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a b s t r a c t

Solar Hot Water (SHW) systems are a sustainable and renewable alternative for domestic and low-
temperature industrial applications. As solar energy is a variable resource, performance prediction
methods are useful tools to increase the overall availability and effective use of these systems. Recently,
data-driven techniques have been successfully used for Prognosis and Health Management applications.
In the present work, Deep Learning models are trained to predict the performance of an SHW system
under different meteorological conditions. Techniques such as artificial neural networks (ANN) recurrent
neural networks (RNN) and long short-term memory (LSTM) are explored. A physical simulation model
is developed in TRNSYS software to generate large quantities of synthetic operational data in nominal
conditions. Although similar results are achieved with the tested architectures, both RNN and LSTM
outperform ANN when replicating the data's temporal behavior; all of which outperform naïve pre-
dictors and other regression models such as Bayesian Ridge, Gaussian Process and Linear Regression.
LSTM models achieved a low Mean Absolute Error of 0.55 �C and the lowest Root Mean Square Error
scores (1.27 �C) for temperature sequence predictions, as well as the lowest variance (0.520 �C2) and
relative prediction errors (3.45%) for single value predictions, indicating a more reliable prediction
performance.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

The use of solar thermal technologies for heating and cooling
applications offers a significant development potential worldwide
and can play an important role in energy planning, securing energy
supply and fostering sustainable economic development. In
particular, low-temperature hot water systems are considered the
most mature of these technologies, as large scale projects have
been developed since the 1960s [1]. In this regard, Solar Hot Water
(SHW) systems can be used to directly supply hot water for resi-
dential or commercial needs. To meet low-temperature demands,
non-concentrating flat plate (FPC) or evacuated tube collectors
(ETC) are the most common solutions. SHW systems are frequently
coupled to a thermal storage system, allowing to match solar ra-
diation availability with useful energy production, as demand
profiles are commonly higher during non-insolation hours. SHW
rrea-Jullian).
systems are a commercially proven, efficient alternative for water
heating applications, reducing fossil fuel energy consumption and
their emissions [2]. Still, they can face performance issues when not
correctly designed or appropriately integrated. For instance, SHW
systems are usually combined with auxiliary heating components,
such as gas or electrical boilers, which allows delivering the ther-
mal load in cases of unavailability of solar radiation or depletion of
thermal storage. However, the integration of such systems creates
an additional difficulty to properly identify and locate faults in a
particular component. Therefore, faults in SHW systems may go
unnoticed until the components are too degraded for simple
maintenance procedures, elevating the overall costs and
complexity of the installation. Thus, inspection, continuous moni-
toring, and fault detection are of great importance for a good long-
term performance of solar thermal systems [3].

Prognosis and Health Management (PHM) is an important issue
in modern engineering systems, in which models are designed and
used to detect anomalies, diagnose faults and predict future states
of the system, for instance, the Remaining Useful Life (RUL) of a
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component before failure, given the current operational conditions.
In turn, these models can help to increase the system's availability
and performance by managing maintenance issues [4]. In the past
decades, several approaches have been proposed for this purpose,
coupled with the development of Machine Learning (ML) applica-
tions in engineering systems to assist decision-making analysis. ML
techniques introduced data-driven models which rely less on the
physical analysis of the system, favoring data collection and pro-
cessing instead [5]. A ML algorithm can learn patterns from the
available data, extracting abstract relationships within the studied
variables to classify or predict future values. In this context, Deep
Learning (DL) approaches have become a widely-used tool in
several applications of ML tasks, such as object detection, speech
recognition and replication [6]. These architectures have matured
to approach highly complex and non-linear tasks. These have also
been combined in different applications, such as natural language
processing and estimation of RUL in mechanical components [7,8].
DL frameworks have been used to model and predict different
physical phenomena, such as weather patterns, health manage-
ment, and medical diagnosis, among others [5,9,10], showing
outstanding results. Notable examples of rotary mechanical com-
ponents and lithium-ion batteries have been analyzed through
measurable variables such as vibrations, acoustic emissions, tem-
perature, state of charge and state of health, among others [11e13].
The success of deep architectures resides in their ability to obtain
higher levels of abstraction from the input data. This property en-
hances its feature extraction capabilities and, due to its hierarchical
architecture, it also helps themodel to converge faster. The growing
number of successful cases of these techniques' applications for risk
and reliability assessment of mechanical systems may offer an
additional development path for reliability assessment in thermal
systems.

Machine Learning and DL algorithms have been applied to
describe and predict the performance of thermal systems and solar
energy applications. For instance, Artificial Neural Networks (ANN)
have been applied to analyze thermal systems, particularly heat
pumps, solar thermal and refrigeration technologies showing
excellent results for performance prediction and detection of
anomalies during operation of thermal systems [14]. Ghritlahre and
Prasad [15] presented a literature review related to performance
predictions of solar collector systems, describing over 30 different
representations which assess ANN models for performance pre-
diction for different configurations of thermal systems. Within the
studies reported in this review, some notable examples are the
performance analysis in FPC and ETC [16e18], the performance
prediction of solar hotwater systems [19e21], and the performance
prediction of other thermal components, such as solar assisted heat
pumps [22] and thermal energy storage systems [23]. Ghritlahre
and Prasad highlighted the flexibility of the ANN models to inter-
pret complex and incomplete data, while significantly reducing the
calculation time required to predict performance and obtain
intrinsic characteristics of the system. Different types of neural
models such as Multi-Layered Perceptron (MLP), Radial Basis
Functions (RBF) and Adaptive-Network-Based Fuzzy Inference
System (ANFIS) were applied for performance prediction in the
aforementioned works, successfully acquiring greater accuracy
than other conventional, linear and nonlinear models.

In recent years, other complex deep architectures such as
Recurrent Neural Networks (RNN), have been designed to focus on
specific feature extraction techniques for temporal relationships.
Long Short-Term Memory (LSTM) RNN have been successfully
applied for the estimation of RUL in lithium-ion batteries [12].
Within the most common applications, RNN are particularly well
adapted to analyze time series [6]. A major drawback of standard
neural networks is the underlying assumption that the training and
test examples are independent. Thus, even though ANN have
reached outstanding sequencing results without directly modeling
time, it has limited power over long-range dependencies [24]. RNN
models are, in principle, able to create and process memories of
arbitrary sequences of input data, mixing sequential and parallel
information processing with efficiency [25]. The results of the
aforementioned studies suggest that using deeper architectures to
analyze temporal dependencies, such as RNN, could achieve more
precise results, allowing a better understanding of the periodical
behavior and evaluating the relationships between each compo-
nent in the system. In the industry, the most common LSTM variant
(known as Vanilla LSTM) has been used to estimate the RUL of
different components, which has become one of the most chal-
lenging and significant decision-making indicators for security and
maintenance issues [26].

