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Abstract

During the last decades, signal processing techniques have been developed to attenuate

the undesired effects caused by the acoustic coupling between loudspeaker and microphone

in communication systems. In public address (PA) or sound reinforcement systems, the

acoustic coupling causes the system to have a closed-loop transfer function that, depending

on the amplification gain, may become unstable. Consequently, the maximum stable gain

(MSG) of the system has an upper limit. In teleconference or hands-free communication

systems, the acoustic coupling causes the speaker to receive back his/her voice signal after

talking, which sounds like an echo and disturbs the communication.

The use of adaptive filters to identify the acoustic coupling path and estimate the

resulting acoustic signal, which is subtracted from the microphone signal, is the state-of-art

approach to remove the influence of the acoustic coupling in PA and teleconference systems.

This approach is very attractive because, in theory, it would completely remove the effects

caused by the acoustic coupling if the adaptive filter exactly matches the acoustic coupling

path. And it has been applied to develop acoustic feedback cancellation (AFC) and

acoustic echo cancellation (AEC) methods for PA and teleconference systems, respectively.

In a PA system, however, a bias is introduced in the adaptive filter coefficients if the

traditional gradient-based or least-squares-based adaptive filtering algorithms are used.

This issue occurs because the system input signal and the loudspeaker signal are highly

correlated, mainly for colored signals as speech, and limits the performance of the AFC

methods available in the literature. This work aims to primarily investigate the use of

cepstral analysis to develop more effective AFC methods. It is proved that the cepstra of

the microphone signal and the error signal may contain time domain information about

the system, including its open-loop impulse response. Then, two new AFC methods are

proposed: the AFC method based on the cepstrum of the microphone signal (AFC-CM)

and the AFC method based on the cepstrum of the error signal (AFC-CE). The AFC-CM

and AFC-CE methods estimate the feedback path impulse response from the cesptra of the

microphone signal and error signal, respectively, to update the adaptive filter. Simulation

results demonstrated that, for speech signals in a PA system with one microphone and one

loudspeaker, the AFC-CM and AFC-CE methods can estimate the feedback path impulse
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response with misalignment (MIS) of −9.8 and −25 dB, respectively, and increase the

MSG of the PA system by 12 and 30 dB, respectively. And, for speech signals in a PA

system with one microphone and four loudspeakers, the AFC-CM and AFC-CE methods

can estimate the overall feedback path impulse response with MIS of −10.4 and −25 dB,

respectively, and increase the MSG of the PA system by 11.3 and 30.6 dB, respectively.

The second theme of this work is related to AEC in teleconference systems. In the

mono-channel case, the conventional AEC approach works quite well and any gradient-

based or least-squares-based adaptive filtering algorithm can be used. In this work, the

cepstral analysis, which is the basis of the proposed AFC methods, is applied in a different

way to develop a new methodology for mono-channel AEC. This methodology estimates

the cepstrum of the echo path through the cepstra of the microphone signal and the

loudspeaker signal, and then computes an estimate of the echo path impulse response that

is used to update the adaptive filter. Three new mono-channel AEC methods are proposed:

the AEC method based on cepstral analysis with no lag (AEC-CA), the improved AEC-

CA (AEC-CAI) and the AEC method based on cepstral analysis with lag (AEC-CAL).

The AEC-CAI and AEC-CAL methods perform partially or completely the inverse of the

overlap-and-add method using the adaptive filter as estimate of the echo path, respectively,

in order to improve the computation of the frame of the microphone signal and thus the

estimate of the echo path impulse response. The drawback of the AEC-CAL method is

an estimation lag equal to the length of the echo path.

Simulation results demonstrated that the methods are sensitive to the ambient noise

conditions and perform well in terms of MIS. However, they may perform worse than

the traditional adaptive filtering algorithms in the first seconds of the Echo Return Loss

Enhancement (ERLE) metric. In order to overcome this issue in the first seconds of ERLE,

hybrid AEC methods that combine the AEC-CAI and AEC-CAL with two traditional

adaptive filtering algorithms are also proposed. For speech signals and an echo-to-noise

ratio (ENR) of 30 dB, the AEC-CAI and AEC-CAL methods can estimate the echo path

impulse response with mean MIS of −18.7 and −18.6 dB, respectively, and attenuate

the echo signal with mean ERLE of 32.4 and 36.1 dB, respectively. And the hybrid

methods that use the AEC-CAI and AEC-CAL methods can estimate the echo path

impulse response with mean MIS of −20 and −19.9 dB, respectively, and attenuate the

echo signal with mean ERLE of 35.1 and 35.4 dB, respectively.

In stereophonic AEC (SAEC), a bias is introduced in the adaptive filter coefficients

because of the high correlation between the loudspeaker signals if they are originated

from the same sound source. Consequently, the adaptive filters converge to solutions that

depend on impulse responses of the transmission room and the echo cancellation worsens if

these impulse responses change. In order to overcome this problem, this work proposes two

hybrid methods based on sub-band frequency shifting (FS) to decorrelate the loudspeaker

signals before feeding them to the adaptive filters: Hybrid1 and Hybrid2. The Hybrid1

method applies a frequency shift of 5 Hz at the frequencies above 4 kHz and the traditional
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half-wave rectifier (HWR) in the remaining frequencies. The Hybrid2 applies a frequency

shift of 5 Hz at the frequencies above 4 kHz, a frequency shift of 1 Hz at the frequencies

between 2 and 4 kHz and the HWR in the remaining frequencies. Simulation results

demonstrated that the Hybrid1 and Hybrid2 methods cause the adaptive filters to estimate

the impulse responses of the echo paths with MIS of −12.1 and −13 dB, respectively,

thereby making the SAEC system less sensitive to variations in the transmission room.

And the Hybrid1 and Hybrid2 methods produce stereo speech signals with a subjective

sound quality of 85.4 and 87.2, respectively, in 100.
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Resumo

Durante as últimas décadas, técnicas de processamento de sinal têm sido desenvolvidas

para atenuar os indesejados efeitos causados pelo acoplamento acústico entre alto-falante

e microfone em sistemas de comunicação. Em sistemas de comunicação ao público (PA)

ou reforço sonoro, o acoplamento acústico faz o sistema ter uma função de transferência

em malha fechada que, dependendo do ganho de amplificação, pode tornar-se instável.

Consequentemente, o máximo ganho estável (MSG) do sistema tem um limite superior.

Em sistemas de teleconferência ou comunicação com mãos livres, o acoplamento acústico

faz o usuário receber de volta a sua própria voz logo após falar, a qual soa como um eco

e perturba a comunicação.

O uso de filtros adaptativos para identificar o percurso de acoplamento acústico e

estimar o resultante sinal acústico, o qual é subtráıdo do sinal do microfone, é a abordagem

estado-da-arte para remover a influência do acoplamento acústico nos sistemas PA e de

teleconferência. Essa abordagem é muito atrativa porque, na teoria, removeria completa-

mente os efeitos causados pelo acoplamento acústico se o filtro adaptativo corresponder

exatamente ao percurso de acoplamento acústico. E tem sido utilizada para desenvolver

métodos de cancelamento de realimentaçãa acústica (AFC) e de cancelamento de eco

acústico (AEC) para sistemas PA e de teleconferência, respectivamente.

Em um sistema PA, entretanto, um viés é introduzido nos coeficientes do filtro adap-

tativo se os tradicionais algoritmos de filtragem adaptativa baseados no gradiente descen-

dente ou mı́nimos quadrados forem utilizados. Isso ocorre porque o sinal de entrada do

sistema e o sinal do alto-falante são altamente correlacionais, principalmente para sinais

coloridos como voz, e limita o desempenho dos métodos AFC dispońıveis na literatura.

Esse trabalho objetiva principalmente investigar o uso da análise cepstral para desenvolver

métodos AFC mais eficazes. Prova-se que os cepstros do sinal do microfone e do sinal

de erro podem conter informação no domı́nio do tempo sobre o sistema, incluindo a

sua resposta ao impulso em malha aberta. Em seguida, dois novos métodos AFC são

propostos: o método AFC baseado no cepstro do sinal do microfone (AFC-CM) e o

método AFC baseado no cepstro do sinal de erro (AFC-CE). Os métodos AFC-CM

e AFC-CE estimam a resposta ao impulso do percurso de realimentação a partir dos
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cepstros do sinal do microfone e do sinal de erro, respectivamente, para atualizar o

filtro adaptativo. Resultados de simulações demonstraram que, para sinais de voz em

sistemas PA com um microfone e um alto-falante, os métodos AFC-CM e AFC-CE podem

estimar a resposta ao impulso do percurso de realimentação com desalinhamento (MIS)

de −9.8 e −25 dB, respetivamente, e aumentar o MSG do sistema PA em 12 e 30 dB,

respetivamente. E, para sinais de voz em sistemas PA com um microfone e quatro

alto-falantes, os métodos AFC-CM e AFC-CE podem estimar a resposta ao impulso

do percurso geral de realimentação com MIS de −10.4 and −25 dB, respetivamente, e

aumentar o MSG do sistema PA em 11.3 e 30.6 dB, respectivamente.

O segundo tema desse trabalho está relacionado com AEC em sistemas de telecon-

ferência. No caso mono-canal, a abordagem AEC convencional funciona muito bem e

qualquer algoritmo de filtragem adaptativa baseado no gradiente descendente ou mı́nimos

quadrados pode ser utilizado. Nesse trabalho, a análise cepstral, que é a base dos métodos

AFC propostos, é aplicado de uma maneira diferente para desenvolver uma nova metodolo-

gia para AEC mono-canal. Essa metodologia estima o cepstro do percurso de eco através

dos cepstros do sinal do microfone e do sinal do alto-falante, e em seguida calcula uma

estimativa da resposta ao impulso do percurso de eco que é utilizada para atualizar o

filtro adaptativo. Três novos métodos AEC mono-canal são propostos: o método AEC

baseado em análise cesptral sem atraso (AEC-CA), o AEC-CA melhorado (AEC-CAI) e o

método AEC baseado em análise cesptral com atraso (AEC-CAL). Os métodos AEC-CAI

e AEC-CAL realizam de maneira parcial e completa o inverso do método de sobreposição-

e-soma, respectivamente, para melhorar o cálculo da janela do sinal do microfone e assim

a estimativa da resposta ao impulso do percurso de eco. A desvantagem do método

AEC-CAL é um atraso de estimação igual ao comprimento do percurso de eco.

Resultados de simulações demonstraram que os métodos são senśıveis às condições de

rúıdo ambiente e têm um bom desempenho em termos de MIS. No entanto, eles podem

apresentar um desempenho pior que os tradicionais algoritmos de filtragem adaptativa

nos primeiros segundos do métrica Echo Return Loss Enhancement (ERLE). Com o

intuito de superar esse problema nos primeiros segundos do ERLE, métodos AEC h́ıbridos

que combinam os AEC-CAI e AEC-CAL com dois tradicionais algoritmos de filtragem

adaptativa são propostos. Para sinais de voz e uma razão eco-rúıdo de 30 dB, os métodos

AEC-CAI e AEC-CAL podem estimar a resposta ao impulso do percurso de eco com

MIS médio de −18.7 e −18.6 dB, respectivamente, e atenuar o sinal de eco com ERLE

médio de 32.4 e 36.1 dB, respectivamente. E os métodos h́ıbridos que utilizam AEC-CAI

e AEC-CAL podem estimar a resposta ao impulso do percurso de eco com MIS médio de

−20 e −19.9 dB, respectivamente, e atenuar o sinal de eco com ERLE médio de 35.1 e

35.4 dB, respectivamente.

Em AEC estéreo (SAEC), um viés é introduzido nos coeficientes dos filtros adaptativos

por causa da alta correlação entre os sinais dos alto-falantes se eles foram gerados da

mesma fonte sonora. Consequentemente, os filtros adaptativos convergem para soluções
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que dependem de respostas ao impulso na sala de transmissão e o cancelamento de eco

piora se essas respostas ao impulso mudam. Com o intuito de superar esse problema,

esse trabalho propõe dois métodos h́ıbridos baseados em deslocamento frequencial em

sub-bandas para descorrelacionar os sinais dos alto-falantes antes de usá-los nos filtros

adaptativos: Hı́brido1 e Hı́brido2. O método Hı́brido1 aplica um descolamento de 5 Hz

nas frequências maiores que 4 kHz e o tradicional retificador de meia-onda (HWR) nas

restantes frequências. O método Hı́brido2 aplica um descolamento de 5 Hz nas frequências

maiores que 4 kHz, um descolamento de 1 Hz nas frequências entre 2 e 4 kHz e o tradicional

retificador de meia-onda (HWR) nas restantes frequências. Resultados de simulações

demonstraram que os métodos Hı́brido1 e Hı́brido2 fazem os filtros adaptativos estimarem

as respostas ao impulso dos percursos de eco com MIS de −12.1 e −13 dB, respectivamente,

tornando assim o sistema SAEC menos senśıvel às variações na sala de transmissão. E os

métodos Hı́brido1 e Hı́brido2 produzem sinais de voz estéreos com qualidade subjetiva de

85.4 e 87.2, respectivamente, em 100.
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Chapter 1
Introduction

1.1 Research Motivation

Communication is a necessity of human beings and speech is their most fundamental com-

munication tool, carrying not only a linguistic information but also an emotional expres-

sion [1]. With current technologies, speech communication systems have been established

in order to fulfill this need and make life easier. Invariably, the communication systems use

microphones and loudspeakers to pick up and play back the speech signals, respectively.

Figure 1.1 illustrates a communication system with Nl loudspeakers and Nm micro-

phones operating in the same acoustic environment. The acoustic coupling between a

loudspeaker and a microphone cause the signal of the kth loudspeaker, which is hereafter

called loudspeaker signal xk(n), to be picked up by the lth microphone after going through

several paths, which constitute the corresponding acoustic coupling path, and thus return

into the communication system.

The acoustic coupling path includes the direct path, if it exists, and a large number of

paths given by reflections. These paths cause a delay and an attenuation in the signal. As

the attenuation typically increases with path length, only a finite number of paths need to

be considered. For simplicity, the feedback path also includes the characteristics of the D/A

converter, loudspeaker, microphone and A/D converter. Although some non-linearities

may occur, for example because of loudspeaker saturation, it is almost always considered

that these devices have unit responses and the feedback path is linear. Therefore, the

acoustic coupling path between the kth loudspeaker and the lth microphone is usually

defined as a finite impulse response (FIR) filter Fkl(q, n).

Let the system input signal ul(n) be the source signal vl(n) added to the ambient noise

signal rl(n), i.e., ul(n) = vl(n) + rl(n), and, for simplicity, also include the characteristics

of the microphone and A/D converter. The resulting microphone signal yl(n) is defined

1
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Figure 1.1: Acoustic couplings between loudspeakers and microphones.

as

yl(n) = ul(n) +

Nl∑

k=1

fkl(n) ∗ xk(n), for l = 1, . . . , Nm. (1.1)

The microphone signal yl(n) is the system input signal ul(n) added to a sum of Nl un-

desired signals originating from the acoustic couplings, which are hereafter called coupling

signals. The sum of the Nl coupling signals is hereafter called overall coupling signal. The

existence of the acoustic coupling is inevitable and can generate some annoying effects

which can disturb the communication or even make it impossible [2, 3, 4, 5, 6].

1.1.1 Public Address or Sound Reinforcement Systems

In a public address (PA) system, a speaker employs microphones and loudspeakers along

with an amplification system to apply a gain on his/her voice signal aiming to be heard by

a large audience in the same acoustic environment. Considering only one microphone, the

microphone captures the desired system input signal, the microphone signal is amplified

and then sent to the loudspeakers [2]. Because of the acoustic couplings, the loudspeaker

signals are unavoidably fed back into the microphone, thereby leading to the so-called

problem of acoustic feedback [2]. In this case, the acoustic couplings, acoustic coupling

paths, coupling signals and overall coupling signal are called acoustic feedbacks, acoustic

feedback paths, feedback signals and overall feedback signal, respectively. Therefore, a

closed signal loop is created which causes the system input signal to circulate in the PA

system and be played back several times by the loudspeakers. As the time delay caused

by the amplification system is generally small, the overall feedback signal generally cannot

be audibly distinguished from the system input signal and just sounds like reverberation.
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The acoustic feedback limits the performance of a PA system in two ways. First and

most important, depending on the amplification gain, the closed-loop transfer function of

the PA system may become unstable resulting in a howling artifact, a phenomenon known

as Larsen effect [3, 4]. This howling will be very annoying for all the audience and the

amplification gain generally has to be reduced. As a consequence, the maximum stable

gain (MSG) of the PA system has an upper limit [3, 4]. Second, even if the MSG is not

exceeded, the sound quality is affected by excessive reverberation or ringing.

In order to overcome the Larsen effect, several methods have been developed over

the last 50 years [2]. Among them, two approaches have been widely used: frequency

shifting (FS) and notch-filter-based howling suppression (NHS). The former shifts the

entire spectrum of the microphone signal by a few Hz so that its spectral peaks fall into

spectral valleys of the feedback path after few loops [7, 8, 9, 10, 11, 12, 13, 14]. The latter

detects the frequency components that may generate instability and then decreases the

amplification gain applied to them by means of notch filters [2, 15, 16].

The FS and NHS methods smooth the gain of the open-loop transfer function of the

PA system [2, 13, 14]. The amount of achievable smoothness depends on the magnitude

difference between the peaks and valleys of the open-loop frequency response. When

the amplification system is a broadband gain, the waveform of the open-loop frequency

response will depend only on the feedback path frequency response. The Schroeder’s

statistics analysis of a feedback path frequency response states that, if the open-loop gain

could be perfectly smoothed, a maximum increase in the MSG of about 10 dB may be

achieved [10]. Some references reported increases in the MSG up to 14 dB [2, 13, 14].

However, the FS and NHS methods change not only the overall feedback signal but also

the system input signal, which implies a fidelity loss of the PA system, and do not remove

the reverberation caused by the acoustic feedback. Moreover, the FS methods may insert

audible degradations depending on the amount of frequency shift employed [2, 10, 13, 14].

The NHS is a pre-active approach that first needs the occurrence of the Larsen effect

to hereupon detect the frequency component responsible for the howling, compute the

notch filter and remove the frequency component from the system. During the inherent

processing time, the audience is exposed to the howling [3]. In fact, both methods assume

the existence of the Larsen effect and only concern to control it.

Nowadays, the results obtained by the FS and NHS methods are becoming less accept-

able and they are being replaced by the acoustic feedback cancellation (AFC) approach [3].

The AFC approach uses adaptive filters to identify the feedback paths and estimate the

feedback signals, which are subtracted from the microphone signal [2, 3]. Ideally, if the

adaptive filters exactly match the feedback paths, the overall feedback signal is completely

removed from the microphone signal and thus the PA system has no longer a closed-loop

transfer function. As a consequence, the MSG can be infinite. In practice, the AFC meth-

ods stand out for producing the best results with regard to MSG and sound quality [2].
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Nevertheless, owing to the amplification system, the system input and loudspeaker

signals are highly correlated, mainly when the source signal is colored as speech. Since the

system input signal acts as interference to the adaptive filter, a bias is introduced in the

adaptive filter coefficients if the traditional gradient-based or least-squares-based adaptive

filtering algorithms are used [2, 17, 18, 19]. Consequently, the adaptive filter only partially

cancels the feedback signal and applies distortion to the system input signal. Mostly,

the solutions available in the literature to overcome the bias problem try to reduce the

correlation between the system input and loudspeaker signals but still using the traditional

adaptive filtering algorithms [2]. However, the additional processing to accomplish this

decorrelation must not perceptually affect the quality of the signals [2]. Therefore, the

challenge is to develop AFC methods that achieve unbiased estimates of the feedback

paths without affecting the quality of the signals. And as AFC is a recent approach, there

may be room for improvement.

1.1.2 Teleconference or Hands-Free Communication Systems

In a teleconference system, individuals or groups employ microphones and loudspeakers

along with a VoIP system to communicate remotely. Each individual or group is located

at one acoustic environment with one or more microphones to pick up its own voice

signal and one or more loudspeakers to play back the voice signals of the others. For a

specific individual or group, its acoustic environment is called transmission room while the

acoustic environments of the others are called reception rooms. The acoustic couplings in

the reception rooms may cause that, after talking, a speaker receives back his/her own

voice signal in the transmission room. Owing to the delay of hundreds of milliseconds

caused by the communication channel, the overall coupling signal is audibly distinguished

from the speaker’s signal and thus is called as echo. The occurrence of this acoustic echo

is annoying and should be eliminated or, at least, attenuated [5, 6].

Although a closed signal loop may exist because of the couplings paths in both trans-

mission and reception rooms, it is considered that the coupling paths in the transmission

rooms do not occur or are eliminated. This is the difference between the acoustic echo

and feedback problems: in acoustic echo, there is no closed signal loop and thereby the

system may not become unstable. Therefore, the acoustic coupling limits the performance

of a teleconference system only with regard to sound quality, which is affected by echoes.

Moreover, in the acoustic echo problem, the loudspeaker signals, source signals, ambient

noise signals, coupling paths and coupling signals are commonly called far-end speaker

signals, near-end speaker signals, near-end ambient noise signals, echo paths and echo

signals, respectively.

In order to attenuate the acoustic echo, two approaches have been developed over the

last 20 years: acoustic echo suppression (AES) and acoustic echo cancellation (AEC).

The former, also denominated loss control, attenuates the loudspeaker and/or microphone

signals depending on the comparison between their energies with pre-defined thresholds
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and between themselves [12, 20]. Similarly to AFC, the latter estimates the echo signal,

usually by means of an adaptive filter, and subtracts it from the microphone signal [12, 21].

The operation of AES is straightforward. If only the loudspeaker signals are active, it

attenuates the microphone signals in order to avoid the transmission of acoustic echoes.

If only the source signal is active, it attenuates the loudspeaker signals in order to avoid

the reception of noise. The problem occurs when both loudspeaker and source signals

are simultaneously active, which is defined as a double-talk situation [12]. In this case,

the method decides which signal, of the loudspeaker or microphone, is attenuated or

not. Therefore, AES methods preclude full-duplex communication [12]. In fact, the AES

approach assumes the existence of the acoustic echo and only concerns to control it.

Nowadays, the AES approach is practically in disuse and the teleconference and hands-

free communication systems widely use the AEC approach. Although the standard [21]

does not specify a technique to estimate the echo signals, adaptive filters are commonly

used to identify the echo paths and estimate the echo signals, which are subtracted from

the microphone signals. Ideally, if the adaptive filters exactly match the echo paths, the

overall echo signal is completely removed from the microphone signal. The drawback

compared to the AES approach is a higher computational complexity.

In the mono-channel case, the AEC methods work quite well and the only concern is not

updating the adaptive filters in the absence of echo signals and in the presence of double-

talk. For the first case, voice activity detectors (VAD) are used. For the second, double-

talk detectors (DTD). However, in the multi-channel case, a bias is introduced in the

adaptive filter coefficients because of the strong correlation between the loudspeaker signals

if they are originated from the same sound source [5, 6, 22]. As undesirable consequences,

the adaptive filters converge to solutions that depend on conditions of the transmission

room and the cancellation worsens if these conditions change [5, 6, 22]. The solutions

available in the literature to overcome the bias problem try to decorrelate the loudspeaker

signals. However, the additional processing to accomplish this decorrelation must not

perceptually affect the quality of the multi-channel signals, including modifications in the

spatial image of the sound source, which is particularly difficult to achieve. Therefore, the

challenge is to develop AEC methods that achieve unbiased estimates of the echo paths

without affecting the perceptual quality of the signals.

1.2 Research Goals

In the light of the above discussion, it is clear that the use of adaptive filters to cancel

the effects of the acoustic feedback/echo is a trend. The theoretical and practical ad-

vantages in performance have justified the continuous development of methods based on

adaptive filtering and their applications in real-world products. The drawback is a high

computational complexity because the adaptive filters generally require a few thousand

coefficients in order to model the acoustic feedback/echo paths with sufficient accuracy.
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However, the use of only adaptive filters generally is not sufficient to produce satisfactory

results. In mono-channel AEC, control mechanisms are necessary to avoid disturbances

in the adaptive filter update. In multi-channel AEC, besides the control mechanisms, it

is also necessary additional processing to decrease the cross-correlation between the loud-

speaker signals in order to improve the performance of adaptive filtering. In AFC, even in

mono-channel case, additional processing is also required to decrease the cross-correlation

between the loudspeaker and system input signals.

The present work is primarily concerned with AFC in PA systems for speech signals as

source signals. A new approach will be proposed to update the adaptive filter in order to

avoid the bias problem in the adaptive filter coefficients and thus increase the MSG of a

PA system. Following this approach, two new AFC methods will be developed. Unlike the

traditional AFC methods, it will be not necessary to apply any processing to the signals

that travel in the system other than the adaptive filter. Therefore, for an AFC method, the

fidelity of the PA system and the quality of the system signals will be as high as possible

because they will only depend on the accuracy of the adaptive filter. The performance of

the proposed methods will be evaluated considering single and multiple feedback paths.

Secondly, this work will address AEC in teleconference systems for speech signals

as source signals. In the mono-channel case, it is possible to find in the literature the

application of time-domain, time-domain block, fullband frequency-domain and subband

frequency-domain adaptive filtering algorithms. The basis of the proposed AFC methods

will be used to develop a new approach for mono-channel AEC. Based on this approach,

three new AEC methods will be developed. In the stereo case, two new pre-processors

will be proposed to reduce the bias problem in the adaptive filter coefficients and then

improve the performance of the stereophonic acoustic echo cancellation (SAEC) .

1.3 Outline and Contributions

The focus of the present work is concentrated in the development of signal processing

techniques to improve the performance of AFC and AEC systems for speech signals. The

organization and contribution of this work are as follows:

Chapter 2, Acoustic Feedback Control, introduces the problem of the acoustic

feedback in PA systems and presents the basic principles behind several approaches to con-

trol the Larsen effect. Due to historical reasons, the FS and NHS approaches are discussed

in detail. The added value of this chapter consists of a survey of the results available in

the literature for these approaches.

Chapter 3, Acoustic Feedback Cancellation, addresses the acoustic feedback con-

trol based on adaptive filtering. The specific bias problem of AFC in PA systems caused by

the strong correlation between the system input signal and loudspeaker signal is discussed.
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The solutions available in the literature to overcome the bias problem and thus improve

the performance of AFC systems are described. The state-of-art method is discussed and

evaluated. The added value of this chapter consists of a survey of the methods available

in the literature to overcome the specific problem of AFC in PA systems and a complete

evaluation of the state-of-art method.

Chapter 4, Acoustic Feedback Cancellation Based on Cepstral Analysis,

presents a complete cepstral analysis of PA and AFC systems. The contributions of this

chapter is twofold: first, it is proved that the cepstra of the system signals contain time-

domain information about the systems if some gain conditions are fulfilled; and second,

two AFC methods based on the cepstral analysis of the system signals are proposed. The

findings of this chapter were disseminated in the following publications:

[I] B. C. Bispo and D. R. S. Freitas, “On the use of cepstral analysis in acoustic feed-

back cancellation,” Digital Signal Processing, 2015, http://dx.doi.org/10.1016/j.dsp.

2015.03.003.

[II] D. R. S. Freitas and B. C. Bispo, “Acoustic feedback cancellation based on cepstral

analysis,” Patent Application WO 2015/044915, PCT/IB2014/06883, April 2015.

[III] B. C. Bispo, P. M. L. Rodrigues and D. R. S. Freitas, “Acoustic feedback cancellation

based on cepstral analysis,” in Proceedings of 17th IEEE Conference on Signal Pro-

cessing Algorithms, Architectures, Arrangements and Applications, Poznan, Poland,

September 2013, pp. 205–209.

Chapter 5, Acoustic Feedback Cancellation with Multiple Feedback Paths,

is concerned with the evaluation of the proposed AFC methods in a PA system with

multiple feedback paths. This is a practical situation that occurs when, for example, a PA

system with one microphone, responsible for picking up the speaker signal, and several

loudspeakers placed in different positions, responsible for playback and distributing the

voice signal in the acoustic environment so that everyone in the audience can hear it, is

used. This chapter formed the basis for the following publications:

[IV] B. C. Bispo and D. R. S. Freitas, “Performance evaluation of acoustic feedback

cancellation methods in single-microphone and multiple-loudspeakers public address

systems,” in Lecture Notes - Communications in Computer and Information Science.

Springer, to be published in 2015.

[V] B. C. Bispo and D. R. S. Freitas, “Evaluation of acoustic feedback cancellation

with multiple feedback paths,” in Proceedings of 11th International Conference on

Signal Processing and Multimedia Applications, Vienna, Austria, August 2014, pp.

127–133.
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Chapter 6, Acoustic Echo Cancellation, introduces the problem of the acoustic

echo in teleconference systems. The cepstral analysis, which is the basis for the AFC

methods proposed in the Chapter 4, is applied in a different way to develop a new approach

to update the adaptive filters in mono-channel AEC. Then, three new mono-channel AEC

methods are proposed. This study was published in:

[VI] B. C. Bispo and D. R. S. Freitas, “Acoustic echo cancellation based on cepstral

analysis,” in Proceedings of 17th IEEE Conference on Signal Processing Algorithms,

Architectures, Arrangements and Applications, Poznan, Poland, September 2013,

pp. 210–214.

Chapter 7, Multi-channel Acoustic Echo Cancellation, deals with AEC in

multi-channel teleconference systems. The specific bias problem of multi-channel AEC

caused by the strongly correlation between the loudspeaker signals is discussed. The so-

lutions available in the literature to overcome the bias problem and then improve the

performance of multi-channel AEC systems are described. Two new sub-band decorrela-

tion methods are proposed. This research was explored in the following publication:

[VII] B. C. Bispo and D. R. S. Freitas, “Hybrid pre-processor based on frequency shifting

for stereophonic acoustic echo cancellation,” in Proceedings of 20th European Signal

Processing Conference, Bucharest, Romania, August 2012, pp. 2447–2451.

Chapter 8 reports the final remarks and establishes plans for future work.

During the present research, the following additional articles were also published:

[VIII] P. M. L. Rodrigues, B. C. Bispo, D. R. S. Freitas, J. P. Teixeira and A. Car-

rere, “Evaluation of EEG spectral features in alzheimer disease discrimination,”

in Proceedings of 21th European Signal Processing Conference, Marrakech, Marocco,

September 2013, pp. 1–5.

[IX] B. C. Bispo, P. A. A. Esquef, L. W. P. Biscainho, A. A. de Lima, F. P. Freeland, R. A.

de Jesus, A. Said, B. Lee, R. Schafer, A. Kalker, “EW-PESQ: A quality assessment

method for speech signals sampled at 48 kHz,” Journal of the Audio Engineering

Society, vol. 58, no. 4, pp. 251–268, April 2010.

[X] A. A. de Lima, S. L. Netto, L. W. P. Biscainho, F. P. Freeland, B. C. Bispo, R. A. de

Jesus, R. Schafer, A. Said, B. Lee, A. Kalker, “Quality evaluation of reverberation in

audioband speech signals,” in e-Business and Telecommunications - Communications

in Computer and Information Science, J. Filipe and M. S. Obaidat, Eds. Springer,

2009, vol. 48, pp. 384–396.
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1.4 Notation

The discrete-time index is denoted by n. The superscript T denotes vector/matrix trans-

pose. The symbol fs denotes the sampling frequency while Ts = 1
fs

corresponds to the

sampling period. The delay operator is denoted by q−1 such that q−1x(n) = x(n− 1). A

time-varying discrete-time filter with length LF is represented by the polynomial [2, 23]

F (q, n) = f0(n) + f1(n)q−1 + . . .+ fLF−1(n)q−(LF−1)

= [f0(n) f1(n) . . . fLF−1(n)]




1

q−1
...

q−(LF−1)




= fT (n)q

(1.2)

or, alternatively, by its impulse response f(n). The vector f(n) has a constant length

LF but all of its values may vary over time n. The filter F (q) refers to a time-invariant

discrete-time filter with length LF and impulse response f . The filtering operation of a

signal x(n) with F (q, n) is denoted as

F (q, n)x(n) = f(n) ∗ x(n) =

LF−1∑

m=0

fm(n)x(n−m). (1.3)

Although the term transfer function should be reserved for the z-transform of f(n), F (q, n)

shall be called the transfer function of the linear system in (1.3) as in [2, 23].

The discrete-time Fourier Transform of F (q, n), or f(n), and x(n) are denoted by

F (ejω, n) and X(ejω, n), respectively, where ω ∈ [0, π] is the normalized angular frequency,

e is the Euler’s number and j is the imaginary number.
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Acoustic Feedback Cancellation
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Chapter 2
Acoustic Feedback Control

2.1 Introduction

This chapter introduces the problem of acoustic feedback in PA systems. The acoustic

feedback causes the PA system to have a closed-loop transfer function that, depending on

the amplification gain, may become unstable resulting in a howling artifact, a phenomenon

known as Larsen effect. This howling will be very annoying for all the audience and the

amplification gain generally has to be reduced. As a consequence, the MSG of the PA

system has a upper limit. Moreover, even if the MSG is not exceeded, the acoustic feedback

causes the sound quality to be affected by excessive reverberation or ringing.

During the past years, several methods have been developed to control the Larsen

effect and an overview of them is presented in this chapter. The FS and NHS methods

are addressed in detail because they are the most widely used methods not only in the

literature but also as in commercial products and for historic reasons. The FS method

was proposed in the early 60’s and consists in shifting, at each loop, the spectrum of the

microphone signal by a few Hz. The NHS method consists in detecting the candidate

frequencies to generate instability and then apply notch filters in order to remove these

frequencies from the microphone signal. Both methods smooth the gain of the open-loop

transfer function of the PA system and, in theory, can increase the MSG around 10 dB.

A survey of the results available in the literature for these approaches is presented and

increases in the MSG up to 14 dB are reported. However, the FS and NHS methods change

not only the feedback signal but also the system input signal, which implies a fidelity loss

of the PA system, and do not remove the excessive reverberation caused by the acoustic

feedback. Moreover, the FS methods may insert audible degradations depending on the

amount of frequency shift. And the NHS methods first need the occurrence of the Larsen

effect before removing the frequency component responsible for the howling. During the

inherent processing time, the audience may be exposed to the howling. In fact, both

methodologies assume the existence of the Larsen effect and only concern to control it.

13
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2.2 The Acoustic Feedback Problem

Feedback
Path

Delay
Filter

Forward
Path

∑ ∑u(n) v(n)

r(n)

x(n)

y(n)

D(q)

G(q, n)

F (q, n)

Figure 2.1: Acoustic feedback in a public address system.

A typical PA system with one microphone and one loudspeaker is illustrated in Fig-

ure 2.1. The loudspeaker signal x(n) is fed back into the microphone through the feedback

path F (q, n). The feedback signal f(n) ∗ x(n) is added to the source signal v(n) and the

ambient noise r(n), generating the microphone signal

y(n) = f(n) ∗ x(n) + v(n) + r(n). (2.1)

The forward path includes the characteristics of the amplifier and any other signal

processing device inserted in that part of the signal loop, such as an equalizer. Although

some non-linearities may exist, for example because of compression, the forward path is

usually assumed to be linear and defined as a FIR filter

G(q, n) = g0(n) + g1(n)q−1 + . . .+ gLG−1(n)q−(LG−1)

= gT (n)q
(2.2)

with length LG.

As it is sometimes found in the literature, a forward delay is represented separately by

the delay filter

D(q) = dLD−1q
−(LD−1)

= dT (n)q
(2.3)

with length LD, which will be exploited further. For closed-loop analysis, LD > 1.

Let the system input signal u(n) be the source signal v(n) added to the ambient noise

signal r(n), i.e., u(n) = v(n) + r(n), and, for simplicity, also include the characteristics of

the microphone and A/D converter. The system input signal u(n) and the loudspeaker
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signal x(n) are related by the closed-loop transfer function of the PA system as

x(n) =
G(q, n)D(q)

1−G(q, n)D(q)F (q, n)
u(n). (2.4)

It is worth mentioning that, differently from the acoustic echo problem, the system input

signal u(n) and the loudspeaker signal x(n) are directly related.

According to the Nyquist’s stability criterion, the closed-loop system is unstable if

there is at least one frequency ω for which [2, 24]

{ ∣∣G(ejω, n)D(ejω)F (ejω, n)
∣∣ ≥ 1

∠G(ejω, n)D(ejω)F (ejω, n) = 2kπ, k ∈ Z.
(2.5)

Considering fs = 16 kHz, Figure 2.2 shows the open-loop and closed-loop frequency

responses for a PA system with F (q) = q−1, D(q) = q−16 and G(q) = 1. The closed-loop

frequency response has peaks and valleys in locations that correspond to phase shifts equal

to 0 and 180 degrees, respectively. The peaks are in theory infinite values and represent

the instability of the PA system. This example shows that, as stated by the Nyquist’s

stability criterion, even though all the frequencies fulfill the gain condition of (2.5), only

the frequencies that fulfill the phase condition of (2.5) generate instability. The conditions

in (2.5) are essential because any acoustic feedback control method attempts to prevent

either one or both of these conditions from being met [2].

Figure 2.3 exemplifies the stability of the PA system as a function of the system gain

through the waveform of the loudspeaker signal x(n) over time. The system input signal

u(n) was a white noise with duration of 2 s followed by 8 s of silence and is showed in Fig-

ure 2.3a. The choice of the white noise was to excite the PA system at all frequencies and

equally. And the use of the silence interval was to observe the behavior of the loudspeaker

signal x(n) after the end of the system input signal u(n). Considering again F (q) = q−1

and D(q) = q−16, Figure 2.3b shows the loudspeaker signal x(n) when G(q) = 0.9. Since∣∣G(ejω, n)D(ejω)F (ejω, n)
∣∣ = 0.9, the system is relatively far from the instability causing

the loudspeaker signal x(n) to end immediately after the system input signal u(n).

When G(q) = 0.999,
∣∣G(ejω, n)D(ejω)F (ejω, n)

∣∣ = 0.999 ≈ 1 and the system is very

close to instability, which causes the loudspeaker signal x(n) to take some time to disappear

after the end of the system input signal u(n), as can be observed in Figure 2.3c. It is

noteworthy that, after the end of u(n), x(n) is basically formed by audible howling but the

system is stable because it naturally disappears. Finally, Figure 2.3d shows the loudspeaker

signal x(n) when G(q) = 1.0001. Since
∣∣G(ejω, n)D(ejω)F (ejω, n)

∣∣ = 1.0001 > 1, the

system is unstable which causes the loudspeaker signal x(n) to never disappear from the

system and its magnitude to increase every iteration such that |x(n)| → ∞.
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Figure 2.2: Open-loop and closed-loop frequency responses for F (q) = q−1, G(q) = 1 and
D(q) = q−16: (a) magnitude; (b) phase.
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Figure 2.3: Illustration of the stability of a PA system when F (q) = q−1 and D(q) = q−16:
(a) u(n); (b),(c),(d) x(n); (b) G(q) = 0.9; (c) G(q) = 0.999; (d) G(q) = 1.0001.
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Indeed, the Nyquist’s stability criterion states that if a frequency component is ampli-

fied with a phase shift equal to an integer multiple of 2π after going through the system

open-loop transfer function, G(q, n)D(q)F (q, n), this frequency component will never dis-

appear from the system. After each loop through the system, its amplitude will increase

resulting in a howling at that frequency, a phenomenon known as Larsen effect [2, 3].

This howling will be very annoying for the audience and the amplification gain at that

frequency generally has to be reduced. As a consequence, the stable gain of the PA system

at that frequency has an upper limit due to the acoustic feedback [2, 3, 4].

In general, the stable gain of the PA system is strictly limited as follows

∣∣G(ejω, n)
∣∣ < 1

|D(ejω)F (ejω, n)| , ω ∈ P (n), (2.6)

where P (n) denotes the set of frequencies that fulfill the phase condition in (2.5), also

called critical frequencies of the PA system, that is

P (n) =
{
ω|∠G(ejω, n)D(ejω)F (ejω, n) = 2kπ, k ∈ Z

}
. (2.7)

It is worth emphasizing that the stable gain of the PA system has an upper limit at the

frequencies ω ∈ P (n). For ω /∈ P (n), the gain may be, in theory, infinite.

With the aim of quantifying the achievable amplification in a PA system, it is custom-

ary to define a broadband gain K(n) of the forward path as the average magnitude of the

forward path frequence response [2], i.e.,

K(n) =
1

2π

2π∫

0

|G(ejω, n)| dω (2.8)

and extract it from the forward path G(q, n) as follows

G(q, n) = K(n)J(q, n). (2.9)

Assuming that J(q, n) is known andK(n) can be varied, the maximum stable gain (MSG)

of the PA system is defined as [2]

MSG(n)(dB) = 20 log10K(n)

such that max
ω∈P (n)

∣∣G(ejω, n)D(ejω)F (ejω, n)
∣∣ = 1,

(2.10)

resulting in

MSG(n)(dB) = −20 log10

[
max
ω∈P (n)

∣∣J(ejω, n)D(ejω)F (ejω, n)
∣∣
]
. (2.11)

In order to eliminate or, at least, to control the Larsen effect and thus to increase the
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MSG of the PA system, several methods have been developed over the past 50 years and

they can be divided in four main groups [2]. These groups, their main members and a

brief description of each method are resumed below:

1. Phase-Modulation Methods: methods that insert in the system open-loop a pro-

cessing device to change, at each loop, the phase of the system open-loop frequency

response in order to prevent any frequency component from fulfilling the phase con-

dition of the Nyquist’s stability criterion during several loops.

� Frequency Shifting (FS) [2, 7, 8, 9, 10, 11, 12, 13, 14, 25, 26, 27, 28]: the

spectrum of the microphone signal is shifted so that its spectral peaks fall into

spectral valleys of the feedback path.

� Phase Modulation (PM) [2, 13, 14]: phase modulation is applied to the micro-

phone signal with the aim of bypassing the phase condition of the Nyquist’s

stability criterion.

� Delay Modulation (DM) [2, 13, 14]: the time delay of the microphone signal is

varied around a time delay offset in order to bypass the phase condition of the

Nyquist’s stability criterion.

2. Gain Reduction Methods: methods that attempt to automatically act as a human

operator controlling a system conducive to the Larsen effect. These actions are usu-

ally restricted to reduce the gain of the system open-loop so that the gain condition

of the Nyquist’s stability criterion is no longer fulfilled.

� Automatic Gain Control (AGC) [2, 12, 29]: the gain is reduced equally in the

entire frequency range by decreasing the broadband gain K(n) defined in (2.8).

� Automatic Equalization (AEQ) [2, 12]: the gain reduction is applied in sub-

bands of the entire frequency range, namely in those subbands in which the

gain is close to unity.

� Notch Howling Suppression (NHS) [2, 12, 15, 16, 30, 31]: the gain is reduced

in narrow bands of the entire frequency range around frequencies at which the

gain is close to unity.

3. Spatial Filtering Methods [2, 32, 33, 34, 35, 36]: methods that use a microphone array

that has maximum spatial response in the direction of the source signal and minimum

spatial response in the direction of the loudspeaker, and/or a loudspeaker array that

has maximum spatial response in the direction of the audience and minimum spatial

response in the direction of the microphone, in order to enhance the source signal in

the microphone while attenuating the feedback signal.

4. Room Modeling Methods: methods that attempt to identify the acoustic feedback

path and then remove its influence from the PA system.
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� Adaptive Inverse Filtering (or Adaptive Equalizer) (AIF) [2, 37, 38]: the inverse

of the acoustic feedback path is identified and inserted in the system open-loop

in order to equalize the microphone signal.

� Acoustic (or Adaptive) Feedback Cancellation (AFC) [2, 3, 4, 39, 40, 41, 42]:

the acoustic feedback path is identified and used to estimate the feedback signal,

which is subtracted from the microphone signal.

All the methods are well described in the literature, except the gain reduction methods

which are mainly formed by patents, and reference [2] provides a thorough discussion about

most of them as well as simulation results of several methods.

The phase modulation, spatial filtering and room modeling methods are proactive

that attempt to prevent the Larsen effect before it occurs. On the other hand, the gain

reduction methods are mostly reactive in the sense that the Larsen effect must first occur

to hereupon be detected and eliminated. This is a disadvantage because, during the time

between occurrence, detection and elimination of the Larsen effect, the audience is exposed

to the howling [3].

Except for the spatial filtering and AFC methods, all the methods modify not only the

feedback signal f(n) ∗ x(n) but also the system input signal u(n), which implies a fidelity

loss of the PA system. However, this fidelity loss may be neglected if the methods do

not perceptually affect the quality of the system signals, what is particularly difficult to

achieve. The spatial filtering methods do not apply any processing to the system signals

but constrain the placement of the microphone and/or loudspeaker.

The AFC methods, in theory, may modify only the feedback signal, thereby ensuring

the fidelity of the PA system. In advantage over the spatial filtering methods, the AFC

methods do not constrain the placement of the microphone and/or loudspeaker. More-

over, the AFC methods stand out for producing the best results and for being a recent

technique [2, 3, 4], which may allow a large room for improvement.

For these reasons, the present work will focus on AFC methods. However, the FS and

NHS methods will also be addressed because they are widely used not only in literature

but also in commercial products and for historic reasons.

2.3 Frequency Shifting

One of the first approaches proposed to control the acoustic feedback in PA systems

consists in frequency shifting (FS), at each loop, the microphone signal y(n) by a few Hz,

as illustrated in Figure 2.3. It was introduced by Schroeder in the early 60’s and exploits

the fact that the average spacing between large peaks and adjacent valleys in the frequency

response F (ejω) of large rooms is about 5 Hz [10]. Nevertheless, in general, this average

spacing is related to the reverberation time of the room [8].
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Figure 2.4: Acoustic feedback control using frequency shifting.

Considering that the PA system is close to instability and the forward path G(q, n)

is a gain, the howling will appear first at the critical frequency of the PA system where

|F (ejω, n)| is maximum. However, some loops through the system are necessary to make

the howling audible. Then, in each loop, the spectrum Y (ejω, n) of the microphone signal

is shifted by a few cycles so that the frequency component responsible for the howling

falls into a valley of F (ejω, n) after a few loops and, thus, is attenuated before the howling

becomes audible. As a consequence, the MSG of the PA system is expected to increase.

In fact, the FS smoothes the open-loop gain
∣∣G(ejω, n)D(ejω)F (ejω, n)

∣∣ of the PA sys-

tem [2, 13, 14] such that, ideally, the MSG of PA system is determined by its average mag-

nitude rather than peaks magnitude [2, 10]. A statistical analysis of frequency responses

of large rooms was carried out in [10] and show that the highest peak exceeds the average

level by about 10 dB. Therefore, if the open-loop gain could be perfectly smoothed, a

maximum increase in the MSG of about 10 dB may be achieved [10]. Posteriorly, a similar

analysis was done in [26] confirming these results.

The statistical analysis in [10] also states that the optimum frequency shift is equal

to the average spacing between large peaks and adjacent valleys of the room frequency

response, which is typically 5 Hz, or about 4/T60 Hz, where T60 is the reverberation time

of the room. Practical experiments in [10, 13] confirmed the theory by showing that

frequency shifts higher than the optimum value did not give any significant improvement

and, in some cases, are even less effective. However, in practice, the optimum value of

the frequency shift can be slightly different from the theory [13]. Moreover, there is no

significant consistent difference between positive and negative shifts [10, 11, 13]. And,

although the FS approach has the drawback of not preserving the harmonic relations

between tonal components in voiced speech and music signals [2], a frequency shift of 5

Hz is inaudible both for speech and music signals [10].

As observed in [2, 13, 14], the behavior of a FS filter can be analyzed using the theory

of linear time-varying (LTV) systems explored in [43]. From this analysis, the FS filter
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can be interpreted as a linear periodically time-varying (LPTV) filter [2, 13, 14] and has,

for a frequency shift of f0 = ω0(fs/2π) Hz, the following frequency response [2]

H(ejω, n) = ejω0n. (2.12)

The closed-loop transfer function of the system depicted in Figure 2.4 is defined as

x(n)

u(n)
=

G(q, n)D(q)H(q, n)

1−G(q, n)D(q)H(q, n)F (q, n)
(2.13)

and, according to the Nyquist’s stability criterion, is unstable if there is at least one

frequency ω for which

{ ∣∣G(ejω, n)D(ejω)H(ejω, n)F (ejω, n)
∣∣ ≥ 1

∠G(ejω, n)D(ejω)H(ejω, n)F (ejω, n) = 2kπ, k ∈ Z.
(2.14)

Then, considering the broadband gain K(n) of the forward path defined in (2.8), the

MSG of the PA system with an FS method is defined as

MSG(n)(dB) = 20 log10K(n)

such that max
ω∈PH(n)

∣∣G(ejω, n)D(ejω)H(ejω, n)F (ejω, n)
∣∣ = 1,

(2.15)

resulting in

MSG(n)(dB) = −20 log10

[
max

ω∈PH(n)

∣∣J(ejω, n)D(ejω)H(ejω, n)F (ejω, n)
∣∣
]
. (2.16)

where PH(n) is the set of frequencies that fulfill the phase condition in (2.14), that is

PH(n) =
{
ω|∠G(ejω, n)D(ejω)H(ejω, n)F (ejω, n) = 2kπ, k ∈ Z

}
. (2.17)

The increase in the MSG provided by the FS method is defined as

∆MSG(n)(dB) = −20 log10

[
maxω∈PH(n)

∣∣J(ejω, n)D(ejω)H(ejω, n)F (ejω, n)
∣∣

maxω∈P (n) |J(ejω, n)D(ejω)F (ejω, n)|

]
. (2.18)

2.3.1 Frequency Shifter

A digital frequency shifter can be implemented by means of a single sideband (SSB)

modulator which uses cosine and sine as modulation functions along with a Hilbert fil-

ter [12, 26]. Consider a discrete-time signal x(n) with a band-limited spectrum X(ejω)

that can be decomposed into negative and positive frequencies as follows

X(ejω) = X−(ejω) +X+(ejω), (2.19)
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where X−(ejω) is the signal spectrum in the negative frequencies, lower sideband (LSB),

and X+(ejω) is the spectrum in the positive frequencies, upper sideband (USB).

