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Abstract: The concept of pointwise Fisher consistency (or classification
calibration) states necessary and sufficient conditions to have Bayes consis-
tency when a classifier minimizes a surrogate loss function instead of the 0-1
loss. We present a family of multiclass hinge loss functions defined by a con-
tinuous control parameter λ representing the margin of the positive points
of a given class. The parameter λ allows shifting from classification uncal-
ibrated to classification calibrated loss functions. Though previous results
suggest that increasing the margin of positive points has positive effects
on the classification model, other approaches have failed to give increasing
weight to the positive examples without losing the classification calibra-
tion property. Our λ-based loss function can give unlimited weight to the
positive examples without breaking the classification calibration property.
Moreover, when embedding these loss functions into the Support Vector
Machine’s framework (λ-SVM), the parameter λ defines different regions for
the Karush—Kuhn—Tucker conditions. A large margin on positive points
also facilitates faster convergence of the Sequential Minimal Optimization
algorithm, leading to lower training times than other classification cali-
brated methods. λ-SVM allows easy implementation, and its practical use
in different datasets not only supports our theoretical analysis, but also
provides good classification performance and fast training times.
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1. Introduction

Many of the most used classification algorithms are based on the minimiza-
tion of a surrogate convex loss function since the direct minimization of the 0-1
loss is computationally intractable. Some examples of these algorithms include
Support Vector Machines (SVMs) [8, 10, 34], boosting [13, 7, 22], and logistic
regression [14]. Conditions such as convexity, continuity, and differentiability
of these surrogate loss functions are easy to analyze; however, the statistical
implications of using these surrogate loss functions are not so evident [2]. The
notion of classification calibration was initially defined by Bartlett et al. [2, 3]
as a pointwise form of Fisher consistency for classification. It was shown to be a
necessary and sufficient condition for a binary classifier to be Bayes consistent
when the empirical risk Ψ of a surrogate loss function converges to the minimal
possible Ψ-risk. Tewari and Bartlett [37, Theo. 2] extended this classification cal-
ibration concept to multiclass problems. However, the extension of binary loss
functions to multiclass classification settings is non-trivial, leading to a large
body of research to better understand classification calibration in multiclass
scenarios [23, 26, 37, 41, 42, 43, 28, 40]. The main contribution of this work is
the formulation of a pointwise Fisher consistent (classification calibrated) mul-
ticlass loss function that can give arbitrary high weight to the margin of the
positive points, which is shown to beneficial in terms of classification accuracy
and training times. Our loss function overcomes some limitations of previous
approaches since (i) it allows overweighting the margin of positive points while
maintaining classification calibration, (ii) it yields consistent classification ac-
curacies with respect to the classification calibration domain, and (iii) it can be
efficiently trained when embedded in the Support Vector Machine’s framework
(λ-SVM).

There exist two main strategies to extend binary learning algorithms to a
multiclass setting. The first approach consists of formulating the multiclass clas-
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sification problem as a combination of several binary classification tasks. It in-
cludes strategies such as one-versus-rest, one-versus-one, and pairwise coupling
[1]. Though these strategies are easy to implement, having optimal solutions of
those binary classifiers does not guarantee having a global optimal solution for
the multiclass problem. Additionally, the multiclass loss function does not nec-
essarily inherit the classification calibration properties of its binary counterpart
[37, 26, 42]. For example, the hinge loss function commonly used in Support
Vector Machines has shown to be classification calibrated for binary problems
[25], but the one-versus-rest strategy may be inconsistent when there is no a
dominating class [26]. The second approach is based on the formulation of mul-
ticlass surrogate loss functions to use the same global optimization procedure as
in the binary case. Though several multiclass hinge loss functions can be found
in the literature [39, 9, 23, 28, 19], only two of them have been shown to be
classification calibrated for every multiclass problem: Lee et al.’s loss function
[23] and Liu and Yuan’s loss function1 (reinforced multicategory hinge loss) [28].
However, these approaches present some limitations. On the one hand, Lee et
al.’s loss function does not consider the slack of the positive points of a given
class, so it overlooks valuable information for the classification algorithm as it
will be shown in our experiments (Section 6). On the other hand, the reinforced
multicategory hinge loss considers both the margin of the positive and nega-
tive points of a given class, but experimental results in [28] on two synthetic
datasets show that best classification performances are obtained for values of γ
that overweight the margin of the positive points, and make the loss function
classification uncalibrated. As pointed out by the authors, this is a surprising
result. However, it points out the importance of paying attention to the error
of positive examples. Additionally, the reinforced multicategory hinge loss as-
signs a margin of (L − 1) to the positive points, with L the number of classes,
which is justified as a natural choice to have sum-to-zero loss functions. Unfor-
tunately, using this margin in the context of Support Vector Machines is not
beneficial for the optimization algorithm as it represents a boundary between
different Karush—Kuhn—Tucker (KKT) conditions as we show in Proposition 3
(Section 5). A more detailed comparison between the different multiclass loss
functions proposed in the literature can be found in Section 3.1.

The key contributions of this paper are:

• Formulation of a new family of multiclass hinge loss functions with a single
control parameter λ ∈ R that represents the margin of the positive points
of a given class. Our family of loss functions takes into account both the
error of the positive and negative points of a given class, and it allows
us to freely overweight the error associated to the positive points without
losing classification calibration. A property that was attempted by Liu
and Yuan [28] and Huerta et al. [19], but was not fully completed.

• Characterization of the classification calibration domain of this family of
hinge loss functions. We show that its classification calibration proper-

1Liu and Yuan’s loss function is classification calibrated for certain values of a meta–
parameter γ.
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Fig 1. Connections between different multiclass loss functions proposed in the literature and
our family of variable margin loss functions.

ties can be fully controlled by λ. This analysis reveals that our family
of loss functions is classification calibrated provided that the margin of
the positive points is larger or equal than (L − 2)/2 with L the number
of classes in the problem. This interesting property makes it possible to
define a classification calibrated hinge loss function for every multiclass
classification problem while overweighting the error of positive points. In
other words, as long as one chooses λ /∈ [0, (L−2)/2] one can optimize the
λ meta–parameter guaranteeing the classification calibration property.

• Formulation of a common framework that allows connecting the new fam-
ily of loss functions with other classification calibrated multiclass hinge
loss functions studied in the literature (Figure 1). Certain values of λ re-
cover the hinge loss functions proposed by Lee et al. [23], Liu and Yuan
[28] (γ = 1/2), and Huerta et al. [19], but appropriate values for λ al-
low overcoming some limitations of previous approaches. Lee et al.’s loss
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function does not take into account the margin of the positive points of a
given class, Huerta et al.’s loss function is not classification calibrated for
classification problems with more than three classes, and the reinforced
multicategory hinge loss cannot give large weight to positive classes with-
out losing the classification calibration property.

• New multiclass SVM algorithm, named λ-SVM, formulated under the In-
hibitory Support Vector Machine’s formalism to guarantee sum-to-zero de-
cision functions [19]. λ-SVM implementation is based on Sequential Mini-
mal Optimization (SMO) [30, 20], the de facto standard in non-linear SVM
training software [6]. Our C++ and Matlab implementations of λ-SVMs
are provided as Supplementary Material.

• Theoretical and empirical analysis of the λ-SVM solutions (Karush–Kuhn–
Tucker conditions) as a function of λ to show that choosing λ in [(L −
2)/2, L−1] slows down training times given the presence of different KKT
conditions in the vicinity of λ.

• Empirical proof in real-world datasets of the advantage of (i) using classifi-
cation calibrated loss functions in terms of classification accuracy, and (ii)
overweighting the error of the positive points in terms of computational
speed.

The paper is organized as follows. Section 2 defines classification calibration
for multiclass problems and establishes its relationship with Bayes consistency.
Section 3 presents our family of multiclass hinge loss functions with variable mar-
gin λ and characterizes the relationships between this family of loss functions
and other multiclass losses existing in the literature. Section 4 formulates Theo-
rem 2 that states the range of values of λ that makes our family of loss functions
classification calibrated (classification calibration domain). Section 5 integrates
our family of loss functions into the Support Vector Machines’ framework to
give rise to a new multiclass SVM model with variable margin λ (λ-SVM). Sec-
tion 5 also analyzes λ-SVM solutions and KKT conditions to define a range
of values for λ with good convergence properties. Section 6 provides results on
four publicly available datasets in terms of classification accuracy and training
times as a function of the margin of positive points λ. This section also pro-
vides a comparison with MSVMpack [21], a well-known package for multiclass
Support Vector Machines. Finally, Section 7 formulates the conclusions derived
from this work. A detailed proof of Theorem 2 can be found in Appendix A,
and C++ and Matlab codes for λ-SVMs are provided as Supplementary Mate-
rial [33].

2. Classification calibration for multiclass loss functions

Given an L-class classification problem (L ≥ 2), the goal of a multiclass classi-
fication algorithm is to find a classifier φ : X → Y such that the class label of
every input pattern x ∈ X is correctly estimated. In other words, our goal is
to find a classifier φ such that φ(x) = y for all (x, y) ∈ X × Y . However, this
goal is fully achievable only when the classification problem is separable; oth-
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erwise, the objective is to correctly classify the maximum number of samples.
Without loss of generality, let’s assume that xi ∈ X ⊆ R

M is an input vector,
and yi ∈ Y = {1, 2, . . . , L} is its class label. We are interested in minimizing
the expected misclassification risk that is expressed as R(f) = EXY

[
I[φ(x) �=y]

]
,

where EXY is the expectation with respect to the distribution of X × Y , and
IA is the indicator function taking the value 1 if A is true, and 0 otherwise.
The misclassification risk yields the probability that φ(x) provides an incorrect
prediction for x ∈ X . The least possible R(f), R∗, defines the Bayes risk. This
is the risk associated with the Bayes rule, which is the optimal classification
strategy consisting of predicting the majority class for x. The Bayes risk R∗

is defined as R∗ = EX [1−maxy∈Y Py(x)], where Py(x) = P (Y = y|X = x)
is the probability of class y given the point x. However, in practice we do not
have a whole representation of X × Y , but we have a set of N training pairs
{(xi, yi)}Ni=1. In this case, our goal is to minimize the empirical error on the
training data, which is given by

ε =
1

N

N∑
i=1

I[φ(xi) �=yi] . (1)

Therefore, the minimum possible value of the empirical error is zero, and it
corresponds to the case when all the training points are correctly classified.

