Information Fusion xxx (2013) XXX-XXX

Contents lists available at SciVerse ScienceDirect

Q
INFORMATION |FUSION
Ry Y

Information Fusion -

journal homepage: www.elsevier.com/locate/inffus

An approach to implement data fusion techniques in wireless sensor
networks using genetic machine learning algorithms

AR. Pinto®*, C. Montez®, G. Aratijo®, F. Vasques¢, P. Portugal ¢

2 UNESP, Universidade Estadual Paulista, SP, Brazil

b pGEAS, UFSC, Universidade Federal de Santa Catarina, SC, Brazil
€IDMEC, FEUP, Universidade do Porto, Porto, Portugal

4 INESC TEC, FEUP, University of Porto, Porto Portugal

ARTICLE INFO ABSTRACT

Article history:

Received 25 April 2010

Received in revised form 5 March 2013
Accepted 9 May 2013

Available online xxxx

Wireless Sensor Networks (WSNs) can be used to monitor hazardous and inaccessible areas. In these sit-
uations, the power supply (e.g. battery) of each node cannot be easily replaced. One solution to deal with
the limited capacity of current power supplies is to deploy a large number of sensor nodes, since the life-
time and dependability of the network will increase through cooperation among nodes. Applications on
WSN may also have other concerns, such as meeting temporal deadlines on message transmissions and
maximizing the quality of information. Data fusion is a well-known technique that can be useful for the
enhancement of data quality and for the maximization of WSN lifetime. In this paper, we propose an
approach that allows the implementation of parallel data fusion techniques in IEEE 802.15.4 networks.
One of the main advantages of the proposed approach is that it enables a trade-off between different
user-defined metrics through the use of a genetic machine learning algorithm. Simulations and field
experiments performed in different communication scenarios highlight significant improvements when
compared with, for instance, the Gur Game approach or the implementation of conventional periodic
communication techniques over IEEE 802.15.4 networks.
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1. Introduction

Wireless Sensor Networks (WSNs) are composed of a large
number of sensor nodes (also known as motes), usually with re-
duced size. Each node has a processor, memory, sensors, a wireless
communication module and a power supply. In the most common
situations, the power supply is provided by batteries. These net-
works can be deployed in hazardous areas, where maintenance is
a difficult task. Therefore, energy consumption is a major concern
because in these situations it is very difficult to replace batteries.
Besides energy, applications for WSN may also have to deal with
time-constrained messages [1].

The use of dense networks (i.e. with a high number of nodes per
m?), with hundreds or thousands of nodes, may be an advantage. A
dense WSN can improve the accuracy of results, overpassing the
unreliable nature of individual nodes. However, the usage of dense
networks imposes more complex management approaches [1,2].
The use of autonomic approaches can be an interesting alternative
for dense WSN, since self-management techniques [3] are ade-
quate methodologies to manage large number of nodes.
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In dense networks, the use of data fusion approaches may be an
advantage due to the large number of messages exchanged, since a
data fusion task may merge several messages in an useful and
accurate information for the final user [4]. Additionally, some data
fusion techniques proposed in the literature can deal with delays,
message losses and discards, allowing greater flexibility in both
the choice of the network technology and the communication ap-
proach used to disseminate data on the network [5].

Regarding the large number of nodes, the topology of network
must be considered as being dynamic, as an unpredictable number
of nodes can present hardware, software or communication fail-
ures. Thus, it is extremely difficult to obtain an accurate view of
the network topology, which prevents the use of static scheduling
of messages.

In WSN, applications may have multiple conflicting goals, such
as timing constraints conflicting with energy consumption con-
straints. Another example may be the case of a data fusion applica-
tion that requires a large number of messages to guarantee a
minimum accuracy. Nevertheless, increasing the number of mes-
sage transmissions can also increase the number of collisions. This
leads both to an increase of the energy consumption due to mes-
sage retransmissions and to a reduction of the number of messages
that arrive to the final destination (e.g. message discards due to
retransmission limits).
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The IEEE 802.15.4 [6] has been used extensively as a communi-
cation infrastructure for WSN to support a large number of appli-
cations. These networks may be organized in peer-to-peer or star
topologies. However, large coverage area and obstacles may pre-
vent direct communication between nodes. Therefore, it may be
impossible, in some circumstances, to implement star topologies.
Nevertheless, star topologies constitute an interesting solution
due to several reasons. First, star topologies are simpler to manage
than other alternatives. Moreover, current RF transceivers compat-
ible with IEEE 802.15.4 can operate in 868 MHz or 900 MHz bands
reaching long distances in line-of-sight conditions, which makes
feasible the establishment of large outdoor networks with direct
communication with a base station. Finally, it is important to note
that complex topologies based on cluster-tree approaches are ulti-
mately formed by sets of clusters configured as star topologies.

In this paper, we present a generic approach that allows the
implementation of parallel data fusion techniques in IEEE
802.15.4 networks based on a star topology. The main advantage
of the proposal is the trade-off among different metrics through
the use of a genetic machine learning algorithm - GMLA, which al-
lows obtaining self-management properties in dense wireless sen-
sor networks. The adopted communication scheme is based on local
node decisions to define whether sensed information will be sent,
or not, to the base station. The approach was developed considering
requirements related with: dynamic topology changes, applications
with conflicting goals and the impossibility of human intervention.

In order to assess the advantages of the proposed approach, a
set of simulations was performed to compare it with both the
Gur Game [7] and the use of a simple periodic application running
over IEEE 802.15.4 standard [6]. Aiming to analyze the behavior
and stability of the approach, different simulation scenarios were
considered, varying the number of nodes (from few ones to thou-
sands nodes), the deployment area (100x 100m and
1000 x 1000 m), and node mobility (nodes can enter or leave the
radio range of the base station). Experiments with motes have also
been performed with the purpose of to validate the simulation re-
sults in a real environment. They show that the envisaged ap-
proach is viable to be used on real scenarios.