For instance, in 2018 a comparative study of LSTM in forecasting
day-ahead global horizontal irradiance with satellite data was
presented [27]. The authors highlighted the fact that previous
techniques for forecasting radiation values did not include the use
of LSTM, whereas shallow ML algorithms (e.g. Support Vector
Machine (SVM), Random Forest, among others) and standard ANN
(Feed-Forward Neural Networks (FFNN), RBF) have been frequently
used. This work aimed to obtain an accurate forecast for photo-
voltaic (PV) based energy plants, since PV power production, sta-
bility, and storage dimensioning is strongly characterized by
fluctuating outputs influenced by instantaneous meteorological
conditions. Predictive features are a critical issue for the electrical
grid management; and, as shown recently, also for smart-grid ap-
plications: planning, storage system sizing and market participa-
tion of variable renewable energy sources [28]. However, as solar
thermal systems present natural inertia, lower precision is required
to obtain acceptable results compared to PV plants. Thus, there is a
limited amount of research considering the application of these
new techniques for performance diagnosis in thermal systems.

The present work proposes a Deep Learning-based framework
for performance prediction for a SHW system based on tempera-
ture forecast under different meteorological conditions. We assess
specialized DL algorithms which have not been previously applied
for performance predictions in thermal systems, particularly SHW
configurations. Considering the large and varied improvements
observed in the application of DL techniques for PHM, algorithms
which have achieved outstanding results analyzing temporal se-
quences, such as RNN and LSTM, are compared to the more widely-
used ANN architectures for this purpose. Several of these models
with different hyperparameter configurations are trained with
nominal operational data (primarily, temperature measurements)
of a SHW system. Their accuracy and precision are compared for
predicting future instantaneous values, as well as for short se-
quences based on the Mean Absolute Error (MAE) and Root Mean
Squared-Error (RMSE) scores and variance obtained. For the short
sequence predictions, ten randomly selected 1-h long samples
occurring during operational hours of the solar field are used for
comparison. These results are compared to a naïve persistence
model, as well as other regression methods.

Aiming to apply the algorithms to an actual system, the solar-
assisted heating system located at the Universidad de Chile is
used as a case of study. However, considering that the installation is
relatively new, few information regarding the operational condi-
tions is available. Therefore, in order to generate synthetic data the
same approach used by Kalogirou et al. [21,29] was applied. By
building a detailed simulation model in the Transient System
Simulation Program (TRNSYS), a significant amount of synthetic
data can be generated for training and validating the DL model. For
building and validating the TRNSYS simulation, the nominal data
from the manufacturer was employed, introducing design
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temperatures, equipment sizes and capacities and the control
scheme of each subsystem.

The subsequent sections of this article are organized as follows.
Section 2 briefly describes the basics of the Deep Learning methods
used in this work, aiming to explain the different variables that
need to be taken into consideration for their training. Section 3
presents the configuration of the SHW system, its components,
and operation logic. In Section 4, the Deep Learning framework for
temperature sequence prediction is presented, containing a
description of the simulation approach carried out in TRNSYS
software for synthetic data generation and the proposed method-
ology regarding the design, training, and testing of the Deep
Learning models. Results regarding both temperature prediction
are discussed in Section 5. Finally, Section 6 concludes and high-
lights the future challenges for the proposed framework.
2. Deep learning methods

Machine Learning tasks are generally divided into supervised
and unsupervised learning. In the case of supervised learning, the
training of the model consists of an optimization process which
seeks to minimize the error of the predicted output when
compared to the label of the original data. After the training pro-
cess, the model can interpret unused data input and replicate the
learned behavior based on the internal representation obtained
from the training data. The accuracy of the model will depend on
the chosen architecture, its hyperparameters, the nature of the data
and the learning process.
2.1. Artificial neural networks (ANN)

ANN are a common technique used in ML for supervised clas-
sification and regression tasks (i.e. the desired outputs are known
beforehand and thus can be compared with the network's predic-
tion). ANN are defined as sequential lineal regressions evaluated by
non-lineal functions. Each regression is called a hidden layer and
the number of outputs of each regression in a hidden unit. These
are represented by a set of matrices and vectors (weights W and
biases b) as the transitions between the input, hidden and output
layers of a network, as shown in Fig.1a. This relationship can also be
seen in Equation (1), inwhich the output of an intermediate layer yp
is calculated by applying a non-linear transfer function s to a
pondered sum obtained from the input data X and the network's
trainable parameters ðW ;bÞ. Usually, a linear activation function is
used for the output layer of the network to calculate the re-
gression's result, whereas the non-linear functions of the
a) Basic structure of an MLP.

Fig. 1. ANN and RNN
intermediate layers applied in the present study are described in
section 2.4. A frequent choice is the logistic sigmoid function
defined in Equation (2), whose values exist between [0,1].

yp ¼ s
�
WTX þ b

�
(1)

sðzÞ ¼ 1
1þ e�z (2)

The training process is usually done by propagating error from
the output to the input layers, adjusting the weights and biases
within each layer to correctly represent the given data. This is
known as backpropagation, by which these parameters are
adjusted by chain rule and gradient descent techniques, as pre-
sented by Rumelhart et al. [30]. Depth is added to the basic ANN
network by stacking several hidden layers, known as Multi-Layered
Perceptron (MLP), where consecutive non-linear mathematical
operations are applied to each layer. For an MLP (also known as
Deep Neural Network or DNN), the input of each hidden layer is the
output value of the previous one, and Equation (1) is rewritten as
follows.

hi ¼ s
�
hTi�1Wi þ bi

�
(3)
2.2. Recurrent neural networks (RNN)

However, in an RNN, each unrolled layer will receive the current
input data xt , as well as the previous hidden state of the node ht�1 .
The output ypred;t will depend on the hidden value of the current
time step ht . The unfolded temporal structure is depicted in Fig. 1b.
Each layer in the unfolded network represents a time step with
shared weights for input, hidden and output data (Wx; Wr ; Wy) and
biases in hidden and output layers (bh; by), which are expressed as:

hðtÞ ¼ sðWx , xt þ Wr ,ht�1 þ bh Þ (4)

ypred; t ¼ g
�
WT

y,ht þ by
�

(5)