In what follows, we assume that the classifier φ is expressed as the combina-

tion of functions f and pred: φ(x) = pred(f(x)); that is, φ : X f−→ R
L pred−−−→ Y .

Here, f is an L-vector that belongs to F , a class of vector functions f : X �→ R
L.

We refer to f(x) = (f1(x), f2(x), . . . , fL(x)) as the decision function vector or
the decision functions of point x. Each coordinate of f corresponds to the eval-
uation in x of the decision function associated with each class. The function
pred discretizes f(x), and it is defined as pred(x) = argmaxj{f j(x)}. Given
that maximizing argument of f is invariant with respect to the addition of a
constant to all entries in f , it is advisable to impose a sum-to-zero constraint in
order to simplify the analysis. Then, the class of vector functions F is defined as

F =
{
(f1(x), f2(x), . . . , fL(x)) |

∑L
j=1 fj(x) = 0 ∀x ∈ X

}
, and vectors f ∈ F

are known as multicategory margin vectors [44].
According to this mathematical framework, the classification function φ is

unequivocally defined by the decision function f and, thus, the goal of the clas-
sifier is to minimize Eq. (1) with respect to f . However, the direct minimization
of Eq. (1) is known to be NP-hard [11, 4], so it is common to minimize in-
stead surrogate loss functions Ψy(f(x)) that approximate the 0-1 loss function
and have good computational guarantees such as differentiability and convex-
ity. More precisely, Ψy(f(x)) is defined as a continuous function from R

L to
R

+, and it can be understood as the loss associated with predicting the label
of x using f(x) when the true label is y. Therefore, the expected risk asso-
ciated with Ψy (Ψ-risk) is defined as RΨ(f) = EXY [Ψy(f(x))], and the em-
pirical Ψ-risk corresponding to a training set of N pairs {(xi, yi)}Ni=1 is given

by R̃Ψ(f) = (1/N)
∑N

i=1 Ψyi(f(xi)). Then, in practice, the classifier is inferred
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from the decision function f̃N that minimizes the empirical Ψ-risk as

f̃N = argmin
f∈F

R̃Ψ(f) = argmin
f∈F

1

N

N∑
i=1

Ψyi(f(xi)). (2)

In this framework, Bartlett et al. formulate the concept of classification cali-
bration as a necessary and sufficient condition to have Bayes consistency when
the empirical risk of a binary loss function Ψy converges to the minimal possi-
ble Ψ-risk [3]. Tewari and Bartlett extend this classification calibration concept
to multiclass problems [37, Theo. 2]. They show that multiclass classification
calibration is equivalent to Bayes consistency assuming convergence of the em-
pirical Ψ-risk to the minimal possible Ψ-risk, and they characterize classification
calibration in terms of geometric properties of the loss function. Interestingly,
Tewari and Bartlett also show that Bayes consistency of binary classifiers does
not automatically imply Bayes consistency of the multiclass loss function and,
thus, the classification calibration problem is more interesting in multiclass set-
tings. The classification calibration definition derives from the minimization of
the Ψ-risk. Writing the Ψ-risk as follows

RΨ(f) = EXY [Ψy(f(x))] = EX
[
EY|x [Ψy(f(x))]

]
(3)

= EX

⎡
⎣∑
y∈Y

Py(x)Ψy(f(x))

⎤
⎦ ,

the minimization of Eq. (3) is equivalent to the minimization of the inner con-
ditional expectation for each x. Initially proposed by Tewari and Bartlett [37,
Definition 1], the classification calibration property can be defined as follows

Definition 1. [37, 42] A surrogate function Ψy(f(x)) is said to be classification
calibrated w.r.t. a margin vector f(x) = (f1(x), f2(x), . . . , fL(x))

T if for all

{Py(x)}y∈Y ∈ ΔL, where ΔL = {P ∈ R
L : Pj ≥ 0 ∀i = 1, . . . , L and

∑L
i=1 Pi =

1} is the probability simplex in R
L, the following conditions are satisfied:

1. The risk minimization problem f̂(x)= argminf(x)∈F
∑

y∈YPy(x)Ψy(f(x))

has a unique solution f̂(x) = (f̂1(x), f̂2(x), . . . , f̂L(x))
T for all x ∈ X ;

and
2. argmaxy∈Y f̂y(x) = argmaxy∈Y Py(x) for all x ∈ X .

Intuitively, Definition 1 states that the loss function Ψy is classification cali-
brated if its minimum allows recovering the index of the maximum probability
for all x ∈ X .

Finally, it is worth noting that classification calibration is closely related
to the concept of proper loss functions. However, classification calibration is
a weaker condition as it only focuses on classification rather than estimating
probabilities as in the case of properness [31]. For a more detailed explanation
of the classification calibration framework and the consequent Bayes consistency
properties, the reader is referred to [3, 37] and references therein.
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3. Family of loss functions with variable margin λ

The analysis of Bayes consistency and classification calibration of several mul-
ticlass hinge loss functions has been extensively addressed in the literature
[23, 26, 37, 41]. However, many existing multiclass loss functions are not clas-
sification calibrated. In order to provide a classification calibrated multiclass
hinge loss function for every multiclass classification problem, we propose to use
a family of loss functions regulated by a control parameter λ. Our set of loss
functions for a data point xi can be expressed as

Ψy(f(xi)) = [λ− fy(xi)]+ +
∑
j �=y

[1 + fj(xi)]+ (4)

s.t.

L∑
j=1

fj(xi) = 0 , (5)

where [ρ]+ takes the value ρ for ρ ≥ 0, and 0 otherwise. Intuitively, the above
equation imposes variable margin λ for points in class yi and margin 1 for points
belonging to other classes. Eq. (4)–(5) are indeed a continuum of loss functions
parametrized by λ. Finally, note that Ψy(f(·)) satisfies argminj{Ψj(f(xi))} =
argmaxj{fj(xi)} = pred(xi).

3.1. Connection with other multiclass loss functions

The connection between our family of loss functions and some other multi-
class loss functions proposed in the literature is shown in Figure 1. Certain
values of the parameter λ allow us to recover some existing classification cal-
ibrated loss functions. The equivalence to Lee et al.’s loss function [23] is ob-
tained with λ < −1, but our family of loss functions is able to consider the
slack of the positive points of a given class, which is beneficial to efficient
learning (Section 6). The equivalence to the reinforced multicategory hinge
loss [28] is obtained for γ = 1/2 and λ = L − 1, where L is the number
of classes. In fact, the authors suggest to use the reinforced multicategory
hinge loss with γ = 1/2 as a good trade-off between classification accuracy
and classification calibration. However, the best performance is generally ob-
tained in classification uncalibrated scenarios (γ > 1/2) in which the mar-
gin of the positive points dominates in the loss function. On the other hand,
the reinforced multicategory hinge loss sets the margin of positive points λ
equal to (L − 1) to have sum-to-zero decision functions. Beyond the math-
ematical convenience, this decision restricts the classification calibration do-
main of the loss function to γ ≤ 1/2. In Section 4, we show that our family
of loss functions not only provides optimal decision functions different from
those of the reinforced multicategory hinge loss, but it also allows us to have
a classification calibrated loss function while giving arbitrarily high weight to
the margin of the positive points of a given class. Furthermore, setting the
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margin of positive points equal to (L − 1) has negative effects on the opti-
mizer since three different KKT solutions are obtained for any interval con-
taining λ = L − 1 (Section 5). Our loss function also becomes equivalent to
that of Inhibitory Support Vector Machines (ISVMs) proposed by Huerta et
al. when λ = 1 [19]. Huerta et al. show that their loss function is classi-
fication uncalibrated for problems with more than three classes. This result
matches with that obtained in Section 4. The introduction of the variable
margin in our loss functions makes it possible to define a classification cali-
brated loss function for every classification problem regardless of its number of
classes.

Besides the multiclass loss functions that can be treated as special cases
of our multiclass loss function, other multicategory loss functions can be also
found in the literature. Guermeur and Monfrini propose a new multiclass loss
function with quadratic loss instead of hinge loss (MSVM2 loss function) [18].
As stated by Guermeur and Monfrini, the main advantage of using the 2-norm
loss is that the training algorithm can be expressed, after an appropriate change
of kernel, as the training algorithm of a hard margin machine. Guermeur and
Monfrini established a generalized radius–margin bound on the leave–one–out
error of the hard margin version of their loss function. This provides them with
a differentiable objective function to perform model selection for the MSVM2
loss. However, hinge loss is usually preferred for classification tasks. Additionally,
though Guermeur and Monfrini state that their MSVM2 loss function can be
seen as a quadratic loss variant of the multiclass SVM of Lee et al. [23], the
MSVM2 consistency properties are not discussed. In Section 6, we included a
comparison in terms of classification accuracy and training times between the
MSVM2 loss function implemented in the MSVMpack package [21] and our loss
function.

Liu and Shen’s multiclass loss function [27] is an extension of the binary ψ-
learning originally proposed by Shen et al. [35]. ψ-learning is as another margin-
based technique that replaces the convex SVM loss function by a non-convex
ψ-loss function. Shen et al. show that ψ-learning can achieve good classification
rates while maintaining the margin interpretation. They also show that their
loss function converges to the Bayes decision rule. In contrast, our loss func-
tion extends the hinge loss function traditionally used in SVMs while ensuring
consistency for certain values of λ. As an extension of traditional SVMs, the
λ-SVM problem is convex and solvers commonly used for SVMs can be applied.
However, these solvers are not suitable for the ψ-loss function; a method based
on a difference convex (dc) decomposition is used instead to solve the multiclass
ψ-learning optimization problem.

Finally, the L1MSVM approach is another multiclass Support Vector Ma-
chine model that is based on the L1-norm [38]. L1MSVM simultaneously per-
forms feature selection and classification through an L1-norm penalized sparse
representation. L1MSVM is formulated to use several loss functions that can
be expressed in a unified fashion. Wang and Shen conduct a detailed analysis
of L1MSVM considering Lee et al.’s loss function [23], which is known to be
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classification calibrated. Unlike L1MSVM, in this work we embed our loss func-
tions into the Inhibitory Support Vector Machine framework with an L2-norm
regularization term.