The remainder of this paper is organized as follow. Section 2
presents the background related to this proposal. In Section 3 re-
lated works are discussed and the proposed model is introduced.
The proposed approach is discussed in Section 4. In Section 5 the
proposal is assessed and results are discussed. Finally, in Section 6
conclusions and final remarks are presented.

2. Background
2.1. [EEE 802.15.4

IEEE 802.15.4 [6] is becoming a de facto standard for low power
and low rate WSNs. The physical layer can operate up to 250 Kbps

of maximum transmission rate, working in different frequencies,
such as the popular 2.4 GHz and 868/900 MHz bands for long range
communication in Europe and North America, respectively. The
MAC layer supports two operational modes that can be selected
by the PAN coordinator: beaconless mode, using a non-slotted
CSMA/CA mechanism; and beacon mode, where beacons are sent
periodically by the PAN coordinator, and nodes are synchronized
by a superframe structure. Since our proposal uses the beaconless
mode, we restrict the following discussion to this operating mode.

Two variables are maintained by each device in beaconless
mode: NB, the number of times CSMA/CA mechanism is required
to backoff and BE, the backoff exponent, which is related to how
many backoff periods a device shall wait before attempting to ac-
cess a channel. There are also three main parameters: macMinBE,
macMaxBe and macMaxCSMABackoffs, which corresponds, respec-
tively, to the initial value of BE, the maximum value of BE and max-
imum number of backoffs before being declared a channel access
failure.

The protocol works in the following manner. The BE is initially
set to macMinBE value. When sending a message, the MAC sublayer
shall delay for a random number of backoff periods in the range of
0-2 x BE — 1, after which requests to the physical layer to perform
a channel assessment. If the channel is assessed to be busy, the
MAC sublayer will increment NB and BE. Once BE reaches to the
macMaxBE value, it remains at this maximum value. If the value
of NB is greater than macMaxCSMABackoffs (default value 4), the
CSMA/CA shall end with a channel access failure status.

Therefore, macMinBE, macMaxBe and macMaxCSMABackoffs
parameters can influence the beaconless CSMA/CA performance.
These default values can decrease battery consumption (a device
tries to retransmit only up to five times before aborting the trans-
mission), however when the number of nodes increases, the com-
munication efficiency drastically decreases [8,9]. Thus, the use of
IEEE 802.15.4 protocol does not seem to be adequate for dense net-
works without addition of a mechanism such as the one proposed
in this work.

2.2. Genetic algorithms and classifier systems

Classifier systems are machine-learning algorithms based on
genetic algorithms [10]. These systems are able to learn simple
rules, called classifiers. In this paper we call it Genetic Machine
Learning Algorithm (GMLA), where “learning”, in this context,
means a continuum online adaptation process to a partially un-
known and dynamic environment. Classifier systems are composed
of three main components (Fig. 1): rules and message system; bank
(usually called apportionment system); and genetic algorithm
(GA).

The main idea behind a classifier system is to model the system,
which represents the problem, by a set of condition-action rules.
As a classifier system is a learning system based on Darwinian
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Fig. 1. Classifier system scheme.
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principles, each rule is assumed to be a “creature” and the set of
rules is a “population” of classifiers, which represents the current
solution. A classifier system interacts with the environment receiv-
ing messages from it, selecting and performing actions.

Fig. 1 outlines the GMLA functioning. Initially, each classifier
has associated a value called budget that represents its adaptation
measure; that is, how good its action is for the system. A message
sent from the environment is perceived by the system (D) and
compared with the condition parts of all classifiers of the popula-
tion. One classifier is selected, and becomes active (). It has to
pay a predetermined amount of its budget to the bank (3). The ac-
tion part from selected classifier interacts with the environment
(@). Depending on the efficiency of its actions in the environment
(®), the bank component may eventually reward the classifier (®).
The classifier system interacts with the genetic algorithm compo-
nent by trying to maximize the amount of reward that receives
from bank. At last, periodically new classifiers are inserted in the
population while other are deleted keeping the population size
constant (9 and @®).

Rules assume generally the following form: if <condition> then
<action>. The meaning of this rule is that the action has to be im-
posed to the environment when the condition is satisfied. Classifi-
ers are generally composed of three characters {0, 1, +}, where x is a
wildcard: it can mean O or 1. A message received by the system can
activate one or more classifiers. Table 1 shows an example of a
classifier population. When the system receives a message
101011 from the environment, then the first classifier will be acti-
vated and action 100 will be executed.

Algorithm 1 outlines the operation of the GMLA. At the startup,
all classifiers receive the same budget (line 1). The system consults
(receives message from) the environment (line 2) and matches
with the condition part of the classifier population (line 3). When
more than one classifier satisfies a predefined condition, the classi-
fier that has the larger budget will be selected. The selected classi-
fier pays a predetermined amount of its budget to the bank (line 4).
The amount of accumulated budget by the bank will be paid to the
last classifier that improved the system performance (lines 5-7).
Therefore, the most adapted classifiers will increase their budgets.
After some consults to the classifier system, in each time interval
called evolution_interval, the genetic algorithm evolves the popula-
tion of classifier in order to achieve better solutions to the problem
(lines 8-10).