The frequency shift will be denoted by ω0. If ω0 > 0, X−(ejω) will be shifted to-

wards the normalized frequency π and X+(ejω) towards −π, yielding an LSB modulator.

If ω0 < 0, the spectra will be shifted in opposite directions resulting in a USB modulator.

Aiming to generate the desired spectrum, the algorithm creates a first carrier signal

by modulating the input signal x(n) with a cosine function according to

xcos(n) = x(n) cos(nω0). (2.20)

In the frequency domain, the modulation results in two shifted versions of the input

spectrum as follows

Xcos(e
jω) =

1

2
X
(
ej(ω+ω0)

)
+

1

2
X
(
ej(ω−ω0)

)
, (2.21)

which by replacing (2.19) in (2.21) becomes

Xcos(e
jω) =

1

2

[
X−

(
ej(ω−ω0)

)
+X+

(
ej(ω+ω0)

)

+X−
(
ej(ω+ω0)

)
+X+

(
ej(ω−ω0)

)]
.

(2.22)

For an LSB modulator, the first and second terms on the right-hand side of (2.22)

are the desired movements of the positive and negative frequencies of the input spec-

trum. However, the third and fourth terms on the right-hand side of (2.22) are undesired

components that were shifted into the opposite directions. In order to eliminate them,

the algorithm creates a second carrier signal by applying an Hilbert filter with impulse

response hhil to the input signal x(n) according to

xhil(n) = x(n) ∗ hhil. (2.23)

The frequency response of the Hilbert filter is defined as

Hhil(e
jω) = −j sgn(ω), (2.24)

which means that the Hilbert filter shifts the phase of X−(ejω) by π/2 and the phase of

X+(ejω) by −π/2. Then, in the frequency domain, (2.23) implies

Xhil(e
jω) = −j sgn(ω)X(ejω). (2.25)

The Hilbert filtered signal xhil(n) is modulated with a sine function leading to

xsin(n) = xhil(n) sin(nω0). (2.26)



2.3. Frequency Shifting 23

In the frequency domain, the modulation results in two shifted and multiplied versions of

Xhil(e
jω) as follows

Xsin(ejω) = j
1

2
Xhil

(
ej(ω+ω0)

)
− j 1

2
Xhil

(
ej(ω−ω0)

)
, (2.27)

which by replacing (2.19) and (2.25) in (2.27) becomes

Xsin(ejω) =
1

2

[
X−

(
ej(ω−ω0)

)
+X+

(
ej(ω+ω0)

)

−X−
(
ej(ω+ω0)

)
−X+

(
ej(ω−ω0)

)]
.

(2.28)

As in (2.22), the resulting spectrum in (2.28) is formed by two desired movements of

the positive and negative frequencies of the input spectrum and two undesired components

that were shifted into the opposite directions. But now, the undesired components have

opposite signs compared to those from (2.22).

Therefore, the frequency shifted signal x′(n) is obtained by adding the two modulated

signals according to

X ′(ejω) = Xcos(e
jw) +Xsin(ejw)

= X−
(
ej(ω−ω0)

)
+X+

(
ej(ω+ω0)

)
.

(2.29)

The block diagram of the digital frequency shifter is depicted in Figure 2.5, where the

definition of hhil and the need for the delay q−Nhil are explained in the following section.

cos(nω0)

sin(nω0)

x(n) x′(n)

q−Nhil

hhil

Figure 2.5: Block diagram of the frequency shifter.

2.3.2 Hilbert Filter

The impulse response of the Hilbert filter can be calculated by applying the inverse Fourier

transform on (2.25), resulting in

hhilm =





0, if m is even,
2

mπ
, else,

(2.30)
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where m is the sample index.

The problem of (2.30) is twofold: hhil is infinitely long and non-causal. Therefore, it

must first be truncated to a range m = −Nhil, . . . , Nhil by means of a window function.

And, second, it is necessary to shift the truncated solution by Nhil coefficients and, con-

sequently, to delay the cosine modulated signal in (2.20) by Nhil samples. The resulting

Hilbert filter is denoted by ĥhil and has length Lhil = 2Nhil + 1.

It is evident that the efficiency of this implementation of the frequency shifter depends

on the length of the Hilbert filter: higher values of Nhil provide more accurate solutions

but, at the same time, insert longer delays in the output signal. Fortunately, since the

filter coefficients tend to zero as |m| increases, the values of Nhil do not need to be very

high in order for the filter ĥhil to have an accurate solution.

This trade-off between efficiency and filter length is illustrated in Figure 2.6 for Lhil =

33 and 99 samples when fs = 16 kHz and a Hamming window is used as windowing

function. The frequency response Hhil(e
jω) of the Hilbert filter when Lhil = 33 presents

transition bands with a considerable bandwidth, which causes the frequency components in

these bands not to be properly shifted. This consequence can be softened by using higher

order filters as Lhil = 99, resulting in shorter transition bands. However, the drawback is

the higher intrinsic delay Nhil. Moreover, because of the Gibbs phenomenon [44], filters

with sharper transition bands generate oscillations in the spectrum of its output signal

around their cutoff frequencies which, if in the human audible range, may be perceptible.

One important property of the Hilbert transform is the orthogonality between its

input and output signals [45, 46]. A discrete-time signal x(n) with duration N and its

−50 −40 −30 −20 −10 0 10 20 30 40 50

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Sample index

A
m

pl
itu

de

 

 

L
hil

 = 99

L
hil

 = 33

(a)

−8000 −6000 −4000 −2000 0 2000 4000 6000 8000

−1j

−0.8j

−0.6j

−0.4j

−0.2j

0

0.2j

0.4j

0.6j

0.8j

1j

Frequency (Hz)

A
m

pl
itu

de

 

 

L
hil

 = 99

L
hil

 = 33

(b)

Figure 2.6: Hilbert filter for different Lhil values and using a Hamming window: a) impulse
response; b) frequency response.
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corresponding Hilbert transformed signal xH(n) are orthogonal if and only if [45, 46]

1

fs

N−1∑

n=0

x(n)xH(n) = 0. (2.31)

In order to verify this principle, an experiment was made using 100 speech signals with

duration of 4 s, fs = 16 kHz and a Hilbert filter ĥhil with Lhil = 641 (corresponding to a

delay of 20 ms). The values on the left-hand side of (2.31) were calculated for each signal

and are shown in Figure 2.7. Although non-zero, the resulting very low values confirm

that the orthogonality is preserved.
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Figure 2.7: Orthogonality of the Hilbert transform.

2.3.3 Results of FS Systems in the Literature

In this section, results available in the literature about the use of FS to control the acoustic

feedback in PA systems will be presented. Results from practical experiments where the

increase in the MSG of the PA system, ∆MSG, was obtained by increasing the gain of the

forward path G(q, n) until instability occurred are presented in [7, 8, 10, 11, 12, 25, 26].

Following the same approach, results from simulated experiments are reported in [13, 14,

27]. Considering also simulated experiments, results where ∆MSG was mathematically

calculated are presented in [2].

The evaluations carried out by Schroeder in [7, 8, 10] do not explain the nature of the

source signal v(n) used. Absolute values of frequency shifts up to 20 Hz were considered

and the results confirmed the theoretical analysis about the optimum shift frequency

present in [10] and previously discussed in this section. Values of ∆MSG up to 12 dB

were achieved in a large auditorium and soundproof booth while ∆MSG values up to

11 dB were achieved in medium-size room. However, the subjectively acceptable value of

∆MSG was limited to 6 dB because of audible beating effects [7, 8, 10]. In [25], an analog

frequency shifter is described in detail and the same subjectively acceptable ∆MSG of
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6 dB is reported. Another analog implementation of the frequency shifter is described

in [11], where an usable value of ∆MSG equal to 8 dB is presented.

Average values of ∆MSG obtained using speech signals at different power levels as the

source signals v(n) and three different rooms are presented in [12]. The frequency shifts

were 6, 9 and 12 Hz, the frequency shifter was the one described in Section 2.3.1 and the

forward path G(q, n) was a gain. The average values of ∆MSG are in the range 1-2 dB

in a lecture room, 3-4 dB in an entrance hall and 5-6 dB in an echoic chamber, which is

a room of an acoustical research department that has a reverberation time more than one

second. The maximum value of ∆MSG was obtained with a frequency shift of 9 Hz in

the lecture room and with 12 Hz in the other rooms. Artifacts were audible for frequency

shifts larger than 12 Hz.

∆MSG values are reported in [26] considering two different rooms and several micro-

phone configurations. The frequency shifter was the one described in Section 2.3.1, the

frequency shift was 6 Hz, and the forward path G(q, n) was a gain. Although this paper

emphasizes the efficiency of the FS when the source signal v(n) was speech and attenua-

tion in the very low frequencies when v(n) was audio due to the highpass nature of the

Hilbert filter, the nature of the source signal used in the measurements is not clarified.

The ∆MSG values are in the range 0.4-7 dB and no artifacts are noticeable.

Using 18 different microphone positions, average values of ∆MSG are presented in [27].

The frequency shifts were 2, 4, 6 and 8 Hz. In a simulated environment, the feedback path

F (q, n) was measured for each position of the microphone, the forward path G(q, n) was a

gain and the source signal v(n) was white noise. The average values of ∆MSG are in the

range 1.6-3.6 dB and the performance always improved as the frequency shift increased.

In [13, 14], ∆MSG values obtained with frequency shifts of ±{0.5, 1, 2, 3, 4, 5} Hz are

reported. The source signal v(n) was noise and the feedback path F (q, n) was an electronic

reverberation unity. In a first configuration, the forward path G(q, n) was a gain followed

by a electronic equalizer. In a second, the previous G(q, n) was also followed by an

electronic reverberation unity. The gain of G(q, n) was increased while keeping the PA

system stable and the loudspeaker signal x(n) was monitored. In the first configuration,

the ∆MSG values are in the range 5-9 dB and the maximum value was obtained with

frequency shifts of ±2 Hz. In the second configuration, the ∆MSG values are on the range

8-15 dB and the maximum value was obtained with frequency shifts of ±4 Hz.

In a simulated environment, results obtained with frequency shifts of 5 Hz are presented

in [2]. The source signals v(n) were one speech signal with duration of T = 30 s and

fs = 16 kHz and one audio signal with duration of T = 60 s and fs = 44.1 kHz. The

feedback path F (q, n) was a measured room impulse response until t = 3T/4 s and then it

was changed for other measured impulse response of the same room. The broadband gain

of the forward path G(q, n) was initialized to a value such that the PA system had an initial

gain margin of 3 dB and remained at this value until t = T/4 s. During the next t = T/4 s, it

was increased linearly (in dB scale) by 3 dB and remained at this value until the end of the
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simulation. As said previously, in [2], the ∆MSG was mathematically calculated at each

iteration which enabled display the values of ∆MSG over time, ∆MSG(n). Considering

only the last T/2 s of simulation, the FS achieved an average ∆MSG of 1.1 dB and a

maximum ∆MSG of 4.1 dB.

2.4 Notch Howling Suppression

Other widely used approach to control the acoustic feedback in PA systems is the notch-

filter-based howling suppression (NHS). The NHS approach, depicted in Figure 2.8, con-

sists of two stages: howling detection and notch filter design. The howling detection stage

is responsible for detecting the frequencies that generate howling and providing a set of

design parameters DH . The notch filter design stage uses the parameter set DH to design

a bank of adjustable notch filters H(q, n) that is inserted in the open-loop transfer function

in order to remove, or attenuate, these frequency components from the microphone signal

y(n). As a consequence, the MSG of the PA system is expected to increase.

Howling
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Method

Delay
Filter

Forward
Path

Feedback
Path

Bank of Adjustable
Notch Filters

∑ ∑

r(n)

D(q)

G(q, n)

x(n)
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u(n) v(n)e(n)

H(q, n) y(n)

DH(n)

Figure 2.8: Acoustic feedback control using notch filters.

As previously mentioned, even when the PA system is close to instability, some loops

through the system are necessary to make the howling audible. In the meantime, the NHS

method should correctly detect the frequencies that generate howling, design and apply

the notch filters. Otherwise, the audience will be exposed to the howling even if only for

a short time.

In fact, as the FS approach discussed in Section 2.3, the NHS approach also smoothes

the open-loop gain
∣∣G(ejω, n)D(ejω)F (ejω, n)

∣∣ of the PA system such that, ideally, the MSG

of the PA system is determined by its average magnitude rather than peak magnitude [2].

If the open-loop gain could be perfectly smoothed, a maximum increase in the MSG of

about 10 dB may be achieved as before [2, 10]. Apart from the H(q, n) contents, the



28 2. Acoustic Feedback Control

system depicted in Figure 2.8 is equivalent to the one in Figure 2.4. Hence, its closed-

loop transfer function, stability criterion, MSG(n), critical frequencies and ∆MSG(n) are

defined, respectively, according to (2.13), (2.14), (2.15), (2.17) and (2.18).

The NHS literature mainly consists of patents and few experimental results have been

reported [15]. Nevertheless, references [2, 15, 16] unified the framework for howling detec-

tion and provided a comparative evaluation of several howling detection criteria.

2.4.1 Howling Detection

The first stage of the NHS methods detects the frequencies ω̃c that are candidates to

generate howling and provides a set of design parameters DH . It is assumed that the

howling detection is performed on frames of the microphone signal y(n) that, at discrete-

time n, is defined as [2, 15, 16]

y(n) = [y(n+ P −M) y(n+ P −M − 1) . . . y(n+ P − 1)] , (2.32)

where M is the length and P is the hop size of the frame. The short-term spectrum

Y (ejω, n) of the microphone signal is calculated using the Fast Fourier Transform (FFT)

and usually includes a windowing function to reduce the spectral leakage.

The choice of the framing parametersM and P has a great influence on the performance

of the howling detection methods. Small values of the frame length M provide a very fast

howling detection such that the howling may be detected before it is really perceived.

On the other hand, large values allow a better frequency resolution in the microphone

signal spectrum which is very useful when working with narrowband notch filters. Values

corresponding to 4.2, 85.3 and 92.9 ms have already been used in the literature [15, 16].

With respect to the frame hop size P , small values increase the computational com-

plexity since the howling detection methods are applied more often. On the other hand,

large values may result in a lag time between the howling detection and the application

of the notch filters, unless the cascade D(q)G(q, n) generates a delay of at least P sam-

ples [15, 16]. Generally, a good compromise is obtained with 25− 50% frame overlap [16].

A pre-defined numberNp of peaks are selected from the spectrum magnitude |Y (ejω, n)|
of the microphone signal, where usually 1 ≤ Np ≤ 10 [15, 16]. These Np frequency

components are called candidate howling components and their angular frequency values

form the set

Dω̃c(n) = {ω̃k}Np

k=1. (2.33)

A spectral peaking algorithm is usually applied to find the candidate howling frequen-

cies but more advanced techniques, as detecting the frequency components that present

increasing magnitude in successive frames, are also used. Thereafter, spectral and/or tem-

poral features are calculated and combined in a howling detection criterion to determine
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whether a candidate howling component really corresponds to a howling component or

only to a tonal component of the source signal v(n) [15, 16].

2.4.1.1 Signal Features

After detecting the candidate howling components and forming the set Dω̃c(n), some

features of the microphone signal are calculated and used to classify them as real howling

components or not. To this purpose, six spectral and time features have already been

proposed to be used individually or together in order to establish howling detection criteria.

Their definitions and brief explanations about them are listed below:

1. Peak-to-Threshold Power Ratio (PTPR) [2, 15, 16]: a spectral feature that deter-

mines the ratio between the power
∣∣Y (ejω̃k , n)

∣∣2 of the candidate howling component

and a fixed power threshold P0, i.e.,

PTPR(ω̃k, n) [dB] = 10 log10

∣∣Y (ejω̃k , n)
∣∣2

P0
. (2.34)

The use of the PTPR feature in howling detection is explained by the fact that a

howling should be suppressed only when it occurs with a minimum loudness. Thus,

relatively large values for the PTPR feature are expected in howling components.

The value of the power threshold P0 is usually dependent on the sound reinforcement

scenario.

2. Peak-to-Average Power Ratio (PAPR) [2, 15, 16, 31]: a spectral feature that deter-

mines the ratio between the power
∣∣Y (ejω̃k , n)

∣∣2 of the candidate howling component

and the average power P̂y(n) of the microphone signal, i.e.,

PAPR(ω̃k, n) [dB] = 10 log10

∣∣Y (ejω̃k , n)
∣∣2

P̂y(n)
, (2.35)

where

P̂y(n) =
1

M

M−1∑

i=0

∣∣Y (ejωi , n)
∣∣2 . (2.36)

The reason for the PAPR feature is that the power of howling components may be

large when compared to the power of speech and audio components present in the

microphone signal. Then, relatively large values for the PAPR feature are expected

in howling components.

3. Peak-to-Harmonic Power Ratio (PHPR) [2, 15, 16]: a spectral feature that deter-

mines the ratio between the power
∣∣Y (ejω̃k , n)

∣∣2 of the candidate howling component
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and the power
∣∣Y (ejω̃km, n)

∣∣2 of its mth harmonic component, i.e,

PHPR(ω̃k, n,m) [dB] = 10 log10

∣∣Y (ejω̃k , n)
∣∣2

|Y (ejω̃km, n)|2
. (2.37)

The PHPR feature exploits the fact that, unlike voiced speech and tonal audio

components, the howling does not have a harmonic structure unless saturation occurs

on microphone or loudspeaker. Hence, relatively large values for the PHPR feature

are expected in howling components.

4. Peak-to-Neighboring Power Ratio (PNPR) [2, 15, 16]: a spectral feature that deter-

mines the ratio between the power
∣∣Y (ejω̃k , n)

∣∣2 of the candidate howling component

and the power
∣∣Y (ej(ω̃k+2πm/M), n)

∣∣2 of its mth neighbors frequency components, i.e,

PNPR(ω̃k, n,m) [dB] = 10 log10

∣∣Y (ejω̃k , n)
∣∣2

∣∣Y (ej(ω̃k+2πm/M), n)
∣∣2 . (2.38)

Voiced speech and tonal audio can be represented, in the time-domain, as damped

sinusoids. In the frequency domain, they have non-zero bandwidth and their power

is spread over several DFT bins around a spectral peak. On the other hand, a

howling is, in the time domain, a pure sinusoid and its spectrum is supposed to be

concentrated in a single DFT bin. Therefore, relatively large values for the PNPR

feature are expected in howling components.

� Peakness [2, 15, 16]: the peakness feature reflects the time-averaged probability

over 8 signal frames that the PNPR, averaged over 6 neighboring frequency bins

on both sides of ω̃k (excluding the closest neighbor on both sides), exceeds a

15 dB threshold, and is defined as

peakness (ω̃k, n) =
7∑

j=0

1

16

{[
1

6

7∑

m=2

PNPR(ω̃k, n− jP,m) ≥ 15 dB

]

+

[
1

6

−2∑

m=−7
PNPR(ω̃k, n− jP,m) ≥ 15 dB

]}
. (2.39)

5. Interframe Peak Magnitude Persistence (IPMP) [2, 15, 16, 31]: a temporal feature

that, considering QM past frames, counts in how many frames the frequency ω̃k is

in the set of candidate howling components, and is defined as

IPMP(ω̃k, n) =

∑QM−1
j=0

[
ω̃k ∈ Y (ejω̃k , n− jP )

]

QM
. (2.40)
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The IPMP feature is based on that a howling component usually persists during a

longer time than voiced speech and tonal audio components. Then, relatively large

values for the IPMP feature are expected in howling components.

6. Interframe Magnitude Slope Deviation (IMSD) [2, 15, 16]: a temporal feature that

determines the deviation over QM successive signal frames of a specific slope. First,

an average difference (in dB scale) of the candidate howling component power in the

QM − 1 most recent frames and the QM -th previous frame is performed. Second, an

average difference (in dB scale) of the candidate howling component power in recent

frames is carried out. Then, the slope is defined by the average difference of these

two values as follows

IMSD(ω̃k, n) =
1

QM − 1

QM−1∑

m=1





1

QM

QM−1∑

j=0

1

QM − j

[
20 log10

∣∣Y (ejω̃k , n− jP )
∣∣

|Y (ejω̃k , n−QMP )|

]

− 1

m

m−1∑

j=0

1

m− j

[
20 log10

∣∣Y (ejω̃k , n− jP )
∣∣

|Y (ejω̃k , n−mP )|

]
 . (2.41)

Howling components have a nearly linear (in dB scale) increase in magnitude over

time and thus their slope tends to be nearly constant. Thus, relatively small values

for the IMSD feature are expected in howling components.

� Slopeness [15, 16]: the slopeness feature is a non-linear mapping of the IMSD

feature which is not explicitly in the original proposal but in [15, 16] was defined

as

slopeness (ω̃k, n) = e−|IMSD(ω̃k,n)|. (2.42)

2.4.1.2 Detection Criteria

After their calculation, the values of the signal features are analyzed based on some cri-

teria to classify each candidate howling component as a real howling component or not.

Generally, the rule of the detection criteria is to compare the values of one or more signal

features with pre-defined thresholds. Depending on the comparison results, a situation of

howling is declared or not. The angular frequencies of the candidate howling components

that are classified as real howling components form the set Dω̃r ⊂ Dω̃c .

The single-feature howling detection criteria found in literature are listed below:

1. PTPR criterion [2, 15, 16]:

PTPR(ω̃k, n) ≥ TPTPR [dB]⇒ Howling detected, ω̃k ∈ Dω̃r(n). (2.43)
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2. PAPR criterion [2, 15, 16]:

PAPR(ω̃k, n) ≥ TPAPR [dB]⇒ Howling detected, ω̃k ∈ Dω̃r(n). (2.44)

3. PHPR criterion [2, 15, 16]:

∧

m∈MPHPR

[
PHPR(ω̃k, n,m) ≥ TPHPR [dB]

]

⇒ Howling detected, ω̃k ∈ Dω̃r(n), (2.45)

where the symbol ∧ denotes the logical conjunction operator.

4. PNPR criterion [2, 15, 16]:

∧

m∈MPNPR

[
PNPR(ω̃k, n,m) ≥ TPNPR [dB]

]

⇒ Howling detected, ω̃k ∈ Dω̃r(n) (2.46)

5. IPMP criterion [2, 15, 16]:

IPMP(ω̃k, n) ≥ TIPMP ⇒ Howling detected, ω̃k ∈ Dω̃r(n). (2.47)

6. IMSD criterion [2, 15, 16]:

|IMSD(ω̃k, n)| ≤ TIMSD [dB]⇒ Howling detected, ω̃k ∈ Dω̃r(n). (2.48)

The signal features can be combined to achieve howling detection criteria that perform

better than the single-feature ones. A very simple approach is to use logical conjunctions

of single-feature howling detection criteria. The multiple-feature howling detection criteria

found in literature are listed below:

1. Feedback existence probability (FEP) criterion [2, 15, 16, 30]:

FEP (ω̃k, n) ≥ TFEP ⇒ Howling detected, ω̃k ∈ Dω̃r(n), (2.49)

where the FEP feature is defined as

FEP (ω̃k, n) = 0.7 · slopeness (ω̃k, n) + 0.3 · peakness (ω̃k, n) . (2.50)
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2. PHPR & IPMP criterion [2, 15, 16]:

{ ∧

m∈MPHPR

[
PHPR(ω̃k, n,m) ≥ TPHPR [dB]

]
}
∧
{

IPMP(ω̃k, n) ≥ TIPMP [dB]
}

⇒ Howling detected, ω̃k ∈ Dω̃r(n). (2.51)

3. PHPR & PNPR criterion [15, 16]:

{ ∧

m∈MPHPR

[
PHPR(ω̃k, n,m) ≥ TPHPR [dB]

]
}

∧
{ ∧

m∈MPNPR

[
PNPR(ω̃k, n,m) ≥ TPNPR [dB]

]
}

⇒ Howling detected, ω̃k ∈ Dω̃r(n). (2.52)

4. PHPR & IMSD criterion [15, 16]:

{ ∧

m∈MPHPR

[
PHPR(ω̃k, n,m) ≥ TPHPR [dB]

]
}
∧
{
|IMSD(ω̃k, n)| ≤ TIMSD [dB]

}

⇒ Howling detected, ω̃k ∈ Dω̃r(n). (2.53)

5. PNPR & IMSD criterion [15, 16]:

{ ∧

m∈MPNPR

[
PNPR(ω̃k, n,m) ≥ TPNPR [dB]

]
}
∧
{
|IMSD(ω̃k, n)| ≤ TIMSD [dB]

}

⇒ Howling detected, ω̃k ∈ Dω̃r(n). (2.54)

6. PHPR & PNPR & IMSD criterion [15, 16]:

{ ∧

m∈MPHPR

[
PHPR(ω̃k, n,m) ≥ TPHPR [dB]

]
}

∧
{ ∧

m∈MPNPR

[
PNPR(ω̃k, n,m) ≥ TPNPR [dB]

]
}

∧
{
|IMSD(ω̃k, n)| ≤ TIMSD [dB]

}

⇒ Howling detected, ω̃k ∈ Dω̃r(n). (2.55)
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After detecting the real howling components, the howling detection method should

provide the set of design parameters DH(n) to the notch filter design stage. The set DH(n)

should contain Dω̃r(n), the set of the angular frequencies of the real howling components,

and
∣∣Y (ejω, n)

∣∣
ω∈Dω̃r (n)

, the magnitude values of the microphone signal spectrum at these

frequency components.

2.4.2 Notch Filter Design

The second stage of the NHS methods designs a bank of notch filters in order to suppress

the howling components and thus to maintain the closed-loop system stable. In NHS, the

most used structure of digital notch filters is the second-order infinite impulse response

(IIR) filter defined, for the kth howling component, as [2, 15, 16]

Hk(q, n) =
bk,0(n) + bk,1(n)q−1 + bk,2(n)q−2

1 + ak,1(n)q−1 + ak,2(n)q−2
. (2.56)

Thus, the bank of adjustable notch filters, which is inserted in the open-loop system as

shown in Figure 2.8, is defined as a cascade of NH ≤ Np notch filters according to [2, 15, 16]

H(q, n) =

NH∏

k=1

Hk(q, n). (2.57)

The notch filter design receives, from the howling detection method, the set of design

parameters DH(n) and converts it into a set of six filter specifications: the center frequency

ωc, the bandwidth B, the notch gain Gc, the gain at the band edges GB, the gain at DC

level G0, and the gain at Nyquist frequency Gπ. The latter two specifications can be fixed

according to G0 = Gπ = 0 dB. Moreover, the gain at band edges may be defined as GB =

Gc + 3 dB in case of Gc ≤ −6 dB, or as GB = Gc/2 dB in case of Gc ≥ −6 dB [2, 15, 16].

For the kth howling component, a notch filter with center frequency ωc,k corresponding

to the howling frequency should be designed and applied. Its notch gain Gc,k can be

calculated based on
∣∣Y (ejωc,k , n)

∣∣, the magnitude value of the microphone signal spectrum

at the howling frequency. However, a common and simple approach is to work with fixed

notch gain values that are independent of
∣∣Y (ejωc,k , n)

∣∣ [2, 15, 16]. When a new howling

component is detected, a new notch filter is designed with an initial notch gain G0
c,k, for

example, G0
c,k = −3 dB or G0

c,k = −6 dB [2, 15, 16]. If the howling persists or occurs

at a frequency close to a previously identified howling frequency, then the notch gain is

decreased with ∆Gc,k, for example, ∆Gc,k = −3 dB or ∆Gc,k = −6 dB [2, 15, 16]. The

notch filter bandwidth Bk is usually chosen proportional to the center frequency in order

to obtain a constant quality factor [2, 15, 16].

Aiming to complete the notch filter design, the set of filter specifications {ωc,k, Bk, Gc,k}
have to be translated to a set of filter coefficients {bk,0(n), bk,1(n), bk,2(n), ak,1(n), ak,2(n)}.
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To this end, some method should be applied as, for example, the bilinear transform of the

notch filter transfer function or pole-zero placement techniques [2, 15, 16, 47].

2.4.3 Results of NHS Systems in the Literature

In this section, results available in the literature about the use of NHS in acoustic feedback

control of PA systems will be presented. A study was carried out in [15, 16] about the

efficiency of several howling detection criteria as a function of the values of their signal

feature parameters and their decision thresholds. The performance of some NHS methods

in terms of the increase in MSG and sound quality was analyzed in [2, 15, 16].

In [15, 16], an evaluation of the howling detection criteria described in Section 2.4.1.2

was performed by measuring their probabilities of detection and false alarm. As usual, for

each frame of the microphone signal, N candidate howling components were selected from

the spectrum magnitude |Y (ejω, n)| of the microphone signal by a peak algorithm. At the

end of the signal, the total of NT candidate howling components were obtained. In this

procedure, it was assumed that the NP frequencies components that really correspond to

a howling (positive realizations) are known as well as the NN frequency components that

do not (negative realizations), where NT = NP +NN .

Then, the probability of detection was defined as [15, 16]

PD =
NTP

NP
, (2.58)

where NTP is the number of howling components that each method correctly detected

(true positives). Similarly, the probability of false alarm was defined as [15, 16]

PFA =
NFP

NN
, (2.59)

where NFP is the number of howling components that each method incorrectly detected

(false positives).

In a PA system, high values of PD are required in order to correctly remove the howling

components and increase the MSG by activating appropriate notch filters. On the other

hand, low values of PFA are desired in order to not degrade the sound quality of the system

signals by removing tonal components and prevent unnecessary activations of notch filters.

The last observation is specifically important because the deactivation of notch filters is

still an open problem in the NHS literature [15, 16]. Then once activated, a notch filter

Hk(q, n) remains activated until the end of the simulation affecting the sound quality and

reducing the number of available notch filters that can be applied when a howling occurs.

The trade-off between PD and PFA is controlled by the value of the detection threshold.

A classical approach to evaluate the performance of binary classifiers as a function

of their discriminant threshold is to draw the receiver operating characteristic (ROC)

curve [48]. The ROC corresponds to a PD vs. PFA curve where each point is obtained using
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a different value of the discriminant threshold. For multiple-feature detection criteria,

different ROCs should be drawn for each discriminant threshold.

ROC curves for the howling detection criteria described in Section 2.4.1.2 are shown

in [15, 16]. For the same values of signal feature parameters and decision thresholds, the

use of logical conjunctions of single-feature detection criteria results in a multiple-feature

detection criterion that will not have PD and PFA higher than the corresponding single-

feature detection criteria. Since a high PD value is considered more important than a

low PFA value in terms of the overall performance of acoustic feedback control, multiple-

feature detection criteria should combine single-feature detection criteria that present high

PD values regardless of their PFA values [15, 16]. Some of the multiple-feature howling

detection criteria described in Section 2.4.1.2 were proposed based on this idea.

Values of parameters and thresholds of several howling detection criteria that result

in a minimum PFA for PD = 95% are provided in [15, 16]. In these experiments, the

feedback path F (q, n) was a measured room impulse response with duration of 100 ms

and the forward path G(q, n) was a broadband gain followed by a saturation function.

The broadband gain was chosen slightly above the MSG of the PA system. The source

signal v(n) was an audio signal with duration of 10 s, N = 3, NP = 166 and NN = 482.

A summary of the results is shown in Table 2.1.

It can be noticed that, except for the PHPR & IPMP criterion, the multiple-feature

howling detection criteria achieved lower PFA values than the single-feature ones. The

PHPR & PNPR & IMSD and PNPR & IMSD criteria stood out by, for a PD = 95%,

achieving PFA equal to 3 and 5%, respectively. On the other hand, the PTPR and PAPR

criteria obtained the worst results with PFA > 60%, which probably explains why they

were not used on multiple-feature detection criteria.

With regard to the performance of NHS methods, average values of the achievable

increase in MSG, ∆MSG, are presented in [2, 15, 16]. All these results were obtained in a

simulated environment using the same configuration of the PA system but different howling

detection criteria. The ∆MSG was mathematically calculated at each iteration which

enabled display the values of the ∆MSG over time, ∆MSG(n). Considering a simulation

runtime of T s, the feedback path F (q, n) was a measured room impulse response until

t = 3T/4 s and then it was changed for other measured impulse response of the same room.

The broadband gain of the forward path G(q, n) was initialized to a value such that the

PA system had an initial gain margin of 3 dB and remained at this value until t = T/4 s.

During the next T/4 s, it was increased linearly (in dB scale) by 5 dB and remained at this

value until the end of the simulation. It is noteworthy that the increase in the broadband

gain achieved by the NHS methods (5 dB) was higher than that by the FS method (3 dB),

described in Section 2.3.3, which indicates a superior performance of the NHS methods.

In [15], the NHS methods used only howling detection criteria capable of achieving a

probability of detection PD > 65% at a probability of false alarm as low as PFA = 1%.

They were the FEP, PHPR & PNPR, PHPR & IMSD and PHPR & PNPR & IMSD.
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Table 2.1: Comparison of PFA values of several howling detection criteria for PD = 95%.

Detection criterion Parameter and threshold values PFA

PTPR P0 = 0 dB, TPTPR = 34 dB 70%

PAPR TPAPR = 35 dB 63%

PHPR MPHPR = {2, 3}, TPHPR = 27 dB 37%

PNPR MPNPR = {±2,±3,±4}, TPNPR = 14 dB 31%

IPMP QM = 20, TIPMP = 0.3 53%

IMSD QM = 32, TIMSD = 0.25 dB 40%

PHPR & IPMP
MPHPR = {0.5, 1.5, 2, 3, 4}, TPHPR = 10 dB

65%
QM = 5, TIPMP = 0.4

FEP QM = 16, TFEP = 0.7 24%

PHPR & PNPR
MPHPR = {2, 3}, TPHPR = 30 dB

14%
MPNPR = {±1,±2,±3,±4}, TPNPR = 6 dB

PHPR & IMSD
MPHPR = {2, 3}, TPHPR = 27 dB

25%
QM = 16, TIMSD = 1 dB

PNPR & IMSD
MPNPR = {±2,±3,±4}, TPNPR = 12 dB

5%
QM = 16, TIMSD = 0.5 dB

PHPR & PNPR & IMSD

MPHPR = {2, 3}, TPHPR = 23 dB

3%MPNPR = {±2,±3,±4}, TPNPR = 8 dB

QM = 16, TIMSD = 0.5 dB

The number of available notch filters was NH = 12 and the source signal v(n) was an

audio signal with duration of T = 60 s. Table 2.2 shows the specific parameter and

threshold values and, considering only the last T/2 s of simulation, the mean and maximum

values of ∆MSG(n) obtained in each case. The results show an average ∆MSG(n) around

5 dB for all detection methods with a slight advantage to the PHPR & PNPR & IMSD.

However, this method presented the worst sound quality because of its higher number of

false alarms [15]. The NHS system based on the FEP criterion was the only one that

presented some howling [15].

In [16], aiming to improve the performance of the NHS methods, the howling detection

criteria were further restricted to those capable of achieving a probability of detection

PD > 85% (instead of 65% as in [15]) at a probability of false alarm as low as PFA = 1%

(same as in [15]). They were the FEP, PHPR & IMSD and PHPR & PNPR & IMSD. The

PHPR & PNPR criterion, used in [15], was excluded. No information about the number
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Table 2.2: Performance comparison of NHS systems with PD > 65% and PFA = 1%.

Detection criterion Parameter and threshold values ∆MSG (dB)

FEP QM = 8, TFEP = 0.9
mean: 4.7

max: 6.2

PHPR & PNPR
MPHPR = {2, 3}, TPHPR = 42 dB mean: 4.8

MPNPR = {±1,±2,±3,±4}, TPNPR = 6 dB max: 6.5

PHPR & IMSD
MPHPR = {2, 3}, TPHPR = 36 dB mean: 5

QM = 16, TIMSD = 0.5 dB max: 5.8

PHPR & PNPR & IMSD

MPHPR = {2, 3}, TPHPR = 30 dB
mean: 5.6

MPNPR = {±1,±2,±3,±4}, TPNPR = 6 dB
max: 6

QM = 16, TIMSD = 0.5 dB

Table 2.3: Performance comparison of NHS systems with PD > 85% and PFA = 1%.

Detection criterion Parameter and threshold values ∆MSG (dB)

FEP QM = 16, TFEP = 0.95 mean: 6

PHPR & IMSD
MPHPR = {2, 3}, TPHPR = 42 dB

mean: 5.8
QM = 16, TIMSD = 1 dB

PHPR & PNPR & IMSD

MPHPR = {2, 3}, TPHPR = 36 dB

mean: 6MPNPR = {±2,±3,±4}, TPNPR = 12 dB

QM = 16, TIMSD = 0.1 dB

NH of available notch filters was provided and the source signal v(n) was the same audio

signal with duration of T = 60 s used in [15]. Probably, NH = 12 as in [15] and as in the

most cases in [2].

For each method, results were obtained with 3 different threshold values. Table 2.3

shows the mean values of ∆MSG(n), considering only the last T/2 s of simulation, achieved

by the overall best performance of each method and the values of the corresponding

parameters and thresholds. The results demonstrate an average ∆MSG around 6 dB

for all detection methods with a slight disadvantage to the PHPR & IMSD, which also

presented worse detection lag (resulting in longer instability intervals) and higher number

of false alarms. Moreover, the results show that loose threshold values reduce the detection

lag but increase the number of false alarms. On the other hand, strict threshold values

decrease the number of false alarms but increase the detection lag. In both cases the

resulting effect on the sound quality may be detrimental [16].
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In [2], an evaluation of NHS methods using the howling detection criteria PHPR &

IMSD, PAPR and FEP was carried out. The source signal v(n) was an audio signal

with T = 60 s and fs = 44.1 kHz, the same used in [15, 16], and a speech signal with

T = 30 s and fs = 16 kHz. Table 2.4 summarizes the specific parameter and threshold

values and, considering only the last T/2 s of simulation, the mean and maximum values of

∆MSG(n) obtained in each case. It is worth mentioning that a four times greater number

of notch filters (NH = 48) were made available for the PAPR method because of its higher

probability of false alarm [2], which was already observed in [15, 16] and in Table 2.1.

When v(n) was an audio signal, the PAPR achieved the best performance in terms

of ∆MSG(n), obtaining a mean ∆MSG(n) of 7.1 dB, but by far the worst performance

in terms of sound quality. Both results are explained by the higher number of notch

filters available for the PAPR method. The PHPR & IMSD method achieved an average

∆MSG(n) of 5.7 dB but it also achieved a poor sound quality due to the high number of

activated notch filters [2]. However, it is noteworthy that both PAPR and PHPR & IMSD

methods obtained a high probability of false alarm, PFA, in the evaluation of howling

detection criteria performed in [15, 16] and whose results are shown in Table 2.1. The

FEP method achieved a mean ∆MSG(n) of 4.8 dB, which is very close to that obtained

in [15] and also close to that obtained [16] as can be observed in Tables 2.2 and 2.3. It

also obtained the best results in terms of sound quality.

When v(n) was a speech signal, all howling detection methods presented similar per-

formances with respect to ∆MSG with a slight advantage to the FEP method, which

achieved a mean ∆MSG(n) of 5 dB. It should be observed that, as regards ∆MSG(n), all

detection methods performed worse when the source signal v(n) was speech than when it

was audio. In terms of sound quality, the FEP and PHPR & IMSD methods had similar

performances and were slightly superior to the PAPR method. All detection methods

performed, as regards sound quality, much better when the source signal v(n) was speech

than when it was audio and no comment was made about any specific problem in sound

quality. The results reported in [2] are very interesting because they are the only published

evaluation of NHS methods for speech signals as the source signal v(n).

NHS methods based on the FEP howling detection criterion are among the most

efficient methods, if not the best, considering all results presented in the NHS literature.

Moreover, it achieves similar performances when the source signal v(n) was audio or

speech, although only 3 NHS methods had been evaluated for both natures of source

signal. However, it is important to keep in mind that all presented results were obtained

using only one signal (audio or speech), which is statistically insufficient to accurately

infer the efficiency of any method.
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Table 2.4: Performance comparison of NHS systems.

Signal Detection criterion Parameter and threshold values ∆MSG (dB)

Speech

PHPR & IPMP

MPHPR = {0.5, 1.5, 2, 3, 4}, TPHPR = 30 dB
mean: 4.5

QM = 5, TIPMP = 0.6
max: 5.2

NH = 12, Np = 3, M = 2048, P = 1024

PAPR
TPAPR = 33 dB mean: 4.5

NH = 48, Np = 3, M = 2048, P = 1024 max: 5.2

FEP
QM = 7, TFEP = 0.7 mean: 5

NH = 12, Np = 3, M = 2048, P = 1024 max: 5.6

Audio

PHPR & IPMP

MPHPR = {0.5, 1.5, 2, 3, 4}, TPHPR = 30 dB
mean: 5.7

QM = 5, TIPMP = 0.6
max: 6.1

NH = 12, Np = 3, M = 4096, P = 2048

PAPR
TPAPR = 55 dB mean: 7.1

NH = 48, Np = 3, M = 4096, P = 2048 max: 8.6

FEP
QM = 7, TFEP = 0.95 mean: 4.8

NH = 12, Np = 3, M = 4096, P = 2048 max: 6
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2.5 Conclusion

This chapter presented the problem of the acoustic feedback in a PA system. The acoustic

feedback causes the PA system to have a closed-loop that, depending on the amplification

gain, may become unstable resulting in a howling artifact, a phenomenon known as Larsen

effect. This howling will be very annoying for all the audience and the amplification gain

generally has to be reduced. As a consequence, the MSG of the PA system has a upper

limit. Moreover, even if the MSG is not exceeded, the acoustic feedback causes the sound

quality to be affected by excessive reverberation or ringing.

During the past years, several methods have been developed to eliminate or, at least,

to control the Larsen effect. These methods can be divided in four main groups: phase-

modulation, gain reduction, spatial filtering and room modeling methods. This chapter

briefly described their main members and, then, addressed in detail the FS and NHS

methods because they are the most widely used methods not only in literature but also

as in commercial products and for historic reasons.

The FS method consists in shifting, at each loop, the spectrum of the microphone

signal by a few Hz. It exploits the fact the average spacing between large peaks and

adjacent valleys in the frequency response of large rooms is about 5 Hz. Then, in each

loop, the spectrum of the microphone signal is shifted by a few cycles so that the frequency

component responsible for the howling falls into a spectral valley of the feedback path after

a few loops and, thus, is attenuated before the howling becomes audible. Increases up to

15 dB in the MSG due to the use of FS methods are reported in the literature but, in

general, the subjectively acceptable increase is lower because of audible distortions.

The NHS method consists in detecting the candidate frequencies to generate instability

and then apply notch filters in order to remove, or attenuate, these frequencies from the

microphone signal. The major challenge of this method is to correctly accomplish these

tasks before the howling becomes audible. The howling detection methods available in the

literature were presented and briefly discussed. Increases up tp 8.6 dB in the MSG due to

the use of NHS methods are reported.

However, in general, acoustic feedback control methods assume the existence of the

acoustic feedback and only concern to control it. Moreover, they inevitably change not

only the feedback signal but also the system input signal, which implies a fidelity loss of

the PA system. This fidelity loss is undesired but may be neglected if the methods do not

perceptually affect the sound quality, which is particularly difficult to achieve. Finally,

they are not able to remove the excessive reverberation caused by the acoustic feedback.
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Chapter 3
Acoustic Feedback Cancellation

3.1 Introduction

This chapter addresses the topic of acoustic feedback cancellation in PA systems. The

AFC approach uses an adaptive filter to identify the acoustic feedback path and estimate

the feedback signal, which is subtracted from the microphone signal. If the adaptive filter

exactly matches the feedback path, the feedback signal would be completely removed from

the microphone signal and thus the PA system would no longer have a closed-loop transfer

function. As a consequence, the MSG would be infinite. In theory, the AFC approach

offers a clear advantage over acoustic feedback control methods.

However, due to the amplification system, the system input and loudspeaker signals

will be highly correlated, mainly when the source signal is colored as speech signal. Then,

if the traditional gradient-based or least-squares-based adaptive filtering algorithms are

used, a bias will be introduced adaptive filter coefficients. Hence, the adaptive filter will

only partially cancel the feedback signal and also apply distortion to the system input

signal. Therefore, in practice, the performance of the AFC approach is limited.

During the past years, several AFC methods have been developed to overcome the bias

problem in AFC and an overview of them is presented in this chapter. The PEM-AFROW,

which is the state-of-art method, is described in detail. It considers that the system input

signal, which acts as noise to the estimation of the feedback path, is modeled by a filter

whose input is white noise. Thus, the PEM-AFROW method prefilters the loudspeaker

and microphone signals with the inverse source model, in order to create their whitened

versions, before feeding them to a traditional adaptive filtering algorithm.

An evaluation of the PEM-AFROW method is carried out in a simulated environment

using a measured room impulse response as the feedback path impulse response, a time-

varying forward path broadband gain and two different ambient noise conditions. Its

ability to estimate the feedback path and increase the MSG of a PA system is measured

as well as the spectral degradations inserted in the microphone signal.

43
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3.2 Acoustic Feedback Cancellation

As discussed in Chapter 2, among all methods developed to control the Larsen effect, the

acoustic feedback cancellation (AFC) methods stand out for achieving the best overall

performances. The AFC methods identify and track the acoustic feedback path F (q, n)

using an adaptive filter that is generally defined as an FIR filter

H(q, n) = h0(n) + h1(n)q−1 + . . .+ hLH−1(n)q−(LH−1)

= hT (n)q
(3.1)

with length LH .

_
+

Adaptive Feedback
PathFilter

Delay
Filter

Forward
Path

∑ ∑∑ y(n) u(n) v(n)

r(n)

e(n)

x(n)

H(q, n) F (q, n)

D(q)

G(q, n)

Figure 3.1: Acoustic feedback cancellation.

Then, an estimate of the feedback signal f(n) ∗ x(n) is calculated as h(n) ∗ x(n) and

subtracted from the microphone signal y(n), generating the error signal

e(n) = y(n)− h(n) ∗ x(n)

= u(n) + f(n) ∗ x(n)− h(n) ∗ x(n)

= u(n) + [f(n)− h(n)] ∗ x(n)

(3.2)

which is effectively the signal fed to the forward path G(q, n). Such a scheme is shown in

Figure 3.1 [2, 3].

The closed-loop transfer function of a PA system with a AFC method, hereafter called

AFC system, is defined as

x(n)

u(n)
=

G(q, n)D(q)

1−G(q, n)D(q) [F (q, n)−H(q, n)]
(3.3)
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and, according to the Nyquist’s stability criterion, it is unstable if there is at least one

frequency ω for which

{ ∣∣G(ejω, n)D(ejω)
[
F (ejω, n)−H(ejω, n)

]∣∣ ≥ 1

∠G(ejω, n)D(ejω)
[
F (ejω, n)−H(ejω, n)

]
= 2kπ, k ∈ Z.

(3.4)

Then, considering the broadband gain K(n) of the forward path defined in (2.8), the

MSG of the AFC system is defined as [2]

MSG(n)(dB) = 20 log10K(n)

such that max
ω∈PH(n)

∣∣G(ejω, n)D(ejω)
[
F (ejω, n)−H(ejω, n)

]∣∣ = 1,
(3.5)

resulting in

MSG(n)(dB) = −20 log10

[
max

ω∈PH(n)

∣∣J(ejω, n)D(ejω)
[
F (ejω, n)−H(ejω, n)

]∣∣
]
, (3.6)

where PH(n) denotes the set of frequencies that fulfill the phase condition in (3.4), also

called critical frequencies of the AFC system, that is

PH(n) =
{
ω|∠G(ejω, n)D(ejω)

[
F (ejω, n)−H(ejω, n)

]
= 2kπ, k ∈ Z

}
. (3.7)

The increase in the MSG achieved by the AFC method is defined as

∆MSG(n)(dB) = −20 log10

[
maxω∈PH(n)

∣∣J(ejω, n)D(ejω)
[
F (ejω, n)−H(ejω, n)

]∣∣
maxω∈P (n) |J(ejω, n)D(ejω)F (ejω, n)|

]
. (3.8)

It should be noticed that the adaptive filter H(q, n) must be initialized so that (3.4) is

not fulfilled and thus the system closed-loop transfer function, defined in (3.3), is stable.

Commonly, H(q, n) is initialized with zeros, i.e. H(q, 0) = 0, in order to represent the lack

of knowledge about the system to be identified, F (q, n).

From (3.8), it can be concluded that the achievable ∆MSG increases as the match

between the frequency responses of the adaptive filter and feedback path at the critical

frequencies of the AFC system gets better. If H(ejω, n) = F (ejω, n), ∀ω ∈ PH(n), the MSG

of the AFC system is infinite. However, in this case, some reverberation may still exist in

the error signal e(n) due to the frequency components that were not perfectly matched.

But if the adaptive filter exactly matches the feedback path, i.e. H(q, n) = F (q, n), in

addition to achieving an infinite MSG, it follows from (3.2) that the acoustic feedback will

be totally cancelled because e(n) = u(n). Hence, the system will no longer have a closed

signal loop because (3.3) will become x(n) = G(q, n)D(q)u(n), which means that only the

system input signal u(n) will be fed to the forward path G(q, n), as desired.
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The concept of AFC is very similar to acoustic echo cancellation (AEC) commonly

used in teleconference systems [2, 3]. But in AFC, owing to the cascade G(q, n)D(q), the

system input signal u(n) and the loudspeaker signal x(n) are highly correlated, mainly

when the source signal v(n) is colored as speech. Since the system input signal u(n) acts

as interference to the adaptive filter H(q, n), if the traditional gradient-based or least-

squares-based adaptive filtering algorithms are used, a bias is introduced in H(q, n) [2, 17,

18, 39, 40]. Consequently, the adaptive filter H(q, n) only partially cancels the feedback

signal f(n) ∗ x(n), thereby achieving a limited increase in the MSG of the PA system, and

also degrades the system input signal u(n) [2, 4].