4. Classification calibration domain

According to the framework described in Section 2, the analysis of classification
calibration requires to minimize the inner conditional expectation for each x
in Eq. (3). In what follows, we fix x and omit dependencies on x to simplify
the notation. Replacing Ψy(f) by our set of loss functions in Eq. (3) we obtain

f̂ = argminf
∑L

l=1 Pl

(
[λ− fl]+ +

∑
j �=l[1 + fj ]+

)
. Equivalently,

f̂ = argmin
f

L∑
l=1

Pl[λ− fl]+ + (1− Pl)[1 + fl]+ . (6)

Now, we are ready to formulate the following theorem that characterizes the
classification calibration domain of our family of loss functions.

Theorem 2. Given a multiclass classification problem with L classes, the fam-
ily of loss functions defined in Eq. (4)–(5) is classification calibrated for λ ∈
(−∞, 0) ∪ ((L− 2)/2,∞).

Proof. A detailed proof can be found in Appendix A. The sketch of the proof
can be outlined as follows: for λ ≤ L− 1, it is shown that the optimal decision
functions are lower bounded by −1, while for λ > L − 1 the decision functions
are upper bounded by λ. Taking into account these bounds together with the
sum-to-zero constraint, the minimization problem in Eq. (6) is formulated as
an optimization problem with equality and inequality constraints. Then, the
relationships between decision functions and class probabilities, which allow us
to determine the classification calibration properties of our loss functions, are
stated by the Karush—Kuhn—Tucker (KKT) conditions [5].

According to Theorem 2, we can define classification calibrated multiclass
hinge loss functions for any multiclass classification problem by means of the
scalar parameter λ. Certain values of λ enable not only to have classification
calibrated loss functions, but also, unlike the other classification calibrated loss
function [23], to take into account the margin of positive points. Figure 2 shows
the ratio of classification uncalibrated solutions obtained by Monte Carlo sim-
ulations for different values of the control parameter λ and the number of
classes L. These results were obtained by counting the number of classifica-
tion uncalibrated cases when minimizing the empirical Ψ-risk in Eq. (6) for
10,000 random probability simplex in R

L. Monte Carlo simulations give ev-
idence of the classification calibration domain presented in Theorem 2: λ ∈
(−∞, 0) ∪ ((L− 2)/2,+∞).
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Fig 2. Monte Carlo simulation results on the minimization of the empirical Ψ-risk associated
with our multiclass loss functions with variable margin λ. Figure shows the ratio of classifi-
cation uncalibrated cases as a function of the control parameter λ and for different number
of classes L. The number of simulations was set to 10,000.

5. Classification calibration for Support Vector Machines

Large-margin classifiers make tractable the minimization of the 0-1 loss by using
convex surrogate loss functions. Examples of this approach are Support Vector
Machines [8] and boosting [13]. The general formulation of a large-margin clas-

sification algorithm with regularization is minf∈F (1/N)
∑N

i=1 Ψyi(f(xi)) +
ρJ(f), where J(f) is a regularization term to penalize the model complexity,
and ρ is the regularization parameter. Our proposed loss functions can be used
in any standard regularized empirical risk minimizer. We used the Sequential
Minimal Optimization (SMO) implementation of the Inhibitory Support Vector
Machines (ISVMs) [19] since, as described further down in this section, they
implicitly produce sum-to-zero decision functions for any example, while stan-
dard SVMs do not. For example, Lee et al.’s implementation of SVMs needs to
explicitly add a sum-to-zero constraint not necessary in the ISVM implementa-
tion [23]. The best feature of the ISVM is the easiness of the implementation
that allows a quick adaptation to any variable margin framework.

ISVM is an extension of SVM to provide a simple algorithm for multiclass
classification by directly integrating the concept of inhibition into the SVM
formalism. The objective of the inhibition mechanism behind the ISVM algo-
rithm is to find a hyperplane associated with each class, {wj}Lj=1, that exerts
downward pressure on the rest hyperplanes while trying to maximize its gener-
alization capability. ISVM decision function for class j evaluated in a data point
xi has the form

fj(xi) = 〈wj ,Φ(xi)〉 − μ

L∑
k=1

〈wk,Φ(xi)〉 , (7)
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where Φ is a mapping function from the original input space to a higher-
dimensional space V (feature space) where the optimal hyperplane is calculated.
The parameter μ is a scalar number that regulates the inhibitory term, which is
the key difference with respect to standard SVMs. The optimal decision vector
f is determined by following the standard SVMs’ framework. The ISVM primal
problem is expressed as

min
w

1

2
‖w‖2 + C

NL

N∑
i=1

L∑
j=1

ηij (8)

s.t. ηij ≥ 0 (9)

yijfj(xi)− 1 + ηij ≥ 0, (10)

wherew is the concatenation of the hyperplanes of each class,w = [w1, . . . ,wL],
{ηij} are the slack variables that provide room to handle the noisy data, and
yij takes the value 1 if the pattern xi belongs to class j (i.e., yi = j) and −1
otherwise. Note that now the trade-off between the regularization term and the
loss function is controlled by the cost parameter C instead of the regulariza-
tion parameter ρ. To simplify the notation, in what follows we assume that
the cost parameter C is already normalized by the number of training points
(N) and the number of classes (L). Inhibitory Support Vector Machines use
an input space formed by L concatenations of the original input space X , and
they use a feature space that is the product space VL. Then, an input vec-
tor χi ∈ R

ML is formed by L concatenations of the original training pattern
xi ∈ R

M . The corresponding nonlinear transformation Υ(χ) ∈ VL is defined as
Υ(χ) = (Φ(x),Φ(x), . . . ,Φ(x)) (L times), and Υj(χ) is the composition of Υ(χ)
with the projection operator onto the j-th coordinate subspace corresponding to
the j-th class; that is, Υj(χ) = (0, 0, . . . ,Φ(x), . . . , 0) with all coordinates except
the j-th equal to zero. The transformations Υ and Υj inherit many properties
from the mapping function Φ(x). In particular,

〈Υj(χi),Υj′(χi′)〉 = I[j=j′]〈Φ(xi),Φ(xi′)〉, (11)

〈Υj(χi),Υ(χi′)〉 = 〈Φ(xi),Φ(xi′)〉, (12)

〈Υ(χi),Υ(χi′)〉 = L 〈Φ(xi),Φ(xi′)〉. (13)

Huerta et al. show that the optimal value for μ is μ = 1/L, which can be
obtained directly from the minimization of the Lagrangian of Problem (8)–(10)
[19]. They also show that, in that limit, ISVMs become a tight bound to prob-
abilistic exponential models. The inhibition term, therefore, is the average over
the evaluation of the hyperplanes of each class. Interestingly, μ is dependent on
the number of classes of the problem, but independent of the training points
themselves. This result is especially appealing when working with multiclass
margin vectors since it yields sum-to-zero decision functions without imposing
additional constraints in the optimization problem. ISVM automatically em-
bodies all the zero-sum loss functions:
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L∑
j=1

fj(xi) =

L∑
j=1

{
〈wj ,Φ(xi)〉 −

1

L

L∑
k=1

〈wk,Φ(xi)〉
}

=

L∑
j=1

〈wj ,Φ(xi)〉 − L
1

L

L∑
k=1

〈wk,Φ(xi)〉 = 0 .

The loss function in Eq. (10) corresponds to λ = 1. Therefore, it is straight-
forward to integrate the family of loss functions presented in Eq. (4)–(5) into
the ISVM’s framework. It can be formulated as follows

minw
1

2
‖w‖2 + C

N∑
i=1

L∑
j=1

ηij (14)

s.t. ηij ≥ 0 (15)

−1− (λ− 1)
yij + 1

2
+ fj(xi)yij + ηij ≥ 0 for λ ∈ R . (16)

To obtain the solution to Problem (14)–(16), we compute its Lagrangian as
follows

L(w,η, μ, ζ,α) =

{
1

2
‖w‖2 + C

N∑
i=1

L∑
j=1

ηij −
N∑
i=1

L∑
j=1

ζijηij (17)

−
N∑
i=1

L∑
j=1

αij

(
yij [〈w,Υj(χi)〉 − μ〈w,Υ(χi)〉]

−1− (λ− 1)
yij + 1

2
+ ηij

)}

where the Lagrange multipliers are αij ≥ 0 and ζij ≥ 0. The decision function
associated with the j-th class for a training point xi (Eq. 7) is now expressed
as fj(xi) = 〈w,Υj(χi)〉 − μ〈w,Υ(χi)〉. We calculate the partial derivatives of
L with respect to the primal variables w, η, and μ to make them equal to zero.
It leads to

αij = C − ζij (18)

w =

N∑
i=1

L∑
j=1

αijyij [Υj(χi)− μΥ(χi)] (19)

0 =

N∑
i=1

L∑
j=1

αijyij〈w,Υ(χi)〉 (20)

Then, as in [19, Appendix B], replacing Eq. (19) in Eq. (20) yields the optimal
μ as μ = 1/L. Since the partial derivatives of the Lagrangian w.r.t. μ and w do
not depend on λ, this reasoning is valid for any λ ∈ R, and, thus, sum-to-zero
decision functions are guaranteed for all λ ∈ R. This property makes ISVM’s
framework advantageous for implementing multicategory margin vectors.
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Now, we obtain the ISVM dual problem by applying Eq. (18)–(19) and Prop-
erties (11)–(13) to the Lagrangian in Eq. (17) with μ = 1/L. It leads to the dual
cost function W that has to be maximized with respect to the Lagrange multi-
pliers, αij ,

max
α

W =

N∑
i=1

L∑
j=1

αij lij −
1

2

N∑
i=1

L∑
j=1

N∑
i′=1

L∑
j′=1

αijyijαi′j′yi′j′Ki′i

[
I[j=j′] −

1

L

]
,

s.t. 0 ≤ αij ≤ C,

where lij = 1 + (λ − 1)
yij+1

2 and Kii′ = K(xi,xi′) = 〈Φ(xi),Φ(xi′)〉. Now,
the decision function for the j-th class can be written in terms of the Lagrange
multipliers and the kernel function as

fj(x) =

N∑
i′=1

L∑
j′=1

αi′j′yi′j′K(xi′ ,x)I[j=j′] −
1

L

N∑
i′=1

L∑
j′=1

αi′j′yi′j′K(xi′ ,x) .