Algorithm 1. Classifier System Scheme - GMLA Algorithm

createPopulationOfClassifiers (budget);

receiveConditionFromEnvironment ();

classifier = selectBestClassifier (input_condition);

classifierPayToTheBank (classifier);

if (System_Performance_was_improved) then
classifierReceiveBankReward (classifier);

end if

if (consult==evolution_interval) then
geneticAlgorithmEvolution ();

0: end if

— O 000N UL A WN =

The genetic algorithm component in GMLA assumes a popula-
tion of classifiers for its optimization problem, where individuals
are represented by their genotypes, which are usually a set of bits
or characters. This population is evolved by the GA after a prede-
termined number of consults. At each generation of answers, a
new set of artificial creatures (set of characters) will be generated.
These answers are based on fragments of the most adapted

individuals. The main focus of GA is robustness. Once a system is
more robust, it will require a smaller number of interventions or
redefinitions. Moreover, it will achieve higher levels of adaptation
and it will be able to execute better and longer.

The main difference between classical GA approaches and a
classifier system is that a classifier system just evolves its popula-
tion after some consults to the classifier set. Thus, it will perform
the evolution while it is running.

2.3. Data fusion

In the literature different terms and definitions are used for data
fusion techniques. Two of most often used nomenclatures, usually
accepted as synonyms, are “data fusion” and “information fusion”.
In our work, we consider only correlated data (e.g. data obtained
from sensors that monitors the same physical phenomenon in a
spatio-temporal context) sent to a node that executes a data fusion
operation. According to [4] this approach should be called “redun-
dant information fusion” or just “redundant fusion”. Nevertheless,
in this paper we use the term “data fusion”.

WSNs are often deployed in an environment to detect some
physical phenomenon. This detection can be usually done in a col-
laborative way, i.e. combining data sensed by multiple sensors. The
exchange of information between nodes is required for the reliable
execution of the application due to the limited information gath-
ered by each node, the variability on operating conditions, and also
the unreliability of the nodes [4,5,11-13]. This way, the main tar-
get of a data fusion approach is to combine data sensed by multiple
sensors in order to improve the quality of decisions that will be ta-
ken by a sink (i.e. base station).

In data fusion applications, sensors can be used in a variety of
forms. According to [11], it is possible to distinguish three different
types of sensor fusion: complementary, cooperative and competi-
tive (also named redundant). Sensor fusion is complementary,
when the configuration of sensors is such that they do not depend
on each other, but their data are combined to obtain a more com-
plete perspective of the phenomenon under observation and to
solve the incompleteness of a single sensor data (e.g. multiple cam-
eras examining separate parts of an object). Sensor fusion is coop-
erative, when the network uses data provided by independent
sensors to gather information that would not be available from sin-
gle sensors (e.g. two-dimensional images from cameras observing
the same object at slightly different viewpoints in a 3D vision sys-
tem [12]). On the other hand, sensor fusion is competitive if each
sensor delivers independent and redundant measurements of the
same phenomenon, providing fault tolerance and robustness to
the system.

Collaborative detection can be done in a serial or parallel way,
considering node communication. Parallel data fusion is executed
when all nodes send the sensed data to the base station. On the
other hand, serial data fusion uses routing techniques to collect
data through the network [13]. Hybrid data fusion approaches
organize the data fusion process in clusters or tree-based schemes.
Therefore, parallel data fusion occurs inside a cluster, while cluster
heads (nodes that perform data fusion) exchange data among them
in a serial way.

Table 1

Example of classifier population.
Condition 10#01# 11#1#0 0#1111 100,001
Action 100 111 001 110
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As the communication consumes a significant part of the energy
in wireless networks, ordinary parallel data fusion approaches may
expend more energy than serial data fusion techniques, due to the
fact that all sensed data is sent to a central node. On the other
hand, serial data fusion imposes the utilization of routing algo-
rithms. These routing algorithms are hard to implement in WSNs
and can also incur in greater energy expenditure. This way, the
development of approaches that autonomically adjust the data
sending rate in a parallel data fusion can overcome the main prob-
lem of this technique.

2.4. Self-optimization in dense networks — Gur Game approach

Based on works of the Russian mathematician Tsetlin in the
1960s, Tung and Kleinrock [7] proposed the use of Gur Game: an
approach aiming the self-optimization and self-control properties
in distributed systems. The basic assumption of this work is that
in distributed systems many of the tasks need to be managed in
the absence of explicit coordination [7,14].

In the Gur Game proposal, each node uses a finite state autom-
aton (Fig. 2) that runs by trial and error, seeking to maximize its
probability of reward. This probability value (p) is known by all
nodes and is recalculated by a central node after each period using
a reward probability function. The central node (base station) has
just the responsibility of evaluating for each period the benefit ob-
tained by the system and of broadcasting this value to all nodes.

The underlying idea behind the Gur Game approach is to let
each node to reward or to punish itself in a probabilistic manner,
according to the benefit value obtained by the system, and evalu-
ated from the reward probability function. Regardless of how it
was the last action of the node, it is rewarded with a probability
p or penalized with a probability 1 — p. The finite state machine
automaton in each node has 2 N states, with N states associated
with a particular action X, and other N states associated with an ac-
tion Y; being the value of N regarded as the automaton “memory*
(Fig. 2).

Despite the apparent “selfish” behavior of each node, as dis-
cussed in [7], the final results usually converge to a collective gain.
The intuition behind this behavior is as follows: a node that deci-
des to reward itself remains in one of the states that maintain
the previous actions (because this action presumably benefited
the system). On the other hand, when a node decides to penalize
itself, it changes its state towards a state that changes the previous
action (probably this previous action was not good enough for the
system).