Thus, the learning algorithm must be modified to a back-
propagation through time (BPTT), which operates similarly to the
gradient descent to adjust the network's weights [31]. However, for
long-range dependencies, vanishing or exploding gradients may
appear when propagating errors towards the inner layers [32],
obstructing the learning process. These optimization problems
b) Unfolded structure of an RNN.

methods details.
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increase the computational demand for using these techniques.
Thus, other architectures, as well as the use of regularization
techniques (e.g. dropout, early stopping), have been proposed to
address this challenge.
2.3. Long short-term memory recurrent neural network (LSTM)

Long Short-Term Memory (LSTM) RNN introduce a memory cell
designed to overcome the issue of vanishing gradients, replacing
the nodes in the hidden layers [33]. The classical architecture of
LSTM-RNN consists of the interaction of gates or processes within a
memory cell, each of which is independent RNN. Long-term
memory is stored in what is called the “cell state” and is selec-
tively updated with new input data stored in the short-term
memory [33]. In Fig. 2, a schematic representation of Vanilla
LSTM is shown. Here, three gates control the memory update from
a previous state at timestep t � 1 and the new input data at time-
step t. Each gate has its own set of weights ðW ;UÞ and biases ðbÞ of a
regular RNN and use a logistic sigmoid activation function (see
Equation (2)). As logistic sigmoid functions have values between
[0,1], it represents the regulation of the flow of information through
each gate. From left to right in the center cell of Fig. 2, there are the
forget gate, input gate and output gate. Each cell has three inputs:
the previous cell-state ct�1, the previous output ht�1 and the new
data xt . There are two outputs from the cell: the present cell state ct
and the present output of the hidden state ht representing the
current predicted value.

When a new input xt enters thememory cell, the forget gate will
select the information to be thrown away from the previous cell-
state ct�1, represented as follows,

ft ¼ s
�
Wf xt þ Uf ht�1 þ bf

�
(6)

The input gate, on the other hand, selects the information that
will be updated while a new cell-state candidate is built from the
input data. This is represented by the following equations.

it ¼ sðWixt þ Uiht�1 þ biÞ (7)

at ¼ tanhðWcxt þ Ucht�1 þ bcÞ (8)

A combination from the forget gate (Equation (6)) with the
previous cell-state ct�1 and from the input gate (Equation (7)) with
the new candidate (Equation (8)) will create the new cell-state
Fig. 2. Vanilla LS
through Equation (9). Note that the new candidate is determined
by a tanh activation function, which ranges between ½ �1;1� for
normalization purposes.

ct ¼ ft,ct�1 þ it,at (9)

Finally, the output gate selects which part of the cell-state ob-
tained from Equation (9) will be used as a useful output ht .

ot ¼ sðWoxt þ Uoht�1 þ boÞ (10)

ht ¼ ot,tanhðctÞ (11)

Other variants to LSTM have been designed, such as Gated
Recurrent Units (GRU). This simplified version merges the internal
state with the hidden state and the forget gate and input gate [6]. In
Ref. [26] it was shown that although LSTM performs better for
short-term prediction and GRU for long-term prediction, the dif-
ference is not significant, and both outperform the standard RNN.
Additionally, Bidirectional Recurrent Neural Networks (BRNN) in-
troduces inputs from previous and future timesteps to predict
outputs [34].

2.4. Hyperparameters and training process

Parametric models, such as DNN, are defined by a set of trainable
and non-trainable parameters. The latter, also known as hyper-
parameters, define the basis of the architecture. These values must
be selected based on the nature of the input data, the task the
model is required to do and overall performance, among other
conditions. To define a model, the meaning and relationships be-
tween hyperparameters must be considered. Depending on the
nature of the data, a greater number of layers and units per layer
increases the ability to map complex functions. Deeper architec-
tures with a smaller number of units per layer are generally
preferred to wide shallow layers for complex data mapping [35,36],
such as the representation of physical phenomena. Both feature
extraction and depth are fundamental for the model to obtain an
accurate abstract representation in its internal latent space. From
the learned latent space, the output of the model is extracted and
its performance in different tasks depends on how similar or dis-
similar is the test data compared with the training set. The output
of each layer is determined by the previous inputs, weights, and
biases, and the activation function used. For internal hidden layers,
non-linear functions such as hyperbolic tangent (Equation (12)) or
TM method.
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Rectified Linear Units (ReLU) (Equation (13)) are frequent choices
for RNN-based models.

tanhðxÞ¼ 2
1þ e�2x � 1 (12)

ReLUðxÞ ¼
8<
:

0 for x<0
x for x � 0

(13)

The training process is defined by the optimizer, learning rate
and loss functions. These determine the method and rate with
which the weights and biases are updated throughout the network
by backpropagation. Weights can be randomly initialized from
normal distributions, as well as other initialization techniques.
Various optimizers exist, however, adaptive methods such as Adam
[37] and RMSProp [38] obtain more stable results than other
optimization techniques [39].

The training process is done through partitions of the training
data into batches. This determines the number of random samples
which are processed through the network per training iteration,
balancing the trade-off between training time and loss of gener-
alization. Each time all batches are passed forward and backward
through the network, an iteration epoch is completed. The ideal
number of epochs depends on the convergence speed of the model.
Other configurations and hyperparameter settings can be used,
such as regularization techniques, to increase convergence and
reduce training times. The use of the Mean-Squared Error (MSE) as
a loss function is frequent for supervised ML tasks, as shown in
Equation (14). Consequently, the Root Mean-Squared Error (RMSE)
is frequently used as an error metric for the predicted values.
Searching for optimal hyperparameter values is usually time and
resource-consuming process. As such, depending on the desired or
acceptable precision for prediction values, a trial-and-error search
is a viable alternative.