Mostly, the solutions available in the literature to overcome the bias in the adaptive

filter H(q, n) attempt to reduce the correlation between the loudspeaker signal x(n) and

system input signal u(n) but still using the traditional adaptive filtering algorithms to

update H(q, n) [2, 49]. They can be divided in two main groups. The first group contains

the methods that insert a processing device in the system open-loop in order to change the

waveform of the loudspeaker signal x(n). Even if the feedback signal is totally cancelled,

this implies a fidelity loss of the PA system that, however, may be neglected if the added

processing device does not perceptually affect the sound quality of the system, which is

particularly difficult to achieve. The second group is formed by the methods that do not

apply any processing to the signals that travel in the system other than the adaptive filter

H(q, n), and thereby keep the fidelity of the PA system as high as possible.

The AFC methods belonging to the first group can be divided in:

1. Noise injection [2, 49, 50, 51]: the AFC methods based on noise injection add a white

signal w(n) to the loudspeaker signal x(n) such that

x(n) = G(q, n)D(q)e(n) + w(n). (3.9)

Then, the adaptive filter H(q, n) can be updated in two ways. First, the loud-

speaker signal x(n) (including the added white noise w(n)) is used as the input

signal to H(q, n). In this case, the purpose of white noise signal w(n) is to reduce

the cross-correlation between the loudspeaker signal x(n) and source signal v(n)

and, consequently, decrease the bias in H(q, n). Second, only the white noise signal

w(n) is used as the input signal to H(q, n) which leads to an unbiased estimate of

the feedback path. But, in this case, the convergence of the adaptive filter will be

rather slow because not only the system input signal u(n) but also its component in

feedback signal f(n)∗x(n) will act as estimation noise to the adaptive filter H(q, n).

The drawback of noise injection is the degradation in the sound quality, which can

be reduced by shaping the noise spectrum so that its effect is less perceptible to the

human hearing. Unfortunately, the decorrelation effect caused by such shaped noises

decreases making the noise injection less effective in reducing the bias in H(q, n).
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2. Time-varying processing [2, 49, 50, 52, 53]: the AFC methods based on time-varying

processing insert an LPTV filter L(q, n) in the system open-loop, as in Section 2.3,

such that

x(n) = G(q, n)D(q)L(q, n)e(n). (3.10)

Sinusoidal FM and PM, and FS filters have already been used to decorrelate the

loudspeaker signal x(n) and the source signal v(n). The audible degradation on

sound quality appear to be acceptable for speech signals but become more severe

for audio signals. It is noteworthy that a beneficial effect of using LPTV filters as

deccorelation filters is that they also contribute to stabilize the closed-loop system,

as discussed in Section 2.3 for FS, by smoothing the open-loop gain.

3. Non-linear processing [2, 50]: in stereophonic AEC, the correlation between the

loudspeaker signals leads to a bias in the estimate of the acoustic echo path, which

can be reduced by adding to the loudspeaker signals nonlinearly processed versions

of themselves [6, 22]. The same approach can be used to reduce the correlation

between loudspeaker signal x(n) and the system input signal u(n) in an AFC system.

In particular, the half-wave rectifier function has already been applied as follows

x(n) = G(q, n)D(q)

[
e(n) + α

(
e(n) + |e(n)|

2

)]
, (3.11)

where α is the parameter that controls the amount of added nonlinearity and, con-

sequently, the trade-off between decorrelation and audible signal distortions.

The AFC methods belonging to the second group can be divided in:

1. Forward path delay [2, 17, 18, 49]: the correlation between the loudspeaker signal

x(n) and the system input signal u(n) can be reduced by the time delay caused by

the cascade G(q, n)D(q). Then, a very simple idea exploits the delay filter D(q) in

order to insert a delay of LD−1 samples in the cascade G(q, n)D(q). This approach

is particularly useful for source signals v(n) that have an autocorrelation function

that decays quickly, e.g., unvoiced segments of speech signals. If u(n) is white

noise, the cross-correlation vanishes with a unity delay. Moreover, the use of D(q)

as a decorrelation filter can be easily combined with any decorrelation approach.

Obviously, the time delay must not impair the dynamics of real-time applications.

2. Cancellation path delay [2, 17, 18, 49, 54]: the idea of the previous item can be

similarly implemented by inserting a delay filter D2(q), with length LD2 , in the

cancellation path so that the input signal to the adaptive filter H(q, n) is the loud-

speaker signal x(n) delayed by LD2 − 1 samples. In fact, it is the same to use an

adaptive filter with length LH + LD2 − 1 samples where its first LD2 − 1 samples

are 0. Thus, if the cross-correlation function between the loudspeaker signal x(n)

and system input signal u(n) has small values for time lags larger than LD2 − 1, the
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remaining bias in H(q, n) may be small or even negligible. The advantage is that

the loudspeaker signal x(n) is not delayed, thereby keeping the fidelity of the PA

system. In practice, this approach can be useful because f(n), as a room impulse

response, is theoretically characterized by an initial delay determined by the distance

between microphone and loudspeaker. So, if this initial delay is known a priori, the

corresponding first coefficients of the adaptive filter can be forced to 0.

3. Whitening prefilters [2, 3, 4, 19, 39, 40, 41, 49]: consider that the system input

signal u(n), which acts as interference to the adaptive filter H(q, n), is modeled

by a filter M(q, n), the source model, whose input is white noise, which fits quite

well for unvoiced segments of speech signals. Thus, the bias in H(q, n) can be

completely eliminated by prefiltering the loudspeaker signal x(n) and the microphone

signal y(n) with inverse source model M−1(q, n) before feeding them to the adaptive

filtering algorithm [2, 19]. In [39, 40, 41], a fixed source model was used for hearing

aid (HA) application. In [4], the prediction error method based adaptive feedback

canceller (PEM-AFC) used an adaptive filter to estimate the source model also for

HA application. In [2, 3], the prediction error method based on adaptive filtering

with row operations (PEM-AFROW) improved the PEM-AFC and extended it for

long acoustic paths by replacing the adaptive filter with the well-known Levinson-

Durbin algorithm in the estimation of the source model. Moreover, after applying

the inverse source model, the PEM-AFROW also removes the pitch components in

order to improve the method performance for voiced speech [2, 3]. It should be noted

that, when using the Levinson-Durbin algorithm, the PEM-AFROW method became

suitable mostly for speech signals. For other kinds of signals, other source models

should be used [55]. In [36], the PEM-AFROW was combined with a generalized

sidelobe canceller but its performance did not improve for long feedback paths, such

as occur in PA systems, although its computational complexity was reduced.

The PEM-AFROW method is the state-of-art AFC method. Therefore, this chapter

presents a careful review of the PEM-AFROW, including a brief discussion about the

PEM framework and the PEM-AFC method, and simulation results.

3.3 The PEM-AFROW Method

The prediction error method (PEM) assumes that the system input signal u(n) is defined

as [4, 23, 40, 56]

u(n) = M(q, n)w(n), (3.12)

where the excitation w(n) is white noise and the source model M(q, n) is monic and
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Figure 3.2: Acoustic feedback cancellation using source model.

inversely stable. Such a scheme is shown in Figure 3.2. Speech and audio signals can be

closely approximated as a low-order autoregressive random process such that [57, 58]

M(q, n) =
1

A(q, n)
=

1

1− a1(n)q−1 − . . .− aLA−1(n)q−LA+1
, (3.13)

except for periodic signals such as voiced speech or pure sinusoids, where the excitation

w(n) is an impulse train [58].

Then, the open-loop system {F (q, n),M(q, n)} to be identified is described by the

microphone signal [4, 23, 40, 56]

y(n) = F (q, n)x(n) +M(q, n)w(n). (3.14)

According to [4, 40, 56], the PEM produces estimates of F (q, n) and M(q, n), H(q, n)

and M̂(q, n) respectively, by minimizing the difference between the microphone signal y(n)

and its optimal one-step predictor with model {H(q, n), M̂(q, n)}

ŷ(n) = M̂−1(q, n)H(q, n)x(n) +
[
1− M̂−1(q, n)

]
y(n), (3.15)

which is defined as the prediction error

ep(n) = y(n)− ŷ(n) = M−1(q, n) [y(n)−H(q, n)x(n)] . (3.16)

As in any AFC method, H(q, n) is estimated over time using an FIR adaptive filter.

In [39, 40, 41], the estimate M̂(q, n) of the source model was a fixed low-pass filter that

approximates the long-term average spectrum of speech. In practice, however, M(q, n) is

unknown and time-varying [4]. And the accuracy of the estimate H(q, n) of the feedback

path strongly depends on the accuracy of the estimate M̂(q, n) of the source model [4, 40].

Therefore, it is also desirable to estimate M(q, n) over time [4].
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However, in general, F (q, n) and M(q, n) are simultaneously identifiable using only

measurements of the loudspeaker signal x(n) and the microphone signal y(n) ifG(q, n)D(q)

has a delay d1 > LA, M−1(q, n)F (q, n) has a delay d2 with d1 +d2 > LA, G(q, n)D(q) and

H(q, n) are time-varying, G(q, n) is nonlinear or a probe signal is added to x(n) [4]. In

the latter, the identifiability will depend on the level of the probe signal compared with

the level of the loudspeaker signal x(n) [4]. But, in all cases, the excitation w(n) must

be white noise. Otherwise, F (q, n) and M(q, n) are not identifiable which implies that,

besides the desired solutions H(q, n) = F (q, n) and M̂(q, n) = M(q, n), multiple solutions

for H(q, n) and M̂(q, n) may exist [4, 40]. This non-identifiability problem is due to the

linear relationship between the loudspeaker signal x(n) and the system input signal u(n)

caused by the cascade G(q, n)D(q) [4].

In [4], the prediction error method based adaptive feedback canceller (PEM-AFC)

exploits the delay filter D(q) by making LD − 1 > LA in order to overcome the non-

identifiability problem and uses a second FIR adaptive filter to estimate M̂−1(q, n) at

each iteration [4]. However, the PEM-AFC considers that

M−1(q, n− 1) = M−1(q, n− n1), 1 ≤ n1 ≤ LH , (3.17)

which represents the stationarity of the input signal u(n) over frames of LH samples. If

u(n) is speech, this approximation may be valid for short acoustic feedback paths F (q, n)

where LF/fs ≤ 20 ms, such as occur in HA applications, because speech is considered

stationary during short frames with duration of about 20 ms [58]. But for long acoustic

feedback paths F (q, n), such as occur in PA systems where LF/fs ≥ 100 ms, this approxi-

mation is no longer valid because speech is highly nonstationary over long time periods.

Nevertheless, for speech signals, the estimation of the inverse source model M−1(q, n)

is a very established technique in speech coding. It combines two prediction error filters

in a cascade connection according to [59]

M−1(q, n) = A(q, n)B(q, n)

=
[
1− a1(n)q−1 − . . .− aLA−1(n)q−LA+1

] [
1− bLB−1(n)q−LB+1

]
.

(3.18)

The first filter A(q, n) (called formant filter or short-time prediction filter) models

the vocal tract and removes near-sample redundancies, and is computed using the well-

known Levinson-Durbin algorithm [58, 59]. The second filter B(q, n) (called pitch filter or

long-time prediction filter) models the periodicity and acts on distant-sample waveform

similarities, and is usually an one-tap filter with lag equal to the pitch period [59].

In [3], the prediction error method based on adaptive filtering with row operations (PEM-

AFROW) uses the Levinson-Durbin algorithm, instead of an adaptive filter as in the PEM-

AFC, to compute A(q, n) over short frames. Hence, it considers that, inside a frame, the

system input signal u(n) is stationary and thus A(q, n) is constant. In addition, the

PEM-AFROW method also computes B(q, n) to remove the pitch components in order to
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improve the method performance for voiced speech, when w(n) is periodic and not white

noise as originally assumed by the PEM [2, 3].

Therewith, the PEM-AFROW method extended the PEM-AFC method for long acous-

tic feedback paths and also improved it for short ones [3]. However, because of using the

Levinson-Durbin algorithm to computeA(q, n), the PEM-AFROW became suitable mostly

for speech signals. For other kinds of signals, other source models should be used [15].

In the following sections, the PEM-AFROW method will be described in detail. For a

better understanding, the method will be divided in three parts: whitening of the system

signals, update of the adaptive filter using whitened signals and feedback cancellation.

3.3.1 Part 1: Whitening of the System Signals

The first part of the method is responsible for estimating the inverse source modelM−1(q, n)

and whitening the system signals. It is the core of the PEM-AFROW method. The

first prediction error filter A(q, n), the short-time predictor, is estimated using a non-

overlapping frame with length Lstp samples, which means that it is estimated every

Lstp samples. Defining k as the short-time frame index such that it is the first in-

teger higher than or equal to n/Lstp, the current frame (frame: k; sample indexes:

kLstp, . . . , (k + 1)Lstp − 1) of the loudspeaker signal x(n) is filtered by h(kLstp − 1), the

last estimate of the feedback path obtained in the previous frame (k− 1), and subtracted

from the corresponding microphone samples resulting in

d(n) = y(n)− xT (n)h(kLstp − 1), n = kLstp, . . . , (k + 1)Lstp − 1, (3.19)

where

x(n) = [x(n) x(n− 1) . . . x(n− LH + 1)]T . (3.20)

Note that it was assumed that the current frame of the loudspeaker signal x(n) does

not depend on the current frame of the microphone signal y(n). For that, the cascade

G(q, n)D(q) must have a delay LD − 1 > Lstp. This assumption is not mentioned in [3].

Moreover, it is worth mentioning that if the last estimate of the feedback path is exact, i.e.

h(kLstp− 1) = f(n), then the current frame of the signal d(n) will be equal to the current

frame of the system input signal u(n), i.e., d(n) = u(n), n = kLstp, . . . , (k + 1)Lstp − 1.

Hereupon, the short-time prediction filter for the frame k, Ak(q), is computed by

performing linear prediction on d(n), n = kLstp, . . . , (k + 1)Lstp − 1, using the Levinson-

Durbin algorithm. And the short-time whitened loudspeaker and microphone signals are

obtained as

xTsw(n) = aTk




xT (n)

xT (n− 1)
...

xT (n− LA)




(3.21)
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and

ysw(n) = aTk




y(n)

y(n− 1)
...

y(n− LA)



, (3.22)

respectively, where x(n) is defined in (3.20) and

xsw(n) = [xsw(n) xsw(n− 1) . . . xsw(n− LH + 1)]T . (3.23)

It should be noted that the short-time prediction filter Ak(q) is used to update not only

the samples of the frame k of the short-time whitened loudspeaker signal xsw(n) (the most

recent Lstp samples) but, indeed, its last LH samples. But, since x(n) is a shifted version

of x(n − 1) with one sample prepended and ak remains constant during a frame of Lstp

samples, xsw(n) will be a shifted version of xsw(n− 1) with one sample prepended. Then,

inside a frame, only one vector multiplication (aTk xT (n)) has to be performed to calculate

xsw(n). However, at the beginning of each frame, one matrix multiplication should be

performed according to (3.21) to calculate all the samples of xsw(n).

In theory, if w(n) is white noise, the short-time prediction filter A(q, n) will remove

all the correlation between the loudspeaker signal x(n) and the system input signal u(n),

which is included in the microphone signal y(n). In practice, however, although it will

remove most of the correlation, the short-time whitened loudspeaker signal xsw(n) and the

short-time whitened input signal, that is included in ysw(n), are still correlated mainly for

voiced speech when w(n) is periodic. Then, in order to improve the whitening performance,

the short-time prediction filter A(q, n) is followed by the long-time prediction filter B(q, n).

The second prediction error filter B(q, n), the long-time predictor, is estimated using

frames with length Lstp samples and 50% overlap, which means that it is estimated every

Lltp = Lstp/2 samples. Defining j as the long-time frame index such that it is the first

integer higher than or equal to n/Lltp, the long-time prediction filter Bj(q), for the frame

j, is computed by minimizing [3]

εj = min E
[
‖xlw(n)‖2

]

= min
{LBj

,bj}
E
[∥∥xsw(n)− bjxsw(n− LBj + 1)

∥∥2
]
,

(3.24)

where E{·} is the expected value operator. For a fixed LBj , the solution to (3.24) is [3]

bj =
[
x̃Tsw(n− LBj )x̃sw(n− LBj )

]−1
x̃Tsw(n)x̃sw(n− LBj ), (3.25)

where

x̃sw(n) = [xsw(n) xsw(n− 1) . . . xsw(n− Lstp + 1)]T . (3.26)
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The variance of the long-time prediction residual is [3]

εj = x̃Tsw(n)x̃sw(n)−
[
x̃Tsw(n)x̃sw(n− LBj )

]2

x̃Tsw(n− LBj )x̃sw(n− LBj )
. (3.27)

This variance εj is evaluated for different values of LBj , where LBj = LBmin, LBmin +

1, . . . , LBmax. The value of of LBj that results in the minimum εj and the corresponding

bj are chosen for the long-time predictor Bj(q) of the frame j. Finally, the long-time

whitened loudspeaker and microphone signals are obtained as

xTlw(n) = bTj




xTsw(n)

xTsw(n− 1)
...

xTsw(n− LBj )




(3.28)

and

ylw(n) = bTj




ysw(n)

ysw(n− 1)
...

ysw(n− LBj )



, (3.29)

respectively, where xsw(n) is defined in (3.23) and

xlw(n) = [xlw(n) xlw(n− 1) . . . xlw(n− LH + 1)]T . (3.30)

Similarly to Ak(q), the long-time prediction filter Bj(q) is used to update not only

the samples of the frame j of the long-time whitened loudspeaker signal xlw(n) (the most

recent Lstp samples) but, indeed, its last LH samples. But, since xsw(n) is a shifted version

of xsw(n− 1) with one sample prepended and bj remains constant during a frame of Lstp

samples, xlw(n) will also be a shifted version of xlw(n − 1) with one sample prepended.

Then, inside a frame, only one vector multiplication (bTj xTsw(n)) has to be performed to

calculate xlw(n). However, at the beginning of each frame, one matrix multiplication

should be performed according to (3.28) to calculate all the samples of xlw(n).

It should be emphasized that, because of Bj(q), the identifiability condition of the

PEM-AFROW method is the existence of a delay d1 > LA+LBmax samples in the cascade

D(q)G(q, n) [3]. For the PEM-AFC, the condition is a delay d1 > LA samples as previously

discussed. The PEM-AFROW method exploits the delay filter D(q) by making LD >

LA + LBmax samples in order to overcome the non-identifiability problem.

Furthermore, for real-time implementation, the PEM-AFROW method involves a de-

lay of one frame (Lstp samples) in updating the adaptive filter H(q, n) because ak, the

coefficients of the short-time prediction filter for the frame k, can only be calculated at

time n = (k + 1)Lstp − 1. This delay can be effectively implemented as a delay line for
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the samples of the loudspeaker signal x(n) before they are fed to (3.21) [3]. The practical

influence of this latency will depend on the variations of F (q, n) over time.

3.3.2 Part 2: Update of the Adaptive Filter using Whitened Signals

After obtaining the current frame of both long-time whitened loudspeaker signal xlw(n)

and long-time whitened microphone signal ylw(n), the impulse response h(n) of the adap-

tive filter is update by solving

min
h
‖elw(n)‖ = min

h

∥∥ylw(n)− hT (n)xlw(n)
∥∥ , n = kLstp, . . . , (k + 1)Lstp − 1, (3.31)

using the NLMS adaptive filtering algorithm, where xlw(n), which is defined in (3.30), is

the input vector and ylw(n) is the desired sample. Consequently, an estimate h(n) of the

feedback path is obtained for each of the Lstp samples of the current frame.

3.3.3 Part 3: Feedback Cancellation

After obtaining an estimate h(n) of the feedback path for each of the Lstp samples of the

current frame, the actual values of the error signal e(n) are obtained according to

e(n) = y(n)− xT (n)h(n), n = kLstp, . . . , (k + 1)Lstp − 1 (3.32)

and then are fed to the forward path G(q, n).

3.4 Improvements in PEM-AFROW

This section will present some improvements to the PEM-AFROW method that were

proposed in [42]. However, these improvements are not specific changes of the PEM-

AFROW. In fact, they are originated from concepts of adaptive filtering and the acoustic

feedback problem, and can be applied to any AFC method.

3.4.1 Onset Detection

In AEC, if the source signal v(n) and the ambient nosie r(n) are zero and negligible, re-

spectively, the adaptive filter H(q, n) can converge to a good estimate of the path F (q, n)

and thus cancel the echo successfully. However, when the source signal v(n) and the loud-

speaker signal x(n) are simultaneously different from zero, a situation known as double-

talk in AEC, v(n) acts as an uncorrelated noise to H(q, n) and suddenly increases the

amplitude of the microphone signaly(n) and error signal e(n). Since e(n) is used by the

traditional adaptive filtering algorithms to update the adaptive filter, this may disturb

the filter update causing an excessive mismatch of H(q, n) or, even, its divergence. The

usual solution to this problem is to decrease or stop completely the filter update when the

presence of v(n) is detected. This is the rule of double-talk detectors (DTD). Besides, a
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voice activity detector (VAD) is also used to stop the filter update when the energy of the

loudspeaker signal x(n) is below a pre-defined noise level.

In AFC, the VAD for the loudspeaker signal x(n) is also required but the DTD is

not anymore because the closed signal loop causes the PA system to be in a continuous

double-talk situation. However, the system input signal u(n) acts as estimation noise to

the adaptive filter H(q, n) and thus introduces a bias in its coefficients that is inversely

related to the far-end to near-end ratio defined as

FNR =
E[x2(n)]

E[u2(n)]
. (3.33)

Fortunately, high values of FNR are obtained by means of high gains in the forward

path G(q, n), which is useful because it is the situation when the Larsen effect generally

occurs. However, at an input signal onset (a sudden level increase of u(n)), the FNR is

temporarily very small because the corresponding level increase in the loudspeaker signal

x(n) is delayed by the cascade D(q)G(q, n) [42]. Hence, input signal onsets may cause an

excessive mismatch of the adaptive filter H(q, n) and instability of the whole system.

For this reason, an onset detection method based on the variance of the long-time

whitened error signal elw(n) was proposed in [42]. Note that elw(n) is the whitened input

signal w(n) if H(q, n) exactly models F (q, n). The variance of elw(n) is estimated, at every

time, over an exponential window according to

σ2elw(n) = λσ2elw(n− 1) + (1− λ)e2lw(n), (3.34)

where 0 � λ < 1 is a forgetting factor. The onset detector rules similarly to a DTD: an

onset is detected when |elw(n)| is greater than a threshold Tosd and, if it occurs, the filter

update is stopped during a time interval ∆tosd. A conservative value for ∆tosd is the sum

of the forward delays and the number of filter coefficients.

In [42], the onset detection method and the PEM-AFROW method were combined

and an evaluation was carried out in an simulation environment using white noise as the

source signal v(n). The results indicate an achievable increase in the step-size of the

adaptive filter, which corresponds to a faster convergence and tracking speed, without

audible instabilities.

3.4.2 Prior Knowledge of the Feedback Path

As previously discussed in Section 3.2, the adaptive filter H(q, n) must be initialized such

that (3.4) is not fulfilled and thus the closed-loop transfer function defined in (3.3) is stable.

Commonly, H(q, n) is initialized with zeros, i.e., H(q, 0) = 0 in order to represent the lack

of knowledge about the system to be identified, the feedback path F (q, n). However, if a

good estimate F̂ (q, 0) of the feedback path is known, it can be used as the initial guess of

the adaptive filter, i.e., H(q, 0) = F̂ (q, 0).
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Moreover, in order to provide robustness, a change in the cost function of the adaptive

filtering algorithm in the PEM-AFROW was proposed in [42] to incorporate the prior

knowledge. Instead of (3.31), the impulse response h(n) of the adaptive filter can be

updated by solving

min
h

{∥∥ylw(n)− hT (n)xlw(n)
∥∥+ β

∥∥∥h(n)− f̂(0)
∥∥∥
}

(3.35)

using the NLMS adaptive filtering algorithm, where β is a parameter that controls the

weight of the prior knowledge of the feedback path.

In practice, a time-varying β(n) is suggested in [42] so that its value can be high at

the start-up and then decrease gradually over time. According to [42], although no results

are shown, experiments demonstrate that updating the adaptive filter using (3.35) can be

especially useful at the start-up of the PEM-AFROW method.

3.4.3 Foreground and Background Filter

An adaptive filter with small step-size generally provides robustness against noise but slow

convergence. On the other hand, an adaptive filter with large step-size usually presents

fast convergence and track ability but it can suffer from instability. Then, in order to

combine the strength of both cases, a twin adaptive filter structure is proposed in [42].

This idea was firstly proposed to AEC and consists in estimating the feedback path

F (q, n) through two adaptive filters with different convergence speeds. The foreground

filter H(q, n) has a small step-size and is responsible for the conservative solution of the

system. The background filter Hb(q, n) has a large step-size and is responsible for the fast

tracking of variations in the feedback path impulse response.

The variance of the system input signal u(n) is estimated to the foreground H(q, n)

and background Hb(z, n) filters according to, respectively, (3.34) and

σ2elw,b
(n) = λσ2elw,b

(n− 1) + (1− λ)e2lw,b(n), (3.36)

where 0� λ < 1 is a forgetting factor.

At time intervals these estimates are compared and if

σ2ew,b
(n) < γ1σ

2
ew(n), (3.37)

the coefficients hb(n) of the background filter are copied to the coefficients h(n) of the

foreground filter in order to improve the system performance. On the other hand, if

σ2ew,b
(n) > γ2σ

2
ew(n), (3.38)

the impulse response h(n) of the foreground filter is copied to the impulse response hb(n)

of the background filter aiming to avoid divergence of hb(n). In this configuration, 0 <



3.4. Improvements in PEM-AFROW 57

γ1,2 < 1 and γ1 ≤ γ2.
In [42], an evaluation of this twin adaptive filter structure was carried out in the same

simulated environment of the onset detection method. The results indicate that there is

no audible distortion when the background filter Hb(q, n) has µ = 0.9 and the foreground

filter H(q, n) has µ = 0.09. On the other hand, when a single adaptive filter H(q, n) with

µ = 0.09 is used, an audible transient is clearly perceived.

3.4.4 Proactive Notch Filtering

An important characteristic of an AFC method is its ability to quickly track the variations

in the acoustic feedback path F (q, n). If an AFC method is not able to do it, the sound

quality may be perceptually affected and the PA system may even become unstable.

In [42], it is stated that the PEM-AFROW method is very robust against variations in

the feedback path caused by moving objects as speaker movements. However, when the

position of the microphone or loudspeaker is changed, the feedback path impulse response

shifts over the time axis and the PEM-AFROW cannot track the resulting variations

quickly enough. This is due to fact that the difference between shifted room impulse

responses has the same order of magnitude than the impulse responses themselves and,

therefore, the PEM-AFROW maye need a considerable amount of time to compensate the

difference. On the other hand, the frequency component of many peaks in the system

open-loop frequency response does not change much when the feedback path impulse

response is shifted [42], which may indicate that a notch-filtering-based approach can be

more robust against displacement of the microphone or loudspeaker. As a consequence,

in this case, the PEM-AFROW algorithm is not so robust as the NHS methods.

Hence, in order to provide robustness, a combination of the PEM-AFROW with a

proactive notch filtering system was proposed in [42]. Considering the estimate H(q, n)

of the feedback path provided by the PEM-AFROW method and the knowledge of the

cascade D(q)G(q, n), the open-loop frequency response of the PA system is estimated as

G(ejω, n)D(ejω)H(ejω, n) and the set P (n) of critical frequencies is computed from it.

Then, a notch filter with center frequency ωc ∈ P (n) is designed if

∣∣G(ejωc , n)D(ejωc)H(ejωc , n)
∣∣ > Tmax, (3.39)

or, if already exists, is removed if

∣∣G(ejωc , n)D(ejωc)H(ejωc , n)
∣∣ < Tmin, (3.40)

where the thresholds 0 < Tmin < Tmax < 1. Since Tmax < 1, the described procedure

leads to a proactive notch filtering because the notch filters are designed before the system

becomes unstable at the corresponding frequencies. The notch filter design is repeated few
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times per second and the maximum number of notch filters is limited. Finally, the bank

of notch filters is inserted in the system open-loop immediately after the microphone [42].

It is worth mentioning that, when inserting the notch filters in this position, the

PEM-AFROW method should model not only the feedback path F (q, n) but also the

notch filters. At first sight, this might seem unfavorable. However, if the notch filers are

inserted after the subtraction of the estimate of the feedback signal, h(n) ∗ x(n), from

the microphone signal y(n) so that the PEM-AFROW should not model them, the FNR

will become very low at the center frequencies of the notch filters because the loudspeaker

signal x(n) will be attenuated at these frequencies while the system input signal u(n) will

not. This leads to wrong decisions about the notch filters according to [42].

In [42], the combination of the PEM-AFROW with the described proactive notch-

filtering was evaluated using the same simulated environment of the previous improve-

ments. The results indicate that fast movements of the microphone over a distance of

300 mm may not cause instability when the combined system is used, while some insta-

bility may occur when only the PEM-AFROW method is used.

3.5 Results of the PEM-AFROW Method in the Literature

In this section, results available in the literature about the use of the PEM-AFROW

method will be presented. In [3], the PEM-AFROW method was evaluated in simulated

environment of HA and PA systems where feedback paths F (q, n) with LF = 50 and

LF = 1000 were used, respectively. For performance comparison, the PEM-AFC method

was used. The evaluation was performed by measuring the difference between the impulse

responses of the feedback path F (q, n) and the adaptive filter H(q, n) according to

ε(n) = ‖f(n)− h(n)‖. (3.41)

The source signal v(n) consisted of 7 speech signals with little more than 30 s of

duration and fs = 8 kHz. The PEM-AFROW parameters were LA = 10, Lstp = 160,

Lltp = 80, D = 200, LBmin = 20, LBmax = 160. The NLMS adaptive algorithm was used in

both PEM-AFC and PEM-AFROW methods. In the HA system, the PEM-AFROW and

PEM-AFC methods presented similar results achieving ε ≈ 0.1. But in the PA system,

the PEM-AFROW method outperformed the PEM-AFC achieving ε ≈ 0.025 at the end

of the simulation time while the PEM-AFC obtained ε ≈ 0.05.

A more complete evaluation of AFC methods in a simulated environment was pre-

sented in [49]. It included the PEM-AFROW and AFC methods based on noise injection

(AFC-NI), frequency shifting (AFC-FS), half-wave rectifier (AFC-HWR), forward path de-

lay (AFC-FD) and cancellation path delay (AFC-CD). The source signal v(n) was speech

signals with duration of 30 s and fs = 16 kHz. The feedback path F (q, n) was a measured

impulse response of a room with reverberation time of 125 ms until t = 22.5 s and then it
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was changed for other measured impulse response of the same room. The broadband gain

K(n) was raised to 7 dB above the MSG of the PA system after the initial convergence

of the AFC systems. It is worth mentioning that nothing was said about the initial value

of K(n), the way it was raised (if abruptly or slowly), and whether its increase occurred

in the same way and at the same time instant for all AFC methods. The evaluation was

performed by analysing the mean values of MSG(n) and sound quality, which was mea-

sured through the frequency-weighted log-spectral signal distortion (SD) metric defined in

Section 3.6.4, considering only the last 15 s of simulation.

The AFC-NI method were evaluated with different values of the signal-to-noise ratio

(SNR), where −2.5 ≤ SNR ≤ 10 dB. Among all the AFC methods, it presented the

largest increase in the MSG, ∆MSG(n), and the worst sound quality. The sound quality

and ∆MSG(n) increased and decreased monotonically as the SNR increased, respectively.

When SNR = 10 dB, ∆MSG(n) ≈ 10 dB. The AFC-FS method was evaluated with

different values of the frequency shift f0, where 1 ≤ f0 ≤ 20 Hz. As f0 increased, the

sound quality increased monotonically while ∆MSG(n) did not vary too much. In fact,

∆MSG(n) < 7 dB. The AFC-HWR method was evaluated with different values of α,

the parameter that controls the amount of added nonlinearity as defined in (3.11), where

0.001 ≤ α ≤ 0.5. The increase in the MSG was extremely poor and did not reach 2 dB.

The AFC-FD and AFC-CD methods were evaluated with different values of the forward

path delay d1 and cancellation path delay d2, respectively, where 0.3125 ≤ d1,2 ≤ 10 ms.

The increase in the MSG achieved by both methods did not reach 7 dB. The PEM-AFROW

method was evaluated with different values of the short-time prediction filter length LA,

where 5 ≤ LA ≤ 30 samples. It achieved ∆MSG ≈ 9.5 dB when LA = 20 and the best

sound quality among all the AFC methods, thereby confirming that the PEM-AFROW is

the AFC method that achieves the best overall performance.

A similar evaluation of AFC methods in a simulated environment was presented in [2].

It included the PEM-AFROW, AFC-NI and AFC-FS methods. The AFC-NI method

added white noise to the loudspeaker signal x(n) with SNR = 10 dB. The AFC-FS method

shifted the spectrum of the loudspeaker signal x(n) by f0 = 5 Hz. The PEM-AFROW

method used in [2] differs from the original proposed in [3] by estimating the short-time

prediction filter A(q, n) using a 50% frame overlap, instead of a non-overlapping frame,

and considering the long-time prediction filter B(q, n) as a three-tap filter, instead of only

one-tap. The PEM-AFROW parameters were LA = 20, Lstp = 320, Lltp = 320, D = 160,

LBmin = 16, LBmax = 160.

The source signal v(n) was a speech signal with duration of 30 s and fs = 16 kHz. The

feedback path F (q, n) was a measured room impulse response until t = 22.5 s and then it

was changed for other measured impulse response of the same room. The broadband gain

K(n) was initialized to a value such that the PA system had an initial gain margin of 3 dB

and remained at this value until t = 7.5 s. During the next 7.5 s, it was increased linearly

(in dB scale) by 10 dB and remained at this value during the last 15 s of simulation. It
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is noteworthy that, for this configuration of the broadband gain K(n), the increase in

K(n) achieved by the AFC methods (10 dB) was higher than those by the FS (3 dB) and

NHS (5 dB) methods, which indicates a superior performance of the AFC methods. The

evaluation was performed by analysing the mean and maximum values of the MSG(n) and

sound quality, which was measured through the SD metric. And the values of MSG(n)

over time were displayed.

Table 3.1 summarizes the results obtained by each AFC method considering only the

last 15 s of simulation. The AFC-NI presented the highest ∆MSG but the worst sound

quality while the PEM-AFROW achieved a similar ∆MSG and the best mean sound

quality. However, it is worth emphasizing that only one speech signal was used which is

statistically insufficient to accurately conclude about the efficiency of any method. More-

over, it is possible to observe from the curves MSG(n) that the initial value of MSG(n)

obtained by the three evaluated AFC methods has different values: MSG(0) ≈ 10 dB for

AFC-NI, MSG(0) ≈ 4.5 dB for AFC-FS and MSG(0) ≈ 3 dB for PEM-AFROW; and these

values are not equal to the MSG of the PA system with no AFC method. This suggests

that different initializations of the adaptive filter H(q, n) may have been used for each

AFC method and H(q, 0) 6= 0 in all cases.

Table 3.1: Performance comparison of AFC systems.

Method Parameter values ∆MSG (mean/max) SD (mean/max)

AFC-NI SNR = 10 dB 9.8 dB / 13.7 dB 15.1 dB / 31.7 dB

AFC-FS f0 = 5 Hz 6.6 dB / 11.1 dB 6.0 dB / 10.6 dB

PEM-AFROW
LA = 20, L = 320, D = 160

9.6 dB / 12.8 dB 3.9 dB / 16.2 dB
LBmin = 16, LBmax = 160

3.6 Simulation Configurations

With the aim to assess the performance of the PEM-AFROW method, an experiment was

carried out in a simulated environment to measure its ability to estimate the feedback

path impulse response and increase the MSG of a PA system. Moreover, the spectral

distortion in the resulting error signal e(n) was also measured. To this purpose, the

following configuration was used.

3.6.1 Simulated Environment

The impulse response f(n) of the acoustic feedback path was a measured room impulse

response, from [60], and thus f(n) = f . The impulse response was downsampled to fs =

16 kHz and then truncated to length LF = 4000 samples, and is illustrated in Figure 3.3.
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Figure 3.3: Impulse response f(n) of the feedback path.

The forward path G(q), which is typically the amplifier of the PA system, was defined

according to (2.2) as an unit delay and a gain, leading to

G(q, n) = g1(n)q−1 (3.42)

with length LG = 2. Then, according to (2.9), K(n) = g1(n) and J(q, n) = q−1.

Denoting the MSG of the PA system defined in (2.10) as MSG0 = 20 log10K0, the

broadband gainK(n) of the forward path was initialized to a valueK1 such that 20 log10K1

< MSG0 in order to allow the AFC method to operate in a stable condition and thus the

adaptive filter H(q, n) to converge. As suggested in [2], it was defined that 20 log10K1 =

MSG0 − 3, i.e., a 3 dB initial gain margin.

In a first configuration, K(n) = K1 during all the simulation time T = 20 s to verify

the method performance for a time-invariant G(q, n). Afterwards, in a more practical

configuration, K(n) = K1 until 5 s and then 20 log10K(n) was increased at the rate of

1 dB/s up to 20 log10K2 such that 20 log10K2 = 20 log10K1 + ∆K. Finally, K(n) = K2

during 10 s totaling a simulation time T = 15+∆K s. This configuration of the broadband

gain K(n) is depicted in Figure 3.4.

MSG of the PA system

Time (s)5 5 + ∆K

20 log10K(n)

20 log10K2

20 log10K1

15 + ∆K

∆K

3
20 log10K0

Figure 3.4: Practical configuration of the broadband gain K(n) of the forward path.
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The delay filter D(q) was a delay line given by (2.3) with LD = 401, equivalent to 25 ms

as in [2, 3]. The use of the delay filter D(q) is a common practice in the AFC because

it helps reduce the correlation between the loudspeaker signal x(n) and the system input

signal u(n) and, consequently, improve the performance of the adaptive filter. In the

PEM-AFROW method, a delay filter D(q) with LD higher than the source model length,

i.e., LD > LA + LBmax, is strictly necessary to fulfill identifiability conditions [3].

3.6.2 Maximum Stable Gain

The main goal of any AFC method is to increase the MSG of the PA system that has

an upper limit due to the acoustic feedback. Therefore, the MSG is the most important

metric in evaluating AFC methods.

The PEM-AFROW method does not apply any processing to the signals that travel in

the system other than the adaptive filter H(q, n). Thus, for a AFC system using the PEM-

AFROW method, the MSG of the AFC system and the increase in MSG, ∆MSG, were

measured according to (3.6) and (3.8), respectively. Their optimum values are MSG(n) =

∆MSG(n) =∞ and they are achieved when H(ejω, n) = F (ejω, n), ω ∈ PH(n). In general,

MSG(n)→∞ and ∆MSG(n)→∞ as H(ejω, n)→ F (ejω, n), ω ∈ PH(n).

The frequency responses in (3.6) and (3.8) were computed using an NFFTe-point FFT.

In obtaining the sets of critical frequencies P (n) and PH(n), the phase of their respective

functions was unwrapped and a search for each crossing by integer multiples of 2π was

performed. For each crossing, the frequency component ω closer to the corresponding

integer multiple of 2π was defined as critical frequency.

Considering LD = 1601, an experiment was carried out to verify the number of de-

tectable critical frequencies and, mainly, the accuracy of the measured MSG(n) as a func-

tion of NFFTe . In order to cover a wide range of scenarios, 16 different impulse responses

h of the adaptive filter (including h = 0), such that −30 ≤ MIS ≤ 0 dB, were used.

For each h, the real value of MSG, MSGr, of the AFC system was manually obtained

by varying the broadband gain K(n) of the forward path and observing the waveform of

the loudspeaker signal x(n) as in Figure 2.3, resulting in 0 ≤ MSGr ≤ 25 dB. The source

signal v(n) was one white noise.

Then, for each h, the measured MSG(n) and the number of critical frequencies, Ncf ,

of the AFC system were obtained with several values of NFFTe . The absolute error (in

linear scale) between MSGr and MSG(n) was defined as the measurement error MSGe. In

addition, the variation in the number of detected critical frequencies, ∆Ncf , by increasing

NFFTe was also obtained.

Table 3.2 shows the mean values of MSGe and ∆Ncf for the evaluated NFFTe values.

It can be observed that NFFTe has a great influence on the number of detectable critical

frequencies and consequently on the accuracy of the measured MSG(n). For a given

system, increasing NFFTe generally increased the number of detected critical frequencies
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Table 3.2: Summary of the results obtained by the PEM-AFROW method using speech as source
signal.

NFFTe MSGe (dB) ∆Ncf

212 2.9

213 -10.3 734.56

214 -16.0 118.12

215 -19.2 19.31

216 -20.8 3.56

217 -24.0 0.62

218 -24.2 0.44

219 -24.3 0.19

220 -24.4 0.06

and decreased the measured MSG(n) value. However, both values saturate from NFFTe =

217 on and, therefore, this value was used in the following simulations.

With concerns about computational complexity, the MSG(n) measurement was only

performed every 1000 samples (equivalent to 62.5 ms). In the meantime, the MSG(n)

retained the last measured value.

3.6.3 Misalignment

A very common metric in evaluating adaptive filters when they are applied in system

identification is the misalignment (MIS) . The MIS measures the mismatch between the

adaptive filter and the system to be identified. In this work, the performance of the AFC

methods was evaluated through the normalized MIS defined as [6]

MIS(n) =
‖f(n)− h(n)‖
‖f(n)‖ =

‖F (ejω, n)−H(ejω, n)‖
‖F (ejω, n)‖ . (3.43)

Its optimum value is MIS(n) = 0 and is achieved when h(n) = f(n) (F (ejω, n) =

H(ejω, n)). In general, MIS(n)→ 0 as h(n)→ f(n) (F (ejω, n)→ H(ejω, n)).

The MIS(n) has been used to evaluate and compare the performance of AFC methods

as in [3, 4]. The MIS(n) and MSG(n) metrics are related, which means that an improve-

ment in one of them usually results in an improvement in the other. However, this may

not occur because the MSG(n) depends on the accuracy of H(ejω, n) in only one fre-

quency component while the MIS(n) depends on its average accuracy over all frequency

components.
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3.6.4 Frequency-weighted Log-spectral Signal Distortion

The sound quality was measured through the frequency-weighted log-spectral signal dis-

tortion defined as [2]

SD(n) =

√∫ ωu

ωl

w(ω)

[
10 log10

Se(ejω, n)

Su(ejω, n)

]2
dω, (3.44)

where Se(e
jω, n) and Su(ejω, n) are the short-term power spectral densities of the error

signal e(n) and system input signal u(n), respectively, and w(ω) is a weighting function

that gives equal weight to each auditory critical band between ωl = 0.0375π (equivalent

to 300 Hz) and ωu = 0.8π (equivalent to 6400 Hz) [61]. The short-term power spectral

densities were computed using non-overlapping frames with length of 20 ms.

Indeed, SD(n) measures the spectral distance (in dB scale) between the error signal

e(n) and the system input signal u(n). Its optimum value is SD(n) = 0 and is achieved

when h(n) = f(n) and thus e(n) = u(n). In general, SD(n)→ 0 as h(n)→ f(n).

3.6.5 Wideband Perceptual Evaluation of Speech Quality

Objective measures of speech quality have evolved from those based on purely mathemati-

cal criteria, such as the SD previously described, towards perceptually salient metrics. The

W-PESQ is a standard algorithm for objective quality evaluation of wideband (sampled

at 16 kHz) speech signals [62, 63, 64, 65]. It employs reference (original) and degraded

(processed) versions of a speech signal to evaluate the perceptible degradation of the latter,

which can be quantified in the 1-5 mean opinion score (MOS) scale. The correspondence

between the MOS scale and the degradation category rating (DCR) is shown in Table 3.3.

However, the maximum MOS given by the W-PESQ algorithm is 4.644.

Table 3.3: MOS Scale.

Score DCR Listening Quality

5 Inaudible

4 Audible but not annoying

3 Slightly annoying

2 Annoying

1 Very annoying

The W-PESQ achieves a correlation of 80% with MOS when assessing speech impair-

ment by reverberation although it was not designed for this purpose [66, 67]. Hence, in this

work, the W-PESQ algorithm was used to perceptually evaluate the resulting distortion

in the error signal e(n) due to the acoustic feedback. For that, the system input signal

u(n) was considered the reference signal.
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The W-PESQ was originally validated with signals that mostly have 8 − 12 s of du-

ration but shorter signals can be used if they have at least 3.2 s of speech [68]. Thus,

the error signal e(n) and the system input signal u(n) were divided in non-overlapping

segments with duration of 4 s in order to evaluate the sound quality over time through the

W-PESQ algorithm. Experiments proved that, for the AFC methods under evaluation,

the maximum difference between the MOS given by W-PESQ when using segments with

duration of 4 and 10 s was only 0.03.

3.6.6 Speech Database

The signal database used in the simulations consisted of 10 speech signals. Each speech

signal was composed of several basic signals from a speech database. Each basic signal

contains one short sentence recorded in a time slot of 4 s and with fs = 48 kHz, but

downsampled to fs = 16 kHz. All sentences were spoken by native speakers, which had

the following nationalities and genders:

� 4 Americans (2 males and 2 females)

� 2 British (1 male and 1 female)

� 2 French (1 male and 1 female)

� 2 Germans (1 male and 1 female)

Since the performance assessment of adaptive filters needs longer signals, several basic

signals from the same speaker were concatenated and had their silence parts removed

through a voice activity detector (VAD), resulting in the mentioned 10 speech signals (1

signal per speaker). The length of the speech signals varied with the simulation time.

3.7 Simulation Results

This section presents the performance of the PEM-AFROW method using the configu-

ration of the PA system, the evaluation metrics and the signals described in Section 3.6.

The parameters of the PEM-AFROW, except those of the adaptive filter, had the values

originally proposed in [3] adjusted to fs = 16 kHz resulting in LA = 20, Lstp = 320,

Lltp = 160, LD = 401, LBmin = 40, LBmax = 320 samples.

The parameters of the NLMS adaptive filtering algorithm (stepsize µ, normalization

parameter δ and LH) were optimized for each signal. From pre-defined ranges, the values

of µ, δ and LH were chosen empirically in order to optimize the curve MSG(n), and

consequently ∆MSG(n), with regard to minimum area of instability and, secondarily,

maximum mean value within the simulation time. The optimal curves for the kth signal

were denoted as MSGk(n) and ∆MSGk(n) while the curves MIS(n), SD(n) and WPESQ(n)
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obtained with the same values of µ, δ and LH were denoted as MISk(n), SDk(n) and

WPESQk(n), respectively.

Then, the mean curves MSG(n), ∆MSG(n), MIS(n), SD(n) and WPESQ(n) were

obtained by averaging the curves of each signal according to

MSG(n) =
1

10

10∑

k=1

MSGk(n) ∆MSG(n) =
1

10

10∑

k=1

∆MSGk(n)

MIS(n) =
1

10

10∑

k=1

MISk(n) SD(n) =
1

10

10∑

k=1

SDk(n) (3.45)

SD(n) =
1

10

10∑

k=1

SDk(n) WPESQ(n) =
1

10

10∑

k=1

WPESQk(n).

And their respective mean values were defined as

MSG =
1

NT

NT∑

n=1

MSG(n) ∆MSG =
1

NT

NT∑

n=1

∆MSG(n)

∆MSG =
1

NT

NT∑

n=1

∆MSG(n) MIS =
1

NT

NT∑

n=1

MIS(n) (3.46)

SD =
1

NT

NT∑

n=1

SD(n) WPESQ =
1

NT

NT∑

n=1

WPESQ(n).

where NT is the number of samples related to the simulation time. Moreover, the asymp-

totic values of MIS(n), ∆MSG(n), SD(n) and WPESQ(n) were denoted by
−−→
MIS,

−−−−→
∆MSG,

−→
SD and

−−−−−→
WPESQ, respectively, and were estimated by graphically inspecting the curves.

The evaluation was done in two ambient noise conditions. The first was an ideal condi-

tion where the ambient noise signal r(n) = 0 and thus the source-signal-to-ambient-noise

ratio SNR =∞ . The second was close to real-world conditions where r(n) 6= 0 such that

SNR = 30 dB. The ambient noise r(n) reduces the cross-correlation between the system

input signal u(n) and the loudspeaker signal x(n), thereby improving the performance of

any gradient-based or least-squares-based AFC method as the PEM-AFROW.

In the first configuration, the broadband gain K(n) remained constant, i.e. ∆K = 0,

and coincidentally MSG0 ≈ 0 dB, which results in ∆MSG(n) ≈ MSG(n) and K1 ≈ −3 dB.

Figure 3.5 shows the results obtained by the PEM-AFROW method for ∆K = 0. The

bias problem in AFC is illustrated through the results obtained by the NLMS adaptive

filtering algorithm (the same used by the PEM-AFROW) with no decorrelation method

when SNR = 30 dB. The PEM-AFROW method achieved
−−−−→
∆MSG ≈ 7.5 dB and

−−→
MIS ≈

−8.7 dB when SNR = ∞, and
−−−−→
∆MSG ≈ 8 dB and

−−→
MIS ≈ −9.3 dB when SNR = 30 dB.

With no decorrelation method, the NLMS algorithm achieved only
−−−−→
∆MSG ≈ 2.5 dB

and
−−→
MIS ≈ −1.4 dB when SNR = ∞ or 30 dB. Regarding sound quality, the PEM-

AFROW achieved
−→
SD ≈ 1.7 and

−−−−−→
WPESQ ≈ 2.43 when SNR = ∞, and

−→
SD ≈ 1.5 and
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Figure 3.5: Average results of the PEM-AFROW method for speech signals and ∆K = 0:
(a) MSG(n); (b) MIS(n); (c) SD(n); (b) WPESQ(n).