We can simplify the evaluation by just computing

fj(x) =

N∑
i′=1

αi′jyi′jK(xi′ ,x) (21)

since the remaining terms simply add the same constant to all the classes. The
class of the test sample x is defined as argmaxj fj(x). Following the notation
in [19], we change the double index notation αij for a new index k running from
1 to NL. Assuming lexicographical order in the αijs, the dual cost function W
can be written as

max
α

W =

NL∑
k=1

αklk − 1

2

NL∑
k=1

NL∑
k′=1

αkykαk′yk′Gkk′ (22)

s.t. 0 ≤ αk ≤ C for all k = 1, . . . , NL, (23)

whereGkk′ =K�((k−1)/L)+1�,�((k′−1)/L)+1�
[
I[(k mod L)=(k′ mod L)] − 1/L

]
. Then,

it is easy to see that the KKT conditions for the λ-SVM training problem are

Vk ≥ 0 for αk = 0 ,

Vk = 0 for 0 < αk < C ,

Vk ≤ 0 for αk = C ,

where Vk = yk(fk − lkyk) = ykfl − lk = ykfk − (1 + (λ− 1)((yk + 1)/2). Huerta
et al. provide a very easy and simple implementation of ISVM with λ = 1 based
on Sequential Minimal Optimization (SMO) [30] that can be easily translated
to the variable margin setting with minimal changes in the computer program.
As originally proposed by Platt [30], the resolution of the proximity to the KKT
condition in the optimization algorithm is controlled by a tolerance parameter
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T > 0 and a numerical resolution ε, which depends on the machine precision.
Then, the fulfillment of the KKT conditions is formulated as follows

Vk ≥ −T for αk < ε , (24)

−T < |Vk| < T for ε < αk < C − ε , (25)

Vk < T for αk > C − ε . (26)

An interesting point of analysis is to determine the stability of the SMO
optimization algorithm by taking into account the different regions of optimal
decision functions defined by λ and summarized in Figure 3 (for more details,
the reader is referred to Appendix A). Note that since SMO is used as opti-
mization algorithm, λ-SVM optimal decision functions are defined as a function
of the optimal Lagrange multipliers α̂js according to Eq. (21), which can be

easily obtained by means of the equality Vi = yi(f̂i − liyi). To illustrate the
negative effect of having different KKT solutions in the proximity of λ in terms
of computational cost, we measured the training times in the simplest case in
which SMO is applied to single point. We set class probabilities to P1 = 0.375,
P2 = 0.34, and P3 = 0.28, we created N = 264 training points, and we set
T = 10−3, ε = 10−6, and C = 106. The resulting training times for different
λ-regions are shown in Figure 3.

The different KKT conditions derived from Figure 3 together with the KKT
numerical conditions in Eq. (24)–(26) allow us to formulate the following propo-
sition.

Proposition 3. The optimal solution for the SVMs with variable margin has
three possible KKT solutions in the domain λ ∈ (L− 1− T, L− 1 + T ) for any
resolution proximity T > 0:

i) V̂1 = 0 and 0 < α̂1 < C ; V̂2 ≤ 0 and α̂2 = C; {V̂j}Lj=3 = 0 and 0 <

{α̂j}Lj=3 < C.

ii) V̂1 ≥ 0 and α̂1 = 0 ; {V̂j}Lj=2 = 0 and 0 < {α̂j}Lj=2 < C.

iii) V̂1 = 0 and 0 < α̂1 < C ; {V̂j}L−1
j=2 = 0 and 0 < {α̂j}L−1

j=2 < C ; V̂L ≥ 0 and
α̂L = 0.

The resolution proximity T in the KKT conditions (Eq. (24)–(26)) implies
to solve the dual problem for an effective margin λeff ∈ (λ− T, λ+ T ). That is
why the SMO algorithm shows a slow convergence for λ in the proximity of the
boundary between different KKT solutions. It should also be noted that there
may exist other points subject to KKT variations inside the same classification
calibration region since the solutions for λ ∈ (−1, 0) and λ ∈ ((L− 2)/2, L− 1)
depend on the class probability distribution, which in turn depends on λ. This
is not the case for λ > (L − 1) since the transition between the two possible
solutions is only defined by the class probabilities; that is, the KKT conditions
are constant given any λ > (L − 1) and any point. It means that the margin
λ = (L − 1) imposed by the reinforced multicategory hinge loss [28], though
guaranteeing classification calibration, may slow down the convergence of the
the SMO algorithm given that the optimizer is searching across different KKT
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Fig 3. Training times of the SMO algorithm trained with a single point x as a function of the λ-regions defined by the classification calibration
domain and the optimal decision functions f̂j(x) =

∑N
i′=1 α̂i′jyi′jK(xi′ ,x).
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Fig 4. Training times of SMO as a function of the margin of positive points λ for a single point
with class probabilities P1 = 0.375, P2 = 0.34, and P3 = 0.28. Figure 4a shows the training
times for λ ∈ [−1000, 5000]. Figure 4b provides detailed training times for λ ∈ [−2, 3].

regions. Proposition 3 and Figure 3 suggest that the margin of the positive
points should be chosen somewhere in (−∞,−1) ∪ (L − 1,+∞) with enough
space with respect to the tolerance T to not incur in KKT instability problems.
The case λ ∈ (−∞,−1) corresponds to Lee et al.’s loss function [23]. However,
values of λ � (L− 1) provide the best training times as shown in Figure 4. The
advantage of strongly considering the margin of the positive points in terms of
training times will be also confirmed in the following section.

6. Experimental evaluation

The aim of this section is to conduct an empirical evaluation in terms of classifi-
cation accuracy and training times of the λ-SVM model introduced in Section 5.
We used four real-world datasets from the UCI data repository [24] described in
Table 1. Some of these datasets involve real applications such as classification
on gas sensor arrays [32]. Base error was obtained by predicting the majority
class in each dataset. In Covtype dataset, a random selection of 50, 000 points
was performed. In the Abalone dataset, age bands were obtained dividing age
by 5. These datasets were chosen because they have a large number of training
points compared to the dimensionality. This favors large values of the cost pa-
rameter C, which in turn can reveal differences between classification calibrated
and uncalibrated loss functions since the regularization term almost vanishes.
Otherwise, under appropriate regularization, all SVM models are classification
calibrated [36].

We generated five different partitions of each experiment. The first 90% of
samples was selected as the training set, and the remaining 10% of samples
constituted the test set. The training samples were used to build the λ-SVM
model. We used a function with compact support as a kernel. Kernels with non-
zero tails such as the Gaussian kernel can be detrimental in scenarios with finite
number of points and C very large since points that are significantly far from
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Table 1

Datasets used to evaluate λ-SVMs

Dataset no. examples no. classes no. attributes Base error
Sensor 13,910 6 128 78.37%
Pendigit 10,992 10 16 89.59%
Covtype 50,000 7 54 51.24%
Abalone 4,177 6 8 51.59%

the point of interest can still have a notable contribution, especially when there
are not enough points in the neighborhood of the point of interest. Specifically,
we used the compactly supported kernel proposed and analyzed in [15, 16, 41].
The compactly supported kernel can be written as follows

KD,ν(x,x
′) = φD,ν(x,x

′)K(x,x′) ,

and,

φD,ν(x,x
′) =

([
1− ‖x− x′‖

D

]
+

)ν

,

where K(x,x′) is the Gaussian kernel, D > 0, and ν ≥ M+1
2 (M is the number

of features). This kernel preserves positive definiteness as shown in [16]. The
function φD(·) induces sparsity since all entries satisfying ‖x−x′‖ ≥ D are set
to zero in the kernel matrix. Therefore, the constant D is called the thresholding
or truncation parameter as it regulates the support size of the kernel KD,ν .
The parameter ν controls the degree of smoothness or differentiability of φD,ν .
Different choices of D and ν produce different compactly supported kernels.
When D → 0, KD,ν(x,x

′) evaluates as zero for every x �= x′, and it is equal
to 1, otherwise. When D → ∞, KD,ν(x,x

′) recovers the Gaussian kernel. Since
the value of ν has no influence in the sparsity of the kernel, it is generally fixed
at some value [41]. In this paper, we fixed ν = �M+1

2 � in order to ensure positive
definiteness. We normalized the parameter γ, which determines the Gaussian

kernel width, by the number of features: K(x,x′) = exp
(
− γ

M ‖x− x′‖2
)
. We

defined D as a function of γ as follows D = (
√

γ/M)−1 to reduce the number
of parameters to adjust by cross validation. The intuition behind the definition
of D is to maintain certain consistency between the Gaussian kernel width and
the support size. The wider the Gaussian kernel, the larger support size.