MSE ¼
Xn

i¼1

�
yreal;i � ypred;i

�2

n
(14)
3. System description

The studied SHW system corresponds to a section of the cli-
matization system of a building at the Physical and Mathematical
Sciences Faculty of the Universidad de Chile, located in Santiago,
Chile. The SHW system aims to supply the locker room's showers
with sanitary hot water, where the nominal daily water demand is
estimated as 24,000 L at 40 �C for 12 h. The solar-assisted heating
system is comprised of two separate water circuits: a pre-heating
section in which the heat input is delivered by solar collectors
and a heat-recovery chiller; and a heating circuit in which the en-
ergy is supplied by heat pumps. The schematic diagram of the SHW
system is presented in Fig. 3. Red lines represent the hot water
flowing in the system, while the blue lines correspond to the cool
water. The SHW is designed to preheat the sanitary water from
10 �C to 40 �C during the summer and to 30e35 �C during the
winter. When the available solar radiation is not enough to reach
these temperatures through the solar collectors, additional heat is
provided by the heat-recovery chiller, which also regulates the
indoor swimming pool's temperature as a separate heat load. From
both sources, heat is driven to the 4m3 tanks serving as interme-
diate heat storage at 35e40 �C. The heating section provides the
energy for reaching 60 �C, by means of four heat pumps, and
subsequently, that hot water is stored in four tanks. Mains water is
used to regulate the output temperature and as make-up water in
the preheating section. Finally, the unused hot water reentries the
system at the two first water tanks (Pre-Heat Tank 1-2 in Fig. 3). The
mentioned components, along with flat plate type heat exchangers
and centrifugal pumps are monitored in terms of temperature and
operation status.

The solar field is composed of ETC heat pipe collectors, ac-
counting for a total absorption area of 105.6m2. From the common
inlet of the solar field, the flow is divided into thirteen collector
strings connected in series, eight rows of three collectors and five
rows of four collectors each. Each row is supported on metallic
bases which maintain an inclination angle of 15� and a north
orientation. In Tables 1 and 2, the reported optical and thermal
properties under test conditions of the installed solar collectors
(Hitek Solar NSC 58-30 model) are presented.

The Incidence Angle Modifier (IAM) values in Table 1 express
how the optical properties, transmittance t and absorptance a, of
the solar collector's components vary depending on the incidence
angle q of the solar radiation on the collector's surface. As ETC has
nonsymmetrical cover optical properties, a global Kta must be
considered depending on both the transverse qT and longitudinal qL
incidence angles as shown in Equation (15) [40]. This, in turn, af-
fects the solar collector's overall efficiency presented in Equation
(16), where FR represents the heat removal factor, UL is the overall
thermal loss coefficient, Ti is the fluid inlet temperature, Ta is the
ambient temperature and ðtaÞn is the transmittance-absorptance
product at normal incidence angle [41]. The used operational pa-
rameters for the heat-recovery chiller are based on a Thermocold
CWC Prozone 1320 Z C model.

KtaðqÞ¼KtaðqT Þ,KtaðqLÞ (15)

hi ¼ FR
�
GTKtaðtaÞn � ULðTi � TaÞ

�
(16)

4. Deep learning framework for temperature sequence
prediction

The purpose of the proposed Deep Learning-based framework is
to predict future values of the solar collector's outlet temperature
based on the generated data from the TRNSYS simulation. The
proposed framework is divided into three mains steps: data
recollection, development of temperature prediction models and
the assessment of the performance prediction power of different
model configurations.

In Section 4.1, a brief description of the simulation approach in
TRNSYS software is presented, considering the construction of the
physical model based on technical information from the manu-
facturer. From this simulation, synthetic data was generated in
nominal design conditions.

Section 4.2 describes the training process for the proposed
models based on DNN, RNN and LSTM architectures, considering
the nominal operating conditions of the SHW system. The design
and selection of the network's hyperparameters are carried out by
training and testing different configurations based on the
mentioned architectures. To do so, the performance of DNN, RNN
and LSTM architectures are compared under similar conditions and
hyperparameters to identify strengths and weaknesses of each
model.

Hence, the assessment of the predictive performance of each
model is divided based on two predictions goals. First, the perfor-
mance of each model is evaluated through the RMSE metric for
single future temperature values. The second goal is to predict



Fig. 3. Process Flow Diagram of the pre-heating section of the SHW system.

Table 1
Incidence Angle Modifiers (IAM) values for Hitek Solar NSC model.

10� 20� 30� 40� 50� 60� 70�

KtaðqT Þ 1.010 1.019 1.056 1.151 1.452 1.462 1.261
KtaðqLÞ 0.999 0.994 1.018 0.974 0.952 0.913 0.833

Table 2
Thermal capacities of Hitek Solar NSC model.

h0 0.618

a1½W=m2K� 1.377

a2½W=m2K� 0.018

Effective Thermal Capacity ½kJ=m2K� 5.684
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several timesteps consecutively in a 2-h long time-window based
on the previous prediction values, reproducing the sequences’
temporal behavior during short future periods of time reporting
both MAE and RMSE scores. These results are presented in Section
5.
4.1. Simulation approach and data collection

TRNSYSwas selected for carrying out the physical simulations of
the complete system, owing it to its modularity and open-source
structure. TRNSYS operates with types or component blocks
which are integrated to experimentally validated equations and
calculation modes. Currently, there are more than three hundred
operational types, allowing to simulate the operation of each
component of the system using a specific TRNSYS module (Type).
TRNSYS has been applied and validated in several applications
related to solar energy systems, such as the systems considered in
the present study. For instance, it was validated for representing
the stratification of hot water storage systems, and also for large
scale solar thermal systems for pool heating [42], and for different
solar technologies as flat plate and heat pipe collectors [43], and
even for large heating networks [44]. Finally, TRNSYS also has been
successfully validated for representing HVAC systems [45]. There-
fore, considering the capabilities of the software, a detailed model
was built representing the operation of the heating system shown
in Fig. 3, calibrating it by using data from manufacturers.

To properly simulate the system in TRSNSYS, the following data
is considered:
� Meteorological data: solar radiation, ambient temperature,
wind speed, and wind direction are required to properly char-
acterize the environmental conditions inwhich the SHW system
operates. A completemeteorological station is placed next to the
solar collectors' array, where the radiation and other meteoro-
logical measurements were taken and processed and then
introduced in the TRNSYS deck.

� SHW system information: design conditions and the main fea-
tures of the system are defined, according to the information
provided by the manufacturer. Also, the information about
secondary equipment such as heat pumps, heat exchangers,
heat accumulators, centrifugal pumps and the control system
was also considered. Nevertheless, appropriate simplifications
were introduced to reduce the computational cost:
o Mains water temperature is estimated based on numeric
correlations presented in Ref. [46].

o Heat pumps are replaced by auxiliary water heaters with the
same nominal heating capacities.

o The temperature control systems are simplified as the
following:

⁃ If the temperature registered at the outlet of the solar col-
lector field is higher than the average pre-heating tank
temperatures, Pumps 1-2 are activated.