In a WSN with redundant and homogeneous sensor nodes, the
Gur Game can be used to control the total number of messages sent
by nodes to the base station in a periodic application. An example
of a Gur Game reward probability function is shown in Eq. (1),
where nnodes represents the total number of nodes, met represents
the number of messages that reach the base station in the last per-
iod and target means the objective.
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Fig. 3. A typical reward function in Gur Game approach, where the maximum of the
reward function occurs when x axis assumes value 35, i.e. the target value for the
function.
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f(X) = 20 + 80 x efmnodes/10)

x (met— target)2

(1)

Fig. 3 shows the plotting of this reward probability function when
nnodes is equal to 100 and target value is equal to 35.

3. Adopted model
3.1. System architecture

The communication model used in the proposal considers one
master node (base station) and multiple slave nodes (Fig. 4). The
model is designed for periodic applications, thus it is assumed a
interaction pattern with periodic measurements, where the slave
nodes cyclically sense scalar data and send it to the master node
that performs the data fusion operation. Slave nodes are organized
to implement a competitive sensor fusion [12], i.e., they are redun-
dant and sense the same phenomenon. All the slave nodes reach
the master using just one hop communication. That is, a parallel
data fusion is performed in the master node.

The sensor fusion process is organized in monitoring sessions,
which are composed of several macrocycles (MA). A MA corre-
sponds to a checkpoint interval in the GMLA, i.e. a time interval
where master node receives messages, computes and sends new
parameters to slave nodes. One MA is composed of several micro-
cycles (MI). The MI concept is used to synchronize nodes, and also
represents the periodicity of the data fusion task. On each MI, ex-
cept for the first microcycle on each macrocycle, a slave node can
send zero or one message containing the sensed data to the master
node (Fig. 5).

Each message sent by a slave node has an absolute deadline D,
which is the maximum time interval that it must be delivered to
the master node; otherwise, it will be useless for the data fusion

win win win

N,

lose lose

States associated with action Y

Fig. 2. Gur Game automaton with six states. When a node engages in a self-rewarding behavior (win event), its state moves away from the center; when it engages in a self-
punishment (lose event), its states moves toward the center, shifting to the other side if it is already in the center.
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Fig. 5. A monitoring session composed of MA and MI.

task. This absolute deadline is computed based on a relative dead-
line d. We consider an homogeneous architecture where all slave
nodes have the same relative deadline. The absolute deadline of
a slave node at a microcycle n is D = nR + d, where R is the micro-
cycle length.

The master node performs a data fusion operation considering
just the messages that arrived on time. In this work, the master
node just fuses data arrived within the same microcycle. Therefore,
the relative deadline of a message sent in microcycle n is always
0<d<R, and consequently, the absolute deadline is
nR<D<(n+1)R

A sending probability (SP) parameter is considered in the mod-
el. During a MA all slave nodes use the same SP value. This param-
eter is sent by master node to the slave nodes within each
microcycle. For instance, if SP is configured to 0.1, in each micro-
cycle, a slave will send its message with a 10% probability. As the
physical phenomenon that is being sensed is considered to be
homogeneous in the monitoring area, a well-configured SP
parameter will save network energy, reducing the number of
messages in the WSN.

The microcycle length and the relative deadline parameters are
assumed to be known by all nodes in the network. The sending
probability is sent by the master node in the first microcycle of
each MA. This parameter may remain valid during the monitoring
session, or can be changed at the beginning of each macrocycle
based on the network behavior. Slave nodes do not send messages
in this first microcycle; they just receive new parameter values.

During the macrocycle, the master node evaluates performance
metrics, in order to tune the WSN. In the proposed model, two
metrics are considered: Quality of Fusion (QoF) and Efficiency
(Ef). Ef is the ratio between timely received messages (messages re-
ceived by the master node within the deadline) and the number of
messages sent. It is calculated according to Eq. (2):

N
- Mr;
py = =M @
EMS
where N is the number of microcycles since previous macrocycle,
Mr is the number of received messages and E, is the estimated
number of messages sent by slave nodes (3) in the current macro-

cycle. The latter estimates the number of messages that are sup-
posed to be used by the data fusion task:

Eys =SP S+ N (3)

where S is the number of slave nodes in the WSN deployment. Fi-
nally, QoF is the average number of messages received by the mas-
ter node during a monitoring session, which is evaluated according
to Eq. (4):

QoF — 2t &Mr' (4)

The underlying idea of the QoF metric is to represent the quality of
information presented to the data fusion task. A higher number of
messages used by data fusion task results in more reliable
information.
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3.2. Related works

The proposed model has its roots in research works previously
published by the authors, in other related works and in wireless
network standards. The adopted star topology is part of IEEE
802.15.4 standard as one of two alternatives for network organiza-
tion (the another one is peer-to-peer) [6]. Approaches proposed in
[15-17], for example, also use star topologies, where sensor nodes
are able to reach the base station in just one communication hop.

The use of dense WSN, composed of multiple sensor nodes and
a base station in a star network topology, presents some difficult
challenges with conflicting goals that must be solved (for instance,
how to increase dependability and energy efficiency, while meet-
ing time constraints). A typical scenario for such conflicting goals
is increasing the number of nodes in a network to achieve better
reliability, but fewer messages arrive on time to the base station
due to WSN congestion. The difficulty in dealing with this problem
was previously discussed in [2], which proposed a generic manage-
ment architecture that take into account specific characteristics of
WSNs. In addition, in a more recent work [9], the occurrence of this
misbehavior has been highlighted, considering the same metrics
used in this present paper: Ef and QoF. The results show that when-
ever the number of nodes in the network is increased, the QoF
stops growing while the communication efficiency decreases
rapidly.

A metric called QoD (Data Base Freshness), related to the pro-
posed QoF concept, was presented in [18]. Real-time databases deal
with periodic sensor updates and need to execute transactions
within their deadlines using fresh data. However it is a challenge
to respect simultaneously both parameters (timeliness and data
freshness). To address this problem, the authors propose a new
management architecture and introduced flexible QoD manage-
ment schemes.