The optimal cost parameter C and kernel width γ were those with the lowest
error when performing 10 cross–validation on the training set. The cost param-
eter took values in the grid {10i | i = 0, 1, . . . , 7}, and the kernel width γ was
selected from the grid {10i | i = −3,−2, . . . , 3}. The test set was used to report
a reliable estimation of the performance of the model. The algorithm used a
tolerance level of T = 5 · 10−2 to exit. We imposed a training time limit of
2, 500 seconds for the Sensor, Pendigit and Abalone datasets, and a time limit
of 4, 000 seconds for the Covtype dataset. We used our C++ implementation
of λ-SVMs, which is provided as Supplementary Material. The Matlab code for
λ-SVMs can be also found in the Supplementary Material [33].
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Table 2

λ-SVMs classification error rates and training times. L denotes the number of classes in the
dataset. Lee et al. [23], Huerta et al. [19] and Liu and Yuan [28]’s loss functions are
indicated as Lee, ISVM, and RML (Reinforced Multicategory Loss), respectively. Loss

function with λ = 0.1 and ISVM loss function represent classification uncalibrated scenarios
for these datasets. Classification errors and training times correspond to those values of the
cost parameter (C opt.) and kernel width (γ opt.) with the lowest cross-validation error.
Training times marked with (∗) correspond to cases in which the cross validation runs did

not finish in the time limit for the largest values of C

λ

-10,000 0.1 1 (L-1) 100 1,000 10,000

Lee ISVM RML

Sensor Err.(%) 0.56 0.42 0.43 0.46 0.55 0.45 0.35

±0.13 ±0.08 ±0.10 ±0.10 ±0.11 ±0.11 ±0.07

Time (s) 282 287 291 134 75 79 106

C opt. 3 · 106 1 · 106 3 · 106 3 · 106 8 · 106 2 · 106 1 · 105
γ opt. 0.0600 0.0600 0.0700 0.0700 0.2700 0.9500 0.9500

Pendigit Err.(%) 0.36 0.44 0.36 0.35 0.27 0.76 0.82

±0.10 ±0.09 ±0.06 ±0.09 ±0.07 ±0.15 ±0.13

Time (s) 1141(∗) 1180(∗) 1088(∗) 747 60 35 158

C opt. 1 · 107 1 · 107 8 · 106 8 · 106 1 · 107 1 · 107 3 · 105
γ opt. 0.0260 0.0255 0.0260 0.0215 0.0450 0.4300 1.0000

Covtype Err.(%) 13.47 13.47 13.45 13.47 13.44 13.44 13.44

±0.11 ±0.09 ±0.11 ±0.11 ±0.09 ±0.09 ±0.09

Time (s) 830(∗) 854(∗) 847(∗) 798 1230 1225 1227

C opt. 4 · 104 1 · 104 1 · 105 4 · 104 1 · 107 1 · 107 1 · 107
γ opt. 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000

Abalone Err.(%) 29.43 31.15 30.43 29.23 29.86 29.81 31.24

±1.05 ±0.76 ±1.17 ±1.01 ±1.10 ±1.03 ±0.92

Time (s) 247 350 359(∗) 221 164 30 6

C opt. 8 · 105 1 · 106 1 · 106 8 · 105 1 · 107 1 · 107 2 · 106
γ opt. 0.0206 0.0026 0.0005 0.0023 0.0007 0.1000 2.2000

Table 2 shows the average classification errors and training times (in seconds)
over the five test sets when different values of λ are considered in the loss func-
tion. Results correspond to the optimal cost parameter C (C opt.) and kernel
width γ (γ opt.) determined by cross–validation. The values of λ were chosen
to have different classification calibration scenarios according to the analysis
presented in Section 4. Recall that λ < −1 recovers the classification calibrated
loss function originally proposed by Lee et al. [23], λ = 1 provides the ISVM
loss function [19], and λ = (L− 1) is equivalent to the reinforced multicategory
hinge loss [28].

The minimum classification error is always achieved by a classification cal-
ibrated loss function with λ ≥ (L − 1). In general, classification errors for
λ ≥ (L − 1) are either lower or similar to those corresponding to classifica-
tion uncalibrated scenarios, while training times are usually lower. For example,
given the optimal C and γ for each value of λ in the Pendigit dataset, λ-SVMs
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Fig 5. λ-SVM results training times (in seconds) as a function of λ for different values of
the cost parameter C. Results for the mode of the kernel parameter γ with the lowest cross-
validation error for each λ and C are shown. Lee et al. [23], Huerta et al. [19], and Liu and
Yuan [28]’s loss functions are indicated as Lee, ISVM, and RML (Reinforced Multicategory
Loss), respectively.

with large λ are at least 7 times faster than λ-SVMs with smaller values of
λ. Classification rates for the other classification calibrated loss corresponding
to λ < −1 are competitive, but training is slower than for λ ≥ (L − 1). This
emphasizes the importance of counting the margin of positive points in the loss
function in contrast to [28]. Moreover, the fact that training did not finish for
the smallest values of λ in several datasets also corroborates the remarkable
relevance of shifting overweight onto the margin of the positive points. It should
be noted that in the Covtype dataset, the training times for λ � (L − 1) are
the highest since the optimal cost parameter C is set to 107 in these cases;
however, the lowest values of λ did not explore the complete C grid given that
they expired the training time limit. The following analysis of training times as a
function of λ for a given γ and C will show the advantages of taking λ � (L−1)
in terms of computational cost.

Figure 5 shows the average training times for different values of the cost
parameter C as a function of λ. In order to have comparable training times, the
mode of the optimal kernel parameter γ across all the cross validation runs is
chosen for each dataset. Figure 5 shows that the training times for λ � (L− 1)
are significantly lower than those corresponding to loss functions with negative
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λ or λ in the interval ((L−2)/2, (L−1)). Differences are especially noticeable for
the largest values of the cost parameter C. This result proves the advantage of
strongly overweighting the margin of the positive points, and makes preferable
the use of λ � (L − 1) instead of λ < −1 (Lee et al. loss function), λ = 1
(ISVM), or λ = (L − 1) (reinforced multicategory). Finally, the long training
times observed for λ in the interval ((L − 2)/2, (L − 1)) and in the proximity
of λ = (L − 1) are presumably due to the presence of different KKT regions
as analyzed in Section 5. Thus, avoiding values for λ in or close to the interval
((L− 2)/2, L− 1) is strongly recommended.

In short, our classification calibrated loss functions not only provide consis-
tency guarantees that are directly reflected in the performance of the classifi-
cation models, but they also provide excellent training times when the error of
the positive points is significantly overweighted. A good value for λ should be
large enough to strongly consider the margin of the positive points and safely
keep away from the region where transitions between different families of solu-
tions are possible. For example, setting λ = 100L seems an appropriate choice
in terms of classification calibration and training times according to our exper-
imental results. Nevertheless, the best value for λ should ideally be determined
empirically for each dataset by cross validation.

6.1. Comparison with other multiclass-SVM implementations

The aim of this section is to compare our multiclass loss function in terms
of classification accuracy and computational times with other multiclass SVMs
implementation and other loss functions different from those that can be treated
as special cases of λ-SVM. In this section, we compare the λ-SVM solver with
the MSVMpack package [21], an open source software package that implements
the generic multiclass SVM formulation proposed by Guermeur [17]. MSVMpack
uses a Quadratic Programming solver based on the Frank-Wolfe method [12],
and each step of the descent is obtained by solving a linear program (LP) by
means of the lp solve solver [29]. MSVMpack implements four multiclass loss
functions: Weston and Watkins [39], Crammer and Singer [9], Lee et al. [23], and
Guermeur and Monfrini [18]. For more details about the MSVMpack package,
the reader is referred to [21].

We followed the same experimental setup described in Section 6. We included
the kernel with compact support in the MSVMpack implementation thanks
to the flexibility of this software package to customize kernel functions. The
Covtype dataset is not included in the comparison given its high computational
cost. Both implementations, MSVMpack and λ-SVMs were configured to run in
one single processor in order to better control the computational times. Please,
note that our goal is not to compete with the excellent implementation provided
by MSVMpack, but to provide insight into SVMs’ multiclass loss functions in
terms of classification calibration properties and computational cost. The results
for MSVMpack for the Sensors, Pendigit, and Abalone datasets and the four loss
functions (Weston and Watkins, Crammer and Singer, Lee et al., and Guermeur
and Monfrini) are shown in Table 3.
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Table 3

MSVMpack classification error rates and training times. Weston and Watkins [39],
Crammer and Singer [9], Lee et al. [23], and Guermeur and Monfrini [18]’s loss functions
are indicated as WW, CS, Lee, and MSVM2, respectively. Classification errors and training
times correspond to those values of the cost parameter (C opt.) and kernel width (γ opt.)

with the lowest cross-validation error

Loss function

WW CS Lee MSVM2

Sensor Err.(%) 0.53± 0.07 0.65± 0.11 0.61± 0.05 0.46± 0.03

Time (s) 612± 13 249± 15 804± 9 1225± 16

C opt. 5 · 105 1 · 105 105 1 · 106
γ opt. 0.0004 0.0035 0.0009 0.0001

Pendigit Err.(%) 0.27± 0.08 0.36± 0.09 0.31± 0.07 0.29± 0.08

Time (s) 2500± 0 113± 3 760± 13 1246± 5

C opt. 2 · 106 1 · 105 1 · 105 8 · 105
γ opt. 0.0340 0.0170 0.0600 0.0500

Abalone Err.(%) 30.74± 1.10 30.27± 0.86 30.74± 1.28 30.12± 1.00

Time (s) 32± 4 24± 4 112± 2 91± 4

C opt. 8 · 103 6 · 104 3 · 105 5 · 104
γ opt. 0.6200 0.0226 0.0040 0.0015

MSVMpack classification rates are similar to those obtained by λ-SVM.When
the optimal λ is chosen in Table 2, λ-SVMs classification rates are equal or
higher than those obtained by any of the loss functions implemented by MSVM-
pack. This means that using our loss function only can improve the classifica-
tion accuracy. Regarding the training times, in general, λ-SVMs are faster for
large values of λ while maintaining competitive classification accuracies. Since
MSVMpack and λ-SVMs implement Lee et al.’s loss function, both implementa-
tions can be compared. For Lee et al.’s loss function, experimental results show
that (i) MSVMpack and λ-SVM provide similar results; and (ii) training times
are dataset-dependent: MSVMpack implementation is faster that λ-SVM im-
plementation in the Pendigit and Abalone datasets, while λ-SVM is faster than
MSVMpack in the Sensors dataset. Overall, these experimental results show the
efficiency of MSVMpack implementation, but they also reveal that there is still
room for improvement in the loss function itself.

7. Conclusions

In this paper, we have proposed a family of multiclass hinge loss functions
regulated by a control parameter λ that controls the margin of the positive
points of a given class. These surrogate loss functions, Ψy, exhibit different
classification calibration properties as a function of λ. We have determined the
values of λ for which the proposed loss functions are classification calibrated, and
we have shown that our family of loss functions allows us to define a classification
calibrated hinge loss function for every multiclass classification problem. Unlike
other classification calibrated hinge loss functions, we can give arbitrarily high
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weight to the margin of the positive points, which is empirically shown to be
positive for learning. Our family of loss functions is general enough to recover
Lee et al. [23] and Liu and Yuan [28]’s classification calibrated loss functions
by setting λ ≤ −1 and λ = (L− 1), respectively, with L the number of classes.
However, we show that other values of λ allow overcoming some limitations of
previous approaches while maintaining classification calibration properties.