⁃ Hot water is dispatched from the pre-heating tanks to the
high-temperature tanks if there is an active demand in the
system.

⁃ Mixing valves are activated if the outlet temperature of the
heat tanks is higher than 45 �C, inwhich case mains water is
introduced before being dispatched.
o The system operates for 14 h onweekdays, between 7 a.m. and 9
p.m. During weekends the operation hours are reduced to 11,
from 8 a.m. to 7 p.m.

o As no real-time measurements of the hot water demand profile
were available, a weekly profile was drawn from estimations of
user experience and the design conditions.

For each subsystem simulated in TRNSYS, a set of variables is
monitored and extracted for analysis considering a sampling fre-
quency of a minute. The extracted values consist basically of tem-
peratures and control signals, leaving aside flow and energy
consumption values due to the lack of experimental validation
options for these variables.

The length of the simulationwindowdepends on the availability
of radiation and meteorological data which is fed into the TRNSYS
model, consisting of the period between April 7th and September
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22nd, 2018. The software then generates a minute-based simula-
tion of the behavior of the monitored variables during the selected
time-window. Although not experimentally validated, a compari-
son between the main temperatures obtained with the simulation
and the design temperatures is presented in Table 3. Here, the
overall difference accounts temperatures 19.5% higher in the
simulation. This is an average difference of 7.7 �C, mainly caused by
the higher participation of the solar field and the ideal operating
conditions of the heat-recovery chiller. As seen in Ref. [43], when
comparing modelled and measured data for a forced circulation
SHW composed of ETC, the obtained percentage MAE for the col-
lector outlet temperature, heat collected and heat delivered to the
load were 18.4%, 16.8% and 7.6%, respectively. This, as well as the
higher temperatures at the outlet of the heat-recovery chiller may
explain the 29.3% difference between the simulated and designed
average temperatures in the Pre-Heat Tank 1-2, as some previous
works suggest that tank's outlet temperature reports errors lower
than 5% for validated TRNSYS simulations [47]. Despite this differ-
ence, the TRNSYS model allows the generation of operational data
isolated from external effects and unquantified degradation in the
actual components which would generate unnecessary noise for
this exploration of DL techniques for prediction.

For the prediction of the solar collector's outlet temperature the
following data is considered as input variables: ambient tempera-
ture, the solar field's inlet temperature, the control signal of pumps
1-2, the inlet temperature at the heat exchangers HX 1-3 (as shown
in Fig. 3) and previous values of the solar collector's outlet tem-
peratures. These inputs are presented as matrices of size [features,
simulation length] and then, averaged over a period of 6min to
account for the natural thermal inertia of the system and the
variability of solar radiation, as minute-based measurements may
suffer from additional uncertainties caused by atmospheric
phenomena.

4.2. Proposed deep learning models

Different configurations of the methods based on DNN, RNN,
and LSTM were trained and tested to assess and compare their
performance under similar conditions for the prediction of the
solar collector's outlet temperature. As mentioned in Section 2, the
studied DL methods are defined by their hyperparameters. Some of
these are the unit type, the number of units and layers, activation
function, optimizer, learning rate, training epochs and batch size.
Additionally, another tested configuration is the length of the
sequence used as input to each model. The models are trained with
sequences of one, three and seven days of continuous data to
analyze the impact on each model's performance. Longer and more
complex temporal relationships can be extracted in extended time-
windows, regarding the availability of solar resource and hot water
consumption patterns. Asmentioned above, this length impacts the
performance of RNN and LSTM-based models. The processed data
has been averaged over 6min, and thus a day is converted a data
sequence of 240 timesteps, while three and seven days are con-
verted to 720 and 1680 timesteps, respectively.

The timeseries data is reshaped into sequence matrices by a
Table 3
Comparison between design and simulated temperatures in the SHW system.

Temperature �C Design Simulated Difference

Pre-Heat Tank 35.0 45.2 29.3%
HR Ch. Outlet 50.0 54.5 9.0%
Solar Inlet 37.0 45.0 21.7%
Solar Outlet 45.0 53.2 18.2%

Average 19.5%
sliding window of Nf features and tw timesteps. This sliding win-
dow of size tw � Nf passes over the original dataset, extracting the
input values X for each future predicted value. A sliding step st ¼ 1
of the sliding window is used to extract continuous timeseries. The
values mapped by the sliding window are then reshaped into
matrices where each row represents a sequence of a whole time-
window, xt . Similarly, for the labels, the following timestep for
the outlet temperature of the solar collector ytþ1 are extracted as a
vector resulting in a prediction horizon of 1 timestep, corre-
sponding to 6min in simulation time. For each resulting xt time-
window, the input data is a vector formed by the flattened matrix
of Nf ¼ 5 features and tw ¼ f240;720;1680g timesteps.

Schematic representations of example architectures of DNN,
RNN, and LSTM-based models are shown in Fig. 4a, Figs. 4b and 5,
respectively. Here, Nh represents the number of hidden units in the
MLP layer, while X; h and y are the input data and the output from
the hidden layers and the output layer, respectively.

For the basic DNN or MLP model, the first layer receives the
unfolded sequence of features during the entire time-window,
which is then passed through two hidden layers to obtain the
output value. Both the double-layered RNN and the LSTM incor-
porate an MLP as hidden layers prior to the output layer to obtain
the desired predicted value.

The extracted dataset is randomly divided into training (64%),
validation (16%) and testing sets (20%). Training and validation sets
are normalized between [0,1]. The numbers of samples for training,
validation and test sets per time-window size are presented in
Table 4. The training process is carried out only on the training set
and the validation set is used to assess if the model overfits the
data. RMSE values are calculated over both the training and the
validation subsets in each iteration epoch. After the training pro-
cess is concluded, the test set is then used to evaluate the perfor-
mance of the model with previously unseen data. RMSE and other
metrics are used to evaluate the models’ predictions under the test
set, such as variance, explained variance score and R2.

The processed data series were fed into the proposed architec-
tures, considering also the hyperparameters presented in Table 5.
An Intel®Core™ i7-6700K CPU @ 4.00 GHz �8 with a TITAN Xp/
PCle/SSE2 Graphics card is used for training and testing the models.