A similar microcycle concept was used in [19], where it was
called round. The main goal of this concept is to discretize the time
intervals at which decisions are made. In that work, the monitoring
phase (that is equivalent to our macrocycle concept) was divided in
equal duration rounds.

Serial data fusion based on a likelihood ratio test is presented in
[13]. That paper uses routing techniques combined with collabora-
tive detection, in order to decrease energy consumption and to in-
crease detection dependability. Probability of False Alarm (PFA)
and Probability of Detection (PDET) were assumed in order to
achieve a desirable number of samples for fusion. The main idea
is to use as fewer samples as possible, where a minimum level of
quality is guaranteed by PDET and PFA.

A tree-based scheme is considered in [20]. The main objective is
synchronizing multiple levels of data fusion. In that work, each
node has to decide about when to begin the fusion process and
how long to wait before the end of fusion. A redundant data trans-
mission protocol was employed in [15]. The protocol is used to re-
duce the loss ratio of sensed data that is sent to an actuator node. A
star topology is used, and sensor nodes make a decision whether to
send or not data. Therefore, energy consumption and message
losses are reduced. A parallel data fusion scenario was assumed
in [17], where the master node is not aware about the number of
sensor nodes. The data fusion rule (referred as counting rule) im-
poses that the number of packets must reach a pre-defined thresh-
old in order to make a decision.

Chiuso and Schenato have proposed estimators for parallel data
fusion strategies in wireless network environments subject to
noise and packet losses [5]. Four strategies for data fusion were
discussed, and two of them - Measurement Fusion (MF) and
Open-Loop Partial Estimate Fusion (OPEF) - present a behavior suit-
able to be integrated with our proposed approach. Both estimators
are based on the idea that the sensor nodes send their local

estimates to a Fusion Center, which estimates the value of a given
variable monitored in accordance with the measures that reach
this Center. Within this context, it is not necessary to receive mes-
sage transmissions from all nodes in each communication period.
Fig. 6 illustrates the value in nth row and tth column that is a node
information received in Fusion Center in the time instant t.

Q-DAP is a QoS data aggregation technique and processing ap-
proach that is executed at the intermediated nodes of a cluster-tree
network [21]. Thus, the energy efficiency and network lifetime are
increased while end-to-end latency and data loss are decreased.
The main effort in Q-DAP is to determine when and where the data
aggregation must be executed based in local information. The main
drawback of this approach is that it considers a static cluster tree
topology with predetermined routes. Therefore scalability and reli-
ability issues may hinder its inherent quality.

There are also works whose primary goal is to achieve self-star
properties in wireless networks [22-25]. In [22], for example,
requirements to implement self-configuration and self-optimiza-
tion are briefly discussed. Biologically-inspired techniques and
algorithms [23,24] are often used to achieve autonomic properties.
In [23] it is described a three-year project, called BISON, that deals
with self-organization properties in highly dynamic networks. BIS-
NET [24] is a middleware for WSN based on bee colonies organiza-
tion. It implements several agent behaviors like: pheromone
emission, replication, migration and death. For instance, when
some agent detects an event (e.g. temperature change) it will emit
a pheromone in order to alert its neighbors about the environmen-
tal change. When the pheromone level is above some threshold,
the agent that monitors that scalar is replicated. This way, the sca-
lar is monitored by other nodes. Migration is used to transmit data
to base station and death occurs when the level of some scalar is
very low. The similarity of these works with our proposed ap-
proach is the use of biological principles to deal with highly dy-
namic networks and achieve autonomic features. For example,
while BISNET is based on the idea of pheromone and colony of ants
to the development of software agents, our approach adopts genet-
ic algorithm techniques.

4. GMLA approach

The triggering idea for the GMLA proposal is that the use of
dense networks has conflicting goals that must be solved. For
example, increasing the number of nodes in the network in order
to improve reliability can significantly increase the network load,
incurring in fewer messages that reach the destination. To high-
light this characteristic we reproduced some previous experiments
reported in [9]. We used a conventional periodic model in a bea-
conless IEEE 802.15.4 network configured as a star topology with
period equal to 1 s and default CSMA/CA parameters. In this com-
munication pattern (that hereafter is referred as “IEEE 802.15.4"),

Time t=1 t=2 t=3 t=4
s —

e 1 7 21
n 2 7z 7

5 ° z; z3 z;
o 4 75 7 7
p 2 ZZS

Fig. 6. Data fusion operation in networks subject to packet losses e discards. At
time t =4 only messages from nodes 1, 3 and 4 reached the Fusion center. Source:
(51
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Fig. 7. IEEE 802.15.4 Efficiency and QoF behavior.

all nodes wait for the beginning of the period and then try to start
their transmissions.

Fig. 7 illustrates the results from this scenario. It is possible to
observe that increasing the number of nodes (from 100 to 200
nodes), the number of messages that reach the destination (QoF)
is almost constant, due to the sharp drop in efficiency (Ef). This is
an expected result because IEEE 802.15.4 is not an appropriate pro-
tocol for dense network [9].

The main target of the GMLA is to perform a trade-off between
QoF and Ef by adjusting dynamically the sending probability (SP).
The classifier algorithm presented in Algorithm 1 was configured
as shown in Table 2. The proposed classifier is composed of four
parts: Cl1, C2, Al and A2. The form of a classifier is
<C1 + C2>:<A1 + A2>, where C1 indicates if efficiency has increased
or decreased since the last checkpoint, and C2 indicates the effi-
ciency gain level. Al value indicates if SP will be increased or de-
creased, and A2 indicates the level of change in SP.

Algorithm 2. GMLA Algorithm.