−−−−−→
WPESQ ≈ 2.64 when SNR = 30 dB. The NLMS obtained

−→
SD ≈ 2.6 and

−−−−−→
WPESQ ≈ 2.01

when SNR =∞, and
−→
SD ≈ 2.2 and

−−−−−→
WPESQ ≈ 2.15 when SNR = 30 dB. The effectiveness

of the PEM-AFROW becomes clear when comparing its results with those of the NLMS.

In the second configuration, K(n) was increased, as explained in Section 3.6.1, in

order to determine the maximum stable broadband gain (MSBG) achievable by the PEM-

AFROW method for both ambient noise conditions. The MSBG was defined as the max-

imum value of K2 with which an AFC method achieves a MSG(n) completely stable.

Such situation occurred firstly with ∆K = 14 dB for SNR = ∞. Figure 3.6 shows the

results obtained by the PEM-AFROW method in this case. The PEM-AFROW method

achieved
−−−−→
∆MSG ≈ 13.3 dB and

−−→
MIS ≈ −14.3 dB when SNR =∞, and

−−−−→
∆MSG ≈ 13.4 dB

and
−−→
MIS ≈ −14.9 dB when SNR = 30 dB. With respect to sound quality, the PEM-

AFROW achieved
−→
SD ≈ 5.0 and

−−−−−→
WPESQ ≈ 1.46 when SNR = ∞, and

−→
SD ≈ 3.9 and

−−−−−→
WPESQ ≈ 1.63 when SNR = 30 dB.

Finally, K(n) was increased further to determine the MSBG of the PEM-AFROW

method when SNR = 30 dB. This situation occurred with ∆K = 16 dB and Figure 3.7
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Figure 3.6: Average results of the PEM-AFROW method for speech signals and ∆K = 14 dB:
(a) MSG(n); (b) MIS(n); (c) SD(n); (b) WPESQ(n).

shows the results obtained by the PEM-AFROW method in this case. The PEM-AFROW

method achieved
−−−−→
∆MSG ≈ 14 dB and

−−→
MIS ≈ −15.4 dB when SNR = ∞, and

−−−−→
∆MSG ≈

15 dB and
−−→
MIS ≈ −16.4 dB when SNR = 30 dB. With respect to sound quality, the

PEM-AFROW achieved
−→
SD ≈ 5.1 and

−−−−−→
WPESQ ≈ 1.42 when SNR = ∞ and

−→
SD ≈ 3.9

and
−−−−−→
WPESQ ≈ 1.58 when SNR = 30 dB. Table 3.4 summarizes the results obtained by

the PEM-AFROW method using speech as source signal v(n).

It can be observed that the results of MSG(n) and MIS(n) improve as ∆K increases.

This can be explained by the fact that, when the broadband gain K(n) of the forward

path is increased, the energy of the feedback signal (desired signal to the adaptive filter)

is increased while the energy of the system input signal u(n) (noise signal to the adaptive

filter) remains fixed. Then, the ratio between the energies of the feedback and input

signals is increased which improves the performance of the traditional adaptive filtering

algorithms and, consequently, of the PEM-AFROW method.

On the other hand, the results of SD(n) and WPESQ(n) worsen as ∆K increases. This

is because, despite the improvement in the estimates of the feedback path provided by the
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Figure 3.7: Average results of the PEM-AFROW method for speech signals and ∆K = 16 dB:
(a) MSG(n); (b) MIS(n); (c) SD(n); (b) WPESQ(n).

adaptive filters, the increase in the gain of G(q, n) ultimately results in an increase in the

energy of the uncancelled feedback signal [f(n)− h(n)]∗x(n). From an MSG point of view,

this can be concluded by observing that the stability margin of the systems decreases. For

∆K = 14 and mainly 16 dB, the stability margin became very low which resulted in an

excessive reverberation or even in some howlings in the error signal e(n).

Furthermore, the W-PESQ algorithm proved to be sensitive to the distortions caused

by the uncancelled feedback signals because only mean values lower than 3, which is the

middle of the MOS scale, were obtained. And this occurs even with a stability margin of

approximately 8 dB as achieved by the PEM-AFROW for ∆K = 0. This high sensitivity

may be due to the W-PESQ algorithm not being designed to evaluate speech impairment

by reverberation. However, from Figures 3.5, 3.6 and 3.7, it can be concluded that the SD

metric and W-PESQ algorithm had a consistent behavior because they indicated that the

sound quality improves as the energy of the uncancelled feedback signal decreases.

With respect to the ambient noise conditions, the results obtained with SNR = 30 dB

are slightly better than those obtained with SNR =∞ because, as already explained, the
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ambient noise r(n) reduces the cross-correlation between the system input signal u(n) and

the loudspeaker signal x(n). This improves the performance of any AFC method that

uses the traditional gradient-based or least-squares-based adaptive filtering algorithm, as

the PEM-AFROW. Moreover, r(n) helps to overcome a numeric issue of the SD metric,

which will be explained in Section 4.7.1, and probably to perceptually mask the distortions

inserted in e(n). Both facts tend to improve the results of SD(n) and WPESQ(n).

Table 3.4: Summary of the results obtained by the PEM-AFROW method for speech signals.

∆
M

S
G
−−
−−
→

∆
M

S
G

M
IS

−−
→

M
IS

S
D
−→ S

D
W

P
E

S
Q
−−
−−
−→

W
P

E
S

Q

N
L

M
S

∆
K

=
0

S
N

R
=

30
1.

7
2.

5
-0

.9
-1

.4
2.

6
2.

2
2.

0
9

2.
1
5

S
N

R
=
∞

1.
7

2.
5

-0
.9

-1
.4

3.
0

2.
6

1.
9
5

2.
0
1

P
E

M
-A

F
R

O
W

∆
K

=
0

S
N

R
=

30
6.

2
8.

0
-6

.0
-9

.3
1.

9
1.

5
2.

4
5

2.
6
4

S
N

R
=
∞

6.
0

7.
5

-5
.6

-8
.7

2.
4

1.
7

2.
2
9

2.
4
3

∆
K

=
1
4

S
N

R
=

30
8.

7
13

.4
-8

.7
-1

4.
9

3.
3

3.
9

1.
8
3

1.
6
3

S
N

R
=
∞

8.
5

13
.3

-7
.9

-1
4.

3
4.

3
5.

0
1.

6
3

1.
4
6

∆
K

=
1
6

S
N

R
=

30
9.

2
15

.0
-8

.8
-1

6.
4

3.
4

3.
9

1.
7
7

1.
5
8

S
N

R
=
∞

8.
9

14
.0

-8
.0

-1
5.

4
4.

7
5.

1
1.

5
7

1.
4
2



3.8. Conclusion 71

3.8 Conclusion

This chapter addressed the topic of acoustic feedback cancellation. The AFC approach

uses an adaptive filter to identify the acoustic feedback path and remove its influence

from the system. Nevertheless, due to the electro-acoustic path, the system input and

loudspeaker signals are highly correlated, mainly when the source signal is colored as

speech. Then, if the traditional gradient-based or least-squares-based adaptive filtering

algorithms are used, a bias is introduced in adaptive filter coefficients.

The main solutions available in the literature to overcome the bias in the estimate of

the feedback path were described. Mostly, they attempt to decorrelate the loudspeaker

and system input signals but still using the traditional adaptive filtering algorithms. They

can be divided in two groups. The first group contains the methods that insert a processing

device in the system open-loop in order to change the waveform of the loudspeaker signal.

This implies a fidelity loss of the PA system, even if the feedback signal is totally cancelled,

that, however, may be neglected if the added processing device does not perceptually affect

the sound quality of the system, which is particularly difficult to achieve. The second group

is formed by the methods that do not apply any processing to the signals that travel in

the system other than the adaptive filter and thereby keep the fidelity of the PA system

as high as possible.

Among all, the PEM-AFROW method stood out for producing the best overall per-

formance and, for this reason, was described in detail. The PEM-based methods consider

that the system input signal, which acts as noise to the estimation of feedback path, is

modeled by a filter whose input is white noise. Then, the idea consists on prefiltering

the loudspeaker and microphone signals with the inverse source model, in order to whiten

them, before feeding them to the adaptive filtering algorithm. The PEM-AFROW defines

the source model as a cascade of short-time and long-time prediction filters that model

the vocal tract and the periodicity, respectively.

An evaluation of the state-of-art PEM-AFROW method was carried out in a simu-

lated environment using a measured room impulse response as the feedback path impulse

response, a time-varying forward path broadband gain and two ambient noise conditions.

Its ability to estimate the feedback path impulse response and increase the MSG of a PA

system were measured as well as the spectral distortion in the resulting error signal.

Simulations demonstrated that, when the source signal is speech, the state-of-art PEM-

AFROW method is able to estimate the feedback path impulse response with a MIS of

−15.4 dB when SNR = ∞ and −16.4 dB when SNR = 30 dB. And it is able to increase

the MSG of the PA system by 14 dB when SNR = ∞ and 15 dB when SNR = 30. With

regard to sound quality when achieving these results, the PEM-AFROW method obtained

a SD of 5.1 when SNR = ∞ and 3.9 when SNR = 30 dB, and a WPESQ grade of 1.42

when SNR =∞ and 1.58 when SNR = 30 dB.
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Chapter 4
Acoustic Feedback Cancellation Based on

Cepstral Analysis

4.1 Introduction

As discussed in Chapter 3, AFC methods use an adaptive filter to identify the feedback

path impulse response and then remove its influence from the system. However, due to the

strong correlation between the system input and loudspeaker signals, a bias is introduced

in the adaptive filter coefficients if the gradient-based or least-square-based adaptive fil-

tering algorithms are used. To overcome the bias problem, the state-of-art PEM-AFROW

method generates uncorrelated versions of the system input and loudspeaker signals to

update the adaptive filter using the gradient-based NLMS adaptive filtering algorithm.

Another possible solution is to overcome the bias problem in AFC would be to not up-

date the adaptive filter using the traditional gradient-based or least-square-based adaptive

filtering algorithms. Following this approach, a method that updates the adaptive filter

using information contained in the cepstrum of the microphone signal y(n) was proposed

in [69]. However, a detailed cepstral analysis of the system as a function of G(q, n), D(q),

F (q, n) and H(q, n) was not considered, which most probably limited the results obtained

at the time. Furthermore, the evaluation of the method performance was unclear and no

comparison with other AFC methods was presented.

Cepstral analysis is a technique of signal analysis based on an homomorphic transfor-

mation that results in the so-called cepstrum. The cesptral representation enables that a

convolution of two signals in the time domain, thus nonlinear in the frequency domain, is

represented as a linear combination in the cesptral domain [58, 70, 71]. The cepstrum was

proposed in 1963 as a better alternative to the autocorrelation function to detect echoes

in seismic signals [70]. Due to the property of transforming a convolution into a linear

combination, the cepstral analysis is quite suitable for deconvolution and has been widely

applied in speech processing for pitch detection [58].

73
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This chapter reformulates the cepstral analysis of PA and AFC systems. It proves

that the cepstra of the microphone signal y(n) and the error signal e(n) may contain

well-defined time domain information about the system through G(q, n), D(q), F (q, n)

and H(q, n) if some gain conditions are fulfilled. Then, new AFC methods that compute

estimates of the feedback path impulse response from cepstra of the microphone signal y(n)

and error signal e(n) to update the adaptive filter are developed and their performances

are compared with the state-of-art PEM-AFROW method.

4.2 Cepstral Analysis of PA Systems

The PA system depicted in Figure 2.1 is described by the following time domain equations

{
y(n) = u(n) + f(n) ∗ x(n)

x(n) = g(n) ∗ d ∗ y(n)
(4.1)

and their corresponding representations in the frequency domain

{
Y (ejω, n) = U(ejω, n) + F (ejω, n)X(ejω, n)

X(ejω, n) = G(ejω, n)D(ejω)Y (ejω, n)
. (4.2)

From (4.2), the frequency-domain relationship between the system input signal u(n)

and the microphone signal y(n) is obtained as

Y (ejω, n) =
1

1−G(ejω, n)D(ejω)F (ejω, n)
U(ejω, n), (4.3)

which by applying the natural logarithm becomes

ln
[
Y (ejω, n)

]
= ln

[
U(ejω, n)

]
− ln

[
1−G(ejω,n)D(ejω)F (ejω,n)

]
. (4.4)

If
∣∣G(ejω, n)D(ejω)F (ejω, n)

∣∣ < 1, a sufficient condition to ensure the stability of the

PA system, the second term on the right-hand side of (4.4) can be expanded in Taylor’s

series as

ln
[
1−G(ejω, n)D(ejω)F (ejω, n)

]
= −

∞∑

k=1

[
G(ejω, n)D(ejω)F (ejω, n)

]k

k
. (4.5)

Replacing (4.5) in (4.4) and applying the inverse Fourier transform as follows

F−1
{

ln
[
Y (ejω, n)

]}
= F−1

{
ln
[
U(ejω, n)

]}

+ F−1
{ ∞∑

k=1

[
G(ejω, n)D(ejω)F (ejω, n)

]k

k

}
,

(4.6)
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the cepstral domain relationship between the system input signal u(n) and the microphone

signal y(n) is obtained as

cy(n) = cu(n) +
∞∑

k=1

[g(n) ∗ d ∗ f(n)]∗k

k
, (4.7)

where {·}∗k denotes the kth convolution power which, in the case of an impulse response,

is hereafter called k-fold impulse response.

In a PA system, the cepstrum cy(n) of the microphone signal is the cepstrum cu(n)

of the system input signal added to a time domain series as a function of g(n), d and

f(n). The presence of this time domain series is due to the disappearance of the logarithm

operator in the rightmost term of (4.6). This series is formed by impulse responses that

are k-fold convolutions of g(n) ∗ d ∗ f(n), the open-loop impulse response of the PA sys-

tem, and they can be physically interpreted as impulse responses of k consecutive loops

through the system. Therefore, it is crucial to understand that the cepstrum cy(n) of the

microphone signal contains time-domain information about the PA system through the

impulse responses g(n), d and f(n).

In fact, the cepstral analysis modified the representation of the components of the

PA system in relation to the system input signal u(n). In (4.3), the system input signal

u(n) and the components of the PA system are represented in the frequency domain.

But in (4.7), the system input signal u(n) is represented in the cepstral domain while the

components of the PA system are actually represented in the time domain.

It should be reminded that the cepstrum cy(n) of the microphone signal in a PA

system is defined by (4.7) if and only if the condition
∣∣G(ejω, n)D(ejw)F (ejω, n)

∣∣ < 1 for the

expansions in Taylor’s series in (4.5) is fulfilled. Otherwise, nothing can be inferred about

the mathematical definition of cy(n) as a function of g(n), d and f(n). The condition∣∣G(ejω, n)D(ejw)F (ejω, n)
∣∣ < 1 is the gain condition of the Nyquist’s stability criterion

and therefore is hereafter called Nyquist’s gain condition (NGC) of the PA system. The

NGC of the PA system is sufficient to ensure system stability because it considers all

the frequency components while the Nyquist’s stability criterion considers only those that

satisfy the phase condition defined in (2.5). As a consequence, the broadband gain K(n)

of the forward path, defined in (2.8), must be, in general, lower than the MSG of the

PA system to fulfill it. And even though cy(n) is mathematically defined by (4.7), the

practical existence of these impulse responses in cy(n) depends on whether the size of the

time domain observation window is large enough to include their effects.

With the aim to illustrate the modification caused by the cepstral analysis on the

representation of the components of the PA system, consider a PA system with the time-

invariant open-loop impulse response g(n)∗d∗ f(n) depicted in Figure 4.1b, a white noise

with duration of 100 s as the source signal v(n) and r(n) = 0. The NGC of the PA system

is fulfilled in this case and Figure 4.1 shows the first 5000 samples of cy(n) as well as the
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Figure 4.1: Cepstrum of the microphone signal y(n) in a PA system when v(n) is a white noise:

(a) cy(n); (b) g(n) ∗ d ∗ f(n); (c) [g(n)∗d∗f(n)]∗2
2 ; (d) [g(n)∗d∗f(n)]∗3

3

1, 2 and 3-fold convolutions of the open-loop impulse response. The cepstrum cy(n) was

computed using the entire content of the microphone signal and thus cu(n) approached

its theoretical impulse-like waveform. It can be concluded that, in cy(n), the components

of the PA system are really represented in the time domain.

Moreover, two characteristics of the k-fold impulse responses can be observed in Fig-

ure 4.1: decrease in magnitude with increasing fold k; and increasing sliding to the right

on the sample axis of their non-zero values with increasing fold k. The former is explained

by the fact that the absolute values of the open-loop impulse response g(n) ∗ d ∗ f(n)

are generally much smaller than 1 so that the PA system is stable, as can be observed in

Figure 4.1b, and the weight factor 1/k in the series penalizes the increase in the fold. The

latter is due to the open-loop impulse response has a time delay, as can be seen in Fig-

ure 4.1b, because of D(q) and F (q, n) (which has a time delay determined by the distance

between microphone and loudspeaker).

Along with the fact that f(n), as a room impulse response, typically has several promi-

nent peaks associated with the early reflections [66], the first characteristic causes the 1-fold
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Table 4.1: MSE between system input and microphone signals after removing consecutively the
weighted k-fold impulse responses from the cepstrum of the microphone signal.

Number of removed
MSE ∆MSE

impulse responses

0 5.7e-1 -

1 6.0e-2 5.1e-1

2 1.9e-2 4.1e-2

5 3.5e-3 1.6e-3

10 8.8e-4 2.6e-3

20 2.1e-4 6.7e-4

50 3.0e-5 1.8e-4

100 6.7e-6 2.3e-5

impulse response, the open-loop impulse response, to be easily noticeable in cy(n). The

2-fold impulse response is also noticeable but not as much as the 1-fold one. The 3-fold

impulse response is hardly distinguishable from cu(n). However, the ease of viewing the

k-fold impulse responses in cy(n) depends on the waveform of cu(n), which, as a cepstrum,

decays at least as fast as 1/m where m is its sample index [70].

In order to completely remove the acoustic feedback, it is necessary to remove all the

time domain information about the PA system from the cepstrum of the microphone signal,

i.e. in order to obtain y(n) = u(n) it is necessary to make cy(n) = cu(n). With r(n) = 0,

Table 4.1 presents the mean square error (MSE) between the system input signal u(n)

and the microphone signal y(n) after the removal of the weighted impulse responses from

cy(n) in a simulated environment. The removal process was performed by subtracting

consecutively the weighted impulse responses from cy(n), starting always by the 1-fold

impulse response (open-loop impulse response g(n) ∗ d ∗ f(n)). That is, to remove N

impulse responses means to remove up to the N -fold impulse response (k = 1, 2, . . . , N).

It can be observed from Table 4.1 that the greater the number of consecutively removed

weighted impulse responses, the more the microphone signal y(n) approaches the system

input signal u(n). However, the variation in MSE, ∆MSE, that is obtained by removing

one impulse response decreases with increasing fold. This is due to the fact that the

impulse responses with higher folds have a lower contribution to the distortion of the

system input signal u(n) because of, as already explained, their lower absolute values.

A process to remove the acoustic feedback can be developed similarly to the simulated

experiment. It would be possible to detect or, at least, to estimate the region of cy(n)

where each weighted impulse response in (4.7) is located. This could be performed, for

instance, by searching for the highest peak of the 1-fold impulse response in cy(n) and

using this knowledge to estimate the position of the other impulse responses. Hence,

the impulse responses could be removed from cy(n) through cepstral processing, i.e., by
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processing directly in cy(n). In this process, the lower fold impulse responses should be

prioritized because of their larger contribution to the distortion of u(n).

It is also possible to exploit the modification applied by the cepstral analysis on the

representation of the components of the PA system in relation to the system input sig-

nal in order to develop an AFC method, where an adaptive filter H(q, n) estimates the

feedback path F (q, n) and removes its influence from the system. But here, instead of the

traditional gradient-based or least-squares-based adaptive filtering algorithms, the adap-

tive filter H(q, n) will be updated based on time domain information about the PA system

estimated from cy(n).

4.3 Cepstral Analysis of AFC Systems

An AFC system is a PA system with an AFC method, i.e., that uses an adaptive filter

H(q, n) to remove the influence of the feedback path F (q, n) from the system, as shown in

Figure 3.1. The insertion of H(q, n) changes the relationships between the system signals

with respect to (4.1) and (4.2), in the PA system, and generates the error signal e(n) from

the microphone signal y(n).

Regardless of how the adaptive filter H(q, n) is updated, which allows to disregard the

adaptive algorithm block with no loss of generality, the AFC system depicted in Figure 3.1

is described by the following time domain equations





y(n) = u(n) + f(n) ∗ x(n)

e(n) = y(n)− h(n) ∗ x(n)

x(n) = g(n) ∗ d ∗ e(n)

(4.8)

and their corresponding representations in the frequency domain





Y (ejω, n) = U(ejw, n) + F (ejω, n)X(ejω, n)

E(ejω, n) = Y (ejω, n)−H(ejω, n)X(ejω, n)

X(ejω, n) = G(ejω, n)D(ejω)E(ejω, n)

. (4.9)

4.3.1 Cepstral Analysis of the Microphone Signal

From (4.9), the frequency-domain relationship between the system input signal u(n) and

the microphone signal y(n) is given by

Y (ejω, n) =
1 +G(ejω, n)D(ejω)H(ejω, n)

1−G(ejω, n)D(ejω) [F (ejω, n)−H(ejω, n)]
U(ejω, n), (4.10)
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which by applying the natural logarithm becomes

ln
[
Y (ejω, n)

]
= ln

[
U(ejω, n)

]
+ ln

[
1 +G(ejω, n)D(ejω)H(ejω, n)

]

− ln
{

1−G(ejω, n)D(ejω)
[
F (ejω, n)−H(ejω, n)

]}
.

(4.11)

If
∣∣G(ejω, n)D(ejω)H(ejω, n)

∣∣ < 1, the second term on the right-hand side of (4.11) can

be expanded in Taylor’s series as

ln
[
1 +G(ejω, n)D(ejω)H(ejω, n)

]
=
∞∑

k=1

(−1)k+1

[
G(ejω, n)D(ejω)H(ejω, n)

]k

k
. (4.12)

And if
∣∣G(ejω, n)D(ejω)

[
F (ejω, n)−H(ejω, n)

]∣∣ < 1, a sufficient condition to ensure the

stability of the AFC system, the third term on the right-hand side of (4.11) can be ex-

panded in Taylor’s series as

ln
{

1−G(ejω, n)D(ejω)
[
F (ejω, n)−H(ejω, n)

]}
=

−
∞∑

k=1

[
G(ejω, n)D(ejω)

[
F (ejω, n)−H(ejω, n)

]]k

k
. (4.13)

Replacing (4.12) and (4.13) in (4.11), and applying the inverse Fourier transform as

follows

F−1
{

ln
[
Y (ejω, n)

]}
= F−1

{
ln
[
U(ejω, n)

]}

+ F−1
{ ∞∑

k=1

(−1)k+1

[
G(ejω, n)D(ejω)H(ejω, n)

]k

k

}

+ F−1
{ ∞∑

k=1

{
G(ejω, n)D(ejω)

[
F (ejω, n)−H(ejω, n)

]}k

k

}
, (4.14)

the cepstral domain relationship between the system input signal u(n) and the microphone

signal y(n) is obtained as

cy(n) = cu(n) +

∞∑

k=1

(−1)k+1 [g(n) ∗ d ∗ h(n)]∗k

k

+

∞∑

k=1

{g(n) ∗ d ∗ [f(n)− h(n)]}∗k
k

.

(4.15)

In an AFC system, the cepstrum cy(n) of the microphone signal is the cepstrum

cu(n) of the system input signal added to two time-domain series as functions of g(n),

d, f(n) and h(n). Similarly to (4.7), the presence of these time-domain series is due

to the disappearance of the logarithm operator in the last two terms of (4.14). These

series are formed by k-fold convolutions of g(n) ∗d ∗ [f(n)− h(n)], the open-loop impulse
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response of the AFC system, and g(n) ∗ d ∗ h(n). Therefore, the cepstrum cy(n) of the

microphone signal contains time domain information about the AFC system through the

impulse responses g(n), d, f(n) and h(n).

The cepstral domain relationship in (4.15) can be re-written as

cy(n) = cu(n) +

∞∑

k=1

[g(n) ∗ d]∗k

k
∗
{

[f(n)− h(n)]∗k + (−1)k+1h∗k(n)
}
. (4.16)

The resulting 1-fold (k = 1) impulse response is g(n) ∗ d ∗ f(n), the open-loop impulse

response, and is identical to the one in (4.7). It is crucial to understand that, regardless of

h(n), the open-loop impulse response g(n) ∗d ∗ f(n) is always the 1-fold impulse response

present in cy(n). On the other hand, the resulting higher fold (k > 1) impulse responses

present in (4.16) are different from those in (4.7) due to the insertion of the adaptive filter

H(q, n). It is noticeable that (4.15) and (4.16) differ from (4.7) except when h(n) = 0,

condition that makes the two systems equivalent.

Ideally, if the adaptive filter exactly matches the feedback path, i.e., H(q, n) = F (q, n),

the frequency domain relationship between the system input signal u(n) and the micro-

phone signal y(n) defined in (4.10) will become

Y (ejω, n) =
[
1 +G(ejω, n)D(ejω)F (ejω, n)

]
U(ejω, n), (4.17)

which will imply the following time domain relationship

y(n) = [1 + g(n) ∗ d ∗ f(n)] ∗ u(n). (4.18)

This means that the microphone signal y(n) will continue to have acoustic feedback

even in the ideal situation where H(q, n) = F (q, n). This is explained by the fact that

the influence of the open-loop impulse response, g(n) ∗ d ∗ f(n), is unavoidable because

the AFC method is applied only after the feedback signal is picked-up by the microphone.

This is the reason why g(n) ∗d ∗ f(n) is always present in cy(n) regardless of h(n). In the

cepstral domain, the relationship in (4.16) will become

cy(n) = cu(n) +
∞∑

k=1

(−1)k+1 [g(n) ∗ d ∗ f(n)]∗k

k
, (4.19)

which proves that the peaks of cy(n) caused by the acoustic feedback will exist even if

H(q, n) = F (q, n). The difference to (4.7), in the PA system, is that the even k-fold

weighed impulse responses have mirrored amplitudes.

Note that the cesptrum cy(n) of the microphone signal in an AFC system is defined

by (4.16) if and only if the conditions
∣∣G(ejω, n)D(ejω)H(ejω, n)

∣∣ < 1 and
∣∣G(ejω, n)D(ejω)[

F (ejω, n)−H(ejω, n)
]∣∣ < 1 for the expansions in Taylor’s series in (4.12) and (4.13),

respectively, are fulfilled. Otherwise, nothing can be inferred about the mathematical
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definition of cy(n) as a function of g(n), d, f(n) and h(n).

Similarly to the condition
∣∣G(ejω, n)D(ejω)F (ejω, n)

∣∣ < 1 in the PA system, the con-

dition
∣∣G(ejω, n)D(ejω)

[
F (ejω, n)−H(ejω, n)

]∣∣ < 1 is the NGC of the AFC system. But,

while the fulfillment of the NGC of the PA system is the only requirement to define

cy(n) according to (4.7), the fulfillment of the NGC of the AFC system is not sufficient

to define cy(n) according to (4.16). In addition to it, the condition
∣∣G(ejω, n)D(ejω)

H(ejω, n)
∣∣ < 1 must also be fulfilled.

In a practical AFC system, H(q, 0) = 0 and H(q, n) → F (q, n) as n → ∞. When

n = 0, the additional condition
∣∣G(ejω, n)D(ejω)H(ejω, n)

∣∣ < 1 is fulfilled and K(0) can be

infinite. But as H(q, n) converges to F (q, n), the maximum value of the broadband gain

K(n) of the forward path that fulfills the condition decreases. Finally, when n→∞, the

condition becomes
∣∣G(ejω, n)D(ejω)F (ejω, n)

∣∣ < 1, the NGC of the PA system, and the

broadband gain K(n) must be lower than the MSG of the PA system to fulfill it.

Therefore, in an AFC system, the cepstrum cy(n) of the microphone signal is ultimately

defined by (4.16) if the NGC of both AFC and PA systems are fulfilled. This restricts the

use of cy(n) in AFC systems because if the broadband gain K(n) of the forward path is

increased above the MSG of the PA system, as intended in AFC systems, the condition∣∣G(ejω, n)D(ejω)H(ejω, n)
∣∣ < 1 may no longer be fulfilled and thereby cy(n) may not be

defined by (4.16). This is the critical issue of the cepstral analysis of the microphone signal

in AFC systems that limits the performance of any AFC method solely based on cy(n).

In addition to the above theoretical discussion about the critical issue of cy(n) in

AFC systems, the present work will demonstrate it in practice. In Section 4.4.1, an AFC

method based on the cepstrum cy(n) of the microphone signal will be proposed. The

method will use the fact that g(n) ∗d ∗ f(n) is always the 1-fold impulse response present

in cy(n), as proved in (4.16), and will estimate it from cy(n) to update H(q, n). It will be

demonstrated in Section 4.7 that the AFC method based on cy(n) will still work properly

even if the broadband gain K(n) of the forward path exceeds the MSG of the PA system

by around 10 dB. However, above a certain value, K(n) causes (4.16) to become inaccurate

to the point of disrupting the estimate of the feedback path provided by the method. As

a consequence, the method performance is limited by the broadband gain K(n) of the

forward path because of the need to fulfill the condition
∣∣G(ejω, n)D(ejω)H(ejω, n)

∣∣ < 1.

In general, this need may limit the use of cy(n) in AFC systems.

4.3.2 Cepstral Analysis of the Error Signal

The cepstral analysis can provide time domain information about the AFC system in such

a way that, as in a PA system, the only requirement is the fulfilment of its NGC. It should

be understood that the need to fulfill the condition
∣∣G(ejω, n)D(ejω)H(ejω, n)

∣∣ < 1 in order

to mathematically define the cepstrum cy(n) of the microphone signal by (4.16) is due to

the numerator of (4.10). And this condition can be avoided by realizing, from (4.9), that

the frequency domain relationship between the system input signal u(n) and the error
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signal e(n), which was generated from the microphone signal y(n), is given by

E(ejω, n)=
1

1−G(ejω, n)D(ejω) [F (ejω, n)−H(ejω, n)]
U(ejω, n), (4.20)

which by applying the natural logarithm becomes

ln
[
E(ejω, n)

]
= ln

[
U(ejω, n)

]
− ln

{
1−G(ejω, n)D(ejω)

[
F (ejω, n)−H(ejω, n)

]}
. (4.21)

If
∣∣G(ejω, n)D(ejω)

[
F (ejω, n)−H(ejω, n)

]∣∣ < 1, a sufficient condition to ensure the

stability of the AFC system, the second term on the right-hand side of (4.21) can be

expanded in Taylor’s series according to (4.13). Replacing (4.13) in (4.21), and applying

the inverse Fourier transform as follows

F−1
{

ln
[
E(ejω, n)

]}
= F−1

{
ln
[
U(ejω, n)

]}

+ F−1
{ ∞∑

k=1

{
G(ejω, n)D(ejω)

[
F (ejω, n)−H(ejω, n)

]}k

k

}
, (4.22)

the cepstral domain relationship between the system input signal u(n) and the error signal

e(n) is obtained as

ce(n) = cu(n) +

∞∑

k=1

{g(n) ∗ d ∗ [f(n)− h(n)]}∗k
k

. (4.23)

In an AFC system, the cepstrum ce(n) of the error signal is the cepstrum cu(n) of

the system input signal added to a time domain series as a function of g(n), d, f(n) and

h(n). Similarly to (4.7) and (4.15), the presence of the time domain series is due to the

disappearance of the logarithm operator in the rightmost term of (4.22). This series is

formed by impulse responses that are k-fold convolutions of g(n) ∗ d ∗ [f(n)− h(n)], the

open-loop impulse response of the AFC system, and they can be physically interpreted

as impulse responses of k consecutive loops through the system. Therefore, the cepstrum

ce(n) of the error signal also contains time domain information about the AFC system

through g(n), d, f(n) and h(n).

Contrary to cy(n), all the k-fold impulse responses present in ce(n) depend on h(n).

It is noticeable that (4.23) differs from (4.16) except when h(n) = 0, condition that makes

e(n) = y(n). And most importantly, unlike cy(n), the only requirement to define ce(n)

according to (4.23) is the fulfillment of
∣∣G(ejω, n)D(ejω)

[
F (ejω, n)−H(ejω, n)

]∣∣ < 1, the

NGC of the AFC system. If the NGC of the AFC system is not fulfilled at all frequency

components, the inaccuracy of (4.23) will depend on its deviation. However, experiments

showed that (4.23) may remain accurate even with a deviation of a few dB in the NGC of

the AFC system or even in the MSG of the AFC system.
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Ideally, if the adaptive filter exactly matches the feedback path, i.e., H(q, n) = F (q, n),

(4.20) and (4.23) will become

E(ejω, n) = U(ejω, n) (4.24)

and

ce(n) = cu(n), (4.25)

respectively. In the time domain it will lead to

e(n) = u(n), (4.26)

which means that the acoustic feedback will be completely cancelled. Generally, in a more

realistic situation where H(q, n) ≈ F (q, n), the better the adaptive filter H(q, n) matches

the feedback path F (q, n), the more the error signal e(n) approaches the system input

signal u(n).

The present work demonstrated that, in an AFC system, the cepstrum ce(n) of the

error signal is mathematically defined as a function of g(n), d, f(n) and h(n) if the NGC

of the AFC system is fulfilled. This clearly represents an advantage over the cepstrum

cy(n) of the microphone signal because, besides the fulfillment of the NGC of the AFC

system, it also requires the fulfillment of the condition
∣∣G(ejω, n)D(ejω)H(ejω, n)

∣∣ < 1,

which ultimately becomes the NGC of the PA system, to be similarly defined.

In addition to the above theoretical discussion, the present work will demonstrate it

in practice. In Section 4.4.2, an AFC method based on the cepstrum ce(n) of the error

signal will be proposed. The method will use the fact that g(n) ∗ d ∗ [f(n)− h(n)] is

always the 1-fold impulse response present in ce(n), as proved in (4.23), and will estimate

it from ce(n) to update H(q, n). It is expected that the AFC method based on ce(n)

works properly regardless of the broadband gain K(n) of the forward path if the NGC of

the AFC system is fulfilled and, therefore, can further increase the MSG of the PA system

compared with the AFC method based on cy(n).

4.4 AFC Based on Cepstral Analysis

The only known method that uses cepstral analysis to eliminate or control the Larsen

effect was proposed in [69]. The method uses the cepstrum cy(n) of the microphone

signal and an adaptive filter in a configuration similar to that shown in Figure 4.2 but

using the error signal e(n) as the adaptive filter input. As a consequence, the acoustic

feedback would be completely removed if H(q, n) = G(q, n)D(q)F (q, n), which means that

the adaptive filter H(q, n) must track variations not only in F (q, n) but also in G(q, n).

This configuration is not commonly used because a change in the forward path G(q, n)

will increase the mismatch between the adaptive filter H(q, n) and feedback path F (q, n),

thereby worsening the cancellation of the feedback signal and the stability condition.
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However, a detailed cepstral analysis of the AFC system was not carried out in [69].

The expansions in Taylor’s series as functions of F (q, n), G(q, n), D(q) and H(q, n) of the

natural logarithms intrinsic to the cesptral analysis of the AFC system, in (4.12) and (4.13),

were not considered. Hence, the need to fulfill de condition
∣∣G(ejω, n)D(ejω)H(ejω, n)

∣∣ < 1

and the resulting consequences were not discussed. Lastly, cy(n) was not defined as

in (4.16), where it is clear that it comprises weighted impulse responses added to cu(n).

Instead, it was only stated that peaks are inserted in cy(n) due to the acoustic feedback.

In [69], for each block of the microphone signal y(n), the update of the adaptive filter

was performed by, starting from a pre-defined sample index, selecting the peaks of cy(n)

above a pre-defined threshold, multiplying their values by a small pre-defined constant and

adding them to h(n) at the sample indexes of the selected peaks. However, in the same

way that it was proven in (4.16) that the system open-loop impulse response g(n)∗d∗f(n)

is always the 1-fold impulse response present in cy(n) regardless of h(n), the same occurs

in the system configuration used in [69], although that was not observed. Then, if the

peaks of g(n)∗d∗f(n) remain, over time, in the same sample indexes, only their values will

be detected and added to h(n). As a consequence, the method may update the adaptive

filter only in these sample indexes. This probably was the reason why the adaptive filter

H(q, n) did not have more than 50 coefficients in [69], which limits the performance of

any AFC method because only a very small part of feedback path F (q, n) is modeled. It

is evident that this characteristic of the method proposed in [69] is not beneficial to the

AFC system and should be avoided.

4.4.1 AFC Method Based on the Cepstrum of the Microphone Signal

The present work proposes a new AFC method based on the cepstrum cy(n) of the micro-

phone signal (AFC-CM) and its scheme is shown in Figure 4.2. As any AFC method, the

AFC-CM method identifies and tracks the acoustic feedback path using an adaptive FIR

filter. But, instead of the traditional gradient-based or least-squares-based adaptive filter-

ing algorithms, the proposed AFC-CM method updates the adaptive filter using estimates

of the impulse response f(n) of the feedback path computed from cy(n).

As discussed in Section 4.2 and illustrated in Figure 4.1, among all the k-fold impulse

responses present in the cepstrum cy(n) of the microphone signal defined in (4.16), the

open-loop impulse response g(n) ∗d ∗ f(n) is the one with highest absolute values because

it is the 1-fold impulse response. Therefore, although dependent on the waveform of cu(n),

it tends to be the impulse response more accurately estimated from cy(n).

Hence, the proposed method starts by calculating {g(n) ∗ d ∗ f(n)}̂, an estimate of

g(n) ∗ d ∗ f(n), the open-loop impulse response of the PA system, from cy(n). This is

performed by selecting the first LG + LD + LH − 2 samples of the cepstrum cy(n) of the

microphone signal, resulting in

{g(n) ∗ d ∗ f(n)}̂ = g(n) ∗ d ∗ f(n) + cu0(n), (4.27)
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Figure 4.2: Acoustic feedback cancellation based on cepstral analysis of the microphone signal.

where

cu0(n) =
[
cu0(n) cu1(n) . . . cuLG+LD+LH−3(n)

]T
. (4.28)

Thereafter, the presented method calculates {g(n)∗ f(n)}̂, an estimate of g(n)∗ f(n),

from (4.27) according to

{g(n) ∗ f(n)}̂ = {g(n) ∗ d ∗ f(n)}̂ ∗ d−1. (4.29)

Note that the convolution with d−1 is performed by sliding on the sample axis. This

procedure results in

{g(n) ∗ f(n)}̂ = g(n) ∗ f(n) + cuLD−1(n), (4.30)

where

cuLD−1(n) =
[
cuLD−1(n) cuLD

(n) . . . cuLG+LD+LH−3(n)
]T
. (4.31)

The segment cuLD−1(n) from the cepstrum of the input signal acts as noise in the

estimation of g(n)∗ f(n) and it would prevent the proposed AFC-CM method from reach-

ing the optimal solution {g(n) ∗ f(n)}̂ = g(n) ∗ f(n). However, it will be proved in

Section 4.4.3.1 that this estimation will be asymptotically consistent for the samples of

g(n) ∗ f(n) with the highest absolute values, which are the most important ones, because

it tends to reach the optimal solution.

The forward path G(q, n) can be accurately estimated from its input (error e(n)) and

output (loudspeaker x(n)) signals through any open-loop system identification method.

Then, assuming prior knowledge of the forward path G(q, n), the proposed method com-

putes f̂(n), an estimate of the impulse response f(n) of the feedback path, from (4.30) as

follows

f̂(n) = {g(n) ∗ f(n)}̂ ∗ g−1(n). (4.32)

Although the adaptive filter may be updated directly as h(n) = f̂(n), in order to in-

crease robustness to short-burst disturbances, the update of the adaptive filter is performed
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Figure 4.3: Block diagram of the proposed AFC-CM method.

according to

h(n) = λh(n− 1) + (1− λ)f̂(n), (4.33)

where 0 ≤ λ < 1 is the factor that controls the trade-off between robustness and tracking

rate of the adaptive filter.

In conclusion, the proposed AFC-CM method calculates an estimate of f(n) from cy(n)

to update H(q, n). Depending on the variations of F (q, n) over time, it can be deduced

that this computational effort may not be worth it, regarding performance, if the method

is applied to each new sample of the microphone signal y(n). Therefore, the AFC-CM

will be applied every Nfr samples, where Nfr is a parameter that controls the trade-off

between performance (latency and tracking capability) and computational complexity.

The block diagram of the proposed AFC-CM method is depicted in Figure 4.3. Every

Nfr samples, a frame of the microphone signal y(n) containing its newest Lfr samples

is selected; the frame has its spectrum Y (ejω, n) and power cepstrum cy(n) calculated

through an NFFTa-point Fast Fourier Transform (FFT); {g(n) ∗ d ∗ f(n)}̂ is computed

from cy(n); with the knowledge of d, {g(n) ∗ f(n)}̂ is calculated; with an estimate of

g(n), f̂(n) is computed; finally, h(n) is updated.

4.4.2 AFC Method Based on the Cepstrum of the Error Signal

The present work also proposes an AFC method based on the cepstrum ce(n) of the error

signal (AFC-CE) and its scheme is shown in Figure 4.4. As any AFC method, the AFC-

CE method identifies and tracks the acoustic feedback path using an adaptive FIR filter.

But, instead of the traditional gradient-based or least-squares-based adaptive filtering

algorithms, the proposed AFC-CE method updates the adaptive filter using estimates of

the impulse response f(n) of the feedback path computed from ce(n).

The concepts of the AFC-CE and AFC-CM are similar. They differ in the signal to

which the cepstral analysis is applied and, consequently, in the time domain information
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Figure 4.4: Acoustic feedback cancellation based on cepstral analysis of the error signal.

that is estimated from the cepstra. And most importantly, as discussed in detail in Sec-

tions 4.3.1 and 4.3.2, the only requirement in order for ce(n) to be defined according

to (4.23) is the fulfillment of the NGC of the AFC system. In contrast, in order for cy(n)

to be defined according to (4.16), the broadband gain K(n) of the forward path must also

fulfill the condition
∣∣G(ejω, n)D(ejω)H(ejω, n)

∣∣ < 1, which ultimately becomes the NGC

of the PA system. Therefore, it is expected that the AFC-CE method works properly

regardless of K(n) if the NGC of the AFC system is fulfilled, unlike the AFC-CM, and

thus further increases the MSG of the PA system compared with the AFC-CM method.

The proposed AFC-CE method starts by calculating {g(n) ∗ d ∗ [f(n)− h(n)]}̂, an

estimate of g(n) ∗ d ∗ [f(n)− h(n)], the open-loop impulse response of the AFC system,

from ce(n). This is performed by selecting the first LG + LD + LH − 2 samples of the

cepstrum ce(n) of the error signal, resulting in

{g(n) ∗ d ∗ [f(n)− h(n)]}̂ = g(n) ∗ d ∗ [f(n)− h(n)] + cu0(n), (4.34)

with cu0(n) as defined in (4.28).

Thereafter, the presented method calculates {g(n) ∗ [f(n)− h(n)]}̂, an estimate of

g(n) ∗ [f(n)− h(n)], from (4.34) according to

{g(n) ∗ [f(n)− h(n)]}̂ = {g(n) ∗ d ∗ [f(n)− h(n)]}̂ ∗ d−1. (4.35)

Note that the convolution with d−1 is performed by sliding on the sample axis. This

procedure results in

{g(n) ∗ [f(n)− h(n)]}̂ = g(n) ∗ [f(n)− h(n)] + cuLD−1(n), (4.36)

with cuLD−1(n) as defined in (4.31).

Similarly to (4.30), the segment cuLD−1(n) from the cepstrum of the input signal acts as

noise in the estimation of g(n)∗ [f(n)− h(n)] and it would prevent the proposed AFC-CE

method from reaching the optimal solution {g(n) ∗ [f(n)− h(n)]}̂ = g(n) ∗ [f(n)− h(n)].
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However, it will be proved in Section 4.4.3.1 that this estimation will be asymptotically

consistent for the samples of g(n) ∗ [f(n)− h(n)] with the highest absolute values, which

are the most important ones, because it tends to reach the optimal solution.

Assuming prior knowledge of the forward path G(q, n), as in the AFC-CM method,

the AFC-CE method computes [f(n)− h(n)] ̂, an estimate of f(n) − h(n), from (4.36)

according to

[f(n)− h(n)] ̂ = {g(n) ∗ [f(n)− h(n)]}̂ ∗ g−1(n). (4.37)

Then, the proposed method calculates f̂(n), an estimate of the impulse response f(n)

of the feedback path, from (4.37) as follows

f̂(n) = [f(n)− h(n)] ̂+ h(n− 1). (4.38)

Although the adaptive filter may be updated directly as h(n) = f̂(n), in order to

increase robustness to short-burst disturbances, the proposed AFC-CE method updates

the adaptive filter according to

h(n) = λh(n− 1) + (1− λ)f̂(n), (4.39)

where 0 ≤ λ < 1 is the factor that controls the trade-off between robustness and tracking

rate of the adaptive filter.

In conclusion, the presented AFC-CE method calculates an estimate of f(n) from ce(n)

to update H(q, n). Depending on the variations of F (q, n) over time, it can be deduced

that this computational effort may not be worth it, regarding performance, if the method

is applied to each new sample of the microphone signal y(n). Therefore, the AFC-CE

will be applied every Nfr samples, where Nfr is a parameter that controls the trade-off

between performance (latency and tracking capability) and computational complexity.

The block diagram of the proposed AFC-CE is depicted in Figure 4.5. Every Nfr

samples, a frame of the error signal e(n) containing its newest Lfr samples is selected; the

frame has its spectrum E(ejω, n) and power cepstrum ce(n) calculated using an NFFTa-

point FFT; {g(n) ∗ d [f(n)− h(n)]}̂ is computed from ce(n); with the knowledge of d,

{g(n)∗[f(n)− h(n)]}̂ is calculated; with an estimate of g(n), [f(n)− h(n)] ̂ is computed;

using h(n− 1), f̂(n) is calculated; finally, h(n) is updated.

4.4.3 Influence of Some Parameters and Improvements

This section analyzes the influence of some parameters on the performance of the proposed

AFC-CM and AFC-CE methods. The assessed parameters were the cepstrum cu(n) of the

source input, the length LD of the delay filter, the frame length Lfr , the use of smoothing

windows (non-rectangular) in the frame selection of the microphone signal y(n) and error

signal e(n), and the length LF of the feedback path.
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4.4.3.1 Cepstrum of the System Input Signal and Delay Filter Length

As explained in Sections 4.4.1 and 4.4.2, the AFC-CM and AFC-CE methods compute the

estimates {g(n) ∗ f(n)}̂ and {g(n) ∗ [f(n)− h(n)]}̂ from cy(n) and ce(n), respectively,

resulting in (4.30) and (4.36). In both cases, the segment cuLD−1(n) from the cepstrum

of the system input signal acts as estimation noise and would prevent these estimates

from reaching their optimal solutions. Therefore, this section analyzes the influence that

cuLD−1(n) may have in these estimates and, consequently, in the final performance of the

AFC-CM and AFC-CE methods.

The estimates {g(n) ∗ f(n)}̂ and {g(n) ∗ [f(n)− h(n)]}̂ are calculated by selecting

the first LG +LD +LH − 2 samples from cy(n) and ce(n), respectively. These procedures

will be repeated for every frame of the microphone signal y(n) and error signal e(n).

Considering cu(n) as a random process with P realizations and c
(p)
u as the realization of

the pth frame, the process mean value is defined as

E{cu(n)} =
1

P

P∑

p=1

c
(p)
u , (4.40)

where E{·} is the statistical expectation operator.

The process mean value E{cu(n)} was computed according to (4.40) using frames with

Lfr = 8000 and Nfr = 1000, and all the signals described in Section 4.6.6 as the system

input signal u(n), resulting in P ≈ 3200 realizations for both white noise and speech.

Figure 4.6 shows the waveform of E{cu(n)} and it can be observed that its magnitude

decreases with increasing sample index, in agreement with the cepstrum property of de-

caying at least as fast as 1/m where m is the sample index [70]. From Figure 4.6b, it

follows that, when u(n) is white noise, E{cu(n)} approaches its theoretical impulse-like

waveform. When u(n) is speech, it can be noticed from Figure 4.6a that the waveform of

E{cu(n)} has a slower decay but |E{cu(n)}| < 1× 10−2 for m > 80.



90 4. Acoustic Feedback Cancellation Based on Cepstral Analysis

0 20 40 60 80 100 120 140 160
−1.5

−1

−0.5

0

0.5

1

1.5

Sample index

A
m

pl
itu

de

(a)

0 20 40 60 80 100 120 140 160
−0.5

0

0.5

1

1.5

2

2.5

3

Sample index

A
m

pl
itu

de

(b)

Figure 4.6: Waveform of E{cu(n)} when u(n) is: (a) speech; (b) white noise.

From (4.30) and (4.36), the estimate {g(n) ∗ f(n)}̂ in the AFC-CM and the estimate

{g(n) ∗ [f(n)− h(n)]}̂ in the AFC-CE are, on average, approximated as

E{{g(n) ∗ f(n)}̂} = E{g(n) ∗ f(n) + cuLD−1(n)}
= E{g(n) ∗ f(n)}+ E{cuLD−1(n)}

(4.41)

and

E{{g(n) ∗ [f(n)− h(n)]}̂} = E{g(n) ∗ [f(n)− h(n)] + cuLD−1(n)}
= E{g(n) ∗ [f(n)− h(n)]}+ E{cuLD−1(n)},

(4.42)

respectively.