The testing of the models is divided into two phases. At first,
single temperature values are predicted from tw timesteps from the
input data matrix of Nf features. The output of the model, ypred, is
compared to the corresponding label ytþ1. Although, as described
in Section 5.1, the trained models yield low RMSE values, isolated
temperature predictions do not yield enough information to
determine if the sequential behavior of the timeseries has been
effectively mapped into the latent space of the trained models.
Thus, the ability to accurately predict longer sequences is also an
interesting result. As a second evaluation of the prediction abilities
of the proposed models, a sequence of ten timesteps (equivaling to
a prediction horizon of 1 h in the future) will be consecutively
predicted. When generating a sequence, the model will update the
sliding temporal window over the data and thus will incorporate
previous predictions’ errors in future values. Thus, results may
significantly vary from single value predictions depending on
whether the trained models are able to incorporate the underlying
sequential behavior of the temperature data.

5. Results and discussion

This section presents the results obtainedwhen assessing the DL
architectures applied for the two tasks defined previously, tem-
perature prediction as single values and as temperature sequences.
Initially, various potential candidate DL models based on the
hyperparameters shown in Table 5 are trained and then their



a) Representation of DNN model. b) Representation of RNN model.

Fig. 4. Schematic representation of proposed Deep ANN and RNN architecture.

Fig. 5. Schematic representation of proposed Deep LSTM architecture.

Table 4
Number of samples per time-window length.

Dataset N� Previous Days Time-window Size Train Set Validation Set Test Set

Solar Collector Outlet T�
1 240 5836 1460 1824
3 720 17510 4378 5472
7 1680 23654 5919 7393

Table 5
Tested hyperparameters and architectures.

Model DNN, RNN, LSTM

Data Length 240, 720, 1680 timesteps
Number of layers 1-2-3
Number of RNN units 16, 32, 64, 128, 256
Number of MLP units 128, 256, 512, 1024
Activation Function Tanh, ReLU
Optimizer Adam, RMSProp
Epochs 50, 75, 100, 150, 200
Batch Size 32, 64, 128
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performance is evaluated over the previously unseen test set. The
validation set is only used to monitor the training process and was
not used for training. Additionally, the results yield by the DL
models are compared to traditional and naïve regression methods.

5.1. Temperature prediction

The first criteria to assess the performance of the trained DNN,
RNN and LSTM-based models is to obtain low RMSE values with a
small dispersion of the predicted temperature values under nom-
inal operational conditions. From the models' point of view,
considering the information currently available, an instantaneous
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temperature prediction with an RMSE below 1 �C is not directly
distinguishable from the thermal systems’ natural variations. In
Table 6, the obtained test errors and their related performance
metrics are presented for different configurations, where a variance
below 1 �C have been highlighted in bold font.

Low values of RMSE under 2 �C are obtained for most of the
proposed models when trained to predict the solar collector out-
let's temperature. The best performing model corresponds to the
DRNN with three layers of [64,32,16] units each trained for the
three-day temporal image dataset, obtaining a mean difference
between the predicted ypred and real ytþ1 of 4.45%. However, the
lowest relative difference of 3.45% is obtained by the DLSTMmodel
comprised of [128,64] units, which is also trained for a three-day
time-window. This relative error is calculated by averaging the
difference between predicted and simulated temperature values,
expressed as a percentage.

When compared to regular regression techniques, the temper-
ature fluctuations at the outlet of the solar field are easily predicted
within short-term windows, such as 6min, due to natural thermal
inertia. Statistic metrics are presented for Bayesian Ridge Regres-
sion (BR), Gaussian Process Regression (GPR), Linear Regression
(LR) and Persistence (PR) methods [48e50]. These metrics are
calculated under the same conditions and test sets as the DLmodels
and shown in Table 7. However, as presented in the next section, the
performance of these models is significantly reduced when longer
temporal relationships are introduced; a result already seen in the
context of solar radiation forecasting [50].

5.2. Sequence Prediction

To further analyze the difference between the proposed RNN
and LSTM models, ten random samples from the original test set
have been filtered to illustrate the temperature sequence prediction
behavior. These time-windows are selected during the operational
hours determined by the control system of the solar Pumps 1-2.
Examples are presented in Figs. 6e8. This means that an extended
horizon of, for example, ten timesteps, are predicted consecutively
from the same original temperature sequence. The last predicted
value is appended to the next time-window the model will process,
coupled with the other simulated variables, replicating what would
be an online monitoring scenario. Thus, the next value will not only
carry its own uncertainty, but also the previous values’ propagated
uncertainty.

As mentioned before, the RNN-based models yielded lower test
RMSE for single temperature predicted values. However, in Fig. 6 it
can be seen that the RNN based models are not able to reproduce
the data sequence correctly. For instance, in Sample 2, even though
Table 6
Test errors and statistical metrics for trained models.

Model Num. Days Units Test RMSE, �C

DNN 1 64e32 1.74
RNN 1 64 1.68
DRNN 1 64e32 1.28
LSTM 1 64 2.5
DNN-1 3 64e32 1.43
DNN-2 3 64-32-16 1.29
DNN-3 3 128e64 1.66
DRNN-1 3 64e32 0.92
DRNN-2 3 64e32e16 0.89
DLSTM-1 3 64e32 1.42
DLSTM-2 3 128e64 1.47
DLSTM-3 3 128e64e32 1.66
DNN 7 64-32-16 1.26
DRNN 7 64e32 0.94
DLSTM 7 64e32 1.38
the temperature difference is low (3 �C at most), the predicted
behavior is inverted, leading to an underestimation of the tem-
perature values. For sample 10, however, the three-layered RNN
model of [64,32,16] units outperforms the two-layered version of
[64,32] units, implying the existence of a more abstract relationship
within the data which deeper models can extract. As mentioned in
Section 4.1, a greater number of layers can extract features from
more complex data better than shallow architectures depending on
the nature of this data and the length of the sequences to be
learned.

Less surprisingly, due to the fact that DNN architectures are not
specialized in time series analysis, Fig. 7 shows that these models
do not predict the sequence properly, exhibiting a similar behavior
than the RNN-based models with an error rate as high as 6 �C. On
the other hand, the LSTM-based models achieved worse results
than the RNN-based models predicted single temperature values;
yet, as observed in Fig. 8, they exhibit better capabilities of
following the temperature sequence with lower differences be-
tween the predicted and real values. The DLSTM-2 model, with
[128, 64] units, achieves a maximum difference of 0.5 �C on Sample
2. Even though the model exhibits the same problems of
desynchronizing the predicted peak values for Sample 8, the error
is reduced to 1 �C.