1: In: Evolution_interval, LastEf, LastClassifier,
CurrentSendProbability, EstabilizationPhase;

2 Out: NewSP;

3 Ef = calculateEfficiency ();

4: if (Ef > BestEf) then

5: BestSP = LastSP;

6: end if

7 deltaEf = ((LastEf/Ef) — 1) = 100;

8: if(deltakf > 0) then

9: receiveBankReward (LastClassifier);

10: end if

11: CurrentSP = consultClassifierSystem (deltaEf);

12: payTaxToBank (currentClassifier);

13: if (consult == Evolution_interval) then

14: repeat

15: chooseParents (between_the_most_adapted);

16: crossover (); mutate ();

17: generateNewClassifiers (budget);

18: Reposition_Rate = Reposition_Rate — 1;

19: until (Reposition_Rate > 0)

20: end if

21: if (ExpertPhase) then

22: NewSP = BestSP;

23: else

24: NewsSP = CurrentSP;

25: end if

The variation in the efficiency (efficiency delta), which is used
to obtain the C1 and C2 values, is evaluated as follows:

AEf; = (Eg;i] - 1) «100 (5)

The GMLA is shown in Algorithm 2. The classifier initialization gen-
erates 64 classifiers, and each condition is represented by four clas-
sifiers (each condition has four different actions in the population
classifier). The action part (Al + A2) is randomly generated. The
evolution function (selection, crossover and mutation) is executed
just considering the action part (lines 15-16). In this way the con-
dition part of the classifiers is preserved which ensures that all
the conditions of the system will be satisfied in every classifier con-
sult (line 11). During the evolution, new classifiers are generated
and the new classifiers with the lower budget will be replaced in
the population of classifier (line 17). The parent selection is per-
formed in an elitist way (the best classifiers are selected) and muta-
tion probability was set to 0.01. When a classifier is selected, it will
pay 10% of its budget to the bank (line 12). Each classifier that im-
proves the system performance will receive a reward from the bank
(lines 3-10).

The overhead imposed by GMLA is much smaller than the over-
head of traditional GAs. However, the evolution requires a longer
system execution time. The key aspect of GMLA is that the evolu-
tion is done during the execution time, after a predetermined num-
ber of consults that were performed (lines 13-20 in Algorithm 2),
whereas a traditional GA evolutes the candidate solutions before
executing them. This is one of the reasons why we consider
GMLA-based solutions to be more suitable for dynamic systems,
such as WSN applications.

As GMLA is based on a classical classifier system, it could max-
imize Ef but the level of QoF would not be an optimization target.
Thus, in the proposed GMLA, the Genetic Machine Learning Algo-
rithm acts in two consecutive phases (lines 21-25 in Algorithm 2):

1. First Phase (Learning Phase): in the first phase the main goal is
to optimize Ef based on classifier systems. Algorithm 2 is used
and the best results are stored (SPs that could achieve a certain
QoF threshold and that presented the best Ef levels). This phase
is considered to be finished after a pre-defined period of time
and a specific number of best results is discovered. Each SP level
receives a score when it is stored, that will be used in the sec-
ond phase.

2. Second Phase (Expert Phase): The second phase is dictated by
the SP values stored during the Learning Phase. The SP values
that were discovered during the first phase will continue to
be used until they get useless. SP values receive a score when-
ever they are selected. This score is increased by one, each time
they achieve the QoF target, otherwise it is decreased. When a
certain SP score is zero that SP value is discarded, and the next
one will be used. When all the SP are discarded, GMLA returns
again to the Learning Phase.

5. Experimental assessment and simulation results

In this work, the assessment of the GMLA approach was done
both by simulation and experimental assessment with real motes.

Simulations present the advantage of greater flexibility when
dealing with complex scenarios such as hundreds or thousands
of nodes with mobility features. On the other hand, simulation
might not take into account all factors that may occur in a real
environment. Therefore, we also performed a set of measurements
on a real WSN. The purpose of the experimental assessment was
twofold: (i) to validate simulation results in a real environment,
and (ii) to show that the envisaged approach is viable to be used
on real scenarios.
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Table 2
Classifiers configuration.
Field Size Description Codification
Cl 1 bit Indicates variation of Ef 0 = decreased 1 =increased
Cc2 3 bits Indicates variation of Ef level in last Macrocycle 000 = [0%; 12%] 001 = (12%;24%] 010 = (24%;36%] 011 = (36%;48%]
100 = (48%; 64%] 101 = (64%; 72%] 110 =(72%;36%] 111 = (84%; 100%]
Al 1 bit Indicates the increase or decrease of Sp on next Macrocycle 0 = to decrease 1 =to increase
A2 3 bits Indicates the level of change in Sp on next Macrocycle 000 = 12% 001 = 24% 010 =36% 011 =48%
100 = 64% 101 =72% 110 =84% 111 =100%

5.1. Experimental assessment

The GMLA behavior was initially assessed using MicaZ nodes.
The experimental setup was composed of 30 nodes, featuring an
Atmel ATmega128L 8-bit microcontroller with 128 kB of in-system
programmable memory and IEEE 802.15.4 support. TinyOS was
used as the development platform. The deployment area was a
1.3 x 1.3 m square (Fig. 4).

The message sent by master node in each MA has 19 bytes, and
messages sent by slave nodes have 18 bytes (Fig. 5). The memory
footprint is the following: for the Master Algorithm 572 bytes
(RAM memory) and 15,902 bytes (ROM memory); for the Slave
Algorithm 333 bytes (RAM memory) and 12,088 bytes (ROM mem-
ory). IEEE 802.15.4 was used in beaconless mode, channel 16
(2.48 GHz), with a macrocycle of 1s and microcycle of 0.1 s.