We have embedded our family loss functions in the Support Vector Ma-
chine’s formalism (λ-SVM) and implemented a Sequential Minimum Optimiza-
tion (SMO) algorithm. We have shown that the optimization algorithm has
different convergence rates that can be explained in terms of the classification
calibration domain and the different families of SVMs’ solutions and KKT con-
ditions defined by λ. In particular, values of λ � (L − 1) provide the fastest
convergence while guaranteeing classification calibration.

We have compared the performance of λ-SVMs in four real-world datasets
to conclude that classification calibrated loss functions considering the margin
of positive points only can improve classification uncalibrated loss functions in
terms of classification accuracy. Additionally, λ-SVMs with large values for λ
exhibit the lowest training times, which matches with our theoretical analysis of
SMO’s solutions. These results reveal the importance of strongly overweighting
the positive samples in the learning process.

In conclusion, a value of λ large enough would guarantee classification cal-
ibration while taking the maximum advantage of the positive examples and
providing good convergence rates. Though the optimal value for λ should be
determined in a validation phase, our theoretical and empirical results indicate
that λ = 100L is a good choice. It not only ensures classification calibration,
but it also provides good classification performance and training times.

Appendix A: Detailed proof of Theorem 2

This Appendix provides a detailed proof of Theorem 2. In what follows, we
assume that class probabilities {P1, P2, . . . , PL} for a point x are all different
and ordered as P1 > P2 > . . . > PL, and let f1, f2, . . . , fL be the decision
functions associated with these class probabilities. Before addressing the proof,
let us formulate two properties of our loss function that make the classification
calibration analysis more tractable.

Property 4. Ψy(f(·)) satisfies argminj{Ψj(f(xi))} = argmaxj{fj(xi)} =
pred(xi).

Property 5. Given the ordered class probabilities P1 > P2 > . . . > PL, the
minimizer f̂ of Eq. (6) must verify: f̂1 ≥ f̂2 ≥ . . . ≥ f̂L.

The proof of Theorem 2 is the result of the combination of Lemmas 6–8.

Lemma 6. Given a multiclass classification problem with L classes, the λ-
parametrized family of loss functions defined in Eq. (4)–(5) is classification cal-
ibrated for λ < −1.
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Proof. Firstly, we show that the minimizer f̂ of Eq. (6) is lower bounded by −1
for λ < −1. The solution f1 = L− 1 and f2 = f3 = . . . = fL = −1 is a feasible
solution lower bounded by −1, and it evaluates as (1− P1)L in Eq. (6). Let f1

be another solution with f1
j < −1. We obtain the following chain of inequalities

for the objective function in Eq. (6)

L∑
l=1

Pl[λ− f1
l ]+ + (1− Pl)[1 + f1

l ]+

=

L∑
l=1

Pl[λ− f1
l ]+ +

∑
l �=j

(1− Pl)[1 + f1
l ]+

≥
∑
l �=j

(1− Pl)[1 + f1
l ]+ ≥

∑
l �=j

(1− P1)(1 + f1
l )

= (1− P1)(L− 1− f1
j ) ≥ (1− P1)L .

Then, any solution with fj < −1 produces a larger value in the Ψ-risk than
the solution f1 = L − 1; f2 = f3 = . . . = fL = −1, and, thus, it cannot be
minimizer. Therefore, in what follows, we only need to consider f with fj ≥ −1

for all j = 1, . . . , L. Imposing the sum-to-zero constraint,
∑L

l=1 fl = 0, we obtain
the following inequalities for all fj

− 1 ≤ fj ≤ L− 1 , (27)

and, thus, all the terms [λ−fl]+ in Eq. (6) vanish, and the problem is equivalent
to that proposed by Lee et al. in which the positive examples of a class do not
take part in the loss function [23]. This case has already been shown to be
classification calibrated [23, 26]. We include the proof for completeness’ sake.
For λ < −1, the following equality holds

min
f

L∑
l=1

Pl[λ− fl]+ + (1− Pl)[1 + fl]+

= min
f

L∑
l=1

(1− Pl)(1 + fl) = (L− 1)−min
f

L∑
l=1

Plfl .

Consequently, minimizing Eq. (6) is equivalent to maximizing
∑L

l=1 Plfl.
Then, the problem reduces to

max
f

L∑
l=1

Plfl ,

s.t.
L∑

l=1

fl = 0 ,

fl ≥ −1 for l = 1, 2, . . . , L .

(28)
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The Lagrangian of Problem (28) is given by

L(f ,α, μ) =

L∑
l=1

Plfl +

L∑
l=1

αl(fl + 1)− μ

L∑
l=1

fl , (29)

and the maximizer must satisfy the Karush-Kuhn-Tucker (KKT) conditions [5]:

• Stationarity: ∂L
∂fl

= Pl + αl − μ = 0 for all l = 1, 2, . . . , L.

• Primal feasibility: fl ≥ −1 for all l = 1, 2, . . . , L, and
∑L

l=1 fl = 0.
• Dual feasibility: αl ≥ 0 for all l = 1, 2, . . . , L, and μ ≥ 0.
• Complementary slackness: αl(fl + 1) = 0 for all l = 1, 2, . . . , L.

From the complementary slackness condition, we can ensure that either fl =
−1 (and Pl = μ − αl) or αl = 0 (and Pl = μ). Note that it is not possible to
have fl = −1 for all l = 1, 2, . . . , L since it violates the sum-to-zero condition,
and only one fl can have αl = 0 since all class probabilities are assumed to
be different. Taking into account that the probability associated with αl = 0
is maximum since the remaining probabilities are defined as Pi = μ − αi with
αi ≥ 0, the optimal solution is f̂1 = L−1 (P1 = μ) and f̂m = −1 (Pm = μ−αm)
for m > 1. This solution is classification calibrated.

Lemma 7. Given a multiclass classification problem with L classes, the λ-
parametrized family of loss functions defined in Eq. (4)–(5) is classification cal-
ibrated for λ ∈ [−1, 0) ∪ ((L − 2)/2, L − 1] and classification uncalibrated for
λ ∈ [0, (L− 2)/2].

Proof. For the time being, let us assume that the optimal decision functions are
lower bounded by −1. We show that this assumption is correct at the end of
the proof.

For −1 ≤ λ ≤ L−1, λ generates a disjoint partition of the decision functions
{fl}Ll=1 into the subsets A := {l; fl > λ} and B := {l; fl ≤ λ}. Then, the
following equalities hold

min
f

L∑
l=1

Pl[λ− fl]+ + (1− Pl)[1 + fl]+

= min
f

L∑
l=1

Pl[λ− fl]+ + (1− Pl)(1 + fl)

= min
f

L∑
l=1

Pl ([λ− fl]+ − fl) + (L− 1)

= min
f

∑
l∈A

Pl(−fl) +
∑
l∈B

Pl(λ− 2fl) + (L− 1)

= min
f

{
−
∑
l∈A

Plfl − 2
∑
l∈B

Plfl

}
+ λ

∑
l∈B

Pl + (L− 1) .
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Then, we have the following optimization problem

max
f

∑
l∈A

Plfl + 2
∑
l∈B

Plfl ,

s.t.
L∑

l=1

fl = 0 ,

fl > λ for l ∈ A ,

fl ≤ λ for l ∈ B ,

fl ≥ −1 for l ∈ B .

(30)

The Lagrangian of Problem (30) is given by

L(f ,α,β,γ, μ) =
∑
l∈A

Plfl + 2
∑
l∈B

Plfl

+
∑
l∈A

αl(fl − λ) +
∑
l∈B

βl(λ− fl)

+
∑
l∈B

γl(fl + 1)− μ
∑

l∈A∪B
fl .

On the one hand, the maximizer of Problem (30) must satisfy the KKT condi-
tions for l ∈ A:

• Stationarity: ∂L
∂fl

= Pl + αl − μ = 0 for all l ∈ A.

• Complementary slackness: αl(fl − λ) = 0 for all l ∈ A.
• Primal feasibility: fl > λ for all l ∈ A, and

∑
l∈A∪B fl = 0.

• Dual feasibility: αl ≥ 0 for all l ∈ A, and μ ≥ 0.

From the complementary slackness condition, we can ensure that either fl = λ
or αl = 0; and, then, Pl = μ − αl or Pl = μ, respectively. From the primal
feasibility condition, it is not possible to have fl = λ. Additionally, if there
exists fl with αl = 0, it must be unique since it implies Pl = μ and all the
class probabilities are different. In fact, the probability associated with αl = 0
is maximum according to Property (5).

On the other hand, the maximizer of Problem (30) must satisfy the KKT
conditions for l ∈ B:

• Stationarity: ∂L
∂fl

= 2Pl − βl + γl − μ = 0 for all l ∈ B.
• Complementary slackness: βl(λ− fl) = 0, and γl(fl + 1) = 0 for all l ∈ B.
• Primal feasibility: −1 ≤ fl ≤ λ for all l ∈ B, and

∑
l∈A∪B fl = 0.

• Dual feasibility: βl ≥ 0 and γl ≥ 0 for all l ∈ B, and μ ≥ 0.

From the complementary slackness condition, we can differentiate four cases:

• CASE A: βl �= 0 and γl �= 0. This case is impossible since it implies fl = λ
and fl = −1 simultaneously.

• CASE B: βl �= 0 and γl = 0; then, fl = λ and Pl = (μ+ βl)/2 > μ/2.
• CASE C: βl = 0 and γl �= 0; then fl = −1 and Pl = (μ− γl)/2 < μ/2.
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Fig 6. Relationship between the set of class probabilities {Pl}Ll=1 and the set of decision

functions {fl}Ll=1 for −1 ≤ λ ≤ L−1 according to the KKT conditions of the Ψ-risk minimizer
in Eq. (6). x and y are possible values of the decision function of a given class satisfying
λ < x ≤ L− 1 and −1 < y < λ, respectively.

• CASE D: βl = 0 and γl = 0; then, −1 < fl < λ and Pl = μ/2.