Three of the best performingmodels, each for every architecture
studied, are then selected to further explore their sequence pre-
diction performance. The mean and standard deviation of the ob-
tainedMAE and RMSE values are presented in Table 8 for DNN, RNN
and LSTM-based models for a 3-day length temporal frames. Note
that, although the DNN-based model is outperformed by both the
othermodels in terms of themean RMSE andMAE obtained, it has a
smaller standard deviation than the RNN model, while the LSTM
model possesses the lowest RMSE score (mean RMSE of 1.27 �C, STD
of 1.07 �C). These results also corroborate the previous results (see
Table 6) that suggest that the LSTM-based model exhibits a better
ability to predict the temporal sequence at hand, compromising
between a slightly lower accuracy (0.55 �C MAE compared to
0.41 �C) but higher precision than the RNN-basedmodels, as shown
in Table 8.

The performance of these DL models is compared to other
regression techniques in Table 9. These regression techniques were
tested under the same configuration as the DL models for tem-
perature sequence prediction. As a result, models which yield
reasonable results for single timestep predictions (presented in
Table 7) are outperformed by specialized deep learning algorithms
as the prediction horizon increases. It must be noted that the PR
model obtains the best short-term results in terms of MAE and
RMSE, compared to the other methods. That effect may be a result
Test Error % Variance, �C2 R2 Explained variance

7.82 2.910 0.986 0.986
6.20 2.460 0.987 0.988
5.50 1.221 0.993 0.993
7.70 3.410 0.982 0.984
6.97 1.587 0.988 0.991
6.38 1.502 0.990 0.991
9.08 2.425 0.984 0.986
7.10 1.516 0.991 0.991
4.45 0.619 0.996 0.996
4.33 0.618 0.996 0.996
3.45 0.520 0.997 0.997
5.99 0.898 0.993 0.995
5.38 1.550 0.991 0.991
4.43 0.644 0.996 0.996
6.10 1.510 0.991 0.991



Table 7
Test errors and statistical metrics for regression models.

Model Num. Days Test RMSE, �C Test Error % Variance, �C2 R2 Explained variance

BR 3 0.54 2.24 0.29 0.998 0.998
GPR 3 0.57 2.48 0.32 0.998 0.998
LR 3 0.57 2.50 0.32 0.998 0.998
PR. 3 0.826 3.09 0.68 0.996 0.996

Fig. 6. Temperature sequence prediction examples with RNN-based model.

Fig. 7. Temperature sequence prediction examples with DNN-based model.

Fig. 8. Temperature sequence prediction examples with LSTM-based model.
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Table 8
Sequence Reconstruction error by model for the solar collector outlet temperature and a 3-Day time-window.

Prediction Errors DNN-2 DRNN-2 DLSTM-2

Sample Mean STD RMSE Mean STD RMSE Mean STD RMSE

1 3.39 5.35 6.33 2.11 4.28 5.46 0.57 3.99 4.03
2 2.55 0.92 2.71 1.66 0.94 1.77 0.46 0.49 0.67
3 0.74 0.50 0.89 �0.10 0.59 2.55 �0.75 0.36 0.83
4 0.90 0.31 0.95 0.28 1.53 1.29 0.08 0.43 0.43
5 �0.49 0.67 0.83 �0.13 0.40 0.04 0.03 0.55 0.55
6 0.62 1.57 1.68 �1.36 2.59 2.89 1.09 2.13 2.39
7 0.86 0.40 0.95 0.49 0.69 0.65 1.40 0.36 1.45
8 1.40 0.73 1.58 �0.32 1.06 0.30 0.12 0.88 0.89
9 1.17 0.56 1.29 0.16 0.41 0.26 0.80 0.43 0.91
10 0.62 0.69 0.92 �0.20 0.36 0.60 0.17 0.50 0.53
Average 1.18 1.17 1.81 0.16 1.28 1.58 0.40 1.01 1.27
STD 1.60 1.68 1.07
MAE 1.27 0.41 0.55

Table 9
Sequence Reconstruction error for the solar collector outlet temperature and a 3-Day time-window.

Mean Errors BR GPR LR PR

Sample Mean STD RMSE Mean STD RMSE Mean STD RMSE Mean STD RMSE

1 3.17 6.20 6.96 3.16 6.38 7.12 3.15 6.38 7.12 3.76 6.41 7.43
2 0.96 0.42 1.05 �0.27 0.23 0.36 �0.30 0.22 0.38 0.94 0.41 1.03
3 0.56 0.41 0.70 1.79 0.75 1.94 1.81 0.75 1.96 �0.81 0.79 1.13
4 0.5 0.29 0.58 0.65 0.32 0.72 0.67 0.32 0.75 0.24 0.21 0.32
5 �2.32 0.83 2.46 �3.13 1.18 3.34 �3.12 1.18 3.34 2.37 1.27 2.69
6 �8.64 3.47 9.32 �10.15 4.19 10.98 �10.17 4.20 11.01 �3.40 1.68 3.80
7 �0.81 0.23 0.84 �1.25 0.40 1.32 �1.26 0.40 1.32 1.62 0.77 1.79
8 �1.8 0.58 1.89 �2.21 0.90 2.39 �2.22 0.92 2.41 �0.41 0.47 0.63
9 0.58 0.51 0.77 0.62 0.46 0.77 0.62 0.45 0.77 3.53 1.26 3.75
10 0.91 0.14 0.92 1.45 0.35 1.49 1.47 0.35 1.51 �1.27 0.74 1.47
Average ¡0.69 1.31 2.55 ¡0.93 1.52 3.04 ¡0.94 1.52 3.06 0.88 1.40 2.40
STD 2.90 3.23 3.23 2.03
MAE 2.03 2.47 2.48 1.84
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of the small difference in magnitude between temperature values
in short-term timesteps and not a direct consequence of the
model's performance. While naïve methods such as PR may offer a
quick alternative for short-term forecasts, it depends on the data
update frequency and would not be suitable for predicting or
detecting unexpected changes in the system, such as early anomaly
detection, in extended inter-hourly forecast horizons. Furthermore,
they are not appropriate for long-term predictions due to the
inertia usually observed in thermal systems and its dependence on
external factors, such as meteorological conditions.