The need for two phases when running GMLA is highlighted in
Fig. 8, for an experimental assessment of 30 min, where the Expert
Phase was turned off. In this experiment, the network started with
14 slaves (nodes) and after 15 min of operation, 15 new slaves
were turned on. It is possible to notice three learning phases in
the algorithm. During the 3-15 min period GMLA achieved 80%
of Ef. When the new 15 nodes were turned on, a significative de-
crease in the Ef was noticed. This effect is emphasized during the
period 16-21 min period, when the average of Ef was just 59%.
During the 25-29 min period, and after another learning phase,
the GMLA actuated and achieved 87% of average Ef.

The results emphasize the self-adaptation capability of GMLA,
and it also highlights the need of an Expert Phase, as the efficiency
is never settled due to the behavior of the GA, which always tries
new SP values that can increase Ef.

The same experimental assessment was made using a complete
GMLA (with two phases). The network started with 14 nodes and,

after 7.5 min, 15 nodes were turned on (Fig. 9). After 5 min of
learning phase, the network was already stabilized. Moreover, even
when the density is increased, the network was already stabilized
and it remains in this state until the end of the experiment. There-
fore, it is possible to conclude that GMLA is able to trade-off QoF
and Ef even when the environment has an evolving behavior.

Another experimental assessment of GMLA was made using as
target QoF =7. The results are presented in Fig. 10 for different
number of slaves. The test duration was set to 15 min and each
point in the x axis represents the average of 1 min of tests. During
1 min of tests, there are 60 MA (1 s each MA) and 600 MI (0.1 s
each MI).

Regarding the GMLA assessment, higher levels of Ef were
achieved when compared with the IEEE 802.15.4 case. The only
exception occurs when the number of nodes is below or equal to
19. This behavior was due to the QoF target. In this case GMLA de-
creases Ef trying to achieve the desired QoF. The gain in Ef obtained
by GMLA in comparison with IEEE 802.15.4 means that more mes-
sages can be of useful interest for the data fusion task, meaning
that less energy is spent.

5.2. Simulation results

The GMLA behavior was also assessed by simulation using the
OMNeT++ tool [26]. Several experiments were carried out to com-
pare the results with both IEEE 802.15.4 and the Gur Game. For all
simulated approaches, the IEEE 802.15.4 was assumed as the phys-
ical and MAC underlying protocol.

The parameters for the network, GMLA and Gur Game are
shown in Table 3. Regarding the network parameters, this configu-
ration will incur in a line-of-sight range of approximately 100 m.
Regarding the GMLA:
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Fig. 8. GMLA behavior without Expert Phase.
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Table 3

Network, GMLA and Gur Game parameters for OMNeT++.
Frequency Data rate Transmit power Receiver signal threshold Pathloss exponent MAC retry
Network parameters
2.4 GHz 250 Kbps 0dbm (1 mW) -85 dbm 2 No

Checkpoint interval Evolution interval Replacement rate

Budget amount

Population size Probability of mutation

GMLA parameters

5MI 15 MI 2 100 units 64 0.01
Number of states Number of masters Target Reward function
Gur game parameters

6 1 10 messages

F(x) = 20 + 80 x emmaiem* (met-10

checkpoint interval corresponds to the time interval between
two classifier consults;

evolution interval corresponds to the time interval between
evolutions;

replacement rate corresponds to the number of classifiers that
will be replaced after the evolution;

e probability of mutation is a well-known parameter in the GA
area that means the probability of mutation in the new
classifier.

Regarding the Gur Game, the adopted reward function was the
same represented by Eq. (1) assuming target = 10. There are six

states in automaton (Fig. 2): three states associated with the action
“send message” and other three states associated with the action
“do not send message”.

Two simulation scenarios were defined: one considering static
nodes (Fig. 11a) and another with mobile nodes (Fig. 11b). In both
scenarios the master node was placed at the center of the area and
it sends and receives messages directly from slave nodes (single-
hop assumption). The static scenario represents a square area of
100 x 100 m, which corresponds approximately to the network
diameter formed by the radio range of master node with the
adopted network parameters. Slave nodes are placed uniformly in-
side this region in fixed positions (i.e. no mobility). The number of

Please cite this article in press as: A.R. Pinto et al., An approach to implement data fusion techniques in wireless sensor networks using genetic machine
learning algorithms, Informat. Fusion (2013), http://dx.doi.org/10.1016/j.inffus.2013.05.003



http://dx.doi.org/10.1016/j.inffus.2013.05.003

10

A.R. Pinto et al./Information Fusion xxx (2013) XxX—Xxx

mobile
slave nodes

E L)
o
o v
o
-
master
network diameter ~ node *
- ~ v
il 4 .
/A( ‘\‘ /z' \ Al
/ 03 \\\ Y O /" \ .
i \ / \
1 L4 \ ,” ° o \ Py
Ig ‘3 4 1 =y
1= \ o« 1
(] ) ! >
\
\ slave o % / o
\ \ e /
J | nodes o\ ’
L & [y L] A "
« * = > v
~.100m '~ <

simulated area

(a) Static scenario.

v

1000m
simulated area

(b) Mobile scenario.

Fig. 11. The simulation scenarios with static and mobile nodes.

slave nodes was modified offline, assuming networks with 65, 125,
250, 500, 750, 1000, 1250 and 1500 nodes.

The mobile scenario represents a square region of
1000 x 1000 m. It is assumed that slave nodes can move within
this region. We used the mobility model provided by OMNeT++
with the following parameters: mobility update interval = 100 ms,
speed =5 mps and update interval = 100 ms. The area used in this
scenario is larger than the used in other static one because we
wanted to simulate behaviors where the node density changes
dynamically, with nodes leaving and entering the radio coverage
area of the master node.

