σ2R2
min
Mj<Mi

{
∆M2

[
1

9
− 5

48
[1− Fy(Mi)]

]
+

[
Mj∆M

6
+
M2

j

16

]
[Fy(Mi − 1)− Fy(Mj)]

}
AsMj →Mi; ∆M → 0, Fy(Mi−1)−Fy(Mj)→ 0. The only term that behaves differently

is,

Mj∆M

6
+
M2

j

16
=

Mj(8Mi − 5Mj)

48

Since Mi

2
≤ Mj < Mi and Mj(8Mi − 5Mj) is a parabola that achieves its maximum value

at Mj = 4
5
Mi. This means that (5) has the same value for 3

5
Mi ≤ Mj ≤ 4

5
Mi and 4

5
Mi ≤

Mj < Mi. R(i, Q) is lower for the later range. Therefore, the comparison needs to be for
1
2
Mi ≤ Mj ≤ 3

5
Mi and 4

5
Mi ≤ Mj < Mi. Precisely, it is between the values Mj ≈ 1

2
Mi or

Mj = Mi−1. Let,

Rl(i, Q) :=
c2
ER|d|2

2σ2R2

{
∆2
i−1

[
1

9
− 5

48
(1− Fy(Mi))

]
+

[
Mi−1∆i−1

6
+
M2

i−1

16

]
[Fy(Mi − 1)− Fy(Mi−1)]

}
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Next, we perform the analysis of Mi < Mj .
Case II: (Mi < Mj)

∆y(mod M) =


0 if y ≤Mi − 1
−Mi if Mi ≤ y ≤Mj − 1
−∆M if Mj ≤ y

Ey(∆y(mod M)) = −Mi{FQ(Mj − 1)− FQ(Mi)} −∆M{1− FQ(Mj)}
E2
y(∆y(mod M)) = M2

i {FQ(Mj − 1)− FQ(Mi)}+ ∆2M{1− FQ(Mj)}

Substituting these values in (4), we get

R(i, Q) =
c2
ER|d|2

2σ2R2
min
Mi<Mj

{
∆M2

[
1

9
− 5

48
[1− Fy(Mj)]

]
+

[
−Mi∆M

6
+
M2

i

16

]
[Fy(Mj − 1)− Fy(Mi)]

}
AsMi ←Mj; ∆M → 0, Fy(Mi−1)−Fy(Mj)→ 0. The only term that behaves differently

is,

−Mi∆M

6
+
M2

i

16
=

Mi(8Mj − 5Mi)

48

Since Mi < Mj ≤ 2Mi and Mj(8Mi − 5Mj) is a parabola that is an decreasing function of
Mj in the specified range, the minimum value is achieved for Mj = Mi+1. Combining results
from the two cases, we can be certain that irrespective of the choice of input distribution Q, the
minimum value is achieved for Mj ∈ {Mi−1,Mi+1}. This result reduces the search space for
the min

Mj 6=Mi

D() to three values, reducing the complexity of search significantly. Let,

Ru(i, Q) :=
c2
ER|d|2

2σ2R2

{
∆2
i

[
1

9
− 5

48
(1− Fy(Mi+1))

]
+

[
Mi∆i

6
+
M2

i

16

]
[Fy(Mi+1 − 1)− Fy(Mi)]

}
Therefore,

R(i, Q) = min{Rl(i, Q), Ru(i, Q)}

C.4 Proof of Lemma 4

Replacing ∆i−1 and ∆i with |d| log2 e in Rl(i, Q) and Ru(i, Q) respectively, we get

Rl(i, Q) =
c2
ER|d|2

2σ2R2

{
|d|2

[
1

9
− 5

48
(1− Fy(pi))

]
+

[
pi−1|d|

6
+
p2
i−1

16

]
[Fy(pi − 1)− Fy(pi−1)]

}
Ru(i, Q) =

c2
ER|d|2

2σ2R2

{
|d|2

[
1

9
− 5

48
(1− Fy(pi+1))

]
+

[
pi|d|

6
+
p2
i

16

]
[Fy(pi+1 − 1)− Fy(pi)]

}
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Rl(i, Q) can be maximized without impacting Ru(i, Q) by setting Fy(pi−1) = 0. This means
that optimal Q should not assign any probability to y ≤ pi−1. Similarly, Ru(i, Q) can be
maximized by setting Fy(pi+1) = 1. This implies that optimal Q should assign all probability
mass in the range y ∈ {pi−1, pi+1}. In that case,

Rl(i, Q) =
c2
ER|d|2

2σ2R2

{
|d|2

[
1

9
− 5

48
(1− Fy(pi))

]
+

[
pi−1|d|

6
+
p2
i−1

16

]
Fy(pi)

}
Ru(i, Q) =

c2
ER|d|2

2σ2R2

{
|d|2 1

9
+

[
pi|d|

6
+
p2
i

16

]
[1− Fy(pi)]

}
Clearly,Rl(i, Q) is a linearly-increasing function ofFy(pi) andRu(i, Q) is a linearly-decreasing
function of Fy(pi). Therefore to compute R̄(i); i.e max

Q
min{Rl(i, Q), Ru(i, Q)} one must

compute the value of Fy(pi) such that Rl(i, Q) = Ru(i, Q).

Denoting γ := 1 − Fy(pi) and α :=
[
pi|d|

6
+

p2i
16

]
≈
[
pi−1|d|

6
+

p2i−1

16

]
, Rl(i, Q) = Ru(i, Q)

we have,

− 5|d|2

48
γ + α(1− γ) = αγ

γ =
α

2α + 5|d|2
48

Substituting γ in Ru(i, Q), we get

R̄(i) =
c2
ER|d|2

2σ2R2

{
|d|2

9
+

α2

2α + 5|d|2
48

}

Since p� log2(p) = |d|, we have 2α + 5|d|2
48
≈ 2α, α ≈ p2i

16
. This leads to

R̄(i) ≈ c2
ER|d|2p2

i

32σ2R2
.
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