When comparing the best performing DL-based models during
the operating hours of the SHW system, the DNN model tends to
underestimate the outlet temperatures, while the RNN version
tends to overestimate it. Although the LSTM models predict the
general temperature tendencies in Samples 6, 8 and 10, they also
present discrepancies with the simulated values, such as in Sample
2 shown in Fig. 9. Even if the magnitude of the error is small, this is
preferable than unsynchronized predicted sequences compared to
the actual data.

As mentioned before, while the RNN and LSTM models consis-
tently perform better than the DNNmodel, the latter yields a lower
variance for more than half of the samples tested. This result may
explain the reason for more extensive use of DNN models
compared to more complex models which require significant ef-
forts to select adequate hyperparameters and training conditions,
as well as longer training times. For the same length of temporal
window provided, for instance three days, LSTM models require an
average of 5.24 h to train, while RNN train in 3.25 h. This larger time
is due to the larger number of epochs required for the LTSM training
error to converge steadily. However, the results yielded by the
LSTM model suggest that sequence predictions can effectively
benefit from the use of this architecture, given the availability of
long enough previous data sequences.

From the models assessed in the previous section, the DLSTM-2
is indicated as the best architecture since it displays the best per-
formance under the stated criteria of a low mean and variance of
the RMSE for instantaneous and sequence temperature predictions.
The hyperparameters for the DLSTM-2 model are shown in
Table 10.

Following the assessment of different models and hyper-
parameters, further analysis is required to increase the utility of this
framework for future tool developments, such as anomaly detec-
tion. Actions regarding data preprocessing can be carried out to
increase the model's effectiveness. As presented, the use of the
whole previous day as input data is enough to predict the following
timesteps' output accurately for DNN and RNN. However, LSTM
requires longer sequences to reach comparable results. The
improvement of the LSTM's performance with a three day-length
temporal matrix reaches an RMSE below 1 �C, but the difference
is not significant to when a seven-day sequence is analyzed.

Other lengths of time-windows could yield better in-
terpretations of the temporal sequences, such as a five-day time-
window representing the weekday period which matches the
higher demand for hot water in the system. The use of a time-
window coherent with the demand pattern may yield a better
latent representation of the data, and subsequently, more accurate
and precise predictions. Additionally, the training process could be
carried out with data only from operating hours. This could reduce



Fig. 9. Reconstruction samples for solar collector outlet temperature.

Table 10
Selected deep learning architecture.

Hyperparameter Value

Architecture LSTM
Units & layers [128,64]
Activation function Tanh
Optimizer RMSProp
Learning rate 10�3

Batch size 64
Epochs 150
Length of time-window 3 days
MLP hidden units 512
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an unnecessary bias to lower temperatures that are more frequent
within the simulated values than normal operating temperatures
due to the daily trend of the solar resource.

6. Conclusions

This work presented an assessment of a Deep Learning-based
performance prediction framework for a solar thermal system. In
this context, several models with different hyperparameter con-
figurations were proposed as potential candidates for temperature
prediction in the system. Among the different architectures
analyzed, the proposed LSTM model yields more accurate pre-
dictions than DNN model as well as more precise values than RNN
for temperature sequence predictions. All three models out-
performed the naïve persistence forecasts and other regression
techniques, such as Bayesian Ridge, Gaussian Process and Linear
Regression, for temperature sequence predictions. The assessment
was applied considering a solar hot water heating plant located in
Chile and using synthetic operational data, as an initial attempt for
capturing the nominal behavior of the system. The physical model
was built in TRNSYS software based on the nominal conditions.

The limitation of this framework is constituted by the synthetic
data that was generated with a simulation platform. TRNSYS is a
validated physics-based model that allows the incorporation of the
real SHW installations technical specifications and quality meteo-
rological measurement. Yet, the simplifications established in the
simulation program, such as the restrictions on the control system
and the ideal conditions of the auxiliary heat inputs, reduce the
number of hours in which the solar field is operational. Neverthe-
less, the method presented herein shows two strategic advantages
over raw experimental data for exploratory purposes. The first is
related to the time required to monitor and register enough data of
the system to accurately represent its behavior under different
meteorological conditions. While the meteorological measure-
ments are available, even for a short period of time, the operation of
the system can be simulated in TRNSYS and obtain reliable results
in terms of the thermal behavior. The second advantage is the
possibility to isolate and observe nominal operational conditions of
the system without the noise of external factors, such as mainte-
nance issues, defective instrumentation and environmental factors,
such as soiling.

The results show the strengths and shortcomings of an initial
approach for performance prediction in a SHW system. The use of
synthetic data allowed to isolate and study specific behaviors
without temporal limitations andmeasurement uncertainties. Data
collection is a vital step for developing deep learning-based models
and the use of synthetic data also allows time-saving strategies to
explore different alternatives before actual implementation in a
real system. That approach is highly useful for conducting field
assessments when the historical information is not available.
However, its representativity of the thermal system is limited for
anomalous scenarios. While further tuning of the model's hyper-
parameters is required, specialized architectures for time-series
analysis, such as RNN and LSTM have proven to capture and pre-
dict temperature sequences better than DNN-based models.
Moreover, other data-based metrics can be explored to assess the
performance of these models by quantifying the uncertainty of the
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experimental measurements, the simulation's results, and the
model's predictions.
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Nomenclature

ANFIS Adaptive-Network-Based Fuzzy Inference System
ANN Artificial Neural Network
BPTT Backpropagation Through Time.
BRNN Bidirectional Recurrent Neural Network
CNN Convolutional Neural Network
DL Deep Learning
DLSTM Deep Long Short-Term Memory Recurrent Neural

Network
DNN Deep Neural Network
GP Gaussian Process
IAM Incidence Angle Modifier
LSTM Long-Short Term Memory Recurrent Neural Network
ML Machine Learning
MLP Multi-Layer Perceptron
MSE Mean Square Error
NN Neural Network
PHM Prognostics and Health Management
PV Solar Photovoltaic technology
SVM Support Vector Machine.
RMSE Root Mean Squared Error
RBF Radial Basis Function
RNN Recurrent Neural Network
RUL Remaining Useful Life.
SHW Solar Hot Water system
TRNSYS Transient System Simulation program
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