5.2.1. Static scenario

Fig. 12 highlights the behavior of GMLA, Gur Game and IEEE
802.15.4 with different number of nodes in static scenarios. A full
assessment of these approaches cannot be done just taking into

account the Ef metric, being also necessary to assess the achieved
QoF. It can be noticed that GMLA have tried to maximize Ef, while
QoF values were maintained at an acceptable level. However,
GMLA does not provide good QoF values when the number of
nodes in the network is lower than 250. In these situations, the
Gur Game approach achieves higher levels of QoF than GMLA
maintaining an acceptable trade-off between QoF and Ef (Gur Game
had always obtained Ef values above or equal to the IEEE 802.15.4).

GMLA presents better results in highly dense networks. The
timeline of GMLA efficiency is showed in Fig. 13 for a network with
1500 nodes. In GMLA approach, SP has a great influence on Ef. If the
SP value is reduced, there will be a smaller number of messages
being sent, and Ef would be maximized (smaller network load
and therefore the packets collision would be reduced). However,
if SP becomes too small, GMLA detects it and tries to increase it.
It is possible to notice that during the first 30 MA (classifier
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Fig. 12. GMLA, Gur Game and IEEE 802.15.4 efficiency and QoF in dense networks with static nodes.
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consults points 1-30) the efficiency shows a variation from 1% to
2%. This behavior is due to the Learning Phase of GMLA. After the
30 MA the Expert Phase starts and the efficiency was stabilized
around 2%. This behavior indicates its adaptability when a dense
WSN is considered.

5.2.2. Mobile scenario

The comparison between the efficiency of GMLA, Gur Game and
IEEE 802.15.4 approaches is highlighted in Fig. 14. Each point in the
graph indicates the average efficiency after 600 s of simulation. It is
possible to notice that GMLA always achieves a higher efficiency
than Gur Game and IEEE 802.15.4. The gain in efficiency is more
than 100% in a network with 250 nodes. As GMLA tries to maxi-
mize Ef, it significantly increases the efficiency. This behavior is
sustained even for high density scenarios when the efficiency is
very low. As an example, with 1500 nodes GMLA achieves
Ef =1.1%, while IEEE 802.15.4 achieves just Ef = 0.5%. This behavior
indicates that GMLA is clearly more suitable for dense and dynamic
networks than Gur Game and IEEE 802.15.4.

6. Conclusion

WHSN applications may require a large number of nodes to mon-
itor an area due to the fact that when more nodes participate in the
sensing task, the obtained information becomes more accurate. Be-
sides, when a high number of nodes is sensing the same phenom-
enon, the low reliability of individual node is overcome through a
cooperative effort. However, the IEEE 802.15.4 standard without
addition of new mechanisms is not suitable for dense wireless

networks because its backoff scheme incurs in a high number of
message collisions and channel access failures, inducing a signifi-
cant degradation of communication efficiency.

There are optimization techniques in the literature that im-
prove the IEEE 802.15.4 MAC backoff algorithm and that can en-
hance the communication performance of dense wireless
networks. However, the use of this kind of approach can just min-
imize the communication problem presented above, because when
the density is increased, the same communication performance
degradation will necessarily occur again.

In this context, approaches that autonomically adjust the per-
centage of sent messages are an interesting alternative to increase
the network throughput and decrease the energy consumption.
The main idea is to tune the nodes in a way that just the necessary
number of messages is sent by them. In this way, this kind of
technique can be considered very important for data fusion
applications.

As aforementioned, there are currently research efforts in data
fusion that consider WSN applications with message loss and pack-
et drops, and which can give rise to new opportunities for the
development of communication approaches that supports this
innovative data fusion paradigm. These data fusion schemes evoke
dynamic communication approaches where nodes can locally de-
cide if they will send or not the collected data. The main advantage
of this scheme is to achieve a trade off between several conflicting
network metrics like: number of messages delivered to the base
station, energy economy, data fusion quality and other.

In this paper we presented a genetic machine learning approach
(GMLA) to optimize the communication efficiency in dense
wireless sensor networks. The proposed approach is able to

C— QoF |IEEE 802.15.4
wezzz QOF Gur Game

18 F
16.3 - -# - Ef IEEE 802.15.4
16 + B 154 - === Ef Gur Game T 35%
™ i —e— Ef GMLA -
S 14t 12.9 - T °
c 129 187, =
c 1 — 1
o 12 10.6 2 25% I'u;
S 104 1 o
o i a2 20% <
.- i 8.0 - 2
o : 70 g 780 2
> 2.5% ] T 15% &
5 | prom ] P w
S ‘ [ PY
(¢} 33 j i ] 10%
26 i E |
%z | | ! /2'4‘ /2'3‘ 20 | 5o
/ %‘\ R 21% % %
==k Ll o SERE: o oe: AN

500

Nodes

1000 1250 1500

Fig. 14. GMLA, Gur Game and IEEE 802.15.4 efficiency in dense network with mobile nodes.
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autonomically adjust the sending rate of a WSN with dynamic
topologies (composed of static or mobile nodes), and presents a
significant performance improvement when compared with a pure
periodic approach based on IEEE 802.15.4 standard and also with
the Gur Game approach. Moreover, the implementation feasibility
of the GMLA in a real data fusion application was proved by the
experimental testbed based on mote prototype.

As a final remark, we observe that the proposed approach was
developed at the application layer; therefore it can be easily used
in COTS (Component of the Shelf) devices, as a framework to sup-
port other well-known data fusion techniques. Further research
directions include the utilization of different types of data fusion
models (serial or hybrid) and the optimization of other GMLA
parameters such as checkpoint interval and evolution interval.
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