Figure 6 summarizes the analysis of the KKT conditions for A and B subsets.
Given a fixed value for λ and according to the relationships between the decision
functions and the class probabilities imposed by the KKT conditions, different
configurations for A and B are possible:

CASE I: −1 ≤ λ < 0. In order to satisfy
∑

l∈A∪B fl = 0, it is necessary that
there exists x positive (x > λ). The decision function fl taking the value x has
to be that with the maximum class probability (Property (5)). It can be seen
that the remaining decision functions take the value −1 for class probabilities
lower than P1(1 + λ)/(2 + λ), and they evaluate as λ otherwise. In case that
there exists Pl = P1/2, its associated decision function fl also takes the value λ
as it maximizes the objective function in Problem (30). Assuming that n deci-
sion functions are equal to −1 and (L − n − 1) decision functions are equal to
λ, the value of x is imposed by the primal feasibility condition

∑
l∈A∪B fl = 0:

x = n− (L− n− 1)λ ≤ (L− 1). Therefore, our family of loss functions is clas-
sification calibrated for −1 ≤ λ ≤ 0.

CASE II: λ = 0. Two configurations are possible in this case:

• CASE II.1. f = 0. The problem is classification uncalibrated since there
is not a single maximum.

• CASE II.2. The decision functions associated with the n lowest class prob-
abilities take the value −1, the decision function corresponding to the
maximum probability takes the value x = n, and the remaining decision
functions evaluate as λ = 0. Hence, the problem is classification calibrated.

In order to establish when the minimizer is characterized by CASE II.2, we need
to determine when it is better for the objective function in Problem (30) to have
a decision function taking the value −1 instead of λ = 0. By Property (5), it
is sufficient to find out when Problem (30) is larger for fL = −1 (and f1 = 1)
than for fL = 0 (and f1 = 0): 2PL(−1)+P1(1) > 2PL(0)+P1(0) ⇒ PL < P1/2.
When PL = P1/2, the objective function in (30) is 2y P1

2 − yP1 = 0 and then y
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can take any value in the interval (−1, 0). Therefore, the loss function is clas-
sification calibrated when PL < P1

2 and classification uncalibrated otherwise.
This implies that the loss function is classification uncalibrated for λ = 0, since
there exists at least one probability distribution that makes the loss function
classification uncalibrated.

CASE III: 0 < λ < L− 1. Two different cases should be analyzed:

• CASE III.1: A = ∅ and B �= ∅.
• CASE III.2: A �= ∅ and B �= ∅.

Note that it is not possible to have A �= ∅ and B = ∅ since the primal feasibility
condition

∑
l∈A∪B fl = 0 is not satisfied.

First of all, we analyze the distribution of the solutions of Problem (30)
assuming CASE III.1. The loss function is classification calibrated when the
minimizer has a single fl = λ. For the primal feasibility condition

∑
l∈A∪B fl =

0, it must be satisfied that (−1) (L− 2)+ y+λ = 0, and, thus, y = (L− 2)−λ.
Imposing −1 < y < λ, we get that y only exists for λ > (L − 2)/2; otherwise,
more than one decision function needs to be equal to λ. Then, assuming A =
∅, the loss function is classification uncalibrated for 0 ≤ λ ≤ (L − 2)/2 and
classification calibrated for (L− 2)/2 < λ ≤ (L− 1).

Now, we analyze CASE III.2 by using the results from CASE III.1. CASE
III.2 is always classification calibrated as there always exists a single maximum
f1 = x > λ. Therefore, we need to determine when it is better for the objective
function in Problem (30) to have f1 in A (f1 = x > λ) instead of having f1
in B (f1 ≤ λ). As there always exists a feasible solution for the CASE III.1,
making f1 = x > λ is only possible when it actually maximizes the value of
the objective function in Problem (30). Then, for (L− 2)/2 < λ ≤ (L− 1) our
family of loss functions is classification calibrated since CASE III.1 and CASE
III.2 are both classification calibrated.

It remains to analyze the case 0 < λ ≤ (L − 2)/2 where CASE III.1 is
classification uncalibrated, and CASE III.2 is classification calibrated. Let us
characterize the solutions in both cases.

• CASE III.1. nB decision functions are equal to λ, a single decision function
is equal to −1 < y < λ, and (L− 1 − nB) decision functions are equal to
−1. According to the sum-to-zero-constraint, we have (L− 1−nB)(−1)+
nBλ+ y = 0, and, thus,

y = L− 1− nB(λ+ 1) . (31)

Since −1 < y < λ, we obtain nB = �L/(λ + 1)� with nB ≥ 2 for 0 ≤ λ <
(L− 2)/2.

• CASE III.2. nA decision functions are equal to λ, a single decision function
is equal to x > λ, and (L − 1 − nA) decision functions are equal to −1.
Without loss of generality, we assume that there is not a class probability
verifying Pl = P1/2, and, thus, we do not have any decision function
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with value y2. According to the sum-to-zero-constraint, we have (L− 1−
nA)(−1) + nAλ+ x = 0, and, thus,

x = L− 1− nA(λ+ 1) . (32)

Since λ < x < L− 1, we obtain 0 ≤ nA < �L/(λ+ 1)− 1� = nB − 1.

The value of the objective function in Problem (30) for CASE III.1 is

− 2

L∑
i=nB+2

Pi + 2yPnB+1 + 2λ

nB∑
i=1

Pi , (33)

while the value of the objective function in Problem (30) for CASE III.2 is

− 2

L∑
i=nA+2

Pi + 2λ

nA+1∑
i=2

Pi + xP1 . (34)

Therefore, the loss function for 0 ≤ λ ≤ (L− 2)/2 is classification uncalibrated
if there exists a distribution of probabilities {Pi}Li=1 for which Eq. (33) is larger
than Eq. (34) for all nA = 0, 1, . . . , nB−1. Then, we need to impose the difference
between Eq. (33) and Eq. (34) to be positive for all nA = 0, 1, . . . , nB − 1:

−2
∑L

i=nB+2 Pi + 2yPnB+1 + 2λ
∑nB

i=1 Pi −
(
− 2

∑L
i=nA+2 Pi + 2λ

∑nA+1
i=2 Pi +

xP1

)
> 0. Grouping terms, we obtain 2(y+1)PnB+1+2(λ+1)

∑nB
i=nA+2 Pi−(x−

2λ)P1 > 0. Replacing y and x according to equalities in Eq. (31) and Eq. (32),
respectively, we obtain

2(L− 1− nB(λ+ 1) + 1)PnB+1 (35)

+2(λ+ 1)

nB∑
i=nA+2

Pi − (L− 1− nA(λ+ 1)− 2λ)P1 > 0.

To simplify the notation, we define θnB+1 = 2(L− 1− nB(λ+1)+ 1) > 0. Note
that the subset of values of λ satisfying θnB+1 = 0 is a measure-zero set as it
corresponds to values of λ such that (λ + 1) = αL for α ∈ Z

+. Then, the loss
function is classification uncalibrated if we can find a probability distribution
{Pi}Li=1 for which Eq. (35) holds for all nA = 0, 1, . . . , nB − 1. We have the
following system of linear inequalities⎧⎪⎨
⎪⎩

P1(L − 1 − 0 (λ + 1) − 2λ) − 2(λ + 1)PnB − . . . − 2(λ + 1)P3 − 2(λ + 1)P2 < θnB+1PnB+1
P1(L − 1 − 1 (λ + 1) − 2λ) − 2(λ + 1)PnB − . . . − 2(λ + 1)P3 < θnB+1PnB+1

.

.

.

.

.

.

.

.

.
P1(L − 1 − (nB − 2) (λ + 1) − 2λ) − 2(λ + 1)PnB < θnB+1PnB+1
P1(L − 1 − (nB − 1) (λ + 1) − 2λ) < θnB+1PnB+1

⎫⎪⎬
⎪⎭ .

From the last inequality we have PnB+1 > (P1 (L − 1 − (nB − 1) (λ + 1) −
2λ))/θnB+1, and, thus, r = ((L − 1 − (nB − 1) (λ + 1) − 2λ))/θnB+1 < 1 is a

2Since the loss function is classification uncalibrated in this domain (nB ≥ 2), not consid-
ering a subset of probability distributions does not affect to the analysis.
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necessary condition to have a classification uncalibrated loss function. In fact,
it is easy to see that r < 1/2 for λ > 0. Imposing P1(λ+1)− 2(λ+1)Pi < 0 for
all i = 2, . . . , nB, probability distributions {Pi}Li=1 that make the loss function
classification uncalibrated for all 0 < λ ≤ (L − 2)/2 can be constructed as
follows,

Pi = aiP1 for i = 2, . . . , L ,

P1 =
(
1 +

∑L
i=2 ai

)−1

,

where the coefficients ai are any real numbers satisfying

1
2 < anB < anB−1 < . . . < a3 < a2 < 1 ,

r < anB+1 < 1
2 ,

0 < aL < aL−1 < . . . < anB+2 < r .

In particular, a probability distribution making the loss function classification
uncalibrated for all 0 < λ ≤ (L− 2)/2 is obtained by taking the limit of r when

λ → 0 (r is a decreasing function w.r.t. λ); that is, limλ→0 r(λ) =
(
1
2

)−
and

limλ→0 nB = L−. Then, the distribution given by

1
2 < aL−1 < aL−2 < . . . < a3 < a2 < 1 ,

aL = 1
2 ,

is classification uncalibrated for all 0 < λ ≤ (L − 2)/2. Note that in the limit
this distribution is the same as the one obtained for λ = 0.