In the literature, it is usually assumed that there is a delay of 25 ms in the cascade

D(q)G(q, n) [2, 3]. Considering only a delay of 10 ms caused by the delay filter D(q)

with LD = 161 (fs = 16 kHz), Figure 4.7 shows the waveform of E{cuLD−1(n)} in the

region where the values of g(n) ∗ f(n) and g(n) ∗ [f(n)− h(n)] will be located. In this

range, |E{cuLD−1(n)}| < 6× 10−3 and |E{cuLD−1(n)}| < 2× 10−3 when the source signal

u(n) is speech and white noise, respectively. These low values when u(n) is white noise

were expected because the cepstrum has, in theory, an impulse-like waveform. But, when

the system input signal u(n) is speech, the low values are quite interesting especially

considering the diversity of 10 talkers and 4 languages used.

Although the values of E{cuLD−1(n)} are small, their relative influence will depend

on their ratio to the values of E{g(n) ∗ f(n)} and E{g(n) ∗ [f(n)− h(n)]}. For a better

understanding, the influence of E{cuLD−1(n)} will be analyzed separately for the AFC-CM

and AFC-CE methods.
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Figure 4.7: Waveform of E{cuLD−1
(n)} when LD = 161 and u(n) is: (a) speech; (b) white noise.

AFC-CM Method The influence of E{cuLD−1(n)} on E{g(n)∗f(n)} will be analyzed as

a function of f(n) and g(n). The feedback path F (q, n) will be the room impulse response

shown in Figure 3.3 and the forward path G(q, n) will be a gain such that
∣∣G(ejω, n)

∣∣ =[
maxw

∣∣D(ejω)F (ejω, n)
∣∣]−1.

Since the magnitude of f(n), as a room impulse response, typically decays exponentially

with increasing sample index, the magnitude of g(n)∗ f(n) also decays exponentially. And

since the magnitude of E{cuLD−1(n)} also decays with increasing sample index, as showed

in Figure 4.6, the influence of E{cuLD−1(n)} on g(n)∗ f(n) will depend on the decay speed

of both curves. The relative influence of E{cuLD−1(n)} on g(n) ∗ f(n) can be measured by

the ratio

rLD−1(n) = 20 log10
|E{cuLD−1(n)}|
|g(n) ∗ f(n)| . (4.43)

Disregarding the samples related to the initial delay of f(n), rLD−1(n) is represented in

Figure 4.8 for LD = 401, the delay filter length that will be used in this work as in [2, 3],

along with its linear approximation when the system input signal u(n) is speech and white

noise. It can be observed that rLD−1(n) increases with increasing sample index, which

means that f(n) decays faster than E{cuLD−1(n)}.
In the initial samples, the influence of E{cuLD−1(n)} can be considered negligible. This

is an advantage characteristic of the AFC-CM method because they are the samples of

f(n) with the highest absolute values and thus have the largest contribution to the acoustic

feedback problem. But above a certain sample index, |E{cuLD−1(n)}| becomes higher than

|g(n)∗ f(n)|, which makes the estimation of g(n)∗ f(n) from cy(n) impossible. In general,

this increase in rLD−1(n) causes the AFC-CM method to have more difficulty, or even

impossibility, in estimating the tail of f(n) as will be demonstrated in Section 4.4.3.4.

But, fortunately, the lower absolute values of f(n) have a smaller contribution to the

acoustic feedback and then this drawback of the AFC-CM is not so critical.

The linear approximation of rLD−1(n) for different values of LD is shown in Figure 4.9.
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Figure 4.8: Ratio rLD−1(n) when LD = 401 and u(n) is: (a) speech; (b) white noise.

It can be observed that the values of rLD−1(n) decrease as LD increases, more so for speech

signals. The delay filter D(q) shifts the values of g(n) ∗ f(n) to the right on the sample

axis in (4.16) such that the amount of shifting increases with LD. Because of the cepstrum

decay, shifting g(n) ∗ f(n) to the right on the sample axis means shifting it towards the

lower magnitudes of cu(n). Therefore, the estimation of g(n) ∗ f(n) may be improved by

increasing LD. Nevertheless, for all the evaluated values of LD, the conclusions of the

previous paragraph remain valid.

The gain g(n) determines the offset of rLD−1(n) and its linear approximation. An

increase in g(n) causes both curves to slide downward and thus decreases the influence

of E{cuLD−1(n)} on g(n) ∗ f(n). However, as explained in detail in Section 4.3.1, the

conditions |G(ejω, n)D(ejω)H(ejω, n)| < 1 and |G(ejω, n)D(ejω)
[
F (ejω, n)−H(ejω, n)

]
| <

1 are required in order for cy(n) to be defined according to (4.16). The former condition

is initially fulfilled and ultimately becomes |G(ejω, n)D(ejω)F (ejω, n)| < 1. The latter is

the NGC of the AFC system and is sufficient to ensure system stability. Therefore, the

influence of E{cuLD−1(n)} will always limit the performance of the proposed AFC-CM

method but is ultimately minimized when
∣∣G(ejω, n)

∣∣ =
∣∣D(ejω)F (ejω, n)

∣∣−1. When the

forward path G(q, n) is only a gain, this gain value is precisely the one that resulted in

the influence of E{cuLD−1(n)} shown in Figures 4.8 and 4.9.

Therefore, for the samples of g(n) ∗ f(n) with the highest absolute values, which are

the most important ones, the influence of cu(n) can be made negligible over time by

making
∣∣G(ejω, n)

∣∣ =
∣∣D(ejω)F (ejω, n)

∣∣−1. Consequently, for these samples, (4.41) can be

approximated as

E{{g(n) ∗ f(n)}̂} ≈ E{g(n) ∗ f(n)}, (4.44)

which means that the estimation of g(n)∗f(n) from cy(n) will be asymptotically consistent

because it tends to reach the optimal solution.
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Figure 4.9: Linear approximations of the ratio rLD−1(n) for different values of LD when u(n) is:
(a) speech; (b) white noise.

AFC-CE Method In the AFC-CE method, the influence of E{cuLD−1(n)} on E{g(n)∗
[f(n)− h(n)]} will be analyzed as a function of f(n)−h(n) and g(n). Again, the feedback

path F (q, n) will be the room impulse response shown in Figure 3.3 and the forward path

G(q, n) will be a gain such that
∣∣G(ejω, n)

∣∣ =
[
maxw

∣∣D(ejω)F (ejω, n)
∣∣]−1.

Although the magnitude of f(n) typically decays exponentially with increasing sample

index, the magnitude behavior of g(n) ∗ [f(n)− h(n)] depends on h(n). The relative

influence of E{cuLD−1(n)} on g(n) ∗ [f(n)− h(n)] can be measured by the ratio

r2LD−1(n) = 20 log10
|E{cuLD−1(n)}|

|g(n) ∗ [f(n)− h(n)] | . (4.45)

Consider that the adaptive filter H(q, n) is initialized with zeros and converges to

F (q, n) over time, i.e., H(q, 0) = 0 and H(q, n) → F (q, n) as n → ∞. When n = 0,

r2LD−1(n) = rLD−1(n) and the relative influence of E{cuLD−1(n)} on the AFC-CE method

will be the same as on the AFC-CM method, which was discussed in detail in the previous

section. In the first few seconds of operation of the AFC-CE method, r2LD−1(n) ≈
rLD−1(n) because h(n) has very low values.

In the same way as with rLD−1(n), the gain g(n) determines the offset of r2LD−1(n)

and its linear approximation. Consider now that, in the course of time n, g(n) can

be increased and the samples of h(n) converge in proportion to the samples of f(n).

The former situation shifts r2LD−1(n) downward and the latter shifts it upward. If

g(n) remains unchanged as h(n) converges to f(n), r2LD−1(n) will be shifted upward

and thus the influence of E{cuLD−1(n)} will increase. But if g(n) increases as h(n)

converges to f(n), g(n) may compensate the upward shifting, that would be caused

by h(n), by making the samples of g(n) ∗ [f(n)− h(n)] constant over time n. How-

ever, the condition
∣∣G(ejω, n)D(ejω)

[
F (ejω, n)−H(ejω, n)

]∣∣ < 1 is required in order for

ce(n) to be defined according to (4.23). Therefore, the influence of E{cuLD−1(n)} will
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always limit the performance of the proposed AFC-CE method but is minimized when∣∣G(ejω, n)
∣∣ =

∣∣D(ejω)
[
F (ejω, n)−H(ejω, n)

]∣∣−1, i.e., the system is at the stability limit.

When the forward path G(q, n) is only a gain and the samples of h(n) converge in pro-

portion to the samples of f(n), as it was assumed, this gain value results in the influence

of E{cuLD−1(n)} shown in Figures 4.8 and 4.9.

Therefore, for the samples of g(n) ∗ [f(n)− h(n)] with the highest absolute values,

which are the most important ones, the influence of cu(n) can be made negligible in the

course of time n by increasing the gain of the forward path G(q, n) as H(q, n) converges

to F (q, n). Consequently, for these samples, (4.42) can be approximated as

E{{g(n) ∗ [f(n)− h(n)]}̂} ≈ E{g(n) ∗ [f(n)− h(n)]}, (4.46)

which means that the estimation of g(n) ∗ [f(n)− h(n)] from ce(n) will be asymptotically

consistent because it tends to reach the optimal solution.

4.4.3.2 Frame Length

In linear system identification, the system impulse response is usually estimated through

its input and output signals. It is precisely the case of the AFC methods based on the

traditional adaptive filtering algorithms, as the PEM-AFROW method, that estimate the

impulse response f(n) of the feedback path by considering the loudspeaker signal x(n) as its

input and the microphone signal y(n) as its output. The bias problem in the identification

occurs because y(n), in addition to the real output signal x(n) ∗ f(n), also contains the

system input signal u(n) that is strongly correlated to x(n).

The cepstral analysis also estimates the impulse responses in (4.16) and (4.23) through

their input and output signals. But, in this case, they are not considered separately.

Instead, the cepstral analysis uses only the microphone signal y(n) or error signal e(n).

Therefore, in order for the cepstral analysis to be able to estimate the impulse responses

in (4.16) and (4.23), it is necessary that their input and output signals are jointly contained

in the frame of the microphone signal y(n) and error signal e(n), respectively. It is worth

mentioning that the input signal of an impulse response is not restricted to the system

input signal u(n) and can include feedback samples from previous cycles.

Figure 4.10 depicts the block processing of a filtering operation according to the

overlap-and-add procedure. Consider, for illustration, the AFC-CM method and b as

the k-fold impulse response present in (4.16) such that LB = k× (LG + LD + LF − 3)+1.

Its input and output signals are defined as yi(n) and yo(n), respectively, such that the

microphone signal y(n) = yi(n) + yo(n). At the discrete-time n, the AFC-CM method

selects the frame

y2 = [y(n− Lfr + 1) y(n− Lfr + 2) . . . y(n)]T (4.47)
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Figure 4.10: Block processing of a filtering operation according to the overlap-and-add procedure.

of the microphone signal y(n).

It can be observed that the frame y2 does not contain all the output signal yo,2,

generated from the input signal yi,2, because its convolution tail is disregarded. Then, the

frame y2 contains the input signal yi,2 but not the last LB samples of its output signal yo,2.

On the other hand, the tail of the output signal yo,1, generated from the previous input

signal yi,1, is included in the frame y2. Therefore, the frame y2 does not contain the input

signal yi,1 but does the last LB samples of its output signal yo,1. These facts degrade the

estimate of the k-fold impulse response present in (4.16) provided by the cepstral analysis.

The same occurs for the AFC-CE method considering the error signal e(n).

As the goal of the proposed AFC-CM and AFC-CE methods is to estimate the 1-fold

impulse response from (4.16) and (4.23), respectively, only the two sample blocks with

length LB = LG + LD + LF − 2, one at the beginning and another at the end of the

selected frame, can disturb the method performance. For fixed LG +LD +LF , increasing

Lfr increases the amount of useful samples of the frame and thus reduces the influence of
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these two sample blocks until they become irrelevant. As a consequence, the estimates of

the 1-fold impulse responses may improve.

However, the conclusion that increasing Lfr may improve the estimation of the 1-fold

impulse responses from (4.16) and (4.23) can be ensured if the impulse responses were

time-invariant throughout the frame length Lfr. If they are time-varying, the cepstral

analysis will estimate an average of the 1-fold impulse responses over the frame length

Lfr. Then, in this case, increasing Lfr may give a lower weight to the current values of

the impulse responses and thus worsen their estimates. Therefore, for time-varying 1-fold

impulse responses in (4.16) and (4.23), the frame length Lfr controls the trade-off between

the amount of useful samples provided for the cepstral analysis and the weight given by

the cepstral analysis to the current impulse responses.

4.4.3.3 Smoothing Window and High-Pass Filtering

Simulations showed that, when the source signal v(n) is speech and the signal-to-noise

ratio (SNR) is particularly high, the resulting |H(ejω, n)| computed by the proposed AFC-

CM and AFC-CE methods may have values considerably higher than |F (ejω, n)| at the

low-frequency components (below 100 Hz). These high values of |H(ejω, n)| at the low-

frequency components may insert distortion in the system signals and adversely affect the

stability of the AFC system.

This effect at low-frequency components of |H(ejω, n)| becomes even more severe if

smoothing windows are used to select the frame of the microphone signal y(n) and error

signal e(n) instead of a rectangular window. On the other hand, at the remaining frequency

components, the use of smoothing windows usually improves |H(ejω, n)|, provided by the

proposed methods, with respect to |F (ejω, n)|. Both issues are illustrated in Figure 4.11

for Blackman and rectangular windows.

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

Frequency (Hz)

|F
(e

jw
) 

−
 H

(e
jw

)|

 

 
Rectangular
Blackman

Figure 4.11: Illustration of the increase in the low-frequency components of
∣∣F (ejω,n)−H(ejω, n)

∣∣
due to the use of smoothing windows.
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However, it is possible to overcome the undesirable effect at low-frequency compo-

nents of |H(ejω, n)| and still benefit from the improvement in the remaining frequency

components of |H(ejω, n)| caused by the use of smoothing windows. To this purpose, a

Blackman window will be used to select the frames of y(n) and e(n), and the frequency

components below 100 Hz in G(q, n)D(q) [F (q, n)−H(q, n)], the open-loop transfer func-

tion of the AFC system, and H(q, n) will be attenuated by a linear-phase highpass filter

B(q) designed with the Parks-McClellan algorithm.

It was verified that a highpass filter B(q) with length LB = 801 samples fulfills the

necessary requirements of frequency response and, at the same time, generates a time delay

similar to a delay filter D(q) with LD = 401 samples as used in [2, 3]. The specifications

of the highpass filter B(q) are LB = 801 samples, stopband and passband edge frequencies

of 90 and 120 Hz, stopband and passband ripples of 23.3 and 0.1 dB. Its impulse response

and frequency response magnitude are shown in Figure 4.12.
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Figure 4.12: High-pass filter B(q): (a) impulse response; (b) frequency response.

The frequency components below 100 Hz in the open-loop transfer function of the

AFC system were attenuated by replacing the delay filter D(q) with the highpass filter

B(q). Hence, the delay filter D(q), its length LD, its impulse response d and its frequency

response D(ejω) present in equations as well as in discussions of previous sections must be

replaced, respectively, by B(q), LB, b and B(ejω). It should be noted that LB cannot be

too small in order for B(q) to fulfill the necessary requirements to adequately attenuate

the low-frequency components. Therefore, by replacing D(q) with B(q), the time delay of

the open-loop transfer function cannot be too small. For instance, a highpass filter B(q)

with same passband edge frequency and that generates a time delay of 10 ms (LB = 161)

has already been used without significant loss in performance.

It can be seen from Figure 4.12a that the impulse response b of the highpass filter has

some very low values around its maximum absolute value. Since cu(n) acts as estimation

noise, the effect of these low values on g(n) ∗ b ∗ f(n) and g(n) ∗ b ∗ [f(n)− h(n)] cannot
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be accurately obtained from cy(n) and ce(n), respectively. As a consequence, in the AFC-

CM mehod, the estimate {g(n) ∗ b ∗ f(n)}̂ calculated from cy(n) according to (4.27) is

really closer to g(n) ∗ d ∗ f(n) than to g(n) ∗ b ∗ f(n). Similarly, in the AFC-CE method,

the estimate {g(n) ∗b ∗ [f(n)− h(n)]}̂ calculated from ce(n) according to (4.34) is really

closer to g(n) ∗d ∗ [f(n)− h(n)] than to g(n) ∗b ∗ [f(n)− h(n)]. Hence, (4.29) and (4.35)

are actually performed as

{g(n) ∗ f(n)}̂ = {g(n) ∗ b ∗ f(n)}̂ ∗ d−1 (4.48)

and

{g(n) ∗ [f(n)− h(n)]}̂ = {g(n) ∗ b ∗ [f(n)− h(n)]}̂ ∗ d−1, (4.49)

respectively.

And the frequency components below 100 Hz in H(q, n) were attenuated by performing

{g(n) ∗ f(n)}̂ = {g(n) ∗ f(n)}̂ ∗ b ∗ d−1 (4.50)

before feeding it to (4.32) in the AFC-CM method and

{g(n) ∗ [f(n)− h(n)]}̂ = {g(n) ∗ [f(n)− h(n)]}̂ ∗ b ∗ d−1 (4.51)

before feeding it to (4.37) in the AFC-CE method.

4.4.3.4 Length of the Feedback Path

As discussed in Section 4.4.3.1, the cepstrum cu(n) of the system input signal acts as

noise in the estimation of g(n) ∗ f(n) and g(n) ∗ [f(n)− h(n)] from cy(n) and ce(n),

respectively. And, on average, the influence of cu(n) on these estimations increases with

increasing sample index, which makes the proposed AFC-CM and AFC-CE methods have

more difficulty in estimating the lower absolute values, mainly the tail, of the impulse

response f(n) of the feedback path.

This section aims to illustrate this characteristic of the AFC-CM and AFC-CE methods

with a practical example. To this end, simulations were carried out using the configuration

of the PA system, the evaluation metrics and the signals described in Section 4.6. The

broadband gain K(n) of the forward path was constant over time (∆K = 0) and the

impulse response f(n) of the feedback path was truncated to length LF = 100, 250, 500

and 4000 samples.

For simplicity, only the results obtained by the AFC-CE method will be illustrated

because the AFC-CM presents similar variations in performance as a function of LF .

The AFC-CE method started only after 125 ms of simulation to avoid initial inaccurate

estimates, Lfr = 8000, Nfr = 1000, NFFTa = 215 and NFFTe = 217. The optimization of
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Figure 4.13: Influence of LF on the performance of the AFC-CE method when u(n) is white
noise: (a) MSG(n); (b) MIS(n).
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Figure 4.14: Influence of LF on the performance of the AFC-CE method when u(n) is speech:
(a) MSG(n); (b) MIS(n).

its adaptive filter parameters λ and LH was performed identically to the PEM-AFROW

method and is described in Section 3.7.

Figures 4.13 and 4.14 show the results obtained by the AFC-CE method when the

system input signal u(n) is white noise and speech, respectively. It can be observed that

the performance of the AFC-CE method gets worse as the impulse response f(n) of the

feedback path gets longer. This is due to its difficulty in estimating the lower absolute

values of f(n) as explained in Section 4.4.3.1. And, since the magnitude of f(n) decays

with increasing sample index, lower absolute values are included in f(n) as its length

LF increases, thereby worsening the performance of the AFC-CE method. These results

confirm in practice the analysis presented in Section 4.4.3.1. This characteristic makes

the proposed AFC-CM and AFC-CE methods even more suitable to deal with acoustic

feedback paths with short tails such as occur in hearing aid applications.
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4.5 Computational Complexity

In this section, the computational complexity of the proposed AFC-CM and AFC-CE

methods is calculated considering one multiplication and one addition as two separate

floating-point operations. As the computational complexity of both methods is very sim-

ilar, its calculation will be based on the AFC-CE method. For the AFC-CM, a similar

procedure can be performed and results in more LH real multiplications.

The selection of the Lfr-length frame of the error signal e(n) requires Lfr multipli-

cations. In order to compute the power cepstrum ce(n), it is necessary to compute the

spectrum E(ejω, n) of the selected frame, |E(ejω, n)|2, its natural logarithm and convert

the result to the time domain. The computation of E(ejω, n) is performed through an

NFFTa-point FFT which, considering the radix-2 algorithm and a real signal, requires
NFFTa

2 log2NFFTa − 3
2NFFTa + 2 complex multiplications and NFFTa log2NFFTa complex

additions [72]. This results in 2NFFTa log2NFFTa − 6NFFTa + 8 real multiplications and

3NFFTa log2NFFTa −3NFFTa + 4 real additions. The computation of |E(ejω, n)|2 requires

NFFTa real multiplications and
NFFTa

2 real additions while its natural logarithm needs
NFFTa

2 real multiplications and
NFFTa

2 real additions when using lookup tables [73]. The

conversion of the result to the time domain is performed through an NFFTa-point Inverse

FFT (IFFT), which requires 2NFFTa log2NFFTa − 6NFFTa + 8 real multiplications and

3NFFTa log2NFFTa − 3NFFTa + 4 real additions.

The convolution with d−1 in (4.49) and (4.51) is simply performed by sliding on the

time axis. Considering M1 = LG + LH − 1, the convolution with g−1(n) in (4.37) can

be performed in the frequency domain using two M1-point FFTs, M1 complex divisions

and one M1-point IFFT, requiring 6M1 log2M1 − 10M1 + 24 real multiplications and

9M1 log2M1 − 6M1 + 12 real additions. Note that if G(q, n) is only a gain and a delay,

only 1 real multiplication is required.

Considering M2 = LH + LB − 1 and an M2-point FFT of B(q) previously computed,

the convolution with b in (4.51) can be performed in the frequency domain using one M2-

point FFT, M2 complex multiplications and one M2-point IFFT, requiring 4M2 log2M2−
8M2+16 real multiplications and 6M2 log2M2−4M2+8 real additions. Finally, (4.38) and

(4.39) can be effectively combined to need LH real multiplications and LH real additions.

In conclusion, the proposed AFC-CE method requires

O =
1

Nfr
×
[(

10NFFTa log2NFFTa −
31

2
NFFTa + 24

)
+ (15M1 log2M1 − 16M1 + 36)

+ (10M2 log2M2 − 12M2 + 24) + Lfr + 2LH

]
(4.52)

floating-point operations per iteration. Since LH � O × Nfr, it can be considered that

the AFC-CM method has the same computational complexity. Considering NFFTa = 215,

G(q, n) defined as (3.42), LH = 4000, LB = 801, Lfr = 8000 and Nfr = 1000, the
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AFC-CM and AFC-CE methods require approximately 4952 floating-point operations per

iteration. In comparison, with the parameter values originally proposed in [3] adjusted to

fs = 16 kHz and LH = 4000, the PEM-AFROW method requires approximately 34000

floating-point operations per iteration.

Keeping the values of the other parameters unchanged, the computational complexity

of both methods is similar if the AFC-CE or AFC-CM are applied every Nfr = 145

samples (equivalent to 9 and 3.3 ms for fs = 16 and 44.1 kHz, respectively). This possible

latency should not have great influence on the performance of the AFC-CE and AFC-CM

methods because the variations of F (q, n) in the meantime should be small.

4.6 Simulation Configurations

With the aim to evaluate the performance of the proposed AFC-CM and AFC-CE meth-

ods, an experiment was carried out in a simulated environment to measure their ability

to estimate the feedback path impulse response and increase the MSG of a PA system.

The resulting distortion in the error signal e(n) was also measured. To this purpose, the

following configuration was used.

4.6.1 Simulated Environment

The simulated environment was the same as used for the PEM-AFROW method and in-

cluded two different configurations of the forward path G(q, n). In the first, the broadband

gain K(n) remained constant, i.e., ∆K = 0 and the system had an initial gain margin of

3 dB. In the second, K(n) was increased in order to determine the MSBG achievable by

the AFC methods. A complete description can be found in Section 3.6.1.

4.6.2 Maximum Stable Gain

As discussed in Section 3.6.2, the main goal of any AFC method is to increase the MSG of

the PA system that has an upper limit due to the acoustic feedback. Therefore, the MSG

is the most important metric in evaluating AFC methods.

The proposed AFC-CM and AFC-CE methods, as the PEM-AFROW, do not apply

any processing to the signals that travel in the system other than the adaptive filter

H(q, n). Then, the MSG of the AFC system and the increase in MSG achieved by the

AFC-CM or AFC-CE, ∆MSG, were measured according to (3.6) and (3.8), respectively.

The frequency responses were also computed using an NFFTe-point FFT with NFFTe =

217. The sets of critical frequencies P (n) and PH(n) were obtained by searching, in the

corresponding unwrapped phase, each crossing by integer multiples of 2π. A detailed

explanation can be found in Section 3.6.2.
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4.6.3 Misalignment

In addition to the MSG, the performance of the proposed AFC-CM and AFC-CE methods

were also evaluated through the normalized misalignment (MIS) metric. The MIS(n) mea-

sures the mismatch between the adaptive filter and the feedback path according to (3.43).

A detailed description can be found in Section 3.6.3.

4.6.4 Frequency-weighted Log-spectral Signal Distortion

The sound quality of the AFC system using the proposed AFC-CM and AFC-CE methods

was evaluated through the frequency-weighted log-spectral signal distortion (SD). The

SD(n) measures the spectral distance between the error signal e(n) and the system input

signal u(n) according to (3.44). A detailed description can be found in Section 3.6.4.

4.6.5 Wideband Perceptual Evaluation of Speech Quality

Moreover, the sound quality of the AFC system using the proposed AFC-CM and AFC-CE

methods was perceptually evaluated through the standardized W-PESQ algorithm. The

W-PESQ quantifies the perceptible distortion in the error signal e(n) due to the acoustic

feedback by comparing it with the system input signal u(n) according to the degradation

category rating. A detailed description can be found in Section 3.6.5.

4.6.6 Signal Database

The signal database used in the simulations was formed by 10 white noise and 10 speech

signals. Each noise signal was a sequence of pseudorandom values drawn from the standard

normal distribution. The speech signals were the same described in Section 3.6.6. The

length of the signals varied with the simulation time.

4.7 Simulation Results

This section presents and discusses the performance of the proposed AFC-CM and AFC-

CE methods using the configuration of the PA system, the evaluation metrics and the

signals described in Section 4.6. The configuration of the proposed methods includes the

highpass filter B(q), instead of the delay filter D(q), and the use of a Blackman window,

as discussed in Section 4.4.3.3. Although it is not necessary to use a large LD or even the

highpass filter B(q) when the source signal v(n) is white noise as previously discussed,

even in this case B(q) and Blackman window were used to prove that such a configuration

of the AFC-CM and AFC-CE methods is suitable for white noise and speech signals.

The proposed AFC-CM and AFC-CE started only after 125 ms of simulation to avoid

initial inaccurate estimates, Lfr = 8000, Nfr = 1000, NFFTa = 215 and NFFTe = 217.

The optimization of their adaptive filter parameters λ and LH was performed identically
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Table 4.2: Summary of the results obtained by the traditional NLMS algorithm and the proposed
AFC-CM and AFC-CE methods for white noise.

∆MSG
−−−−→
∆MSG MIS

−−→
MIS SD

−→
SD

NLMS

∆K = 0 7.9 9.9 -7.7 -11.1 0.4 0.2

∆K = 13 12.1 19.0 -12.5 -20.6 0.5 0.4

∆K = 30 18.5 33.2 -19.2 -34.6 0.7 0.5

∆K = 38 21.4 37.0 -22.8 -40.8 0.7 0.7

AFC-CM
∆K = 0 7.4 9.4 -7.5 -10.0 0.4 0.3

∆K = 13 8.3 10.8 -7.8 -9.7 1.4 2.2

AFC-CE

∆K = 0 7.7 9.7 -7.5 -10.3 0.4 0.3

∆K = 13 11.9 18.5 -11.9 -19.7 0.6 0.4

∆K = 30 16.5 29.0 -17.1 -29.0 0.8 0.8

to the state-of-art PEM-AFROW method as described in Section 3.7, resulting in (3.45)

and (3.46) as well as in the asymptotic values
−−→
MIS,

−−−−→
∆MSG,

−→
SD and

−−−−−→
WPESQ.

4.7.1 Performance for White Noise

In general, new adaptive filtering algorithms are evaluated using white noise as their input.

First, white noise excites consistently all frequencies of the system under identification

which allows the adaptive filter to estimate its complete frequency response. Second,

white noise eases any performance issues that may be caused by the existence of coloring

in the input signal of the adaptive filter or its correlation with any other signal. In the

specific case of AFC, if the source signal v(n) is white noise, the correlation between the

system input signal u(n) and the loudspeaker signal x(n) vanishes because of the delay

inserted by D(q) or B(q), thereby resulting in an unbiased estimate of the feedback path.

Hence, the proposed AFC-CM and AFC-CE were first evaluated using white noise as

the source signal v(n). The ambient noise signal r(n) = 0. For performance comparison,

the traditional NLMS adaptive filtering algorithm was used. The parameters of the NLMS,

stepsize µ and LH , were obtained following the same procedure of the proposed AFC-CM

and AFC-CE methods. Table 4.2 summarizes the results obtained by the NLMS and the

proposed AFC-CM and AFC-CE methods for white noise.

In the first configuration of the forward path G(q, n), the broadband gain K(n) re-

mained constant, i.e., ∆K = 0. Figure 4.15 compares the results obtained by the AFC

methods under evaluation for ∆K = 0. It can be observed that all the AFC methods pre-

sented similar performances with a slight advantage for the NLMS. The NLMS achieved
−−−−→
∆MSG ≈ 9.9 dB and

−−→
MIS ≈ −11.1 dB, outscoring respectively the AFC-CM by 0.5 dB
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Figure 4.15: Performance comparison between the NLMS, AFC-CM and AFC-CE methods for
white noise and ∆K = 0: (a) MSG(n); (b) MIS(n); (c) SD(n).

and 1.1 dB and the AFC-CE by 0.2 dB and 0.8 dB. Regarding sound quality, the NLMS

achieved
−→
SD ≈ 0.2 outscoring the AFC-CM and AFC-CE by only 0.1.

In the second configuration of the forward path G(q, n), K(n) was increased in order

to determine the MSBG of each method, that is the maximum value of K2 with which

an AFC method achieves a MSG(n) completely stable. The first method to reach this

situation was the AFC-CM method when ∆K = 13 dB. Figure 4.16 compares the results

obtained by the AFC methods under evaluation for ∆K = 13 dB. It can be noticed that the

AFC-CM performed well until 10 s of simulation. After this time, the performance of the

AFC-CM method was limited by the inaccuracy of (4.16). A complete explanation about

the performance of the proposed AFC-CM method will be presented in Section 4.7.2.1.

The traditional NLMS and the proposed AFC-CE method presented, as the previous

case, similar performances with a slight advantage for the NLMS. The NLMS achieved
−−−−→
∆MSG ≈ 19.0 dB and

−−→
MIS ≈ −20.6 dB, outscoring respectively the AFC-CM by 8.2 dB

and 10.9 dB and the AFC-CE by 0.5 dB and 0.9 dB.

With respect to sound quality, the AFC-CM method presented the worst performance
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Figure 4.16: Performance comparison between the NLMS, AFC-CM and AFC-CE methods for
white noise and ∆K = 13 dB: (a) MSG(n); (b) MIS(n); (c) SD(n).

by obtaining
−→
SD = 2.2 due to its less accurate estimate of the feedback path, as can be

observed in Figure 4.16b. Hence, among all the methods, its uncancelled feedback signal

[f(n)− h(n)] ∗x(n) has the highest energy and, consequently, its error signal e(n) has the

largest distortion compared with the system input signal u(n). From an MSG point of

view, this can be concluded by observing in Figure 4.16a that the AFC-CM method has

the lowest stability margin. Although its MSG(n) is completely stable, some instability

occurred for a few signals which resulted in excessive reverberation or even in low-intensity

howlings in the error signal e(n). The NLMS and AFC-CE achieved
−→
SD = 0.4 due to their

more accurate estimates of the feedback path.

Hereupon, K(n) continued to be increased to determine the MSBG of the other

methods. The second method to reach this situation was the proposed AFC-CE when

∆K = 30 dB. Figure 4.17 shows the results obtained by the AFC-CE and NLMS for

∆K = 30 dB. It can be observed that the traditional NLMS outperformed slightly the

proposed AFC-CE method. The NLMS achieved
−−−−→
∆MSG ≈ 33.2 dB and

−−→
MIS ≈ −34.6 dB

while the AFC-CE obtained
−−−−→
∆MSG ≈ 29 dB and

−−→
MIS ≈ −29 dB. Regarding sound quality,
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Figure 4.17: Performance comparison between the NLMS and AFC-CE methods for white noise
and ∆K = 30 dB: (a) MSG(n); (b) MIS(n); (c) SD(n).

the NLMS also presented the best performance by achieving
−→
SD = 0.5 while the AFC-CE

obtained SD = 0.8.

Finally, K(n) was increased further to determine the MSBG of the traditional NLMS

algorithm. This situation occurred only when ∆K = 38 dB. Figures 4.18a and 4.18b show

the results obtained by the NLMS for ∆K = 38 dB. The NLMS achieved
−−−−→
∆MSG ≈ 37.0 dB

and
−−→
MIS ≈ −40.8 dB. With regard to sound quality, the NLMS achieved

−→
SD = 0.7.

In conclusion, when the source signal v(n) is white noise, the proposed AFC-CM

and AFC-CE methods did not outperform the traditional NLMS algorithm. The NLMS

increased by 37.0 dB the MSG of the PA system, outscoring the AFC-CM and AFC-CE

by 26.2 and 8 dB, respectively. Moreover, the NLMS algorithm estimated the impulse

response of the feedback path with an MIS of −33.9 dB, outscoring the AFC-CM and

AFC-CE by 31.1 and 11.8 dB, respectively. And even with the same variation in the

broadband gain of the forward path G(q, n), ∆K, the NLMS always outperformed the

other methods not only regarding MSG(n) and MIS(n) but also SD(n).

However, it is worth mentioning that, when the source signal v(n) is white noise, the
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Figure 4.18: Average results of the NLMS for white noise and ∆K = 38 dB: (a) MSG(n);
(b) MIS(n); (c) SD(n).

system input signal u(n) and the loudspeaker signal x(n) are uncorrelated because of

the delay applied by G(q)D(q) (or G(q, n)B(q)). Then, the traditional gradient-based

or least-squares-based adaptive filtering algorithms work properly and provide unbiased

solutions. Moreover, white noise excitations guarantee the fastest convergence speed of the

NLMS algorithm because the input autocorrelation matrix equals the identity matrix [72,

74]. This causes the NLMS to be equivalent to the LMS-Newton algorithm, which has

a performance similar to the recursive least-squares (RLS) algorithm [72]. And, even in

this situation so advantageous to the traditional NLMS algorithm, the proposed AFC-CE

method performed well.
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4.7.2 Performance for Speech Signals

For speech as source signal v(n), the evaluation of the proposed AFC-CM and AFC-CE

methods was done in two ambient noise conditions. The first was an ideal condition where

the ambient noise signal r(n) = 0 and thus the source-signal-to-noise ratio was SNR =∞.

The second was closer to real-world conditions where r(n) 6= 0 such that SNR = 30 dB.

The ambient white noise r(n) contributes to approach the cepstrum cu(n) of the system

input signal to an impulse-like waveform, which may improve the estimate of the acoustic

feedback path provided by the methods. Table 4.3 summarizes the results obtained by the

AFC-CM and AFC-CE methods for speech signals.

4.7.2.1 AFC-CM Method

The performance of the AFC-CM method is shown in Figures 4.19 and 4.20. Figure 4.19

shows the results obtained for ∆K = 0. In order to illustrate the bias problem in AFC, the

results obtained by the NLMS adaptive filtering algorithm when SNR = 30 dB are also

considered. The AFC-CM method achieved
−−−−→
∆MSG ≈ 9.6 dB and

−−→
MIS ≈ −10.2 dB when

SNR = ∞, and
−−−−→
∆MSG ≈ 9.8 dB and

−−→
MIS ≈ −10.2 dB when SNR = 30 dB. The relative

efficiency of the AFC-CM is clear when comparing its results with those of the NLMS.

With respect to sound quality, the AFC-CM achieved
−→
SD ≈ 1.7 and

−−−−−→
WPESQ ≈ 2.74 when

SNR =∞, and
−→
SD ≈ 1.4 and

−−−−−→
WPESQ ≈ 2.53 when SNR = 30 dB.

Hereupon, K(n) was increased in order to determine the MSBG achievable by the AFC-

CM method. This situation occurred with ∆K = 14 dB for both ambient noise conditions.

Figure 4.20 shows the results obtained by the AFC-CM method for ∆K = 14 dB. The

AFC-CM method achieved
−−−−→
∆MSG ≈ 12.0 dB and

−−→
MIS ≈ −9.8 dB when SNR = ∞, and

−−−−→
∆MSG ≈ 12.0 dB and

−−→
MIS ≈ −9.8 dB when SNR = 30 dB. With respect to sound quality,

the AFC-CM achieved
−→
SD ≈ 9.0 and

−−−−−→
WPESQ ≈ 1.21 when SNR =∞, and

−→
SD ≈ 8.1 and

−−−−−→
WPESQ ≈ 1.23 when SNR = 30 dB.

It can be observed that the results of MSG(n) and MIS(n) improve as ∆K increases.

The same occurred with the PEM-AFROW method as shown in Section 3.7. In the case of

the AFC-CM method, as explained in Section 4.4.3.1, the improvement in MSG and MIS

is due to the fact that, when the broadband gain K(n) of the forward path increases, the

absolute values of the system open-loop impulse response g(n) ∗ f(n) increase while the

cepstrum cu(n) of the system input signal is not affected. Then, the estimation of g(n) ∗
f(n) from the cepstrum cy(n) of the microphone signal is improved which, consequently,

improves the estimate of the acoustic feedback path provided by the AFC-CM method.

On the other hand, the results of SD(n) and WPESQ(n) worsen as ∆K increases.

This is because, despite the improvement in the estimates of the feedback path provided

by the adaptive filters, the increase in the gain of G(q, n) ultimately results in an increase

in the energy of the uncancelled feedback signal [f(n)− h(n)] ∗x(n). From an MSG point

of view, this can be concluded by observing that the stability margins of the systems
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Table 4.3: Summary of the results obtained by the proposed AFC-CM and AFC-CE methods for
speech signals.
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decreased. For ∆K = 14 dB, the stability margin became very low, mainly after t = 17 s

as can be observed in Figure 4.20a, and some instability occurred for a few signals, which

resulted in excessive reverberation or even in some howlings in the error signal e(n).

It is noteworthy that the values of SD(n) obtained when the source signal v(n) is speech

are higher than those obtained when v(n) is white noise. As explained in Section 3.6.4, the

SD(n) is a ratio between the short-term power spectral densities Se(e
jω, n) and Su(ejω, n),

which are computed using frames with duration of 20 ms of the system input signal u(n)
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Figure 4.19: Average results of the AFC-CM method for speech signals and ∆K = 0:
(a) MSG(n); (b) MIS(n); (c) SD(n); (d) WPESQ(n).

and the error signal e(n), respectively. When the source signal v(n) is speech, there

are always short-time segments of very low energy (almost silence) between words or

phonemes. Then, when SNR = ∞, the frames of u(n) may contain only these very low-

intensity segments of v(n), leading to Su(ejω, n) with very low values. However, because

of the uncancelled feedback signal x(n)∗ [f(n)− h(n)], the corresponsing segments in e(n)

always contain a significant energy which results in an Se(e
jω, n) with considerable values.

Consequently, for these signal segments, the value of the ratio in SD(n) may be very high

and increases SD. On the other hand, the decrease in SNR (increase in the level of r(n))

causes the energy of the corresponding segments in the system input signal u(n) to increase

as well as the values of their Su(ejω, n). As a result, for these segments, the value of the

ratio in SD(n) is now not so high and then has a lower influence on SD. When u(n) is

essentially white noise, these short-time segments of very low energy no longer exist.

Furthermore, as also occurred with the PEM-AFROW, the results obtained with

SNR = 30 dB are slightly better than those obtained with SNR = ∞. The ambient

noise r(n), being white noise, contributes to approach the cepstrum cu(n) of the system
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Figure 4.20: Average results of the AFC-CM method for speech signals and ∆K = 14 dB:
(a) MSG(n); (b) MIS(n); (c) SD(n); (d) WPESQ(n).

input signal to an impulse-like waveform, which may improve the estimation of g(n)∗ f(n)

from cy(n) provided by the AFC-CM method.

In Section 4.3.1, a detailed explanation was given on how the performance of the AFC-

CM method is theoretically limited by the need to fulfill the condition
∣∣G(ejω, n)B(ejω)

H(ejω, n)
∣∣ < 1, which ultimately becomes the NGC of the PA system. The results pre-

sented in this section demonstrated it in practice. In the first configuration of the forward

path G(q, n), where ∆K = 0, the condition
∣∣G(ejω, n)B(ejω)H(ejω, n)

∣∣ < 1 was always ful-

filled. Then, cy(n) was accurately defined by (4.16) and the AFC-CM worked optimally

throughout the simulation time. In this case, the performance of the AFC-CM method

was limited by the cepstrum cu(n) of the system input signal that acts as noise in the

estimation of g(n) ∗ f(n) from cy(n), as explained in Section 4.4.3.1.

In the second configuration of G(q, n), where K(n) increases over time, the AFC-CM

performed well until t = 12 s as can be observed in Figures 4.20a and 4.20b. In this time

interval, the method worked properly because the condition
∣∣G(ejω, n)B(ejω)H(ejω, n)

∣∣ < 1

was fulfilled at all frequency components and then (4.16) was accurately defined or, at least,
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it was partially fulfilled such that the inaccuracy of (4.16) was small. But after this time

interval, (4.16) becomes inaccurate to the point of disrupting the estimate of the feedback

path provided by the AFC-CM method and thereby limits its performance. This behavior

is easily noticed in the MIS(n) presented in Figure 4.20b. The need to fulfill the condition∣∣G(ejω, n)B(ejω)H(ejω, n)
∣∣ < 1 limited the increase in the broadband gain, ∆K, in 14 dB

and, consequently, the performance of the AFC-CM method.

4.7.2.2 AFC-CE Method

Similarly, the performance of the AFC-CE method is shown in Figures 4.21 and 4.22.

Figure 4.21 shows the results obtained for ∆K = 0. Once again, the results obtained

by the NLMS adaptive filtering algorithm when SNR = 30 dB are also included. The

AFC-CE method achieved
−−−−→
∆MSG ≈ 11.0 dB and

−−→
MIS ≈ −11.3 dB when SNR =∞, and

−−−−→
∆MSG ≈ 10.7 dB and

−−→
MIS ≈ −11.0 dB when SNR = 30 dB. The relative efficiency of

the AFC-CE method is also evident when comparing its results with those of the NLMS.

Regarding sound quality, the AFC-CE achieved
−→
SD ≈ 1.4 and

−−−−−→
WPESQ ≈ 2.73 when

SNR =∞, and
−→
SD ≈ 1.2 and

−−−−−→
WPESQ ≈ 2.90 when SNR = 30 dB.

Hereupon, K(n) was increased in order to determine the MSBG achievable by the

AFC-CE method. This situation occurred with an impressive ∆K = 30 dB for both

ambient noise conditions. Figures 4.22a and 4.22b shows the results obtained by the

AFC-CE method for ∆K = 30 dB. The AFC-CE method achieved
−−−−→
∆MSG ≈ 29.6 dB

and
−−→
MIS ≈ −22 dB when SNR = ∞, and

−−−−→
∆MSG ≈ 30.0 dB and

−−→
MIS ≈ −25.0 dB

when SNR = 30 dB. With respect to sound quality, the AFC-CE achieved
−→
SD ≈ 4.6 and

−−−−−→
WPESQ ≈ 1.46 when SNR =∞, and

−→
SD ≈ 4.0 and

−−−−−→
WPESQ ≈ 1.54 when SNR = 30 dB.

It can be observed that, as occurred with the PEM-AFROW and AFC-CM, the results

of MSG(n) and MIS(n) improve as ∆K increases. As explained in Section 4.4.3.1, when

∆K = 0, the magnitude of the impulse response g(n) ∗ [f(n)− h(n)] decreases as H(q, n)

approaches F (q, n) while the cepstrum cu(n) of the system input signal is not affected.

But, when the broadband gain K(n) of the forward path increases, this magnitude decrease

that would be caused by h(n) is compensated. Then, the estimation of g(n)∗ [f(n)− h(n)]

from the cepstrum ce(n) of the error signal becomes more accurate which, consequently,

improves the performance of the AFC-CE method.

On the other hand, as also occurred with the PEM-AFROW and AFC-CM, the results

of SD(n) and WPESQ(n) worsen as ∆K increases. This is because, despite the improve-

ment in the estimates of the feedback path provided by the adaptive filters, the increase

in the gain of G(q, n) ultimately results in an increase in the energy of the uncancelled

feedback signal [f(n)− h(n)] ∗ x(n). From an MSG point of view, this can be concluded

by observing that the stability margins of the systems decreased. When ∆K = 0, the sta-

bility margin was always higher than 3 dB and reached 14 dB. But, when ∆K = 30 dB,

the stability margin never exceeded 6 dB, was less then 3 dB for approximately 40% of
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Figure 4.21: Average results of the AFC-CE method for speech signals and ∆K = 0: (a) MSG(n);
(b) MIS(n); (c) SD(n); (d) WPESQ(n).

the simulation time and, mainly, was very low for 30 ≤ t ≤ 40 s. Although the MSG(n) is

completely stable, some instability occurred for a few signals but no howling was audible.

With respect to the level of the ambient noise r(n), the results showed that the perfor-

mance of the AFC-CE in terms of MSG and MIS does not have a well-defined behavior. For

∆K = 0, 14 and 16 dB, the method performed better with SNR =∞. For ∆K = 30 dB,

the method performed better when SNR = 30 dB. But, with the exception of the MIS

when ∆K = SNR = 30 dB, the difference in performance was very small as can be noticed

from Table 4.3. This indicates that the AFC-CE method achieves similar performances

for low-intensity noise environments when the source signal v(n) is speech.

Finally, it can be concluded that the AFC-CE method outperforms the AFC-CM.

This was expected because, as previously discussed in Sections 4.3.1 and 4.3.2, the only

requirement in order for ce(n) to be defined by (4.23) is the fulfillment of the NGC

of the AFC system whereas the condition
∣∣G(ejω, n)B(ejω)H(ejω, n)

∣∣ < 1 must also be

fulfilled in order for cy(n) to be defined by (4.16). Then, when this additional condition

is fulfilled as occurred with ∆K = 0, both methods present similar performances as can
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Figure 4.22: Average results of the AFC-CE method for speech signals and ∆K = 30 dB:
(a) MSG(n); (b) MIS(n); (c) SD(n); (d) WPESQ(n).

be observed from Table 4.3 and Figures 4.23a and 4.23b. But when the broadband gain

K(n) of the forward path increases, ∆K > 0, as H(q, n) converges to F (q, n), the condition∣∣G(ejω, n)B(ejω)H(ejω, n)
∣∣ < 1 is no longer satisfied after a certain time and thereby limits

the performance of the AFC-CM method. Meanwhile, the AFC-CE method works properly

because the NGC of the AFC system is still fulfilled.

In fact, the performance of the AFC-CE method was only limited by the influence

of the cepstrum cu(n) of the system input signal that acts as noise in the estimation of

g(n) ∗ [f(n)− h(n)] from ce(n). And, as explained in Section 4.4.3.1, the influence of

cu(n) on the performance of the AFC-CE method has a lower bound that is obtained

with
∣∣G(ejω, n)

∣∣ =
[
maxω

∣∣B(ejω)
[
F (ejω, n)−H(ejω, n)

]∣∣]−1. For ∆K = 0, 14 and 16 dB,

this lower bound was not reached. But, in general, the influence of cu(n) proved to be,

in practice, quite small which allows the proposed AFC-CE method to increase the MSG

of the PA system by 30 dB. Furthermore, the performance of the AFC-CE could be even

better if the growth rate of the broadband gain K(n) of the forward path were smaller.
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4.7.2.3 Comparison with PEM-AFROW

After the evaluation and discussion of their individual performances, the proposed AFC-

CM and AFC-CE methods will be now compared with the state-of-art PEM-AFROW

method. The performance of the PEM-AFROW method was presented and discussed in

Section 3.7. The comparison will focus on the results obtained with SNR = 30 dB because

this ambient noise condition is closer to real-world conditions.

Figure 4.23 compares the results obtained by the AFC methods under evaluation for

∆K = 0. It can be observed that the AFC-CM and AFC-CE methods presented similar

performances, with a slight advantage for the AFC-CE, and both methods outperformed

the PEM-AFROW. The proposed AFC-CE method achieved
−−−−→
∆MSG ≈ 10.7 dB and

−−→
MIS ≈

−11 dB, outscoring respectively the AFC-CM by 0.7 dB and 0.8 dB and the PEM-AFROW

by 2.7 dB and 1.7 dB.

With respect to sound quality, the AFC-CE achieved
−→
SD ≈ 1.2 and

−−−−−→
WPESQ ≈ 2.90,

outscoring respectively the AFC-CM by 0.2 and 0.16 and the PEM-AFROW by 0.3 and

0.26. These differences are almost imperceptible because, with such constant value of

K(n) and the increase in MSG provided by all the AFC methods, the systems were too

far from instability as can be observed in Figure 4.23a.

Consider now the second configuration of the broadband gain K(n) of the forward path

where it was linearly (in dB scale) increased over time, as explained in Section 3.6.1, in

order to determine the MSBG of each method. The AFC-CE method achieved an MSBG

of the forward path G(q, n) equal to 27 dB, outperforming the AFC-CM and the state-of-

art PEM-AFROW by impressive 16 dB and 14 dB, respectively. This would be enough to

conclude that the proposed AFC-CE method has the best performance. However, aiming

to enrich the discussion, the performance of the AFC methods under evaluation will be

compared considering the results obtained with all the values of ∆K used in this work.