To conclude, let us show that the minimizer of the empirical Ψ-risk is lower
bounded by −1. The term in Eq. (6) associated with class i can be written as
the following piecewise function

g(fi) =

⎧⎨
⎩

g1(fi) = Pi(λ− fi) fi < −1 ,
g2(fi) = (−2Pi + 1)fi + (Pi(λ− 1) + 1) −1 ≤ fi ≤ λ ,
g3(fi) = (1− Pi)(1 + fi) fi ≥ λ ,

(36)

and hence, the Ψ-risk for a point x is expressed as
∑L

i=1 g(fi). Function g(fi)
is shown in Figure 7. The monotonicity of g(fi) in the interval [−1, λ] depends
on the prior probability Pi, being monotonically increasing for Pi < 1/2 and
monotonically decreasing otherwise. Note that class probabilities {Pi}Li=2 al-
ways satisfy Pi < 1/2, except for the maximum probability that can be larger
than 1/2. The sum-to-zero constraint together with Property (5) force f1 to be
positive. This constraint also affects to f2, f3, . . . , fL, which might take values
larger than −1 if making f2, f3, . . . , fL equal to −1 has a negative impact on
the minimizer due to the subsequent increase of f1. In other words, if fi>1 has
a value larger than −1 in the solution of Problem (30), it means that it is not
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Fig 7. Contribution of class i to the empirical Ψ-risk of a single point as a function of the
decision value fi when the probability of the class is either 7a lower than 1/2 or 7b larger
than 1/2.

beneficial for the minimizer to decrease the value of this decision function by
paying the cost of increasing the value of other decision functions. If a decision
function fj>1 has a value greater than −1, setting fj < −1 is obviously worse
than having fj = −1 since it does increase not only the contribution of its own
class but also the contributions of some other classes, whose decision functions
are forced to augment to fulfill

∑L
l=1 fl = 0. Note that an increase of f1 could

be beneficial for the minimizer only for fi ∈ (−1, λ) when Pi > 1/2 since g(fi)
is monotonically decreasing in this domain. However, this case is impossible
since it only applies to the majority class and f1 ≥ λ according to the preced-
ing analysis summarized in Figure 6. Without imposing decision functions to
be lower bounded by −1 and assuming instead that the decision functions are
lower bounded by ν < −1, it is also true that f1 ≥ λ. The KKT conditions
for f lower bounded by ν < −1 can be easily inferred from the above analysis.
In this case, the decision functions are in the set {ν, y, λ, x} with y unique and
ν ≤ y ≤ λ < L− 1. Then, necessarily f1 ≥ λ.

Lemma 8. Given a multiclass classification problem with L classes, the λ-
parametrized family of loss functions defined in Eq. (4)–(5) is classification cal-
ibrated for λ > L− 1.

Proof. Firstly, we show that the Ψ-risk minimizer f̂ in Eq. (6) is upper bounded
by λ for λ > L − 1. Let us assume that there exists a solution f1 such that
one decision function, f1

j , is larger than λ. According to Property (5), this

function has to be f1
1 . Then, we parametrize f1 as f1

1 = λ + ε with ε > 0, and
f1
m = −1 + εm with εm ∈ R for m > 1. As f1 is a feasible solution, it must

satisfy
∑L

l=1 fl = 0, and, thus, we obtain the following equality

λ+ ε− L+ 1 +
∑
m>1

εm = 0 . (37)
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We can construct an alternative solution, f2, upper bounded by λ as f2
1 = λ,

f2
m = −1 with 1 < m < L, and f2

L = L−λ−2. It can be shown that the objective
function in Eq. (6) is smaller for f2 than for f1, and, thus, f1 cannot be a
minimizer of Eq. (6). The difference between the value of Eq. (6) for f1 and f2

is (1−P1)ε+
∑

1<l<L{Pl(−εl)+(1−Pl)[εl]+}+PL(−λ+L−1−εL)+(1−PL)[εL]+.
Replacing (−λ + L − 1) according to Eq. (37) and taking into account that
(1−P1) =

∑
l>1 Pl, we obtain

∑
l>1 Plε−

∑
l>1 Plεl+

∑
l>1(1−Pl)[εl]++PLε+∑

l>1 PLεl. Differentiating the subsets of positive and negative εl, we obtain

∑
l>1,εl≤0

{Pl(ε− εl) + PLεl}+
∑

l>1,εl>0

{Pl(ε− 2εl) + PLεl + εl}

=
∑

l>1,εl≤0

{Pl(ε− εl) + PLεl}+
∑

l>1,εl>0

{Plε+ εl(−2Pl + PL + 1)}

≥
∑

l>1,εl≤0

PLε+
∑

l>1,εl>0

{Plε+ εl(−2Pl + 1)} ≥ 0 .

Therefore, f1 cannot be minimizer, and the optimal decision functions in Eq. (6)
are upper bounded by λ.

We generate a disjoint partition of the decision functions {fl}Ll=1 into the
subsets C := {l; fl ≥ −1} and D := {l; fl < −1}. Then, the following equalities
hold

min
f

L∑
l=1

Pl[λ− fl]+ + (1− Pl)[1 + fl]+

= min
f

L∑
l=1

Pl(λ− fl) + (1− Pl)[1 + fl]+

= min
f

∑
l∈C

Pl(λ− fl) +
∑
l∈C

(1− Pl)(1 + fl) +
∑
l∈D

Pl(λ− fl)

= min
f

{
−
∑
l∈C

(2Pl − 1)fl −
∑
l∈D

Plfl

}
+ λ+ |C|−

∑
l∈C

Pl

We need to solve the following optimization problem

max
f

∑
l∈C

(2Pl − 1)fl +
∑
l∈D

Plfl ,

s.t.
L∑

l=1

fl = 0 ,

fl ≥ −1 for l ∈ C ,

fl ≤ λ for l ∈ C ,

fl < −1 for l ∈ D .

(38)

The Lagrangian of Problem (38) is given by
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L(f ,α,β,γ, μ) =
∑
l∈C

(2Pl − 1)fl +
∑
l∈D

Plfl

+
∑
l∈C

αl(fl + 1) +
∑
l∈C

βl(λ− fl)

+
∑
l∈D

γl(−1− fl)− μ
∑

l∈C∪D
fl .

On the one hand, the maximizer must satisfy the KKT conditions for l ∈ C:
• Stationarity: ∂L

∂fl
= 2Pl − 1 + αl − βl − μ = 0 for all l ∈ C.

• Complementary slackness: αl(fl + 1) = 0 and βl(λ− fl) = 0 for all l ∈ C.
• Primal feasibility: fl ≥ −1 and fl < λ for all l ∈ C, and

∑
l∈C∪D fl = 0.

• Dual feasibility: αl ≥ 0 and βl ≥ 0 for all l ∈ C, and μ ≥ 0.

From the complementary slackness condition, we can differentiate four cases:

• CASE A: αl �= 0 and βl �= 0. This case is impossible since it implies
fl = −1 and fl = λ simultaneously.

• CASE B: αl �= 0 and βl = 0; then, fl = −1 and Pl = (1 + μ− αl)/2.
• CASE C: αl = 0 and βl �= 0; then, fl = λ and Pl = (μ+ 1 + βl)/2.
• CASE D: αl = 0 and βl = 0; then, −1 < fl < λ and Pl = (μ+ 1)/2.

On the other hand, the maximizer of Problem (38) must satisfy the KKT con-
ditions for l ∈ D:

• Stationarity: ∂L
∂fl

= Pl − γl − μ = 0 for all l ∈ D.

• Complementary slackness: γl(−1− fl) = 0 for all l ∈ D.
• Primal feasibility: fl < −1 for all l ∈ D, and

∑
l∈C∪D fl = 0.

• Dual feasibility: γl ≥ 0 for all l ∈ D, and μ ≥ 0.

From the complementary slackness condition, we can ensure that either fl = −1,
which is not possible for all l = 1, 2, . . . , L given the sum-to-zero constraint,
or γl = 0 (and Pl = μ). If there exists a decision function fl with γl = 0
(fl = z < −1), it must be unique since all the prior probabilities are different,
and it has to be that associated with the lowest probability. Figure 8 summarizes
the analysis of the KKT conditions for C and D. Let us analyze the two feasible
scenarios:

• CASE I: C �= ∅ and D = ∅. The analysis of the solutions is equivalent to
CASE III.1 in the proof of Lemma 7. The number of decision functions
taking the value λ is given by nB = nC = �L/(λ + 1)�, which is zero for

λ > L− 1. The minimizer in this case is f̂1 = y = L− 1 and f̂m>1 = −1.
Therefore, this case is classification calibrated.

• CASE II: C �= ∅ and D �= ∅. For the time being, we assume that there
does not exist Pl such that Pl = (PL + 1)/2, and, thus, we do not have
any decision function such that fl = y. Then, assuming that n decision
functions take the value λ, the value of z is given by z = n(−λ − 1) +

L − 1 in order to satisfy the primal constraint
∑L

l=1 fl = 0. Imposing
z < −1, we obtain n > L/(λ + 1), which is greater than zero for λ >
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Fig 8. Relationship between the set of class probabilities {Pl}Ll=1 and the set of decision

functions {fl}Ll=1 for λ > L − 1 according to the KKT conditions of the Ψ-risk minimizer
in Eq. (6). y and z are possible values of the decision function of a given class satisfying
−1 < y < λ and z < −1, respectively.

L − 1, and, thus, at least one decision function takes the value λ. When
only one decision function takes the value λ (n = 1), our loss function is
classification calibrated. In fact, this is the case. It is easy to see that the
difference between the Ψ-risk corresponding to the solution for n = 1 and
any other solution for n > 1 is negative, and, thus, the solution for n > 1
cannot be minimizer. Therefore, our loss functions are also classification
calibrated in this case, and the minimizer is given by f̂1 = λ, f̂L = L−λ−2,
and f̂m = −1 for 2 ≤ m ≤ L− 1.

The next question to solve is to determine when the minimizer of our loss
functions is defined by either CASE I or CASE II (n = 1). The difference in the
Ψ-risk between CASE I and II is (L−1−λ)+2P1(λ−L+1)+PL(−λ−1−L),
which is positive when P1 > (1 + PL)/2. Then, the minimizer is defined by
CASE I when P1 < (1 + PL)/2 and by CASE II, otherwise.

Finally, the subset of probabilities not considered in the preceding analysis
and corresponding to case when there exists Pl such that Pl = (PL + 1)/2 is
also classification calibrated for λ > L − 1. Note that this case is only well-
defined when P1 > (PL +1)/2; otherwise, βl must be βl < 0, which violates the
dual feasibility condition. It can be seen that having the decision functions in
either subset {z,−1, y} or {z,−1, y, λ} does not improve the solution f̂1 = λ,

f̂L = L− λ− 2, and f̂m = −1 for 2 ≤ m ≤ L− 1 (CASE II).
Summing up, our family of loss functions is classification calibrated when

λ > L− 1.
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