Figure 4.24 compares the results obtained by the AFC methods under evaluation for

∆K = 14 dB. It can be noticed that the AFC-CM performed well, even better than the

PEM-AFROW, until 10 s of simulation. After this time, as previously explained in detail,

the performance of the AFC-CM method was limited by the inaccuracy of (4.16). This

behavior is easily observed in MIS(n) shown in Figure 4.24b. However, it is evident that the

AFC-CE stood out from both methods by achieving
−−−−→
∆MSG ≈ 20 dB and

−−→
MIS ≈ −20.9 dB,

outscoring respectively the AFC-CM by 8 dB and 11.1 dB and the PEM-AFROW by

6.5 dB and 5.6 dB. Moreover, it should be noted that the AFC-CM method outperformed

the PEM-AFROW by 0.5 dB with regard to ∆MSG, which was the cost function in the

optimization of the adaptive filter parameters for all methods.

Regarding sound quality, the AFC-CM method presented the worst performance by

obtaining
−→
SD ≈ 8.1 and

−−−−−→
WPESQ ≈ 1.23 because its very low stability margin after

t = 17 s, as can be observed in Figure 4.24a. Although its MSG(n) is completely stable,

some instability occurred for a few signals which resulted in excessive reverberation or
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Figure 4.23: Performance comparison between the PEM-AFROW, AFC-CM and AFC-CE meth-
ods for speech signals and ∆K = 0: (a) MSG(n); (b) MIS(n); (c) SD(n); (d) WPESQ(n).

even in some howlings in the error signal e(n). On the other hand, the AFC-CE method

presented the best sound quality by achieving
−→
SD ≈ 2.0 and

−−−−−→
WPESQ ≈ 2.32 because its

largest stability margin and outscored the PEM-AFROW by, respectively, 1.9 and 0.69.

Figure 4.25 compares the results obtained by the PEM-AFROW and AFC-CE methods

for ∆K = 16 dB. Once again, it can be observed that the AFC-CE method outperformed

the PEM-AFROW. The PEM-AFROW obtained
−−−−→
∆MSG ≈ 15 dB and

−−→
MIS ≈ −16.2 dB

while the AFC-CE method achieved
−−−−→
∆MSG ≈ 21 dB and

−−→
MIS ≈ −22.4 dB. Regarding

sound quality, the AFC-CE method achieved
−→
SD ≈ 2.1 and

−−−−−→
WPESQ ≈ 2.29 while the

PEM-AFROW obtained
−→
SD ≈ 3.9 and

−−−−−→
WPESQ ≈ 1.58.

In conclusion, the proposed AFC-CE method increased by 30 dB the MSG of the PA

system, outperforming the AFC-CM and PEM-AFROW by, respectively, 18 and 15 dB.

Moreover, the AFC-CE method estimated the impulse response of the feedback path with

an MIS of −25 dB, outperforming the AFC-CM and PEM-AFROW by, respectively, 15.2

and 8.8 dB. And even with the same variation in the broadband gain K(n) of the forward
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Figure 4.24: Performance comparison between the PEM-AFROW, AFC-CM and AFC-CE meth-
ods for speech signals and ∆K = 14 dB: (a) MSG(n); (b) MIS(n); (c) SD(n); (d) WPESQ(n).

path, ∆K, the AFC-CE always outperformed the other methods not only in MSG(n) and

MIS(n) but also in SD(n) and WPESQ(n).

Moreover, the structure of the PEM-AFROW method uses a source model that gen-

erally works well only for a restricted group of signals such as speech. If the nature of the

source signal v(n) changes over time, the PEM-AFROW method may not work properly

unless its source model is modified appropriately to the nature of the new source signal.

On the other hand, the definitions of the cepstra cy(n) and ce(n) of the microphone and

error signals according to (4.16) and (4.23), respectively, as well as the basic equations

of the proposed AFC-CM and AFC-CE methods, described respectively in Sections 4.4.1

and 4.4.2, are valid independently of the source signal v(n).

In fact, the source signal v(n) (through the system input signal u(n) = v(n) + r(n))

can interfere in the methods because the cepstrum cu(n) acts as noise in the estimation of

the 1-fold impulse responses from cy(n) and ce(n). When v(n) is white noise or speech,

it was proved that cu(n) has, on average, a fast decay over sample and consequently has
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Figure 4.25: Performance comparison between the PEM-AFROW and AFC-CE methods for
speech signals and ∆K = 16 dB: (a) MSG(n); (b) MIS(n); (c) SD(n); (d) WPESQ(n).

low absolute values in the region where the 1-fold impulse responses are located in cy(n)

and ce(n), which enables the methods to work properly. However, as a cepstrum, cu(n)

will always have a decay at least as fast as 1/m, where m is the sample index, regardless of

the signal nature. In the worst case, a higher LB−1
2 (time delay caused by B(q)) will be

required to accurately estimate the 1-fold impulse responses from cy(n) and ce(n).

Therefore, as with the PEM-AFROW, the nature of the source signal may affect the

AFC-CM and AFC-CE methods. But, certainly, it is much easier to adapt the time delay

caused by the cascade G(q, n)B(q) through LB in the proposed methods than to adapt

the source model in the PEM-AFROW in order to suit the nature of the source signal

v(n) over time. Furthermore, a sufficient large value of LB in the proposed AFC-CM and

AFC-CE methods will probably suit the great majority of the signals.
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4.8 Conclusion

This chapter detailed a cepstral analysis of a PA system. It was proved that the cepstrum

of the microphone signal contains time domain information about the system, including

its open-loop impulse response, if the NGC of the PA system is fulfilled. In addition,

it was demonstrated that it is possible to remove the acoustic feedback by removing all

the system information from the cepstrum of the microphone signal. Moreover, this work

aimed to use this information to update an adaptive filter in a typical AFC system.

To this purpose, a cepstral analysis of an AFC system, where an error signal is gen-

erated from the microphone signal, was also detailed. It was proved that, in an AFC

system, the cepstrum of the microphone signal may also contain time domain information

about the system, including the open-loop impulse response of the PA system. But for

this, the NGC of the AFC system and a gain condition as a function of the frequency

responses of the forward path and adaptive filter must be fulfilled. A new AFC method

based on the cepstral analysis of the microphone signal, called as AFC-CM, was proposed.

The AFC-CM method estimates the feedback path impulse response from the cepstrum of

the microphone signal to update the adaptive filter. A theoretical discussion on why the

second aforementioned condition limits the use of the cepstrum of the microphone signal

in an AFC system was presented and it was also demonstrated in practice by the proposed

AFC-CM method.

Furthermore, in an AFC system, it was also proved that the cepstrum of the error

signal may contain time domain information about the system, including the open-loop

impulse response of the AFC system. But for this, as an advantage over the microphone

signal, only the NGC of the AFC system must be fulfilled. Finally, a new AFC method

based on the cepstral analysis of the error signal, called as AFC-CE, was proposed. The

AFC-CE method estimates the feedback path impulse response from the cepstrum of the

error signal to update the adaptive filter.

Simulation results demonstrated that, when the source signal is speech, the proposed

AFC-CE method can estimate the feedback path impulse response with a MIS of −25 dB,

outperforming the PEM-AFROW and the proposed AFC-CM by respectively 8.8 and

15.2 dB. Moreover, the AFC-CE method can increase by 30 dB the MSG of the PA

system, outperforming the PEM-AFROW and AFC-CM by respectively 15 and 18 dB. It

may be concluded that the proposed AFC-CE method achieves a less biased estimate of

the acoustic feedback path and further increases the MSG of the PA system in comparison

with the proposed AFC-CM method and state-of-art PEM-AFROW method.
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Chapter 5
Acoustic Feedback Cancellation with

Multiple Feedback Paths

5.1 Introduction

Chapters 3 and 4 addressed the AFC problem considering PA systems with only one

microphone and one loudspeaker. In fact, this configuration is nearly the only one found

in the literature and represents several practical applications of PA systems as, for instance,

in hearing aids. However, this configuration may not precisely represent the use of PA

systems in other practical applications as, for instance, in large environments.

This chapter deals with the AFC problem considering PA systems with one micro-

phone and four loudspeakers. The acoustic coupling between the loudspeakers and the

microphone result in four feedback paths. It is proved that, in this configuration of the

PA system, the feedback signal is completely removed from the microphone signal if the

adaptive filter impulse response is equal to the sum of the impulse responses of the single

feedback paths. Moreover, the impulse response resulting from the sum of the impulse

responses of the single feedback paths generally has a large number of prominent peaks

and lower sparseness. It also has, in general, frequency components with higher energy.

The influence of a room impulse response with lower sparseness and higher energy in

its frequency components on the performance of the PEM-AFROW, AFC-CM and AFC-

CE methods is discussed. Finally, an evaluation of the AFC methods is carried out in

a simulated environment. It is demonstrated that, for the same value of the increase in

the broadband gain of the forward path, the AFC methods usually perform worse with

multiple feedback paths as regards misalignment but the system sound quality is improved.
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5.2 AFC with Multiple Feedback Paths

Typically, aiming to be heard by a large audience in the same acoustic environment, a

speaker uses a PA system with one microphone, responsible for picking up his/her own

voice, one amplification system, responsible for amplifying the voice signal, and several

loudspeakers placed in different positions, responsible for playback and distributing the

voice signal in the acoustic environment so that everyone in the audience can hear it.

Feedback
Path

Feedback
Path

_
+

Filter

Filter

Forward
Path

Delay

Adaptive

∑ ∑

F1(q, n) FC(q, n)

∑

H(q, n)

D(q)

G(q, n)

y(n) u(n)e(n)

x(n)

Figure 5.1: Typical AFC system with multiple feedback paths.

A typical PA system with 1 microphone and C loudspeakers is depicted in Figure 5.1.

The loudspeaker signal x(n), after played back by the kth-loudspeaker, may be fed back

into the microphone through the feedback path Fk(q, n). The C acoustic feedback signals

fk(n) ∗ x(n) are added to the system input signal u(n), generating the microphone signal

y(n) = u(n) +
C∑

k=1

fk(n) ∗ x(n). (5.1)

Then, an estimate of the overall feedback signal is calculated as h(n) ∗ x(n) and sub-

tracted from the microphone signal y(n), generating the error signal

e(n) = u(n) +

C∑

k=1

fk(n) ∗ x(n)− h(n) ∗ x(n)

= u(n) +

[
C∑

k=1

fk(n)− h(n)

]
∗ x(n),

(5.2)

which is effectively the signal to be fed to the forward path G(q, n). The error signal e(n)

will contain no acoustic feedback as desired if

H(q, n) =

C∑

k=1

Fk(q, n). (5.3)
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In this scenario with multiple feedback paths, the adaptive filter has optimum solution

equal to the sum of the single acoustic feedback paths. Indeed, the AFC system with

multiple feedback paths in Figure 5.1 can be simplified to the AFC system with single

feedback path in Figure 3.1 by considering F (q, n) as the overall acoustic feedback path

such that

F (q, n) =
C∑

k=1

Fk(q, n). (5.4)

However, in this case, the impulse response f(n) generally has a larger number of promi-

nent peaks and, consequently, lower sparseness as will be demonstrated in Section 5.3.1.1.

An impulse response is sparse if a small percentage of its coefficients have a significant

magnitude while the rest are small or zero [75]. Another definition follows: an impulse

response is sparse if a large fraction of its energy is concentrated in a small fraction of its

coefficients. In general, a room impulse response is sparse because its magnitude typically

decays exponentially over time. And the sparseness measure of a room impulse response

is inversely proportional to its reverberation time (decay speed).

The traditional adaptive filtering algorithms, as the NLMS, have slow convergence

when identifying sparse impulse responses [75, 76]. This fact has led to the development

of several adaptive algorithms for the identification of sparse impulse responses as, for

example, in [76, 77, 78, 79, 80, 81, 82, 83]. These new adaptive algorithms improve the

performance of the traditional algorithms by changing their update equation so that the

sparseness of the impulse response under identification is taken into account.

Therefore, the importance of evaluating AFC methods considering multiple feedback

paths is twofold. First, it corresponds to a more realistic configuration of a typical PA

system. Second, the resulting feedback path has lower sparseness which may affect the per-

formance of the traditional adaptive algorithms and, thus, of the PEM-AFROW method.

And, as it will de demonstrated, the decrease in sparseness may also affect the performance

of the proposed AFC-CM and AFC-CE methods.

5.3 Simulation Configurations

With the aim to assess the performance of the proposed AFC-CM and AFC-CE methods

in a PA system with multiple feedback paths, an experiment was carried out in a simulated

environment to measure their ability to estimate the feedback path impulse response and

increase the MSG of a PA system. The resulting distortion in the error signal e(n) was

also measured. To this purpose, the following configuration was used.
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5.3.1 Simulated Environment

5.3.1.1 Feedback Path

The impulse responses fk(n) of the acoustic feedback paths were 4 measured room impulse

response of the same room available in [60], where each one was measured with the sound

emitter placed in a different position, and thus fk(n) = fk. The impulse responses were

downsampled to fs = 16 kHz and then truncated to length LF = 4000 samples, and are

illustrated in Figure 5.2.
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Figure 5.2: Impulse responses of the acoustic feedback paths (zoom in the first 500 samples):
(a) f1(n); (b) f2(n); (c) f3(n); (d) f4(n).

Figure 5.3 compares the single feedback path F1(q, n), which was used in Chapters 3

and 4, and the overall feedback path F (q, n). It can be observed from Figure 5.3a that,

compared with the impulse response of F1(q, n), the impulse response of F (q, n) has coef-

ficients with absolute values generally higher but the highest absolute value is almost the

same. This indicates a reduction in sparseness.



5.3. Simulation Configurations 125

0 100 200 300 400 500 600 700 800 900 1000
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Sample index

A
m

pl
itu

de

 

 

 f(n)
 f

1
(n)

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000
−30

−25

−20

−15

−10

−5

0

5

10

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

 

 

F(ejw,n)

F
1
(ejw,n)

(b)

Figure 5.3: Comparison between single F1(q, n) and multiple F (q, n) acoustic feedback paths:
(a) impulse response; (b) frequency response.

The sparseness of an impulse response f(n) can be quantified by [76]

ξ(n) =
LF

LF −
√
LF

[
1− ‖f(n)‖1√

LF ‖f(n)‖2

]
, (5.5)

where ‖ · ‖1 and ‖ · ‖2 denote the l1 and l2-norm, respectively. According to (5.5), f1(n)

has ξ = 0.75 and f(n) has ξ = 0.67. It can be concluded that, when the system has

multiple feedback paths, the sparseness of the impulse response of the overall feedback

path decreases, in this case by 11%, which may affect the performance of adaptive filtering

algorithms [75, 76].

Moreover, it can be observed from Figure 5.3 that F (q, n) has higher energy than

F1(q, n). In fact, f(n) has an energy 6.13 dB higher than f1(n). This will influence

the performance of the proposed AFC-CM and AFC-CE methods, as will be shown and

discussed in Section 5.4.

5.3.1.2 Forward Path

As in Chapters 3 and 4, the forward path G(q, n) was simply defined as an unit delay

and a gain according to (3.42). The two configurations of the broadband gain K(n)

of the forward path, explained in detail in Section 3.6.1, were applied. For the PEM-

AFROW method, as explained in Section 3.6.1, G(q, n) was followed by the delay filter

D(q) with LD = 401. For the proposed AFC-CM and AFC-CE methods, as explained in

Section 4.4.3.3, G(q, n) was followed by the highpass filter B(q) with LB = 801. Note that

the highpass filter B(q) and delay filter D(q) generate the same time delay.

With multiple feedback paths, the initial broadband gain K(0) is lower due to the

increase in magnitude of the frequency response F (ejω, n) of the feedback path, which can

be observed in Figure 5.3b. With F1(q, n), the MSG of the PA system is around 0 dB and

thus 20 log10K(0) ≈ −3 dB. With F (q, n), the MSG of the PA system is around −9 dB
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Figure 5.4: Comparison between open-loop responses with single and multiple acoustic feedback
paths: (a) impulse response; (b) frequency response.

and thus 20 log10K(0) ≈ −12 dB. Therefore, for the same ∆K, the broadband gain K(n)

of the forward path is 9 dB lower when the system has multiple feedback paths.

Although f(n) has higher absolute values than f1(n), the values of g(n)∗f(n) and g(n)∗
f1(n) depend on the value of K(n). Figure 5.4 shows G(q, 0)F (q, 0) and G(q, 0)F1(q, 0).

It can be observed that, due to the lower value of K(0), the highest absolute values of

g(0) ∗ f(0) are smaller than those of g(0) ∗ f1(0). In fact, for the same value of ∆K,

the proportion between the values of g(n) ∗ f(n) and g1(n) ∗ f1(n) is the same shown in

Figure 5.4a and, therefore, the highest absolute values of g(n) ∗ f(n) are smaller than

those of g(n) ∗ f1(n). Hence, for the same value of ∆K, this may make it more difficult

to estimate the highest absolute values of g(n) ∗ f(n) from cy(n) or ce(n). Since these

values are the ones that contribute most to the feedback problem, this fact may impair

the performance of the proposed AFC-CM and AFC-CE methods.

5.3.2 Maximum Stable Gain

The main goal of any AFC method is to increase the MSG of the PA system that has an

upper limit due the acoustic feedback. Therefore, the MSG is the most important metric

in evaluating AFC methods.

For an AFC system that uses the PEM-AFROW, AFC-CM or AFC-CE methods, as

discussed in 3.6.2 and 4.6.2, the MSG of the AFC system and the increase in MSG achieved

by the AFC methods, ∆MSG, were measured according to (3.6) and (3.8), respectively.

The frequency responses in (3.6) and (3.8) were computed using an NFFTe-point FFT

with NFFTe = 217. The sets of critical frequencies P (n) and PH(n) were obtained by

searching, in the corresponding unwrapped phase, each crossing by integer multiples of

2π. A detailed explanation can be found in Section 3.6.2.
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5.3.3 Misalignment

In addition to the MSG, the performance of the AFC methods were also evaluated through

the normalized misalignment (MIS) metric. The MIS(n) measures the mismatch between

the adaptive filter and the feedback path according to (3.43). A detailed description can

be found in Section 3.6.3.

5.3.4 Frequency-weighted Log-spectral Signal Distortion

The sound quality of the AFC systems was evaluated through the frequency-weighted

log-spectral signal distortion (SD). The SD(n) measures the spectral distance (in dB)

between the error signal e(n) and the system input signal u(n) according to (3.44). A

detailed description can be found in Section 3.6.4.

5.3.5 Wideband Perceptual Evaluation of Speech Quality

Moreover, the sound quality of the AFC systems was perceptually evaluated through the

standardized W-PESQ algorithm. The W-PESQ quantifies the perceptible distortion in

the error signal e(n) due to the acoustic feedback by comparing it with the system input

signal u(n) according to the degradation category rating. A detailed description can be

found in Section 3.6.5.

5.3.6 Signal Database

The signal database was formed by the same 10 speech signals used in Chapters 3 and 4.

A detailed description can be found in Section 3.6.6.

5.4 Simulation Results

This section presents and discusses the performance of the AFC-CM and AFC-CE methods

proposed in Chapter 4 using the configuration of the PA system, the evaluation metrics and

the signals described in Section 5.3. The state-of-art PEM-AFROW method, presented in

Chapter 3, was also evaluated and used for performance comparison.

As in Chapters 3 and 4, the evaluation of the AFC methods was done in two ambient

noise conditions. The first was an ideal condition where the ambient noise signal r(n) = 0

and thus the source-signal-to-noise ratio SNR = ∞. The second was close to real-world

conditions where r(n) 6= 0 such that SNR = 30 dB. Table 5.1 summarizes the results

obtained by the AFC methods for speech signals.
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Table 5.1: Summary of the results obtained by the PEM-AFROW, AFC-CM and AFC-CE
methods for speech signals.
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5.4.1 PEM-AFROW Method

In this section, the performance of the state-of-art PEM-AFROW method is presented.

Figure 5.5 shows the results obtained by the PEM-AFROW method for ∆K = 0. In order

to illustrate the bias problem in AFC, the results obtained by the NLMS algorithm when

SNR = 30 dB are also considered. The PEM-AFROW method achieved
−−−−→
∆MSG ≈ 7.7 dB

and
−−→
MIS ≈ −6.3 dB when SNR = ∞, and

−−−−→
∆MSG ≈ 8.0 dB and

−−→
MIS ≈ −6.6 dB when

SNR = 30 dB. With respect to sound quality, the PEM-AFROW achieved
−→
SD ≈ 1.7 and

−−−−−→
WPESQ ≈ 2.58 when SNR =∞, and

−→
SD ≈ 1.4 and

−−−−−→
WPESQ ≈ 2.80 when SNR = 30 dB.

Hereupon, K(n) was increased in order to determine the MSBG achievable by the

PEM-AFROW method. Such situation occurred with ∆K = 16 dB for both ambient

noise conditions. When SNR = ∞, this can be interpreted as an improvement in the

method performance because the MSBG was achieved with ∆K = 14 dB in the case of

single feedback path. Figure 5.6 shows the results obtained by the PEM-AFROW method

for ∆K = 16 dB. The PEM-AFROW method achieved
−−−−→
∆MSG ≈ 14.4 dB and

−−→
MIS ≈

−13.4 dB when SNR = ∞, and
−−−−→
∆MSG ≈ 14.7 dB and

−−→
MIS ≈ −14.5 dB when SNR =
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Figure 5.5: Average results of the PEM-AFROW method for speech signals and ∆K = 0:
(a) MSG(n); (b) MIS(n); (c) SD(n); (b) WPESQ(n).
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Figure 5.6: Average results of the PEM-AFROW method for speech signals and ∆K = 16 dB:
(a) MSG(n); (b) MIS(n); (c) SD(n); (b) WPESQ(n).

30 dB. Regarding sound quality, the PEM-AFROW achieved
−→
SD ≈ 3.8 and

−−−−−→
WPESQ ≈

1.55 when SNR =∞, and
−→
SD ≈ 3.0 and

−−−−−→
WPESQ ≈ 1.67 when SNR = 30 dB.

For ∆K = 0 and 16 dB, the PEM-AFROW method performed worse in MIS(n) but

performed better in SD(n) and WPESQ(n) when the system had multiple feedback paths.

Regarding MSG(n), the PEM-AFROW method did not present a well-defined behavior

which can be explained by the fact that the MSG(n) depends on the accuracy of H(ejω, n)

in only one frequency component. This general behavior occurred because, for the same

value of ∆K, there is an increase of 6.13 dB in the energy of the impulse response f(n)

of the feedback path and a decrease of 9 dB in the broadband gain K(n), as explained in

Section 5.3.1. The combination of these two factors leads to a decrease in the energy of the

feedback signal f(n) ∗ x(n) while the energy of the system input signal u(n) is unchanged.

For instance, considering a PA system with white noise as u(n) and ∆K = 0, the feedback

signal has 53% less energy when the system has multiple feedback paths.

Consequently, with multiple feedback paths, the ratio between the energies of the

feedback signal (desired signal to the adaptive filter) and system input signal (interference



5.4. Simulation Results 131

signal to the adaptive filter) is decreased for the same value of ∆K. This worsens the

performance of the NLMS algorithm and, consequently, of the PEM-AFROW method.

On the other hand, the feedback signal inserts less distortion in the error signal e(n) even

without any AFC method which improves the sound quality.

However, it could be expected that the reduction of 53% in the energy of the feedback

signal f(n) ∗ x(n) would imply a more pronounced worsening in method performance.

On the other hand, it could be expected that the reduction of 11% in the sparseness of

the impulse response f(n) of the feedback path would imply an improvement in method

performance. The slight worsening in performance of the PEM-AFROW method is the

outcome of the combination of these two factors.

In conclusion, ensuring on average the stability of the AFC system throughout the

simulation time, the state-of-art PEM-AFROW method increased by 13.3 and 15.0 dB the

MSG of the PA system with single feedback path when SNR =∞ and 30 dB, respectively.

When the system has multiple feedback paths, the PEM-AFROW method increased by

14.4 and 14.7 dB the MSG of the PA system when SNR =∞ and 30 dB, respectively.

5.4.2 AFC-CM Method

This section presents and discusses the performance of the AFC-CM method. Figure 5.7

shows the results obtained by the AFC-CM method for ∆K = 0. Again, the results

obtained by the NLMS algorithm when SNR = 30 dB are considered in order to illustrate

the bias problem in AFC. The AFC-CM method achieved
−−−−→
∆MSG ≈ 9.6 dB and

−−→
MIS ≈

−7.7 dB when SNR =∞, and
−−−−→
∆MSG ≈ 9.7 dB and

−−→
MIS ≈ −7.6 dB when SNR = 30 dB.

With respect to sound quality, the AFC-CM achieved
−→
SD ≈ 1.5 and

−−−−−→
WPESQ ≈ 2.67 when

SNR =∞, and
−→
SD ≈ 1.3 and

−−−−−→
WPESQ ≈ 2.91 when SNR = 30 dB.

For ∆K = 0, as occurred with the PEM-AFROW, the AFC-CM method performed

worse in MIS(n) but performed better in SD(n) and WPESQ(n) when the system had

multiple feedback paths. Regarding MSG(n), the AFC-CM method did not present a

well-defined behavior which can be explained by the fact that the MSG(n) depends on the

accuracy of H(ejω, n) in only one frequency component. The worsening in MSG(n) and

MIS(n) is due to the decrease in the highest absolute values of g(n) ∗ f(n) for the same

value of ∆K, as can be observed in Figure 5.4a. For the same system input signal u(n),

this makes the estimation of these values of g(n) ∗ f(n) from cy(n) more difficult. And, as

these are the values that contribute most to the feedback problem, this fact worsens the

performance of the proposed AFC-CM method. On the other hand, the improvement in

SD(n) and WPESQ(n) is due to the lower energy of the feedback signal f(n) ∗ x(n) for

the same value of ∆K, as explained in Section 5.4.1. This leads to less distortion in the

error signal e(n) resulting from the feedback signal even without any AFC method and

improves the system sound quality.

Hereupon, K(n) was increased in order to determine the MSBG achievable by the

AFC-CM method. Such situation occurred with ∆K = 13 dB for both ambient noise
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Figure 5.7: Average results of the AFC-CM method for speech signals and ∆K = 0: (a) MSG(n);
(b) MIS(n); (c) SD(n); (b) WPESQ(n).

conditions. This represents a worsening in the method performance because its MSBG was

achieved with ∆K = 14 dB when the system had a single feedback path. Figure 5.8 shows

the results obtained by the AFC-CM method for ∆K = 13 dB. The AFC-CM method

achieved
−−−−→
∆MSG ≈ 11.2 dB and

−−→
MIS ≈ −10.4 dB when SNR =∞, and

−−−−→
∆MSG ≈ 11.3 dB

and
−−→
MIS ≈ −10.4 dB when SNR = 30 dB. Regarding sound quality, the AFC-CM achieved

−→
SD ≈ 5.5 and

−−−−−→
WPESQ ≈ 1.38 when SNR = ∞, and

−→
SD ≈ 4.7 and

−−−−−→
WPESQ ≈ 1.44 when

SNR = 30 dB.

Section 4.3.1 explained in detail that the broadband gain K(n) of the forward path

must be lower than the MSG of the PA system in order to simultaneously fulfill the

conditions
∣∣G(ejω, n)D(ejω)H(ejω, n)

∣∣ < 1 and
∣∣G(ejω, n)D(ejω)

[
F (ejω, n)−H(ejω, n)

]∣∣ <
1, which are required to defined cy(n) according to (4.16). The results presented in

the Section 4.7.2.1 demonstrated that, when the system had a single feedback path, these

conditions limited the increase in the broadband gain, ∆K, in 14 dB. The results presented

in this section demonstrated that these conditions limited ∆K in 13 dB when the system

had multiple feedback paths, thereby limiting even more the performance of the AFC-CM
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Figure 5.8: Average results of the AFC-CM method for speech signals and ∆K = 13 dB:
(a) MSG(n); (b) MIS(n); (c) SD(n); (b) WPESQ(n).

method in comparison with the case of single feedback path.

In conclusion, ensuring on average the stability of the AFC system throughout the

simulation time, the proposed AFC-CM method increased by 12 dB the MSG of the PA

system with single feedback path when SNR =∞ or 30 dB. When the system has multiple

feedback paths, the proposed AFC-CM method increased by 11.2 and 11.3 dB the MSG

of the PA system when SNR =∞ and 30 dB, respectively.

5.4.3 AFC-CE Method

Similarly, this section addresses the performance of the proposed AFC-CE method. Fig-

ure 5.9 shows the results obtained by the AFC-CE method for ∆K = 0. Once again,

the results obtained by the NLMS algorithm when SNR = 30 dB are also included. The

AFC-CE method achieved
−−−−→
∆MSG ≈ 10.6 dB and

−−→
MIS ≈ −8.2 dB when SNR = ∞, and

−−−−→
∆MSG ≈ 10.4 dB and

−−→
MIS ≈ −7.9 dB when SNR = 30 dB. Regarding the sound quality,

the AFC-CE achieved
−→
SD ≈ 1.4 and

−−−−−→
WPESQ ≈ 2.79 when SNR =∞, and

−→
SD ≈ 1.2 and

−−−−−→
WPESQ ≈ 2.99 when SNR = 30 dB.
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Figure 5.9: Average results of the AFC-CE method for speech signals and ∆K = 0: (a) MSG(n);
(b) MIS(n); (c) SD(n); (b) WPESQ(n).

For ∆K = 0, the AFC-CE performed worse in MSG(n) and MIS(n) but performed

better in SD(n) and WPESQ(n) when the system had multiple feedback paths. Similarly

to the AFC-CM, the worsening in MSG(n) and MIS(n) is due to the decrease in the

highest absolute values of g(n) ∗ [f(n)− h(n)] for the same value of ∆K. For the same

system input signal u(n), this makes the estimation of these values of g(n) ∗ [f(n)− h(n)]

from ce(n) more difficult. And, since these are the values that contribute most to the

feedback problem, this worsens the performance of the proposed AFC-CE method. On

the other hand, the improvement in SD(n) and WPESQ(n) is due to the lower energy of

the feedback signal f(n) ∗ x(n) for the same value of ∆K, as explained in Section 5.4.1.

This leads to less distortion in the error signal e(n) resulting from the feedback signal even

without any AFC method and improves the system sound quality.

Hereupon, K(n) was increased in order to determine the MSBG achievable by the

AFC-CE method. Such situation occurred with an impressive ∆K = 32 dB for both

ambient noise conditions. This represents an improvement in the method performance

because its MSBG was achieved with ∆K = 30 dB when the system had a single feedback
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Figure 5.10: Average results of the AFC-CE method for speech signals and ∆K = 32 dB:
(a) MSG(n); (b) MIS(n); (c) SD(n); (b) WPESQ(n).

path. Figure 5.10 shows the results obtained by the AFC-CE method for ∆K = 32 dB.

The AFC-CE method achieved
−−−−→
∆MSG ≈ 30.7 dB and

−−→
MIS ≈ −23.8 dB when SNR =∞,

and
−−−−→
∆MSG ≈ 30.6 dB and

−−→
MIS ≈ −25.0 dB when SNR = 30 dB. With respect to sound

quality, the AFC-CE achieved
−→
SD ≈ 4.0 and

−−−−−→
WPESQ ≈ 1.48 when SNR = ∞, and

−→
SD ≈ 3.6 and

−−−−−→
WPESQ ≈ 1.55 when SNR = 30 dB.

In the second configuration of the forward path G(q, n) where its broadband K(n)

increases over time, i.e., ∆K > 0, the proposed AFC-CE method performed better when

the system had multiple feedback paths. Regarding MSG(n) and MIS(n), this is due

to the lower sparseness of the impulse response f(n) of the feedback path that causes a

larger number of samples of g(n) ∗ [f(n)− h(n)] to be accurately estimated from ce(n) as

∆K increases. As a consequence, a larger number of samples of f(n) is also accurately

estimated which improves the performance of the AFC-CE method. With respect to sound

quality, the improvement occurs because, with ∆K = 32 dB and multiple feedback paths,

the feedback signal f(n)∗x(n) has lower energy than with ∆K = 30 dB and single feedback

path. Thus, the feedback signal inserts less distortion in the error signal e(n) even without



136 5. Acoustic Feedback Cancellation with Multiple Feedback Paths

any AFC method.

In conclusion, ensuring on average the stability of the AFC system throughout the

simulation time, the proposed AFC-CE method increased by 29.6 and 30 dB the MSG of

the PA system with single feedback path when SNR =∞ and 30 dB, respectively. When

the system had multiple feedback paths, the proposed AFC-CE method increased by 30.7

and 30.6 dB the MSG of the PA system when SNR =∞ and 30 dB, respectively.

5.4.4 Performance Comparison

After the evaluation and discussion of their individual performances, the AFC-CM and

AFC-CE will be now compared with the state-of-art PEM-AFROW method. The com-

parison will focus on the results obtained with SNR = 30 dB because this ambient noise

condition is closer to real-world conditions.

Figure 5.11 compares the results obtained by the AFC methods under evaluation in the

first configuration of forward path, where its broadband gain K(n) remained constant, i.e.,

for ∆K = 0. It can be observed that the AFC-CM and AFC-CE methods presented similar

performances, with a slight advantage for the AFC-CE, and both methods outperformed

the PEM-AFROW. The proposed AFC-CE method achieved
−−−−→
∆MSG ≈ 10.4 dB and

−−→
MIS ≈

−7.9 dB, outscoring respectively the AFC-CM by 0.7 dB and 0.3 dB and the PEM-

AFROW by 2.4 dB and 1.3 dB. With respect to sound quality, the AFC-CE achieved
−→
SD ≈ 1.2 and

−−−−−→
WPESQ ≈ 2.99 outscoring respectively the AFC-CM by 0.1 and 0.08, and

the PEM-AFROW by 0.2 and 0.19. These differences are hardly noticeable audibly and

were caused by the fact that, with the constant value of K(n) and the increase in MSG

provided by all the AFC methods, the systems were too far from the instability as can be

observed in Figure 5.11a.

Consider now the second configuration of the broadband gain K(n) of the forward

path where it was linearly (in dB scale) increased, as explained in Section 3.6.1, in order to

determine the MSBG of each method. The MSBG was defined as the maximum value ofK2

with which an AFC method achieves a MSG(n) completely stable. The AFC-CE method

achieved a MSBG of the forward path G(q, n) equal to 20 dB, outperforming the AFC-

CM and the state-of-art PEM-AFROW by impressive 19 dB and 16 dB, respectively. This

would be enough to conclude that the proposed AFC-CE method has the best performance.

However, aiming to enrich the discussion, the performance of the AFC methods under

evaluation will be compared considering the results obtained with all the values of ∆K

used in this work.

Figure 5.12 compares the results obtained by the AFC methods under evaluation for

∆K = 13 dB. It can be observed that the AFC-CM performed well, even better than the

PEM-AFROW, until 10 s of simulation. After this time, as explained in Section 4.7.2.1,

the performance of the AFC-CM method was limited by the inaccuracy of (4.16). This

behavior is easily observed in MIS(n) showed in Figure 5.12b. However, it is evident

that the AFC-CE stood out from both methods by achieving
−−−−→
∆MSG ≈ 20.9 dB and
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Figure 5.11: Performance comparison between the PEM-AFROW, AFC-CM and AFC-CE meth-
ods for speech signals and ∆K = 0: (a) MSG(n); (b) MIS(n); (c) SD(n); (b) WPESQ(n).

−−→
MIS ≈ −18.1 dB, outscoring respectively the AFC-CM by 9.6 dB and 7.7 dB and the

PEM-AFROW by 6.2 dB and 5.0 dB. Moreover, it should be noted that the AFC-CM

method outperformed the PEM-AFROW by 0.1 dB with respect to ∆MSG, which was

the cost function in the optimization of the adaptive filters parameters for all methods.

Regarding sound quality, the AFC-CM method presented the worst performance by

obtaining
−→
SD ≈ 4.7 and

−−−−−→
WPESQ ≈ 1.44 because of its very low stability margin after

t = 17 s, as can be observed in Figure 5.12a. Although its MSG(n) is completely stable,

some instability occurred for a few signals which resulted in excessive reverberation or

even in some howlings in the error signal e(n). On the other hand, the AFC-CE method

presented the best sound quality by achieving
−→
SD ≈ 2.0 and

−−−−−→
WPESQ ≈ 2.53 because of

its largest stability margin and outscored the PEM-AFROW by 1.1 and 0.7, respectively.

Finally, Figure 5.13 compares the results obtained by the PEM-AFROW and AFC-CE

methods for ∆K = 16 dB. Once again, it can be observed that the AFC-CE method out-

performed the PEM-AFROW. The PEM-AFROW obtained
−−−−→
∆MSG ≈ 14.7 dB and

−−→
MIS ≈

−14.5 dB while the AFC-CE method achieved
−−−−→
∆MSG ≈ 23.1 dB and

−−→
MIS ≈ −20.1 dB.
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Figure 5.12: Performance comparison between the PEM-AFROW, AFC-CM and AFC-CE meth-
ods for speech signals and ∆K = 13 dB: (a) MSG(n); (b) MIS(n); (c) SD(n); (b) WPESQ(n).

Regarding sound quality, the AFC-CE method also presented the best performance by

achieving
−→
SD ≈ 1.7 and

−−−−−→
WPESQ ≈ 2.42 while the PEM-AFROW obtained

−→
SD ≈ 3.0 and

−−−−−→
WPESQ ≈ 1.67.

In conclusion, the proposed AFC-CE method increased by 30.6 dB the MSG of the PA

system, outperforming the AFC-CM and PEM-AFROW by 19.3 and 15.9 dB, respectively.

Moreover, the AFC-CE method estimated the impulse response of the feedback path with

an MIS of −25 dB, outperforming the AFC-CM and PEM-AFROW by 14.6 and 10.5 dB,

respectively. And even with the same variation in the broadband gain of the forward

path, ∆K, the AFC-CE always outperformed the other methods not only in MSG(n) and

MIS(n) but also in SD(n) and WPESQ(n).
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Figure 5.13: Performance comparison between the PEM-AFROW and AFC-CE methods for
speech signals and ∆K = 16 dB: (a) MSG(n); (b) MIS(n); (c) SD(n); (b) WPESQ(n).
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5.5 Conclusion

Chapters 3 and 4 addressed the AFC problem considering PA systems with only one

microphone and one loudspeaker. In fact, this configuration is practically the only one

found in the literature and represents several practical applications of PA systems as, for

instance, in hearing aid. However, this configuration may not precisely represent the use

of PA systems in other practical applications as, for instance, in very large environments.

Typically, aiming to be heard by a large audience in the same acoustic environment,

a speaker uses a PA system with one microphone, responsible for picking up his/her own

voice, one amplification system, responsible for amplifying the voice signal, and several

loudspeakers placed in different positions, responsible for playback and distributing the

voice signal in the acoustic environment so that everyone in the audience can hear it. This

results in an PA system with multiple acoustic feedback paths.

This chapter dealt with the AFC problem considering PA systems with one microphone

and four loudspeakers. It was demonstrate that the impulse response of the resulting over-

all feedback path generally has a larger number of prominent peaks and lower sparseness.

In addition, its frequency components have, in general, a higher energy. The influence of

both characteristics on the performance of the state-of-art PEM-AFROW and the pro-

posed AFC-CM and AFC-CE methods was discussed. Finally, an evaluation of the AFC

methods was carried out in a simulated environment.

Simulation results demonstrated that, if the broadband gain of the forward path is not

increased, all the AFC methods under evaluation performed worse in a PA system with

multiple feedback paths than with single feedback path. On the other hand, the sound

quality of the AFC systems was improved because the feedback signal had lower energy

and thus inserted less distortion in the system input signal. Moreover, in comparison with

the case of single feedback path, the MSBG achieved by the PEM-AFROW, AFC-CM and

AFC-CE methods remained constant, decreased 1 dB and increased 2 dB, respectively.

In conclusion, when the source signal is speech, the proposed AFC-CE method can

estimate the feedback path impulse response with a MIS of −25 dB, outperforming the

state-of-art PEM-AFROW and the proposed AFC-CM by respectively 10.5 and 14.6 dB.

Moreover, the proposed AFC-CE method can increase by 30.6 dB the MSG of the PA

system, outperforming the PEM-AFROW and AFC-CM by respectively 15.9 and 19.3 dB.

It may be concluded that, with multiple feedback paths, the proposed AFC-CE method

achieved a less biased estimate of the acoustic feedback path and further increased the

MSG of the PA system in comparison with the AFC-CM and PEM-AFROW methods.
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Chapter 6
Acoustic Echo Cancellation

6.1 Introduction

This chapter addresses the topic of acoustic echo cancellation in teleconference systems.

Similar to the AFC approach, the AEC approach uses an adaptive filter to identify the

acoustic echo path and estimate the echo signal that is subtracted from the microphone

signal. During the last decades, the use of the traditional gradient-based and least-squares-

based adaptive filtering algorithms has been established in AEC applications.

The cepstral analysis, which was successfully applied to the AFC problem in the pre-

vious chapters, is now applied to the AEC problem. The independence between the loud-

speaker and microphone signals of the same room in the AEC application is exploited to

develop a new AEC method based on cepstral analysis. Moreover, two improved versions

that perform the inverse of the overlap-and-add method using the adaptive filter as an

estimate of the echo path are also proposed. An evaluation of the proposed AEC methods

is carried out in a simulated environment. It is demonstrated that the AEC methods

based on cesptral analysis are able to outperform the NLMS and BNDR-LMS, adaptive

filtering algorithms widely used in practical applications, but they can present a worse

performance in the first seconds of echo cancellation.

Hence, to combine the strengths of both methodologies, hybrid AEC methods are also

proposed. The hybrid methods update the adaptive filter through the NLMS or BNDR-

LMS algorithms most of the time and the AEC methods based on cepstral analysis are

sporadically used to accelerate or straighten the learning process. An evaluation of the

proposed AEC methods is carried out in the same simulated environment used for the

individual methods. It is demonstrated that hybrid AEC methods are able to outperform

the individual methods with regard to both misalignment and echo cancellation. This

means that the AEC methods based on cepstral analysis can be used alone or to improve

the performance of the traditional adaptive filtering algorithms in AEC applications.

143
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6.2 The Acoustic Echo Problem
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Figure 6.1: Acoustic echo in a teleconference system.

A typical teleconference system is illustrated in Figure 6.1 considering two acoustic

environments, rooms A and B, with one microphone and one loudspeaker. In room B, the

loudspeaker signal xB(n) may return to the microphone through the echo path FB(q, n).

The acoustic echo signal fB(n) ∗ xB(n) is added to the speaker signal vB(n) and to the

ambient noise rB(n), generating the microphone signal yB(n). The same occurs in room

A such that

yA(n) = fA(n) ∗ xA(n) + vA(n) + rA(n)

yB(n) = fB(n) ∗ xB(n) + vB(n) + rB(n).
(6.1)

The transmission channel is the medium by which the speaker signals are transmitted

from a room to another. It is usually defined as a time delay and is denoted as

C(q) = cLC−1q
−(LC−1)

= cTq
(6.2)

Let the room input signals uA(n) and uB(n) be the sum of the respective speaker and

ambient noise signals, i.e., uA(n) = vA(n) + rA(n) and uB(n) = vB(n) + rB(n), and also

include the characteristics of the microphones and A/D converter. The room input signal

uB(n) and the loudspeaker signal xB(n) are related by the transfer function

xB(n) =
C(q) [uA(n) + FA(q, n)C(q)uB(n)]

1− FA(q, n)C(q)C(q)FB(q, n)
. (6.3)

If uA(n) = 0, (6.3) becomes

xB(n) =
FA(q, n)C(q)C(q)

1− FA(q, n)C(q)C(q)FB(q, n)
uB(n). (6.4)
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Comparing (6.4) and (2.4), it can be concluded that the teleconference system depicted

in Figure 6.1 is equivalent to the PA system depicted in Figure 2.1 if FA(q, n)C(q)C(q) =

G(q, n)D(q). Indeed, the two systems are equivalent if the echo path FA(q, n) is equal

to the forward path G(q, n) and the transmission channel C(q) applies the half delay

of the delay filter D(q). The same analogy can be made for the room A. Therefore, a

teleconference system has also a closed-loop signal and can become unstable, resulting

in a howling artifact, the Larsen effect, that will be audible in both rooms. However,

the instability issue is more critical in a PA system for two reasons. First, the frequency

response G(ejω, n) of the forward path generally has much higher magnitude than the

frequency response FA(ejω, n) of the echo path. Second, the techniques to suppress or

cancel the echo signals in a teleconference system are applied in both rooms, leading to a

residual closed-loop signal with very little energy such that it is ignored.

The difference between the concepts of acoustic echo and feedback is straightforward:

in acoustic echo, it is assumed that there is no closed-loop signal and thereby the com-

munication system is always stable. Hence, the acoustic echo limits the performance of a

teleconference or hands-free communication system only with regard to sound quality. If

no signal processing is applied, the microphone signals yA(n) and yB(n), defined in (6.1),

are sent over the transmission channel to the rooms B and A, respectively, containing the

echo signals. As a consequence, after talking, a speaker receives back his own voice that,

owing to the delay of hundreds of milliseconds caused by the transmission channel, is easily

distinguished from the speaker’s signal and sounds like an echo. The occurrence of this

acoustic echo is annoying for the audience in both rooms and disturbs the communication.

Therefore, the acoustic echo signals should be eliminated or, at least, attenuated.

In order to attenuate the acoustic echo, two approaches have been developed over the

last 20 years: acoustic echo suppression (AES) and acoustic echo cancellation (AEC).

The former, also called loss control, attenuates the loudspeaker and/or microphone sig-

nals depending on the comparison between their energies with pre-defined thresholds and

between themselves [12, 20]. Similarly to AFC, the latter estimates the echo signal by

means of adaptive filter and subtracts it from the microphone signal [12, 21].

The operation of AES is simple. If only the loudspeaker signal is active, it attenu-

ates the microphone signal in order to avoid the transmission of acoustic echo. If only the

speaker signal is active, it attenuates the loudspeaker signal in order to avoid the reception

of noise. The problem occurs when both loudspeaker and speaker signals are simultane-

ously active, which is defined as a double-talk situation [12]. In this case, the method

decides which signal, of the loudspeaker or microphone, is attenuated. Therefore, AES

methods preclude full-duplex communication [12]. In fact, the AES approach assumes the

existence of the acoustic echo and only concerns to control it.

Nowadays, the AES approach is practically in disuse and the AEC approach is widely

used in teleconference and hands-free communication systems. Its drawback compared

with the AES approach is a higher computational complexity.
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6.3 Mono-channel Acoustic Echo Cancelation

The AEC has stabilized in the past years as the state-of-art approach to remove or, at

least, attenuate the effects of acoustic echo in teleconference and hands-free communication

systems [72, 74, 84]. The AEC methods identify and track the echo path F (q, n) using an

adaptive filter that is generally defined as a FIR filter

H(q, n) = h0(n) + h1(n)q−1 + . . .+ hLH−1(n)q−(LH−1)

= hT (n)q
(6.5)

with length LH .

Then, an estimate of the echo signal f(n) ∗ x(n) is computed as h(n) ∗ x(n) and

subtracted from the microphone signal y(n), generating the error signal

e(n) = y(n)− h(n) ∗ x(n)

= u(n) + f(n) ∗ x(n)− h(n) ∗ x(n)

= u(n) + [f(n)− h(n)] ∗ x(n),

(6.6)

which is effectively the signal to be sent over the transmission channel. Such a scheme

is shown in Figure 6.2 [72, 74, 84]. It is noteworthy that, from (6.6), the amount of

acoustic echo present in the error signal e(n) depends on f(n) − h(n), the waveform

of the mismatch between the impulse responses of the echo path and adaptive filter.

If the adaptive filter exactly matches the echo path, i.e., H(q, n) = F (q, n), the error

signal e(n) will contain no acoustic echo.

_
+

Adaptive
PathFilter
Echo

∑ ∑∑ y(n) u(n) v(n)

r(n)

H(q, n) F (q, n)

x(n)

e(n)

Figure 6.2: Mono-channel AEC.

Obviously, the adaptive filter H(q, n) should only be updated when the microphone

signal y(n) is active and contains acoustic echo, i.e., when y(n) 6= 0 and x(n) 6= 0. Voice

activity detectors (VAD) are generally used to detect this situation. However, when the

source signal v(n) is also active, i.e., when v(n) 6= 0, y(n) 6= 0 and x(n) 6= 0, a situation
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called double-talk is declared [85, 86, 87, 88, 89]. In this case, if the traditional gradient-

based or least-square-based adaptive algorithms are used to update the adaptive filter

H(q, n), the speaker signal v(n) acts as noise to H(q, n) because it prevents the error

signal e(n) to approach zero even if the ideal solution H(q, n) = F (q, n) is achieved, as

can be observed from (6.6). In fact, both ambient noise r(n) and speaker signal v(n)

act as noise to H(q, n) but v(n) is much more harmful due to its higher intensity. As

a consequence, the speaker signal v(n) can disrupt the adaptation of H(q, n) and cause

its divergence. Therefore, the adaptive filter should not be updated when v(n) 6= 0. A

double-talk detector (DTD) is used to detect if the speaker signal v(n) is active or not.

Any adaptive filtering algorithm can be used in AEC. However, mostly gradient-based

or least-squares-based adaptive algorithms are generally found in the literature. For these

cases, there are time-domain, time-domain block, fullband frequency-domain and subband

frequency-domain algorithms. Some can perform better than others depending on their

characteristics as, for example, convergence speed, robustness to noisy environments and

to short-time disturbances, computational complexity and stability.

In this chapter, the cepstral analysis, which was successfully applied to AFC in the

previous chapters, will be used to develop mono-channel AEC methods. As discussed in

Chapter 4, the cepstral analysis is quite suitable for deconvolution due to the property of

transforming a convolution into a linear combination. For a better explanation, consider a

convolution between two signals, the desired and contaminant signals, and its output. The

traditional deconvolution by means of cepstral analysis assumes that only the convolution

output is available and can be done in two different ways. In the first way, it is considered

that the cesptra of the convolution inputs do not overlap and thus a filtering operation,

which is actually called liftering, is applied to the cepstrum of the convolution output in

order to obtain the cepstrum of the desired signal. In the second way, it is considered that

the cepstrum of the contaminant signal generates noticeable changes in the cepstrum of the

desired signal. Thus, the corresponding samples of the cepstrum of the convolution output

are forced to zero in order to remove the effects of the contaminant signal. Thereafter, in

both cases, the inverse cepstrum transformation is applied to obtain an estimate of the

desired signal in the time-domain. In both cases, therefore, the deconvolution is performed

in the cepstral-domain, i.e., by processing directly the cepstrum of the convolution output.

However, in an AEC application, in addition to the convolution output (the echo signal

f(n)∗x(n)), the contaminant signal (the loudspeaker signal x(n)) is also available. Hence,

this work will exploit this fact to develop an AEC method, where an adaptive filter H(q, n)

estimates the echo path F (q, n) and removes its influence from the system. But, instead

of the traditional gradient-based or least-squares-based adaptive algorithms, the adaptive

filter H(q, n) will be updated based on cepstral analysis of the system signals.
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6.4 Mono-channel AEC Based on Cepstral Analysis

In the mono-channel AEC depicted in Figure 6.2, the microphone signal is defined as

y(n) = f(n) ∗ x(n) + v(n) + r(n). (6.7)

Assuming a low-intensity noisy environment such that r(n) ≈ 0, the microphone signal

y(n) defined in (6.7) can be approximated by

y(n) ≈ f(n) ∗ x(n) + v(n). (6.8)

In order to successfully apply the cepstral analysis to the microphone signal y(n)

defined in (6.8), it is necessary to consider that the update of the adaptive filter H(q, n)

will not be performed during double-talk, similarly to the traditional gradient-based and

least-squares-based adaptive algorithms. Thus, when v(n) = 0, (6.8) is simplified to

y(n) = f(n) ∗ x(n). (6.9)

From (6.9), the frequency-domain relationship between the loudspeaker signal x(n)

and the microphone signal y(n) is given by

Y (ejω, n) = F (ejω, n)X(ejω, n), (6.10)

which by applying the natural logarithm becomes

ln
[
Y (ejω, n)

]
= ln

[
F (ejω, n)

]
+ ln

[
X(ejω, n)

]
. (6.11)

Applying the inverse Fourier transform in (6.11) as follows

F−1
{

ln
[
Y (ejω, n)

]}
= F−1

{
ln
[
F (ejω, n)

]}
+ F−1

{
ln
[
X(ejω, n)

]}
, (6.12)

the cepstral-domain relationship between the microphone signal y(n) and the loudspeaker

signal x(n) is obtained as

cy(n) = cx(n) + cf (n). (6.13)

As in any filtering operation, the cepstrum cy(n) of the microphone signal is the

cepstrum cx(n) of the loudspeaker signal added to the cepstrum cf (n) of the echo path.

The cepstra cx(n) and cy(n) can be simply computed over time from the loudspeaker

signal x(n) and microphone signal y(n), respectively, since they are available in the system.

Thus, an estimate of the cepstrum of the echo path can be calculated as

ĉf (n) = cy(n)− cx(n). (6.14)
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From ĉf (n), an estimate f̂(n) of the echo path impulse response can be computed

by applying the inverse cepstral transformation. To this end, the cepstrum ĉf (n) must

contain not only the amplitude information but also the phase information of the spectrum

F (ejω, n) of the echo path. Therefore, it is necessary to use the complex cepstrum.

In order to compute the complex cepstrum cy(n) of the microphone signal, as discussed

in [70], it is necessary to unwrap the phase of the spectrum Y (ejω, n) of the microphone

signal and then remove its linear component. Assuming that ∠Yu(ejω, n) is the unwrapped

phase of Y (ejω, n), the linear component is removed according to [70]

∠Y ′u(ejω, n) = ∠Yu(ejω, n)− ω ry(n), (6.15)

where

ry(n) =
∠Yu(ejπ, n)

π
(6.16)

is the lag of the microphone signal y(n). The same procedure is performed to compute

the complex cepstrum cx(n) of the loudspeaker signal.

Applying the inverse transformation of the complex cepstrum, an estimate of the echo

path impulse response can be calculated according to

f̂(n) = F−1 {exp [F {ĉf (n)}]} , (6.17)

where the linear component must be inserted in the phase of F {ĉf (n)} using

rf (n) = ry(n)− rx(n) (6.18)

and F{·} denotes the Fourier Transform. Hereupon, the estimate f̂(n) of the echo path

impulse response must be truncated to length LH samples.

Although the adaptive filter can be updated directly as h(n) = f̂(n), in order to increase

robustness to short-burst disturbances, the adaptive filter will be updated according to

h(n) = λh(n− 1) + (1− λ)f̂(n), (6.19)

where 0 ≤ λ < 1 is a factor that controls the trade-off between robustness and tracking

rate of the adaptive filter.

In conclusion, the AEC based on cepstral analysis calculates an estimate of f(n) from

cy(n) and cy(n) to updateH(q, n). Depending on the variations of F (q, n) over time, it can

be deduced that this computational effort may not be worth it, regarding performance, if

the method is applied to each new sample of the microphone signal y(n) and loudspeaker

signal x(n). Therefore, the cepstral analysis will be applied every Nfr samples, where

Nfr is a parameter that controls the trade-off between performance (latency and tracking

capability) and computational complexity.

The scheme of the proposed AEC based on cepstral analysis is illustrated in Figure 6.3
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Figure 6.3: AEC based on cepstral analysis.
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Figure 6.4: Detailed block diagram of the cepstral analysis.

and a detailed block diagram of the cepstral analysis is depicted in Figure 6.4. Every Nfr

samples, a frame of the microphone signal y(n) and loudspeaker signal x(n) containing

their newest Lfr samples is selected; the frames have their spectra, Y (ejω, n) andX(ejω, n),

and complex cepstra, cy(n) and cx(n), calculated through an NFFTa-point Fast Fourier

Transform (FFT); ĉf (n) is calculated from cy(n) and cx(n); from ĉf (n), f̂(n) is computed

and truncated to length LH samples; finally, h(n) is updated.

6.4.1 AEC Based on Cepstral Analysis With No Lag

The first step of the cepstral analysis is to select a frame of loudspeaker signal x(n) and

microphone signal y(n). The new AEC based on cepstral analysis with no lag (AEC-

CA) method selects, as usually in frequency analysis, frames that contain the newest Lfr
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samples of the signals as follows

x(n) = [x(n− Lfr + 1) . . . x(n− 1) x(n)]T

y(n) = [y(n− Lfr + 1) . . . y(n− 1) y(n)]T .
(6.20)

However, the time-domain truncation of a signal causes inevitable oscillations in its

frequency response, the so-called spectral leakage, and the only known way to moderate

them is to use a smoothing window instead of the rectangular window as in (6.20). Then,

the selected frames are multiplied by a smoothing window function w with length Lfr

leading to the windowed frames

xw(n) = x(n) ◦w

yw(n) = y(n) ◦w,
(6.21)

where ◦ denotes the Hadamard or element-wise multiplication.

The advantage of the AEC-CA method is that it does not have any lag estimation,

obtaining f̂(n) at time index n. Its disadvantage is that its frame yw(n) of the microphone

signal does not accurately contain the echo signal generated by the frame xw(n) of the

loudspeaker signal. As a consequence, the method is able to estimate the echo path

impulse response f(n) without lag but its estimate f̂(n) may not be very accurate, as will

be discussed in Sections 6.4.2 and 6.4.3.

6.4.2 AEC Based on Cepstral Analysis With No Lag - Improved

Figure 6.5 depicts the discrete convolution of (6.9) using the overlap-and-add method.

The AEC-CA method selects the frames x(n) and y(n) of the loudspeaker and microphone

signals, respectively, according to (6.20). In relation to Figure 6.5, the frame x(n) of the

loudspeaker signal corresponds to the frame x2(n) and the frame y(n) of the microphone

signal corresponds to the samples of y(n) in the time interval [n− Lfr + 1, n].

It can be observed that the frame y(n) of the microphone signal does not exactly match

the convolution result y2(n) generated by the frame x(n) = x2(n) of the loudspeaker signal

for two reasons. First, y(n) contains the last LF samples of y1(n), the convolution result

generated by the frame x1(n) of the loudspeaker signal. Second, y(n) does not contain

the last LF samples of y2(n). These facts probably degrade the estimate f̂(n) of the echo

path impulse response provided by the AEC-CA method.

However, it is possible to solve the first problem in order to obtain a more accurate

frame of the microphone signal, approximating it to y2(n), and thus improve the estimate

f̂(n) of the echo path impulse response provided by the cepstral analysis. To this end, the

inverse of the overlap-and-add method can be performed using the adaptive filter impulse

response h(n) as an estimate of the echo path impulse response f(n).

In order to remove the last LF samples of y1(n) from the frame y(n) of the microphone

signal defined in (6.20), a new method, called improved AEC-CA (AEC-CAI), is proposed.
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Figure 6.5: Illustration of the discrete convolution using the overlap-and-add method.

The AEC-CAI method estimates the convolution result y1(n) as

ŷ1(n) = x1(n) ∗ h(n), (6.22)

where

x1(n) = [x(n− Lfr − LF ) . . . x(n− Lfr − 2) x(n− Lfr − 1)]T . (6.23)

Then, the method creates the auxiliary signal

y′1(n) =

[
ŷ1(n)

LF

0(Lfr−LF )×1

]
, (6.24)

where 0N×1 is a null matrix with dimension N × 1 and aN is a vector formed by the N

last samples of the vector a.

From (6.22), it is noteworthy that the estimate ŷ1(n) approaches y1(n) as the match

between the impulse responses of the adaptive filter and echo path improves. If h(n) =

f(n), then ŷ1(n) = y1(n). However, in practice, the length LF of the echo path is unknown
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and hence the length LH of the adaptive filter is actually used in (6.22) and (6.24).

Thus, the AEC-CAI method computes the frame of the microphone signal according to

y′(n) = y(n)− y′1(n), (6.25)

where y(n) is defined in (6.20).

Finally, the AEC-CAI method defines the windowed frames of the loudspeaker and

microphone signals to which the cepstral analyis will be applied, respectively, as

xw(n) = x(n) ◦w

yw(n) = y′(n) ◦w.
(6.26)

The AEC-CAI and AEC-CA methods have the same frame x(n) of the loudspeaker

signal defined in (6.20). The advantage of the AEC-CAI method is that its frame of the

microphone signal, y′(n), is closer to the convolution result between x(n) and the impulse

response f(n) of the echo path. On the other hand, in order to achieve such improvement in

the frame of the microphone signal, the AEC-CAI has a higher computational complexity.

6.4.3 AEC Based on Cepstral Analysis With Lag

As discussed in Section 6.4.2, the problem of the frame y(n) of the microphone signal

selected by the AEC-CA method, defined in (6.20), is twofold. First, it contains the last LF

samples of y1(n), the convolution result generated by the frame x1(n) of the loudspeaker

signal. Second, it does not contain the last LF samples of y2(n), the convolution result

generated by the selected frame x(n) of the loudspeaker signal. These facts degrade the

estimate f̂(n) of the echo path impulse response provided by the cepstral analysis.

The first problem is overcome in the AEC-CAI method by performing the inverse of the

overlap-and-add method using h(n) as an estimate of f(n). However, the second problem

still occurs. A first idea to overcome the second problem would be to increase the length

of the frame of the microphone signal so that it corresponds to the samples of y(n) in

the time interval [n− Lfr + 1, n+ LF ]. But it can be observed from Figure 6.5 that the

resulting frame would also contain the first LF samples of y3(n), the convolution result

generated by the frame x3(n) of the loudspeaker signal.

In order to include the last LF samples of y2(n) in the frame of the microphone signal, a

new method, called the AEC based on cepstral analysis with lag (AEC-CAL), is proposed.

The AEC-CAL method extends the idea of performing the inverse of the overlap-and-add

method, applied in the AEC-CAI method, to the frame x3(n) of the loudspeaker signal.

The method computes an estimate of the convolution output y3(n) according to

ŷ3(n) = x3(n) ∗ h(n), (6.27)
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where

x3(n) = [x(n+ 1) . . . x(n+ LF − 1) x(n+ LF )]T , (6.28)

Then, the method creates the auxiliary signals

y′′1(n) =

[
ŷ1(n)

LF

0(Lfr−1)×1

]
(6.29)

and

y′′3(n) =

[
0(Lfr−1)×1

ŷ3(n)LF

]
, (6.30)

where ŷ1(n) is defined in (6.22) and aN denotes the N first samples of the vector a.

From (6.27), it can be concluded that ŷ3(n) approaches y3(n) as the match between

the impulse responses of the adaptive filter and echo path improves. If h(n) = f(n), then

ŷ3(n) = y3(n). However, in practice, the length LF of the echo path is unknown and

hence the length LH of the adaptive filter is actually used in (6.27), (6.29) and (6.30).

Thus, the AEC-CAL method calculates the frame of the microphone signal as follows

y′′(n) = y(n)− y′′1(n)− y′′3(n), (6.31)

where

y(n) = [y(n− Lfr + 2) . . . y(n+ LF − 1) y(n+ LF )]T . (6.32)

Finally, the AEC-CAL method defines the windowed frames of the loudspeaker and

microphone signals to which the cepstral analyis will be applied, respectively, as

xw(n) = x(n) ◦w

yw(n) = y′′(n) ◦w.
(6.33)

It is noteworthy that, for real-time implementation, the proposed AEC-CAL method

involves a lag of LF samples for the update of the adaptive filter H(q, n) because the frame

x3(n) of the loudspeaker signal, defined in (6.28), is only available at the time n + LF .

The lag is efficiently implemented as a delay line for the windowed frames xw(n) and

yw(n) of the loudspeaker and microphone signals before computing their complex cepstra.

This lag may be a problem depending on the length and variations of F (q, n) over time.

However, the value of the lag is equal to the number of samples from the last LF samples

of y2(n) that the method intends to include in the frame of the microphone signal. Hence,

a lower lag can be achieved by including a smaller number of the last samples of y2(n).

The drawback will be a less accurate frame of the microphone signal and thereby a less

accurate estimate of the echo path impulse response provided by the cepstral analysis.

Therefore, the number of samples from the last LF samples of y2(n) that the AEC-CAL

method will include in the frame of the microphone signal is a trade-off between accuracy
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in estimating the echo path and latency.

6.4.4 Simulation Configurations

With the aim to assess the performance of the proposed AEC-CA, AEC-CAI and AFC-

CAL methods, an experiment was carried out in a simulated environment to measure their

ability to estimate the echo path impulse response and attenuate the acoustic echo signal.

To this purpose, the following configuration was used.

6.4.4.1 Simulated Environment

The impulse response f(n) of the acoustic echo path was a measured room impulse

response, from [60], and thus f(n) = f . The impulse response was downsampled to

fs = 16 kHz and then truncated to length LF = 4000 samples, and is illustrated in

Figure 3.3.

6.4.4.2 Misalignment

The performance of the proposed AEC-CA, AEC-CAI and AFC-CAL methods methods

were also evaluated through the normalized misalignment (MIS) metric. The MIS(n)

measures the distance between the impulse responses of the adaptive filter and the echo

path according to (3.43). A detailed description can be found in Section 3.6.3.

6.4.4.3 Echo Return Loss Enhancement

A standardized metric for echo cancellation is the Echo Return Loss Enhancement (ERLE)

[90]. The ERLE measures the attenuation of the echo signal provided by the echo canceller

and is the inverse of the Mean Square Error (MSE) often used in the literature for echo

cancellation. In this work, the performance of the adaptive filter as an echo canceller was

measured by the normalized ERLE defined as

ERLE(n) =
LPF{[y(n)− r(n)]2}
LPF{[e(n)− r(n)]2}

, (6.34)

where LPF{·} denotes a low-pass filter with a single pole at 0.999. In a simulated envi-

ronment, the normalized ERLE(n) provides a more accurate evaluation by removing the

ambient noise signal r(n) from the measurement. Moreover, the use of the low-pass filter

is a common practice in AEC to obtain a smooth curve ERLE(n) by removing the high

frequency components without significantly affecting the convergence behavior.

Its optimum value is ERLE(n) = ∞ and, as the MIS(n), is achieved when h(n) =

f(n). In general, ERLE(n) → ∞ as h(n) → f(n). The MIS(n) and ERLE(n) metrics

are correlated which means that an improvement in one of them probably results in an

improvement in the other. However, this may not occur because MIS(n) measures ‖f(n)−
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h(n)‖ while ERLE(n) uses the value of the error signal e(n) that depends on the waveform

of f(n)− h(n), as defined in (6.6), and not only on its norm. Therefore, a solution h1(n)

can achieve a better MIS(n) and a worst ERLE(n), or otherwise, than a solution h2(n).

6.4.4.4 Signal database

The signal database was formed by the same 10 speech signals used in Chapters 3, 4 and 5.

A detailed description can be found in Section 3.6.6.

6.4.5 Simulation Results

This section presents and discusses the performance of the proposed AEC-CA, AEC-

CAI and AEC-CAL methods using the configuration of the teleconference system, the

evaluation metrics and the signals described in Section 6.4.4. The proposed methods

started only after 125 ms of simulation to avoid initial inaccurate estimates of the cepstra

of the microphone and loudspeaker signals, Nfr = 1000, NFFTa = 215 and NFFTe = 217.

The parameters λ and LH of the adaptive filter were optimized for each signal. From

pre-defined ranges, the values of λ and LH were chosen empirically in order to optimize

the curves MIS(n) and ERLE(n) with regard to mean value within the simulation time

T = 20 s. The optimal curves for the kth signal were denoted as MISk(n) and ERLEk(n).

Then, the mean curves MIS(n) and ERLE(n) were obtained by averaging the curves of

each signal according to

MIS(n) =
1

10

10∑

k=1

MISk(n)

ERLE(n) =
1

10

10∑

k=1

ERLEk(n).

(6.35)

And their respective mean values were defined as

MIS =
1

NT

NT∑

n=1

MIS(n)

ERLE =
1

NT

NT∑

n=1

ERLE(n),

(6.36)

where NT is the number of samples relating to the simulation time. In addition, the

asymptotic values of MIS(n) and ERLE(n) were defined as
−−→
MIS and

−−−−→
ERLE, respectively,

and were estimated only by graphically inspecting of the curves.

The evaluation was done in several ambient noise conditions because, unlike the AFC

methods based on cesptral analysis proposed in Chapter 4, the AEC-CA, AEC-CAI and

AEC-CAL methods proved to be very sensitive to the level of the ambient noise. Table 6.1
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summarizes the results obtained by the AEC methods based on cepstral analysis for dif-

ferent values of the frame length Lfr and echo-to-ambient-noise ratio (ENR) . A detailed

discussion about the results will be held in the following sections.

Table 6.1: Summary of the results obtained by the proposed AEC methods based on cepstral
analysis.

Lfr
ENR = 30 dB ENR = 40 dB ENR = 50 dB ENR = ∞
MIS ERLE MIS ERLE MIS ERLE MIS ERLE

AEC-CA

8000 -12.94 22.04 -17.38 23.50 -22.19 23.83 -24.00 23.89

12000 -14.41 24.96 -19.58 27.02 -24.47 27.50 -26.91 27.59

16000 -15.35 26.69 -20.62 29.28 -25.69 29.94 -28.26 30.06

32000 -17.14 29.67 -22.84 33.12 -28.44 34.09 -32.08 34.32

80000 -19.10 32.37 -25.08 37.25 -32.54 39.04 -39.08 39.43

AEC-CAI

8000 -13.59 22.03 -17.48 23.99 -21.93 24.38 -23.87 24.52

12000 -14.91 25.05 -19.61 27.44 -24.73 28.02 -27.21 28.13

16000 -15.57 26.88 -20.58 29.70 -25.89 30.40 -28.67 30.57

32000 -17.64 29.66 -22.72 33.18 -28.58 34.30 -32.49 34.53

80000 -18.68 32.40 -25.08 37.30 -32.65 39.18 -39.62 39.58

AEC-CAL

8000 -14.15 26.90 -19.84 33.27 -25.09 40.45 -30.60 71.13

12000 -15.37 29.62 -21.33 37.39 -27.20 44.69 -35.11 97.98

16000 -16.04 31.07 -21.84 39.29 -27.83 47.68 -35.93 114.67

32000 -17.65 33.93 -24.40 42.85 -31.03 51.58 -36.04 123.40

80000 -18.59 36.07 -25.95 45.14 -31.76 53.81 -36.59 127.61
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6.4.5.1 Influence of Parameters

The results showed that the frame length Lfr and the level of the ambient noise have

a great influence on the performance of the proposed AEC method based on cepstral

analysis. Figures 6.6, 6.7 and 6.8 show the values of MIS and ERLE obtained by the

AEC-CA, AEC-CAI and AEC-CAL methods, respectively, as a function of Lfr and ENR.

It can be observed that the performance of all methods improves as ENR increases.

The basis of the cepstral analysis of the AEC system presented in Section 6.4, which led

to development of all proposed methods, was the definition of the microphone signal y(n)

according to (6.9). This definition is actually an approximation of (6.7) considering a low-

intensity noisy environment such that r(n) ≈ 0 and the absence of the near-end speaker

signal v(n). Therefore, the more the ENR increases, the more (6.9) approaches (6.7).

Consequently, the cepstral analysis becomes more accurate and thus the performance of

all the proposed AEC methods is improved.

It can also noticed that the performance of all methods improves as Lfr increases.

This is explained by the fact that increasing Lfr increases the number of samples that

are provided for the cepstral analysis. This results in a more accurate estimate of the

cepstrum cf (n) of the echo path and, consequently, of its impulse response f(n).

In the AEC-CA method, as discussed in Section 6.4.2, there are 2 sample blocks with

length LF , one included and the other excluded from the frame of the microphone signal,

that degrade the estimation of the impulse response f(n) of the echo path. For fixed LF ,

increasing Lfr also reduces the influence of these two sample blocks until they become

irrelevant. As a consequence, the estimate of f(n) provided by the AEC-CA is improved.

Similar behavior occurs with the proposed AFC methods based on cepstral analysis, AFC-

CE and AFC-CM, as discussed in Section 4.4.3.2. The AEC-CAI method has the same

sample block with length LF excluded from the frame of the microphone signal of the

AEC-CA method. Thus, for fixed LF , increasing Lfr similarly improves the estimate of

f(n) provided by the AEC-CAI.

However, the conclusion that increasing Lfr may improve the estimation of the echo

path impulse response f(n) can be ensured if f(n) is time-invariant throughout the frame

length Lfr. If it is time-varying, the cepstral analysis will estimate an average of f(n)

over the frame length Lfr. Then, in this case, increasing Lfr may give a lower weight

to the current values of the impulse response and thus worsen its estimate. Therefore,

for time-varying echo path impulse response, the frame length Lfr controls the trade-off

between the amount of useful samples provided for the cepstral analysis and the weight

given by the cepstral analysis to the current impulse response.
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Figure 6.6: Influence of Lfr and ENR in the performance of AEC-CA: (a) MIS; (b) ERLE.

8000 12000 16000 32000 80000
−40

−35

−30

−25

−20

−15

−10

L
fr
 (samples)

M
IS

(d
B
)

 

 

ENR=30
ENR=40
ENR=50
ENR=∞

(a)

8000 12000 16000 32000 80000
22

24

26

28

30

32

34

36

38

40

L
fr
 (samples)

E
R
L
E
(d
B
)

 

 

ENR=30
ENR=40
ENR=50
ENR=∞

(b)

Figure 6.7: Influence of Lfr and ENR in the performance of AEC-CAI: (a) MIS; (b) ERLE.
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Figure 6.8: Influence of Lfr and ENR in the performance of AEC-CAL: (a) MIS; (b) ERLE.
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6.4.5.2 Performance Comparison

This section will analyze and discuss the performance of the proposed AEC methods based

on cepstral analysis. Since their adaptive filter parameters were chosen in order to optimize

MIS and ERLE, Table 6.1 will be the basis of this analysis. But to enrich the discussion,

Figures 6.9 and 6.10 show the curves MIS(n) and ERLE(n) obtained by each method when

ENR = 30 and 40 dB, respectively, and for Lfr = 8000, 16000, 80000 samples.

Among all assessed values, these values of ENR were chosen for illustration of the curves

MIS(n) and ERLE(n) because they are commonly used in AEC as well as in line/network

echo cancellation, an adaptive filter application similar to AEC where the echo signal is

electrically generated. And these values of Lfr were chosen because they are the extreme

and mean of the used values.

From Table 6.1, it can be concluded that the AEC-CAI method generally outperforms

the AEC-CA with regard to both MIS(n) and ERLE(n). However, its advantage is very

small such that it never exceeded 0.7 dB in both metrics. This small difference in perfor-

mance can be also noticed by observing the difference between the MIS(n) and ERLE(n)

curves obtained by the AEC-CAI and AEC-CA methods in Figures 6.9 and 6.10. With

exception of Figure 6.9a, the curves are practically superimposed. As discussed in Sec-

tion 6.4.2, the AEC-CAI method removes the last LF samples of the convolution result

between the previous frame of the loudspeaker signal and the echo path from the selected

frame y(n) of the microphone signal. In fact, these LF samples act as noise to the esti-

mation of the convolution result between the current frame x(n) of the loudspeaker signal

and the echo path from the microphone signal y(n). But, these samples do not have high

absolute values because they correspond to the convolution tail and thus the disturbance

caused by them is actually small. Therefore, the AEC-CAI method is only capable of

improving the AEC-CA method by a small amount.

In addition, from Table 6.1, it can be concluded that the AEC-CAL generally outper-

forms the AEC-CA and AEC-CAI with regard to both MIS(n) and ERLE(n). However,

the advantage of the AEC-CAL is more significant in ERLE(n). This conclusion can be

also observed from Figures 6.9 and 6.10 where the superior performance of AEC-CAL is

more easily noticeable in ERLE(n) than in MIS(n). Moreover, the advantage of AEC-

CAL tends to increase as ENR increases. This fact can be also inferred by observing that

the distance between the values of
−−−−→
ERLE, the convergent value of ERLE(n), obtained

by the AEC-CAL and the other methods increases from Figure 6.9 (with ENR = 30) to

Figure 6.10 (with ENR = 40). In the ideal condition when ENR = ∞, the AEC-CAL

achieves values of ERLE larger than twice those obtained by the AEC-CA and AEC-CAI.
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Figure 6.9: Performance comparison between the AEC-CA, AEC-CAI and AEC-CAL methods
for ENR = 30 dB: (a),(c),(e) MIS(n); (b),(d),(f) ERLE(n); (a),(b) Lfr = 8000; (c),(d) Lfr =
16000; (e),(f) Lfr = 80000.
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Figure 6.10: Performance comparison between the AEC-CA, AEC-CAI and AEC-CAL methods
for ENR = 40 dB: (a),(c),(e) MIS(n); (b),(d),(f) ERLE(n); (a),(b) Lfr = 8000; (c),(d) Lfr =
16000; (e),(f) Lfr = 80000.
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Table 6.2: Summary of the results obtained by the NLMS and BNDR-LMS.

ENR = 30 dB ENR = 40 dB ENR = 50 dB ENR = ∞
MIS ERLE MIS ERLE MIS ERLE MIS ERLE

NLMS -14.20 29.19 -15.63 33.26 -16.01 35.16 -16.03 35.65

BNDR-LMS -17.58 32.74 -21.3 38.87 -23.22 44.61 -24.24 59.87

Afterwards, the Normalized Least Mean Square (NLMS) and the Binormalized Data-

Reusing LMS (BNDR-LMS) algorithms were used to compare the performance of the

proposed AEC methods. Both adaptive filtering algorithms are based on the Wiener

theory. The NLMS is the most widely used algorithm in practical applications [12] and

can be interpreted as the Affine Projection algorithm (APA) with no data reuse [72, 91, 92].

The BNDR-LMS can be interpreted as a special case of the APA with a single data reuse

where the matrix inversion has closed form solution [72, 91, 92].

Their adaptive filter parameters are stepsize µ, normalization factor δ and LH . And

they were chosen empirically in order to optimize, for each signal, the curves MIS(n)

and ERLE(n) with regard to mean values according to the same procedure used for the

proposed AEC methods and described in Section 6.4.5. Table 6.2 summarizes the re-

sults obtained by the NLMS and BNDR-LMS algorithms for different values of ENR. As

expected, the BNDR-LMS outperformed the NLMS.

For each one of the ENR values, there is at least one configuration of the proposed

AEC methods based on cepstral analisys that outperformed the NLMS algorithm regarding

both MIS(n) and ERLE(n). With respect to MIS(n), the maximum value of Lfr required

for the AEC-CA, AEC-CAI and AEC-CAL to outperform the NLMS were 12000. With

respect to ERLE(n), the maximum values of Lfr required for the AEC-CA, AEC-CAI and

AEC-CAL to outperform the NLMS were 80000, 80000 and 12000, respectively.

For each one of the ENR values, only the AEC-CAL method was able to outperform the

BNDR-LMS with regard to MIS(n) and ERLE(n). The AEC-CA and AEC-CAI methods

were only capable of outperforming the BNDR-LMS regarding MIS(n). With respect to

MIS(n), the minimum values of Lfr required for the AEC-CA, AEC-CAI and AEC-CAL

to outperform the BNDR-LMS were 80000, 32000 and 32000, respectively. With regard

to ERLE(n), the maximum value of Lfr required for the AEC-CAL to outperform the

BNDR-LMS was 32000 when ENR = 30 dB.

In order to enrich the discussion, Figures 6.11 and 6.12 compare the performance of

the NLMS, BNDR-LMS and AEC-CAL with Lfr = 32000 when ERN = 30 and 40 dB,

respectively. The AEC-CA and AEC-CAI methods are not included in this comparison

because AEC-CAL outperformed them and many curves in the same figure would compli-

cate the interpretation. The value Lfr = 32000 was used because it is the maximum value

required for the AEC-CAL to outperform the BNDR-LMS with regard to mean values of

MIS(n) and ERLE(n).
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Figure 6.11: Performance comparison between NLMS, BNDR-LMS and AEC-CAL for ENR =
30 dB and Lfr = 32000: (a) MIS(n); (b) ERLE(n).
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Figure 6.12: Performance comparison between NLMS, BNDR-LMS and AEC-CAL for ENR =
40 dB and Lfr = 32000: (a) MIS(n); (b) ERLE(n).

In general, compared with the NLMS and BNDR-LMS algorithms, the proposed AEC

methods based on cepstral analysis proved to be more competitive regarding MIS(n) than

ERLE(n). This can be explained by the fact that the proposed AEC methods identify

directly the impulse response f(n) of the echo path through the cepstral analysis. On

the other hand, the NLMS and BNDR-LMS, as adaptive filtering algorithms based on

the Wiener theory, identify indirectly f(n) by minimizing the instantaneous squared error

signal, e2(n). Therefore, the proposed AEC methods focus on identifying f(n), whose

accuracy is measured by the MIS(n) metric, while the NLMS and BNDR-LMS focus on

minimizing e2(n), whose value is measured by the ERLE(n) metric.

These consequences can be observed in Figures 6.11 and 6.12. The AEC-CAL outper-

formed the NLMS and BNDR-LMS algorithms with regard to MIS(n) during practically



6.5. Hybrid AEC Based on Cepstral Analysis 165

all the simulation time. However, this advantage in MIS(n) is not reflected in the first sec-

onds of the ERLE(n) although the AEC-CAL method achieved a higher
−−−−→
ERLE, convergent

mean value. Even when ENR = 40 dB, situation in which the proposed AEC-CAL pre-

sented an evident superior performance regarding MIS(n), its advantage of around 10 dB

in MIS(n) when t = 1 s results in a surprising disadvantage of around 12 dB in ERLE(n).

This poor performance of the proposed AEC methods in the first seconds of ERLE(n)

greatly reduces its mean value over time, ERLE, on which is based the optimization of the

adaptive filter parameters (λ and LH) and the conclusions about performance. It is worth

remembering that the proposed AEC methods started only after 125 ms of simulation

which obviously implies a worse performance in the very first moments. On the other

hand, even when there is little information on the system signals and the adaptive filter

is at the beginning of the learning process, the NLMS and BNDR-LMS aim to minimize

e2(n) and thereby achieve a significant attenuation of the echo signal.

In conclusion, the proposed AEC methods, which directly identify the impulse response

f(n) of the echo path through cepstral analysis, proved to be able to outperform the NLMS

and BNDR-LMS algorithms with regard to the MIS and
−−−−→
ERLE. On the other hand, the

NLMS and BNDR-LMS algorithms, which indirectly identify f(n) by minimizing e2(n),

presented a better performance in the first seconds of ERLE(n). Although the performance

in the first seconds (≈ 2 s) may not be so relevant, it would be interesting to avoid this

drawback of the proposed AEC methods. Therefore, in order to combine the strength of

both methodologies, a hybrid approach emerged.

6.5 Hybrid AEC Based on Cepstral Analysis

Aiming to avoid the worst performance of the proposed AEC methods in the first seconds of

ERLE(n), hybrid methods will be proposed to combine the strength of the methodologies

of the traditional adaptive filtering algorithms and cepstral analysis. With this, it is

expected that the proposed hybrid methods will not perform worse than each method

individually with regard to both MIS(n) and ERLE(n). The hybrid methods will combine

the AEC-CAI or AEC-CAL methods with the NLMS or BNDR algorithms.

By choice, the AEC-CAI and AEC-CAL methods are applied every Nfr = 1000 sam-

ples and start only after 125 ms to avoid inaccurate initial estimates. In the other time

instants, the adaptive filter H(q, n) is not updated. Instead of stopping the update of

H(q, n) in these moments, the hybrid methods will apply the NLMS or BNDR-LMS algo-

rithms. Therefore, the adaptive filter H(q, n) will be updated by the NLMS or BNDR-LMS

algorithms most of the time. In fact, the AEC-CAI or AEC-CAL methods will be used

only to provide an instantaneous estimate of the impulse response f(n) of the echo path

and thereby to accelerate or straighten the learning process of the NLMS and BNDR-LMS

algorithms.
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Although there are four possible combinations, the evaluation of the methods will be

carried out separately according to the traditional adaptive filtering algorithms, NLMS

or BNDR-LMS, in order to facilitate the understanding of the benefits provided by the

use of cepstal analysis. If the NLMS algorithm is used, the resulting two hybrid methods

(combinations of NLMS with AEC-CA and AEC-CAL) will be called hybrid methods

based on cepstral analysis and NLMS. If the BNDR-LMS is used, the resulting two hybrid

methods will be called hybrid methods based on cepstral analysis and BNDR-LMS.

6.5.1 Simulation Configurations

With the aim to assess the performance of the proposed hybrid methods, an experiment

was carried out in a simulated environment to measure their ability to estimate the echo

path impulse response and attenuate the acoustic echo signal. To this purpose, the same

simulation configuration described in Section 6.4.4 was used.

6.5.2 Simulation Results

The proposed hybrid methods have the following adaptive filter parameters: stepsize µ

and normalization factor δ from NLMS or BNDR-LMS; λ from AEC-CAI or AEC-CAL;

and the adaptive filter length LH that is common to all methods.

Since the hybrid methods will update H(q, n) through the NLMS or BNDR-LMS

algorithms most of the time, the adaptive filter parameters µ, δ and LH of the hybrid

methods were the same of the NLMS or BNDR-LMS obtained in Section 6.4.5.2. On the

other hand, the adaptive filter parameter λ was chosen empirically in order to optimize,

for each signal, the curves MIS(n) and ERLE(n) with regard to mean values according to

the same procedure described in Section 6.4.5. Note that the results obtained from this

optimization are sub-optimal because the parameters were not all optimized jointly.

6.5.2.1 AEC Based on Cepstral Analysis and NLMS

Firstly, the proposed AEC-CAI and AEC-CAL methods were combined with the NLMS

algorithm. Table 6.3 summarizes the results obtained by the hybrid methods based on

cepstral analysis and NLMS for different values of Lfr and ENR. In order to enrich the

discussion, Figures 6.13 and 6.14 show the curves MIS(n) and ERLE(n) obtained by the

NLMS and the hybrid methods based on cepstral analysis and NLMS when ENR = 30

and 40 dB, respectively, and for Lfr = 8000, 16000, 80000 samples.

For the same value of ENR, the proposed hybrid AEC methods based on cepstral anal-

ysis and NLMS outperformed the individual NLMS algorithm with respect to both MIS(n)

and ERLE(n) with any value of Lfr. And, in these comparisons, the improvements were

in general more significant in MIS(n) than in ERLE(n). Moreover, since the performance

of the AEC-CAI and AEC-CAL methods improves by increasing ENR and/or Lfr as dis-

cussed in Section 6.4.5.1, the improvement caused by the hybrid methods in comparison
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with the NLMS increases as ENR and/or Lfr increases. For ENR = 30 and 40 dB, it

can be observed from Figures 6.13 and 6.14 that, with respect to MIS(n), the increase in

Lfr results in a significant improvement mainly in convergent value while, with respect

to ERLE(n), it results in a significant improvement mainly in convergence speed. On the

other hand, the increase in ENR results in a significant improvement mainly in convergent

value of both MIS(n) and ERLE(n).

For the same value of ENR, the hybrid method based on cepstral analysis and NLMS

outperformed the individual AEC-CAI and AEC-CAL methods with regard to both MIS(n)

and ERLE(n), with exception of a few cases. And, in these comparisons, the improve-

ments were in general more significant in ERLE(n) than in MIS(n). Moreover, the hybrid

method based on AEC-CAL always performed better than the one based on AEC-CAI,

which was an expected result because the AEC-CAL performs better than AEC-CAI as

discussed in Section 6.4.5.2.

Therefore, it can be concluded that, except in a few cases, the proposed hybrid methods

based on cepstral analysis and NLMS achieved their goal by outperforming the individual

methods with regard to MIS(n) and ERLE(n). The hybrid methods based on cepstral

analysis and NLMS were even able to outperform the BNDR-LMS algorithm depending

on the values of Lfr and ENR.

Table 6.3: Summary of the results obtained by the hybrid AEC methods based on cepstral
analysis and NLMS.

Lfr
ENR = 30 dB ENR = 40 dB ENR = 50 dB ENR = ∞
MIS ERLE MIS ERLE MIS ERLE MIS ERLE

AEC-CAI

8000 -16.27 30.86 -19.63 36.51 -22.86 41.04 -24.33 43.03

12000 -16.71 31.25 -21.29 37.48 -26.05 42.64 -28.34 45.44

16000 -17.04 31.50 -22.20 37.86 -27.08 43.32 -29.62 46.40

32000 -18.25 32.11 -23.84 38.69 -29.18 44.60 -31.96 48.15

80000 -19.41 32.61 -26.18 39.49 -32.05 45.90 -35.02 50.49

AEC-CAL

8000 -16.05 31.15 -21.22 37.70 -26.40 43.86 -30.73 49.31

12000 -16.84 31.54 -22.38 38.42 -27.86 45.06 -32.87 51.10

16000 -17.24 31.79 -23.07 38.80 -28.87 45.56 -34.08 51.73

32000 -18.41 32.37 -25.36 39.58 -31.03 46.30 -34.54 52.24

80000 -19.38 32.81 -26.44 39.87 -31.28 46.53 -35.08 52.26
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Figure 6.13: Performance comparison between the NLMS and AEC methods based on cepstral
analysis and NLMS for ENR = 30: (a),(c),(e) MIS(n); (b),(d),(f) ERLE(n); (a),(b) Lfr = 8000;
(c),(d) Lfr = 16000; (e),(f) Lfr = 80000.
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Figure 6.14: Performance comparison between the NLMS and AEC methods based on cepstral
analysis and NLMS for ENR = 40: (a),(c),(e) MIS(n); (b),(d),(f) ERLE(n); (a),(b) Lfr = 8000;
(c),(d) Lfr = 16000; (e),(f) Lfr = 80000.



170 6. Acoustic Echo Cancellation

6.5.2.2 AEC Based on Cepstral Analysis and BNDR-LMS

Analogously, the proposed AEC-CAI and AEC-CAL methods were combined with the

BNDR-LMS algorithm. Table 6.4 summarizes the results obtained by the hybrid methods

based on cepstral analysis and BNDR-LMS for different values of Lfr and ENR. In order

to enrich the discussion, Figures 6.15 and 6.16 show the curves MIS(n) and ERLE(n)

obtained by the BNDR-LMS and the hybrid methods based on cepstral analysis and

BNDR-LMS when ENR = 30 and 40 dB, respectively, and for Lfr = 8000, 16000, 80000.

For the same value of ENR, the proposed hybrid AEC methods based on cepstral anal-

ysis and BNDR-LMS outperformed the individual BNDR-LMS algorithm regarding both

MIS(n) and ERLE(n) with any value of Lfr. And, in these comparisons, the improvements

were in general more significant in MIS(n) than in ERLE(n), except when ENR =∞. In

this ideal situation, the hybrid method based on AEC-CAL and BNDR-LMS achieved

outstanding performances regarding ERLE(n) such that ERLE > 100 dB.

Moreover, since the performance of the AEC-CAI and AEC-CAL methods improves

by increasing ENR and/or Lfr as discussed in Section 6.4.5.1, the improvement caused

by the hybrid methods in comparison with the BNDR-LMS increased as ENR and/or

Lfr increases. For ENR = 30 and 40 dB, it can be observed from Figures 6.15 and 6.16

that, with respect to MIS(n), the increase in Lfr results in a significant improvement

mainly in convergent value while, with respect to ERLE(n), it results in a significant

improvement mainly in convergence speed. On the other hand, the increase in ENR results

in a significant improvement mainly in convergent value of both MIS(n) and ERLE(n).

In addition, for the same value of ENR, the hybrid method based on cepstral analy-

sis and BNDR-LMS outperformed the individual AEC-CAI and AEC-CAL methods with

regard to both MIS(n) and ERLE(n), with exception of a few cases. And, in these com-

parisons, the improvements were more significant in ERLE(n) than in MIS(n). Moreover,

the hybrid method based on AEC-CAL always performed better than the hybrid method

based on AEC-CAI, which was an expected result because the AEC-CAL performs better

than AEC-CAI as discussed in Section 6.4.5.2.

Therefore, it can be concluded that, except in some few cases, the proposed hybrid

methods based on cepstral analysis and BNDR achieved their goal by outperforming the

individual methods with regard to MIS(n) and ERLE(n). In general, these conclusions

are very similar to those of Section 6.5.2.1. This means that the use of the proposed AEC

based on cepstral analysis, AEC-CAI or AEC-CAL, even if sporadically, as every 1000

samples, can improve the results of the traditional adaptive filtering algorithms in AEC

applications.
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Table 6.4: Summary of the results obtained by the hybrid AEC methods based on cepstral
analysis and BNDR-LMS.

Lfr
ENR = 30 dB ENR = 40 dB ENR = 50 dB ENR = ∞
MIS ERLE MIS ERLE MIS ERLE MIS ERLE

AEC-CAI

8000 -17.84 33.29 -22.51 39.97 -26.92 46.04 -29.03 60.49

12000 -18.06 33.68 -23.18 40.49 -28.12 46.68 -32.27 60.67

16000 -18.17 33.88 -23.61 40.76 -29.16 47.03 -34.27 60.84

32000 -19.07 34.40 -24.70 41.51 -30.93 47.81 -36.18 64.96

80000 -19.98 35.14 -26.25 42.46 -33.53 48.86 -41.62 69.24

AEC-CAL

8000 -17.98 33.64 -22.51 40.53 -27.62 47.32 -37.15 107.45

12000 -18.20 33.92 -23.07 41.03 -28.75 47.93 -38.41 130.07

16000 -18.24 34.17 -23.54 41.36 -30.00 48.32 -43.06 142.23

32000 -18.93 34.79 -24.67 42.21 -32.10 49.14 -50.21 152.73

80000 -19.95 35.38 -26.10 42.77 -32.95 49.54 -52.94 157.30
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Figure 6.15: Performance comparison between the BNDR-LMS and AEC methods based on
cepstral analysis and BNDR-LMS for ENR = 30: (a),(c),(e) MIS(n); (b),(d),(f) ERLE(n);
(a),(b) Lfr = 8000; (c),(d) Lfr = 16000; (e),(f) Lfr = 80000.
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Figure 6.16: Performance comparison between the BNDR-LMS and AEC methods based on
cepstral analysis and BNDR-LMS for ENR = 40: (a),(c),(e) MIS(n); (b),(d),(f) ERLE(n);
(a),(b) Lfr = 8000; (c),(d) Lfr = 16000; (e),(f) Lfr = 80000.
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6.6 Conclusions

This chapter addressed the topic of acoustic echo cancellation in teleconference systems.

Similar to the AFC approach, the AEC approach uses an adaptive filter to identify the

acoustic echo path and estimate the echo signal that is subtracted from the microphone

signal. During the last decades, the use of the traditional gradient-based and least-squares-

based adaptive filtering algorithms has been established in AEC applications.

The cepstral analysis, which was successfully applied to the AFC problem in the previ-

ous chapters, is now applied to the AEC problem. The availability of the loudspeaker and

microphone signals in the AEC application is exploited to develop a new AEC method

based on cepstral analysis with no lag (AEC-CA). The AEC-CA method selects, as usu-

ally, frames containing the newest Lfr samples of the system signals. An improved version,

called improved AEC-CA (AEC-CAI), aims to obtain a more accurate frame of the micro-

phone signal by partially performing the inverse of the overlap-and-add method using the

adaptive filter as an estimate of the echo path. The AEC based on cepstral analysis with

lag (AEC-CAL) method aims to obtain a even more accurate frame of the microphone

signal by completely performing the inverse of the overlap-and-add method. Its drawback

is a insertion of a lag equal to LF in the estimation process.

The results showed that, depending on Lfr, the proposed AEC methods based on

cesptral analysis are able to outperform the NLMS and BNDR-LMS, adaptive algorithms

widely used in practical applications, and thereby can be alternative solutions to the

AEC applications. However, in general, the proposed AEC methods proved to be more

competitive regarding MIS(n) than ERLE(n), where they presented a worse performance

in the first seconds. This can be explained by the fact that the proposed AEC methods

directly identify the impulse response f(n) of the echo path through the cepstral analysis.

On the other hand, the NLMS and BNDR-LMS algorithms indirectly identify f(n) by

minimizing the instantaneous squared error signal. Therefore, the proposed AEC methods

focus on identifying f(n), whose accuracy is measured by the MIS(n), while the NLMS

and BNDR-LMS focus on minimizing e2(n), whose value is measured by the ERLE(n).

Hence, to combine the strengths of both methodologies, hybrid AEC methods that

combine the AEC-CAI or AEC-CAL methods with the NLMS or BNDR algorithms were

also proposed. As the AEC-CAI or AEC-CAL methods provide an instantaneous estimate

of f(n), the adaptive filter in the proposed hybrid AEC methods was updated through

the NLMS or BNDR-LMS algorithms most of the time and the AEC-CAI or AEC-CAL

methods were sporadically used to accelerate or straighten the learning process.

The results showed that the proposed hybrid AEC methods can outperform the indi-

vidual methods with regard to both MIS(n) and ERLE(n). This means that the proposed

AEC methods based on cepstral analysis can be used alone or to improve the performance

of the traditional adaptive filtering algorithms in AEC applications.



Chapter 7
Multi-channel Acoustic Echo Cancellation

7.1 Introduction

Chapter 6 dealt with the problem of acoustic echo in mono-channel teleconference systems.

In recent years, these systems have evolved to provide a more realistic meeting experience.

As regards sound, this is accomplished by using two or more independent audio channels

through a configuration of two or more loudspeakers and microphones in each acoustic

environment in order to enhance the sound realism in terms of spatiality. The acoustic

coupling between the loudspeakers and microphones result in several acoustic echo paths.

And, since the audio channels are independent in these systems, one adaptive filter is

required to cancel each echo path.

Adaptive filters work quite well in mono-channel teleconference systems as discussed in

Chapter 6, achieving good echo cancellation and low misalignment. But in a multi-channel

system, a bias will be introduced in the impulse responses of the adaptive filters because

of the strong correlation between the loudspeaker signals if they are originated from the

same sound source. This will result in large misalignment between the adaptive filters and

the echo paths. As a consequence, although it is possible to have good echo cancellation,

the echo cancellation will worsen if the position of the speaker in the transmission room

changes. In order to overcome the bias problem, the correlation between the loudspeaker

signals should be reduced before feeding them to the adaptive filters.

During the past years, several decorrelation methods have been developed to overcome

the bias problem in SAEC and an overview of them is presented in this chapter. Moreover,

two sub-band hybrid methods based on FS will be proposed to decorrelate the loudspeaker

signals in SAEC systems. The evaluation of the proposed methods is carried out in a simu-

lated environment. Their ability to decrease the cross-correlation between the loudspeaker

signals and thereby improve the performance of the SAEC system are measured as well

as the audible distortion introduced in the processed loudspeaker signals.

175
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7.2 Stereophonic Acoustic Echo Cancellation

In recent years, teleconference systems have evolved to telepresence systems which enable a

more realistic meeting experience. This superior level of service is commonly accomplished

through high-quality video and multi-channel audio. A multi-channel audio system uses

two or more independent audio channels through a configuration of two or more loud-

speakers and microphones in each acoustic environment in order to create the impression

of sound heard from various directions, as in natural hearing.

Similarly to the mono-channel, the multi-channel acoustic echo cancellation uses adap-

tive filters to identify and track the echo paths. Such a scheme is depicted in Figure 7.1

for the stereophonic case, where the adaptive filters H11(q, n) and H21(q, n) model the

echo paths F11(q, n) and F21(q, n), respectively. For now, disregard the pre-processing

block so that x′k(n) = xk(n), k = 1, 2. Then, estimates of the echo signals f11(n) ∗ x1(n)

and f21(n) ∗ x2(n) are calculated as h11(n) ∗ x1(n) and h21(n) ∗ x2(n), respectively, and

subtracted from the microphone signal y1(n), generating the error signal

e1(n) = un(n) + [f11(n)− h11(n)] ∗ x1(n) + [f21(n)− h21(n)] ∗ x2(n), (7.1)

which is the signal effectively sent to the transmission room.
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Figure 7.1: Stereophonic acoustic echo cancellation.

Defining f̃k1(n) = fk1(n)−hk1(n), the mismatch between the impulse responses of the

adaptive filter Hk1(q, n) and echo path Fk1(q, n), (7.1) can be written as

e1(n) = un(n) + f̃11(n) ∗ x1(n) + f̃21(n) ∗ x2(n). (7.2)

Therefore, the overall acoustic echo will be completed removed if

f̃11(n) ∗ x1(n) + f̃21(n) ∗ x2(n) = 0. (7.3)
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7.3 The Non-Uniqueness (Bias) Problem in Misalignment

The loudspeaker signals are defined as

x1(n) = uf (n) ∗ g1(n)

x2(n) = uf (n) ∗ g2(n),
(7.4)

where uf (n) is the far-end speaker signal.

Replacing (7.4) in (7.3), the overall acoustic echo will be completed removed if

[
f̃11(n) ∗ g1(n) + f̃21(n) ∗ g21(n)

]
∗ uf (n) = 0 (7.5)

or, in the frequency domain, if

[
F̃11(e

jω, n)G1(e
jω, n) + F̃21(e

jω, n)G2(e
jω, n)

]
Uf (ejω, n) = 0. (7.6)

Regardless of Uf (ejω, n), the spectrum of the far-end speaker signal, the overall acoustic

echo will be completely removed if

F̃11(e
jω, n)G1(e

jω, n) + F̃21(e
jω, n)G2(e

jω, n) = 0. (7.7)

The problem of multi-channel AEC is that (7.7) has infinite solutions and they do

not necessarily imply F̃11(e
jω, n) = F̃21(e

jω, n) = 0, which is the condition of complete

alignment [5]. As a consequence, even if the impulse responses f11(n) and f21(n) of the echo

paths are fixed, any variation in G1(e
jω, n) or G2(e

jω, n) requires adjustments of F̃11(e
jω, n)

and F̃21(e
jω, n), except in the unlikely condition F̃11(e

jω, n) = F̃21(e
jω, n) = 0 [5].

Therefore, in order to completely remove the acoustic echo, the adaptive filtersH11(q, n)

and H21(q, n) must not only track the changes in the echo paths F11(q, n) and F21(q, n) in

the reception room but also the changes in the reverberation paths G1(q, n) and G2(q, n)

in the transmission room [5]. Apart from being undesirable, the latter changes are par-

ticularly hard to track because, if one speaker stops talking and another starts talking at

a different place in the transmission room, the impulse responses g1(n) and g2(n) of the

reverberation paths may change abruptly and by very large amounts [5].

Consider now two simultaneous far-end speakers, where the speech signal of the ad-

ditional speaker is picked up by the microphones after going through the reverberation

paths G3(q, n) and G4(q, n). The acoustic echo will be completely removed if

{
F̃11(e

jω, n)G1(e
jω, n) + F̃21(e

jω, n)G2(e
jω, n) = 0

F̃11(e
jω, n)G3(e

jω, n) + F̃21(e
jω, n)G4(e

jω, n) = 0.
(7.8)

The first condition in (7.8) is precisely (7.7). If G3(q, n) and G4(q, n) are linear inde-

pendent from G1(q, n) and G2(q, n), (7.8) is only satisfied if F̃11(e
jω, n) = F̃21(e

jω, n) = 0.
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Therefore, if two or more independent and spatially separated sources are active in the

transmission room, the non-uniqueness problem essentially disappears because (7.7) can-

not be simultaneously satisfied for two or more linear independent pairs of reverberation

paths unless F̃11(e
jω, n) = F̃21(e

jω, n) = 0 [5].

A more refined analysis of the non-uniqueness problem in stereophonic AEC (SAEC)

is provided in [6, 22]. It takes into account the lengths of the impulse responses of the

reverberation paths, echo paths and adaptive filters, and proves that these lengths play a

key role in SAEC. Considering LG1 = LG2 = LG, LF11 = LF21 = LF and LH11 = LH21 =

LH , three possible scenarios can be described [6, 22]:

� LH ≥ LG: the system has infinite solutions to the impulse responses h11(n) and

h21(n) of the adaptive filters and all of them are undesirably dependent on the

impulse responses g1(n) and g2(n) of the reverberation paths;

� LH < LG and LH ≥ LF : the system has unique solutions to the impulse responses

h11(n) and h21(n) of the adaptive filters and the minimum value of the misalignment

is zero, as desired;

� LH < LG and LH < LF : the system has unique solutions to the impulse responses

h11(n) and h21(n) of the adaptive filters but these solutions have a bias because of

the strong correlation between the loudspeaker signals x1(n) and x2(n) if they are

originated from the same sound source.

The last scenario is the real one because, in theory, both reverberation and echo paths

have infinite lengths. So, due to the tails of the impulse responses g1(n) and g2(n) of

the reverberation paths in the transmission room, the SAEC system has unique solutions

to the impulse responses h11(n) and h21(n) of the adaptive filters. However, due to

the unmodeled tails of the impulse responses f11(n) and f21(n) of the echo paths in the

reception room, the unique solutions to h11(n) and h21(n) have a bias.

Therefore, the adaptive filters H11(q, n) and H21(q, n) generally converge to solutions

that do not correctly match the real echo paths F11(q, n) and F21(q, n), respectively, which

results in high misalignment. And the high misalignment is due to the strong correlation

between the loudspeaker signals x1(n) and x2(n) which, in turn, depends on the impulse

responses g1(n) and g2(n) of the reverberation paths in the transmission room.

It should be understood that it is possible to have good echo cancellation even when

misalignment is large [6, 22]. However, in this case, the cancellation will worsen if the

impulse responses g1(n) and g2(n) of the reverberation paths change [6, 22]. There are

two ways to improve the misalignment. The first way is to use very long adaptive filters

H11(q, n) and H21(q, n), which causes the traditional adaptive filtering algorithms to have

a very slow convergence and high computational complexity. The second way is to reduce

the correlation between the loudspeaker signals x1(n) and x2(n). The latter is the solution

commonly used to overcome the bias problem in SAEC systems.
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7.4 Solutions to The Non-Uniqueness (Bias) Problem

To overcome the bias in the impulse responses h11(n) and h21(n) of the adaptive filters, a

pre-processing block is built into the SAEC system to decorrelate the loudspeaker signals

x1(n) and x2(n) before feeding them to the adaptive filters, as shown in Figure 7.1. The

pre-processing method must not introduce audible degradation, including modifications

in the spatial image of the sound source, while keeping complexity low to be applied in

real-time systems. Therefore, the challenge is to develop efficient decorrelation methods

that do not significantly affect the perceptual quality of the stereo sound.

Several decorrelation methods have been proposed to add uncorrelated signals p1(n) e

p2(n) to the loudspeaker signals x1(n) and x2(n), respectively, according to

x′k(n) = xk(n) + pk(n), k = 1, 2, (7.9)

It is worth mentioning that the added signals p1(n) e p2(n) are the ones that would update

the adaptive filters toward alignment while the loudspeaker signals x1(n) and x2(n) tend

to disrupt the adaptation.

In [5], the added signals pk(n) were independent white noise signals. In [93], the added

signals pk(n) were the loudspeaker signals modulated with independent white noise signals

wk(n) as follows

pk(n) = εk(n)xk(n), k = 1, 2, (7.10)

where

εk(n) = αεk(n− 1) + (1− α)wk(n), k = 1, 2. (7.11)

In [94], the added signals pk(n) were noise signals shaped according to the human

psychoacoustic model in order to mask the inserted distortion. A similar approach was

proposed in [95] by applying perceptual audio coding/decoding (MPEG-1 Layer III) to the

loudspeaker signals x1(n) and x2(n) such that pk(n) are uncorrelated quantization noise

signals.

In [6, 22], instead of external noise, it was proposed to add to the loudspeaker signals

x1(n) and x2(n) nonlinearly processed version of themselves. Then, the added signals were

defined as

pk(n) = αf [xk(n)] , k = 1, 2, (7.12)

where f{·} must be a nonlinear function to reduce the linear relationship between the

resulting signals x′1(n) and x′2(n), and α is the parameter that controls the amount of

added nonlinearity.

In [6, 22], a half-wave rectifier (HWR) function was proposed such that

pk(n) = α

(
xk(n) + |xk(n)|

2

)
, k = 1, 2. (7.13)
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The stereo perception is not affected even with α = 0.5 and the distortion introduced

is hardly audible because of the nature of speech signals and psychoacoustic masking

effects [6, 22].

Besides the half-wave rectifier, several nonlinear functions, such as square-law, square-

sign, cubic, sign and full-wave rectifier, were evaluated in [96]. It was concluded that, for

a roughly comparable decorrelation, the half-wave rectifier affects less the sound quality of

speech signals. However, as the loudspeaker signals x1(n) and x2(n) are similar (or even

the same), it is important to use different nonlinear functions for each [97]. Hence, in [97],

a positive and a negative half-wave rectifier were used as follows

p1(n) = α

(
x1(n) + |x1(n)|

2

)
,

p2(n) = α

(
x2(n)− |x2(n)|

2

)
.

(7.14)

The use of half-wave rectifiers changes the DC levels and the energies of x′1(n) and x′2(n)

in relation to x1(n) and x2(n), respectively. Thus, it is customary to remove the added

DC level and equalize the energies. The former can be performed by a highpass filter.

The latter can approximately achieved by normalizing (7.13) or (7.14) with
√

1 + α+ α2.

The combination of the HWR at the frequency components (below 1 kHz) and comb

filtering at the remaining frequency components (above 1 kHz) was proposed in [98].

However, it may lead to unacceptable degradation in the spatial image perception [99].

Another solution applies a time-varying filter to the loudspeaker signals x1(n) and

x2(n) according to [100, 101, 102, 103]

x′k(n) = xk(n) ∗ ck(n) + xk(n− 1) ∗ [1− ck(n)] , k = 1, 2, (7.15)

where 0 ≤ ck(n) ≤ 1 is a periodic function with period Q.

In [100, 101, 102], the method was applied to only one loudspeaker signal. The prelim-

inary idea was to make x′1(n) = x1(n) by means of c1(n) = 1 for the first Q/2 iterations and

then to make x′1(n) = x1(n−1) by means of c1(n) = 0 for the following Q/2 iterations. How-

ever, the instantaneous change of c1(n) from 0 to 1 generates audible distortion that can be

avoided by smoothly varying c1(n) between 0 and 1 over L < Q/2 samples [100, 101, 102].

The same occurs when c1(n) varies from 1 to 0. In [103], the method was applied simulta-

neously to the x1(n) and x2(n) using periodic functions ck(n) with different phases, which

improved the performance of the adaptive filters and the sound quality.

The reference [104] proposed the use of time-varying all-pass filters Ak(q, n) to modify

the phase responses of the loudspeaker signals without affecting the magnitude responses.

This was performed by making

X
′
k(e

jω, n) = Xk(e
jω, n)Ak(e

jω, n), k = 1, 2, (7.16)
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where

Ak(e
jω, n) =

e−jω − αk(n)

1− αk(n)e−jω
. (7.17)

The parameter αk(n) is defined as

αk(n+ 1) = αk(n) + wk(n), (7.18)

where wk(n) are independent and identically distributed random variables that have a uni-

form probability distribution function over a specific interval. In order to ensure stability,

|αk(n)| < 1. But −0.9 ≤ αk(n) ≤ 0 in order to not affect the stereo perception [104].

Another method based on phase modification of the loudspeaker signals proposed a

sub-band phase modulation that uses a sine wave modulator function defined as [99]

ϕ(n, s) = α(s) sin(2πfmn), (7.19)

with constant frequency fm = 0.75 Hz but amplitude α(s) dependent on the sub-band s.

The amplitude α(s) started with 10 degrees and increased slowly to reach 90 degrees for

frequencies above 2.5 kHz. The modulator function was applied in a conjugate complex

way as follows

X
′
1(e

jω, n) = X1(e
jω, n)ejϕ(n,s),

X
′
2(e

jω, n) = X2(e
jω, n)e−jϕ(n,s).

(7.20)

This phase modulation method can achieve superior perceptual quality of the stereo

sound with similar misalignment performance compared with the HWR method [99]. The

drawback is that, due to a low-intensity modulation at low frequencies, only a small

decorrelation may be achieved in this frequency range [105, 106].

The reference [105] proposed a method based on the missing fundamental effect. This

is a psychoacoustic phenomenon that, when the fundamental frequency is removed from a

set of harmonics, causes the perception of pitch (fundamental frequency) not to change, al-

though there is a slight change of timbre due to the number of harmonics reproduced [105].

This phenomenon has been explained as a human brain capability to process the infor-

mation present in the overtones to calculate the missing fundamental frequency. As a

consequence, the sound perceived is almost unchanged [105].

Hence, this method adaptively tracks and removes the pitch of only one of the loud-

speaker signals by means of a notch filter. Being applied to the channel 1, the method

aims to create a processed signal x′1(n) that is almost perceived as the original x1(n) while

hopes that the modifications in x′1(n) reduce the correlation between x′1(n) and x′2(n).

However, since the pitch of speech signals is usually located at low frequency components,

the method may only decorrelate the loudspeaker signals x1(n) and x2(n) at the this
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frequency range, thereby achieving only a partial decorrelation. When applied to the fre-

quency range of 0− 500 Hz, this method achieves better sound quality and misalignment

performance compared with a masked noise approach [105].

In [106], the missing fundamental approach and the sub-band phase modulation meth-

ods were combined. The former was applied at the low frequency components (0-500 Hz)

and the latter in the remaining spectrum. In comparison with the phase modulation

method, the combined method is able to improve the misalignment but degrades the

sound quality [106].

7.5 Hybrid Pre-Processor Based on Frequency Shifting

As explained in Chapter 2, frequency shifting (FS) was initially proposed to increase

the stability margin of PA systems. The idea is to shift, at each loop, the spectrum of

the microphone signal by a few Hz so that its spectral peaks, including the frequency

component that is responsible for the howling, fall into spectral valleys of the feedback

path. In general, the use of FS smoothes the gain of the open-loop transfer function.

Later, it was observed that the use of FS to smooth the open-loop gain in PA systems,

as originally proposed, also reduced the correlation between the loudspeaker and system

input signals. Then, FS was also proposed as a decorrelation method in AFC systems

in order to reduce the bias in the estimate of the feedback path provided by adaptive

filters [2, 52]. It is noteworthy that a benefitial effect of using FS as a decorrelation method

in AFC is that it also stabilizes the closed-loop system by smoothing the open-loop gain.

In SAEC, FS was already evaluated as a decorrelation method in [5], where the entire

spectrum of one of the loudspeaker signals was shifted relative to the other [5]. And it

was stated that this caused a total destruction of the stereo perception of the signals.

Preliminary listening tests confirmed this effect since the position of the sound source

appeared to oscillate proportionally to the applied frequency shift. However, the ability of

this technique to decorrelate the loudspeaker signals was found to be quite high, thereby

stimulating our attention and analysis.

It was understood that a frequency shift is critically perceived at the low frequencies

of stereophonic images because, in this range, the human perception of the azimuthal

position of sound sources is highly dependent on the interaural time difference [107]. And

this dependence gradually reduces with increasing frequency until it vanishes [99, 107].

Therefore, in order to efficiently apply FS as a decorrelation method in SAEC so that

stereo perception of the sound signal is not affected, the value of the frequency shift must

be properly chosen as a function of the frequency range where it will be applied. To this

purpose, a sub-band frequency shifting method should be developed.

Informal tests showed that a considerable frequency shift at high frequencies is dif-

ficult to be perceptually detected and may produce a great decorrelation between the

loudspeaker signals in the frequency range where it is applied. On the other hand, a
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small frequency shift at low frequencies (< 2 kHz) is easily perceived, which practically

precludes its application in this frequency range. As a consequence, for SAEC, a decor-

relation method based solely on FS should not decorrelate the loudspeaker signals at low

frequencies, which certainly limits its misalignment correction performance.

Therefore, in a sub-band approach, some other decorrelation method should be applied

at the low frequencies (< 2 kHz) to improve the misalignment correction performance. As

discussed in the previous section, the phase modulation method can achieve only a small

decorrelation in this frequency range. The method based on the fundamental missing

problem can be applied only between 0 and 500 Hz and thus the frequency components

between 500 and 2000 Hz would remain correlated. For speech signals, the methods based

on perceptual coding/decoding and HWR similarly decorrelate the loudspeaker signals

in this frequency range [95], and present similar performances both in misalignment and

sound quality when applied to the full-band [99]. Then, because of its simple implemen-

tation, the HWR method was chosen for the low frequency components.

Coincidentally, preliminary tests showed that the widely used HWR method may

achieve a considerable decorrelation at low frequencies but not at high frequencies. There-

fore, the new hybrid method combines the strengths of both solutions: FS and HWR.

Among many possible combinations, two hybrid configurations, called Hybrid1 and Hy-

brid2, were chosen to face the bias problem in SAEC. Considering 8 kHz band-limited

speech signals, the hybrid methods and their configurations are summarized in Table 7.1.

Table 7.1: Configuration of the hybrid methods.

Spectrum band

0-2 kHz 2-4 kHz 4-8 kHz

HWR HWR: α = 0.5 HWR: α = 0.5 HWR: α = 0.5

Hybrid1 HWR: α = 0.5 HWR: α = 0.5 FS: ω0 = 5 Hz

Hybrid2 HWR: α = 0.5 FS: ω0 = 1 Hz FS: ω0 = 5 Hz

The FS was applied by means of the implementation described in Section 2.3.1, where

ω0 is the value of the desired frequency shift. It is evident that the efficiency of this

implementation depends on the length of the Hilbert filter: higher values of Nhil provide

more accurate solutions but, at the same time, insert longer delays in the output signal.

Fortunately, as the more |m| increases the more the filter coefficients tend to zero, Nhil

values do not need to be very large to have an accurate solution. The FS method applied a

positive frequency shift in one channel and a negative in the other, and Nhil was equivalent

to 20 ms. The HWR method was applied according to (7.9) and (7.14). Due to the intrinsic

delay of the FS implementation, in the sub-bands of the hybrid methods where the HWR

were applied, the signals had to be properly delayed.
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7.5.1 Filter Bank

The hybrid methods used an orthogonal two-channel filter bank, which allows a perfect

reconstruction, to split the spectra of the loudspeaker signals x1(n) and x2(n). The pass-

band edge frequency of the lowpass filters was 0.48π, the passband edge frequency of the

highpass filters was 0.52π and the maximum stopband ripple of the analysis filters was

60 dB. The frequency responses of the analysis and synthesis filters are shown in Figure 7.2.
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Figure 7.2: Frequency responses of the orthogonal filter bank: (a),(b) analysis filters; (c),(d) syn-
thesis filters.

7.6 Simulation Configurations

With the aim to assess the relative performances of proposed hybrid methods, two exper-

iments were carried in a simulated environment. In the first, the impulse responses of the

transmission room were fixed throughout the simulation and the decorrelation methods

were evaluated regarding their ability to decrease the cross-correlation between the loud-

speaker signals and thereby improve the performance of the SAEC system. Moreover, the
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audible distortion introduced by the methods were measured through a standardized sub-

jective test. In the second, the impulse responses of the transmission room were changed

during the simulation time in order to evaluate the ability of the decorrelation methods to

make the performance of the SAEC system independent of transmission room. To these

purposes, the following configuration was used.

7.6.1 Simulated Environment

To simulate a stereophonic teleconference system, two measured room impulse responses

from [108] were used as the impulse responses g1(n) and g2(n) of the reverberation paths

in the transmission room and two measured room impulse responses from [60] were used

as the impulse responses f1(n) and f2(n) of the echo paths in the reception room. Con-

sequently, gk(n) = gk and fk(n) = fk, where k = 1, 2. The impulse responses were

downsampled to fs = 16 kHz and then truncated to lengths LG = LF = 4000 samples,

and are illustrated in Figure 7.3. It is noteworthy that g1 and g2 had to be concatenated

with very low-intensity white noise so that LG = 4000.
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Figure 7.3: Impulse responses of the reverberation and echo paths: a) g1, b) g2, c) f1, d) f2.
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In a first experiment, the impulse responses g1 and g2 of the transmission room were

fixed throughout the simulation. But in a second experiment, g1 and g2 were changed at

t = 20 s in order to verify the ability of the decorrelation methods to make the impulse

responses h1(n) and h2(n) of the adaptive filters independent of them, as desired. To this

end, g1 and g2 were changed to

g′1 =

[
047×1

1.2g2LG−47

]
(7.21)

and

g′2 =

[
025×1

0.8g1LG−25

]
, (7.22)

where aN denotes the N first samples of the vector a.

The ambient noise condition of the reception room was close to real-world where

r1(n) 6= 0 such that the echo-to-noise ratio ENR = 30 dB.

7.6.2 Coherence Function

A very common metric in evaluating the efficiency of decorrelation methods is the co-

herence (COH). The COH is related to the conditioning of the covariance matrix and,

in practice, is used to measure the cross-correlation between two signals in the frequency

domain [6]. In this work, the performance of the decorrelation methods was evaluated

through the COH function defined as [6]

COH(ejω, n) =
Sx′1x′2(ejω, n)

√
Sx′1x′1(ejω, n)Sx′2x′2(ejω, n)

, (7.23)

where Sx′1x′2(ejω, n) is the short-term cross-power spectral density of the processed signals

x′1(n) and x′2(n). The short-term cross-power spectral densities were computed using

frames of 2000 samples taken with 50% overlap and an NFFT -point FFT, where NFFT =

320000 in order to achieve a fine resolution so that small values of ω0 could be evaluated.

The time average of (7.23) was denoted as COH(ejω).

7.6.3 Misalignment

The main goal of any decorrelation method in a SAEC system is to improve (decrease)

the misalignment (MIS). The MIS measures the distance between the impulse responses

of the adaptive filter and echo path, as discussed in Section 3.6.3, and has a bias in SAEC.
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In this work, the performance of the SAEC system with the decorrelation methods was

evaluated through the normalized MIS that, in the stereo case, is defined as

MIS(n) =
2∑

k=1

‖fk(n)− hk(n)‖
‖fk(n)‖ . (7.24)

7.6.4 Echo Return Loss Enhancement

As previously explained, in SAEC, it is possible to have good echo cancellation even with

high misalignment. However, the cancellation will worsen if the impulse responses g1

and g2 of the reverberation paths change. Therefore, in order to verify the ability of the

decorrelation methods to keep good echo cancellation with changes in g1 and g2, the Echo

Return Loss Enhancement (ERLE) metric was used. The ERLE measures the attenuation

of the echo signal provided by the echo canceller as discussed in Section 6.4.4.3.

In this work, the performance of the SAEC system with the decorrelation methods was

also measured through the normalized ERLE defined as

ERLE(n) =
LPF{∑2

k=1 [yk(n)− rk(n)]2}
LPF{∑2

k=1 [ek(n)− rk(n)]2}
, (7.25)

where LPF{·} denotes a low-pass filter with a single pole at 0.999. As discussed in Sec-

tion 6.4.4.3, the use of the low-pass filter is a common practice in AEC to smooth the curve

ERLE(n) by removing the high frequency components without significantly affecting the

convergence behavior.

7.6.5 MUSHRA

The perceived quality of the processed stereo signals was evaluated through the stan-

dardized subjective listening test called Multi Stimulus test with Hidden Reference and

Anchor (MUSHRA) [109].

In MUSHRA, the evaluators assess the sound quality of the processed signal, one

hidden reference signal and one hidden anchor signal (3.5 kHz band-limited reference

signal) in comparison with the known reference signal (original unprocessed signal). The

evaluators have access to all the signals, including the reference signal, at the same time

so that they can carry out any comparison between them and hear all the signals at

will. The sound quality of the signals is quantified from 0 (very bad quality) to 100

(indistinguishable from original) according to the continuous quality scale (CQS), which

is shown in Figure 7.4.

In this case, the reference signals were the stereo signals formed by the unprocessed

loudspeaker signals x1(n) and x2(n) while the processed signals were the stereo signals

formed by the processed loudspeaker signals x′1(n) and x′2(n). The hidden reference signal

and hidden anchor signal were used to recognize listeners as outliers.
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Figure 7.4: Grading scale of the MUSHRA test.

Rejecting the listeners classified as outliers, the listening test was performed by 10

evaluators where half of them were experienced listeners, i.e., that have experience in

listening to sound in a critical way. The quality and stereo perception of the signals

were considered together in the grading procedure. Due to the time consumption of the

subjective quality tests, only 5 of the signals recorded in English were assessed.

7.6.6 Signal Database

The signal database was formed by the same 10 speech signals used in Chapters 3, 4 and 5.

In the first experiment, where the impulse responses of the transmission room were fixed,

the signals had a duration of 20 s as in Chapter 1. But in the second experiment, where

the impulse responses of the transmission room changed at t = 20 s, the signals had a

duration of 40 s. A detailed description can be found in Section 3.6.6.

7.7 Simulation Results

This section presents and discusses the performance of the proposed hybrid pre-processors

based on frequency shifting, Hybrid1 and Hybrid2, using the configuration of the telecon-

ference system, the evaluation metrics and the signals described in Section 7.6.

In order to analyze the performance of the decorrelation methods in the SAEC system,

the adaptive filters H1(q, n) and H2(q, n) were updated using the Gauss-Seidel Fast Affine

Projection (GSFAP) algorithm [110] with 20 projections and LH = 2000 samples. Their

stepsize µ and normalization parameter δ were optimized for each signal. From a pre-

defined range for each one, the values of µ and δ were chosen empirically in order to

optimize the curve MIS(n) with regard to minimum mean value within the simulation time.

The optimal curve for the kth signal was denoted as MISk(n) while the COH(ejω) and

ERLE(n) curves obtained with the same values of µ, δ and LH were denoted as COHk(e
jω)

and ERLEk(n), respectively. The MUSHRA grade for the corresponding processed stereo

signal given by the ith listener was defined as MUSHRAk,i.
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Then, the mean curves MIS(n), COH(ejω) and ERLE(n) were obtained by averaging

the curves of each signal according to

MIS(n) =
1

10

10∑

k=1

MISk(n),

COH(ejω) =
1

10

10∑

k=1

COHk(e
jω),

ERLE(n) =
1

10

10∑

k=1

ERLEk(n).

(7.26)

And their respective mean values were defined as

MIS =
1

NT

NT∑

n=1

MIS(n),

COH =
1

2π

2π∑

ω=0

COH(ejω),

ERLE =
1

NT

NT∑

n=1

ERLE(n),

(7.27)

where NT is the number of samples relating to the simulation time. In addition to the mean

coherence value considering the entire spectrum as defined in (7.27), mean coherence values

considering only spectrum sub-bands were also calculated. Moreover, the asymptotic

values of MIS(n) and ERLE(n) were defined as
−−→
MIS and

−−−−→
ERLE, respectively, and were

estimated only by graphically inspecting the curves.

The mean MUSHRA grade for the kth signal was calculated by averaging the grades

of each listener as follows

MUSHRAk =
1

10

10∑

i=1

MUSHRAk,i (7.28)

and the overall MUSHRA grade of a decorrelation method was defined as

MUSHRA =
1

5

5∑

k=1

MUSHRAk. (7.29)

Note that the numbers 10 and 5 in (7.28) and (7.29) refer to the number of listeners and

assessed speech signals, respectively.

7.7.1 First Experiment

In the first experiment, the impulse responses g1 and g2 of the transmission room were

fixed throughout the simulation. In this experiment, the performance of the decorrelation
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methods was analyzed regarding cross-correlation between the processed signals (COH),

misalignment (MIS), echo chancellation (ERLE) and sound quality (MUSHRA).

Figure 7.5 shows the COH(ejω) between the processed signals x′1(n) and x′2(n) obtained

by the HWR, Hybrid1 and Hybrid2 methods. In order to illustrate the bias problem in

SAEC, the COH(ejω) achieved with no decorrelation method, i.e., when x′1(n) = x1(n) and

x′2(n) = x2(n), is also considered. Figure 7.5a makes clear the strong correlation between

the loudspeaker signals x1(n) and x2(n) in a stereophonic teleconference system where

COH(ejω) ≈ 1 in the entire spectrum. The HWR method obtained COH = 0.85, 0.9

and 0.92 in the low, middle and high sub-band, respectively, demonstrating the lower

efficiency of the HWR method in the high frequencies as can be observed in Figure 7.5b.

In Figure 7.5c, the good effect of the FS technique can already be noticed in the high sub-

band (above 4 kHz) where it achieved COH = 0.44, less than half of the value obtained

by the HWR. In the Hybrid2 method, the superiority of the FS technique with respect to

decorrelation is extended to the middle sub-band (2-4 kHz), as illustrated in Figure 7.5d,

where it achieved COH = 0.46. Therefore, because of their greater decorrelation capacity,

it is expected that the proposed hybrid methods outperform the HWR method with regard

to misalignment with an advantage for the Hybrid2 method.

Figure 7.6 shows the MIS(n) and ERLE(n) obtained by the SAEC system with the

decorrelation methods under evaluation. The problem in SAEC is evident in the results

obtained with no decorrelation method where good echo cancellation (high ERLE) is

achieved even with high MIS. In fact, when using decorrelation methods, the performance

of the SAEC system practically does not change regarding ERLE, as can be observed in

Figure 7.6b, but greatly improves regarding MIS, as can be observed in Figure 7.6a. With

no decorrelation method, the SAEC system achieved MIS = −3.1 dB,
−−→
MIS ≈ −3.4 dB,

ERLE = −30.4 dB and
−−−−→
ERLE ≈ −32 dB . It can be observed that both proposed hybrid

methods outperformed the HWR method with a advantage for Hybrid2 method. The

Hybrid2 method achieved MIS = −10.8 dB and
−−→
MIS ≈ −13 dB, outscoring respectively

the HWR by 3.6 dB and 4 dB, and the Hybrid1 by 1.0 dB and 0.9 dB. These results of

MIS(n) and ERLE(n) confirm the results of COH(ejω) previously presented.

With respect to the sound quality, Figure 7.7 shows, for each decorrelation method,

the MUSHRA grades for each signal (MUSHRAk) and the overall MUSHRA grades

(MUSHRA) with a 95% confidence interval. The grades for the hidden references and

anchors are also included. The results showed that, in general, the HWR method pro-

duces processed stereo signals with low degradation as widely recognized in the literature.

And it also demonstrated that both proposed hybrid methods outperformed the HWR

method with a slight average advantage for the Hybrid2. The Hybrid2 method achieved

MUSHRA = 87.2, outscoring the HWR and Hybrid1 methods by 9.4 and 1.8, respectively.

As the difference between the processed stereo signals resides only in the frequencies higher

than 2 kHz, it can be concluded that the distortion introduced by the HWR method in

this frequency range are more audible than those introduced by the frequency shifts.
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Figure 7.5: Average coherence function between the processed loudspeakers signals using: (a) no
decorrelation method; (b) HWR; (c) Hybrid1; (d) Hybrid2.
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Figure 7.6: Average results of the SAEC system with the decorrelation methods: (a) MIS(n);
(b) ERLE(n).
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Figure 7.7: Average MUSHRA grades using the decorrelation methods.

In some of the depicted cases, the size of the 95% confidence interval is greater than

desired. This was due to the subjective nature of the test and to the restricted number of

evaluators. Moreover, the use of non-expert listeners usually tends to increase the variance

of the results. But even so, the results are quite significant because, for all the signals,

the new proposed hybrid methods presented an average perceptual quality superior to the

widely used HWR method.

In conclusion, the results proved that FS can decorrelate stereo speech signals with

small degradation in the global perceptual quality. To this purpose, the value ω0 of the

frequency shift must be chosen appropriately according to the spectrum sub-bands and

not equally in the entire spectrum as did in [5]. However, the use of FS at the lower

frequencies (< 2 kHz) is prohibitive and thus other decorrelation method should be used

in this frequency range. In this work, the HWR method was used. The proposed Hybrid2

method caused the SAEC system to estimate the impulse responses of the echo paths with

an MIS of −13 dB, outperforming the Hybrid1 and HWR by 0.9 and 4 dB, respectively.

Moreover, the Hybrid2 method produced processed stereo signals with a MUSHRA grade

of 87.2, outscoring the Hybrid1 and HWR methods by 1.8 and 9.4, respectively. Table 7.2

summarizes the results obtained by all the decorrelation methods evaluated.

7.7.2 Second Experiment

In the second experiment, the impulse responses g1 and g2 of the reverberation paths in

the transmission room were changed at t = 20 s. In this experiment, the performance of

the decorrelation methods was analyzed only regarding MIS and ERLE.
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Table 7.2: Summary of the results obtained by the HWR, Hybrid1 and Hybrid2 methods.

COH
MIS

−−→
MIS ERLE

−−−−→
ERLE MUSHRA

0-2 2-4 4-8 0-8 kHz

No decorr. 0.95 0.99 0.99 0.98 -3.1 -3.4 30.4 32.3 97.9

HWR 0.85 0.9 0.92 0.9 -7.2 -9 29.8 31.7 77.8

Hybrid1 0.85 0.9 0.44 0.66 -9.8 -12.1 29.9 31.9 85.4

Hybrid2 0.85 0.46 0.44 0.55 -10.8 -13 30.1 32.1 87.2

Figure 7.8 shows the MIS(n) and ERLE(n) obtained by the SAEC system with the

HWR and Hybrid2 methods. The results obtained by the Hybrid1 method are not shown

to make easier the visualization of the details of Figures 7.8b and 7.8c. The influence of

the impulse responses g1(n) and g2(n) of the reverberation paths on SAEC is evident in

Figure 7.8b, where the echo cancellation worsens when they were changed. As discussed

in Section 7.3, this worsening in ERLE is directly related to the magnitude of MIS. It

was proved in the first experiment that the proposed Hybrid2 causes the SAEC system to

achieve the lowest MIS. The same occured in this experiment as shown in Figure 7.8a. Con-

sequently, the Hybrid2 method causes the SAEC system to be less sensitive, with regard

to echo cancellation, to variations in the impulse responses g1 and g2 of the reverberation

paths, as can be observed in detail in Figure 7.8c.

7.8 Conclusions

The use of adaptive filters works quite well in a mono-channel teleconference system as

discussed in Chapter 6. But in a multi-channel system, a bias is introduced in the impulse

responses of the adaptive filters because of the strong correlation between the loudspeaker

signals if they are originated from the same sound source. This results in high misalignment

between the impulse responses of the adaptive filters and echo paths. As a consequence,

although it is possible to have good echo cancellation, the echo cancellation will worsen if

the impulse responses of the reverberation paths change.

To overcome this bias problem, pre-processing blocks are usually built into the multi-

channel system to decorrelate the loudspeaker signals before feeding them to the adaptive

filters. Nevertheless, the pre-processing methods must not introduce audible degradation,

including modifications in the spatial image of the sound source, while keeping complexity

low to be applied in real-time systems. Therefore, the challenge is to develop efficient

decorrelation methods that do not affect the perceptual quality of the multi-channel sound.

In SAEC, the FS technique was already used as a decorrelation method such that

the entire spectrum of one of the loudspeaker signals was shifted relative to the other

but this caused a total destruction of the stereo perception of the signals. In this work,

it was understood that a frequency shift is critically perceived at the low frequencies
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Figure 7.8: Average results of the SAEC system with the decorrelation methods when the impulse
responses of the reverberation paths are changed at t = 20 s: (a) MIS(n), (b) ERLE(n); (c) zoom
in ERLE(n).

of stereophonic images because, in this range, the human perception of the azimuthal

position of sound sources is highly dependent on the interaural time difference. And this

dependence gradually reduces with increasing frequency until it vanishes. Hence, in order

to efficiently apply FS as a decorrelation method in SAEC so that the stereo perception

of the sound signal is not significantly affected, a sub-band FS method was developed.

The application of frequency shifts at low frequencies is practically prohibited be-

cause it introduces audible distortion. On the other hand, the widely used half-wave

rectifier method presents, at low frequencies, a good trade-off between reduction in the

cross-correlation and introduction of audible degradation. Thus, two hybrid pre-processor

methods, Hybrid1 and Hybrid2, that combine frequency shifting and half-wave rectify-

ing were proposed. Considering 8 kHz band-limited speech signals, the Hybrid1 method

applies a frequency shift of 5 Hz to the frequency components higher than 4 kHz and a

half-wave rectifier function with α = 0.5 to the remaining spectrum. The Hybrid2 method
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applies a frequency shift of 5 Hz to the frequency components higher than 4 kHz, a fre-

quency shift of 1 Hz to the frequency components in the range 2− 4 kHz and a half-wave

rectifier function with α = 0.5 to the remaining spectrum.

Simulation results demonstrated that the proposed Hybrid2 method caused the SAEC

system to estimate the impulse responses of the echo paths with an MIS of −13 dB, out-

performing the Hybrid1 and HWR by 0.9 and 4 dB, respectively. Consequently, Hybrid2

method caused the SAEC system to be less sensitive, with regard to echo cancellation,

to variations in the impulse responses of the reverberation paths. Moreover, the Hybrid2

method produced processed stereo signals with a MUSHRA grade of 87.2, outscoring the

Hybrid1 and HWR methods by 1.8 and 9.4, respectively. It may be concluded that the

proposed hybrid methods cause the SAEC system to achieve a better estimate of the real

echo paths and processed stereo signals with less perceptible degradation in comparison

with the HWR method widely used in practical systems. The drawback is a small increase

in the delay of the transmission channel due to the filterbank.
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Chapter 8
Conclusion and Future Work

Communication is a necessity of human beings. With current technologies, communication

systems have been developed in order to fulfill this need and make life easier. Inevitably,

the communication systems use microphones and loudspeakers to pick up and play back the

voice signal, respectively. The acoustic couplings from loudspeakers to microphones, that

occur in the environment where these devices operate, may cause the signal played back by

the loudspeakers to be picked up by the microphones and return into the communication

system. The existence of the acoustic feedback is inevitable and may generate annoying

effects that disturb the communication or even make it impossible.

This work investigated techniques to cancel the effects of the acoustic feedback in two

different communication systems: public address (or reinforcement) and teleconference

(or hands-free communication). In a PA system, a speaker employs microphone(s) and

loudspeaker(s) along with an amplification system to apply a gain on his/her voice signal

aiming to be heard by a large audience in the same acoustic environment. The acoustic

feedback limits the system performance in two ways: first and more important, it causes

the system to have a closed-loop transfer function that, depending on the amplification

gain, may become unstable and, therefore, the MSG of the PA system has an upper

limit; second, even if the MSG is not exceeded, the sound quality is affected by excessive

reverberation. In a teleconference system, individuals employ microphone(s) and loud-

speaker(s) along with a VoIP system to communicate remotely. It is considered that there

is no closed-loop system, although it may exist, and thereby the acoustic feedback limits

the system performance only with regard to sound quality, which is affected by echoes.

Primarily concerned with PA systems, this work detailed a cepstral analysis of a typical

PA system. It was proved that the cepstrum of the microphone signal contains time domain

information about the system, including its open-loop impulse response, if the NGC of the

PA system is fulfilled. This work used these system information contained in the cepstrum

of the microphone to update an adaptive filter in a typical AFC system, where an adaptive

filter estimates the feedback path and subtracts an estimate of the feedback signal from

the microphone signal.

197
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To this end, a cepstral analysis of an AFC system, where an error signal is created

from the microphone signal, was also detailed. It was proved that, in an AFC system, the

cepstrum of the microphone signal may also contain time domain information about the

AFC system including its open-loop impulse response. Then, a new AFC method based

on cepstral analysis of the microphone signal, called AFC-CM, was proposed to identify

the acoustic feedback path and cancel its effects. The AFC-CM method computes the

open-loop impulse response of the PA system from the cepstrum of the microphone signal

and, hereupon, calculates an estimate of the impulse response of the acoustic feedback

path that is used to update the adaptive filter. But for that, besides the fulfillment of

the NGC of the AFC system, it is also required to fulfill a gain condition as a function of

the frequency responses of the forward path and adaptive filter. A complete theoretical

discussion of why this issue limits the use of the cepstrum of the microphone signal in

an AFC system was presented and it was also demonstrated in practice by the proposed

AFC-CM method through simulations performed with single and multiple feedback paths.

Moreover, in an AFC system, it was also proved that the cepstrum of the error signal

may contain time domain information about the AFC system including its open-loop

impulse response. But, as an advantage over the microphone signal, only the fulfillment

of the NGC of the AFC system is required for that. Then, a new AFC method based

on cepstral analysis of the error signal, called AFC-CE, was proposed to identify the

acoustic feedback path and cancel its effects. The AFC-CE method computes the open-

loop impulse response of the AFC system from the cepstrum of the error signal and,

hereupon, calculates an estimate of the impulse response of the acoustic feedback path

that is used to update the adaptive filter. Improvements in performance of the AFC-

CM and AFC-CE methods by the use of smoothing windows and highpass filtering were

also proposed. Several simulations carried out considering single and multiple acoustic

feedback paths demonstrated the effectiveness of the proposed AFC-CE method.

With regard to teleconference systems, the cepstral analysis, which is the basis of the

proposed AFC methods, was applied in a different way to develop a new approach for

mono-channel AEC. As a result, we proposed three new AEC methods: the AEC method

based on cepstral analysis with no lag (AEC-CA), the improved AEC-CA (AEC-CAI)

and the AEC method based on cepstral analysis with lag (AEC-CAL). The AEC-CAI

and AEC-CAL methods may estimate more accurately the echo path impulse response

by performing partially and completely, respectively, the inverse of the overlap-and-add

method in the computation of the frame of the microphone signal. The drawback of the

AEC-CAL is an estimation lag equal to the length of the echo path impulse response.

Simulation results demonstrated that the proposed methods may be more competitive

regarding misalignment than echo cancellation, where they presented a worse performance

in the first seconds. Then, in order to overcome this weakness, hybrid AEC methods that

combine the AEC-CAI and AEC-CAL with some traditional adaptive filtering algorithms

were developed and evaluated.
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In SAEC, additional processing is required to decorrelate the loudspeaker signals before

feeding them to the adaptive filters but it must not insert audible degradations, including

modifications in the spatial image of the sound source. The application of frequency shift in

the entire spectrum of the loudspeakers signals was already tried as a decorrelation method

but it destroyed the stereophonic effect. We understood that a frequency shift is critically

perceived at the low frequencies of stereophonic images and this effect gradually reduces

with increasing frequency until it vanishes. Therefore, a sub-band FS was proposed. Since

frequency shifts in the low frequencies are prohibited, the traditional HWR method was

applied below 2 kHz resulting in two new hybrid pre-processors. Results demonstrated

that the proposed hybrid methods cause the SAEC system to achieve a better estimate

of the echo paths and pre-processed stereo signals with less perceptible degradations in

comparison with the HWR method.

8.1 Outlook for Future Work

With regard to the main theme of the work, AFC in PA and reinforcement systems, it

would be interesting to pursue, in future work, the following research lines:

� Despite the experimental tests carried out in this work, it was not possible to validate

the developed AFC-CM and AFC-CE methods, discussed in Chapter 3, in real-time.

This validation should be tackled in future studies primarily through a personal

computer and subsequently a digital signal processor.

� A combination of the developed AFC methods with other techniques to control the

Larsen effect should be addressed. In particular, it would be very interesting to

explore the application of an NHS method to the error signal, after the adaptive

filtering, aiming to smooth the feedback path frequency response that was not mod-

eled by the adaptive filter and further increase the MSG of the system. Moreover,

the NHS approach has already proved to be competitive when the feedback path

impulse response is quickly shifted. Therefore, it would be a very valuable task.

� Another avenue that can be explored is the use of two adaptive filters: foreground

and background. The former would have a small convergence speed and would be

responsible for the conservative solution of the system. The latter would have a fast

convergence speed and would be responsible for tracking changes in the feedback

path. Then, a control mechanism should be developed to decide over time which

filter is most appropriate to be applied to the system. To this end, a comparison

between the energies of the error signals, foreground and background, could be used.

In addition, a comparison between the misalignments present in the cepstra of the

error signals, foreground and background, could also be very helpful. Similar effect

could also be achieved by making the parameter that controls the trade-off between

robustness and tracking rate of the adaptive filter time-varying.
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� The acoustic feedback in hearing aids is another major research topic that deserves

further attention. Its difference from the problem tackled in this work is twofold:

feedback path with very short length and great limitation on the computational

power. The lack of the tail of the feedback path impulse response would improve

the performance of the developed AFC methods due to their difficulty in estimating

it, as discussed in Chapter 3. The possibility of an adaptive filter with very short

length will greatly decrease the computational complexity required by the developed

methods. Therefore, we believe that the AFC-CM and AFC-CE methods, developed

in this work, are well placed to cope with this problem. Nevertheless, further research

should be carried out to evaluate their performance under this scenario.

With regard to the second theme of the work, AEC in teleconference and hands-free

communication systems, it would be interesting to pursue, in future work, the following

research ideas:

� Despite the experimental tests carried out in this work, it was not possible to validate

the developed mono-channel AEC methods, discussed in Chapter 6, as well as the

develop pre-processor for SAEC, discussed in Chapter 7, in real-time. This validation

should be tackled in future studies through a personal computer.

� Due to the constraint that the microphone signal must contain only the echo signal,

the methodology based on cepstral analysis employed in Chapter 6 makes the AEC

system to be sensitive to the ambient noise conditions. Hence, it would be pertinent

to first apply noise reduction techniques, which are widely available in the litera-

ture, to the microphone signal aiming to overcome this limitation and improve the

performance of the developed AEC-CA, AEC-CAI and AEC-CAL methods.

� Finally, the pre-processor based on frequency shifting for SAEC proved to efficiently

decorrelate the high frequency components. However, its use at the low frequencies

(< 2 kHz) is prohibited because it inserts audible degradations in the spatial image of

the sound source. Therefore, further investigation is necessary to develop a technique

able to extend such efficiency to the low frequency components (< 2 kHz) without

affecting the perceptual quality of the stereo signals.
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[95] T. Gänsler and P. Eneroth, “Influence of audio coding on stereophonic acoustic echo
cancellation,” in Proc. IEEE ICASSP, Seatle, USA, May 1998, pp. 3649–3652.



208 REFERENCES

[96] D. R. Morgan, J. L. Hall, and J. Benesty, “Investigation of several types of nonlin-
earities for use in stereo acoustic echo cancellation,” IEEE Transactions on Speech
and Audio Processing, vol. 9, no. 6, pp. 686–696, September 2001.

[97] J. Benesty, D. R. Morgan, J. L. Hall, and M. M. Sondhi, “Synthesized stereo com-
bined with acoustic echo cancellation for desktop conferencing,” in Proceedings of
IEEE Conference on Acoustics, Speech, and Signal Processing, Phoenix, USA, March
1999, pp. 853–856.

[98] ——, “Sterophonic acoustic echo cancellation using nonlinear trasformations and
comb filtering,” in Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing, Seatle, USA, May 1998, pp. 3673–3676.

[99] J. Herre, H. Buchner, and W. Kellermann, “Acoustic echo cancellation for surround
sound using perceptually motivated convergence enhancement,” in Proceedings of
the IEEE International Conference on Accoustics, Speech, and Signal Processing,
Honolulu, Hawaii, USA, April 2007, pp. 17–20.

[100] Y. Joncour and A. Sugiyama, “A stereo echo canceler with pre-processing for correct
echo-path indentification,” in Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing, Seatle, USA, May 1998, pp. 3677–3680.

[101] Y. Joncour, A. Sugiyama, and A. Hirano, “Dsp implementations and performance
evaluation of a stereo echo canceller with pre-processing,” in Proceedings of the 9th
European Signal Processing Conference, Rhodos, Greece, September 1998, pp. 981–
984.

[102] A. Sugiyama, Y. Joncour, and A. Hirano, “A stereo echo canceler with correct
echo-path identification based on an input-sliding technique,” IEEE Transactions
on Signal Processing, vol. 49, no. 11, pp. 2577–2587, November 2001.

[103] A. Sugiyama, Y. Mizuno, L. Kazdaghli, A. Hirano, , and K. Nakayama, “A stereo
echo canceller with simultaneuos 2-channel input slides for fast convergence and
good sound localization,” in Proceedings of the 17th European Signal Processing
Conference, Glasgow, Scotland, August 2009, pp. 1992–1996.

[104] M. Ali, “Stereophonic acoustic echo cancellation system using time-varying all-pass
filtering for signal decorrelation,” in Proceedings of the IEEE International Con-
ference on Acoustics, Speech and Signal Processing, Seatle, USA, May 1998, pp.
3689–3692.

[105] L. Romoli, S. Cecchi, L. Palestini, P. Peretti, and F. Piazza, “A novel approach to
channel decorrelation for stereo acoustic echo cancellation based on missing funda-
mental theory,” in Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing, Dallas, USA, March 2010, pp. 329–332.

[106] S. Cecchi, L. Romoli, P. Peretti, and F. Piazza, “A combined psychoacoustic ap-
proach for stereo acoustic echo cancellation,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 19, no. 6, pp. 1530–1539, August 2011.

[107] J. Blauert, Spatial Hearing, 2nd ed. Cambridge: MIT Press, 1983.



REFERENCES 209

[108] ITU-T G.191, “Software tools for speech and audio coding standardization,” Inter-
national Telecommunications Union, Geneva, Switzerland 2010.

[109] ITU-R BS.1534-1, “Method for the subjective assessment of intermediate quality
level of coding systems,” International Telecommunications Union, Geneva, Switzer-
land 2003.

[110] F. Albu, J. Kadlec, N. Coleman, and A. Fagan, “The gauss-seidel fast affine projec-
tion algorithm,” in IEEE Workshop on Signal Processing Systems, San Diego, USA,
October 2002, pp. 109–114.


