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a b s t r a c t 

Electroencephalogram (EEG) signal presents a great potential for highly secure biometric systems due to 

its characteristics of universality, uniqueness, and natural robustness to spoofing attacks. EEG signals are 

measured by sensors placed in various positions of a person’s head (channels). In this work, we address 

the problem of reducing the number of required sensors while maintaining a comparable performance. 

We evaluated a binary version of the Flower Pollination Algorithm under different transf er functions to 

select the best subset of channels that maximizes the accuracy, which is measured by means of the 

Optimum-Path Forest classifier. The experimental results show the proposed approach can make use of 

less than a half of the number of sensors while maintaining recognition rates up to 87%, which is crucial 

towards the effective use of EEG in biometric applications. 

© 2016 Elsevier Ltd. All rights reserved. 

1

 

o  

a  

r  

N  

h  

s  

T  

b  

o  

t  

a  

s

 

a  

fi  

r  

I  

d

p

x

e  

a  

N  

a  

g  

t  

o  

t  

t  

t  

f

 

s  

t  

s  

w  

i  

w  

h  

i  

h

0

. Introduction 

In modern life, we constantly make use of passwords to access

ur bank accounts, e-mail boxes, and social networks, just to name

 few. As passwords can be easily circumvented, the use of biomet-

ics has been proposed for safe person identification ( Jain, Ross, &

andakumar, 2011 ). Over the years, the use of biometric systems

as increased, and systems based on several biometric modalities

uch as fingerprint, face and iris, have been successfully deployed.

his successful and widespread deployment of biometric systems

rings on a new challenge: spoofing. Spoofing methods are devel-

ped to breach the security of biometric systems so that unau-

horized users can gain access to places and/or information (e.g.,

n artificial finger made from silicone is placed on the fingerprint

canner). 

In this scenario, the EEG (electroencephalogram) signal presents

 great potential for highly secure biometric-based person identi-

cation, due to its characteristics of universality, uniqueness, and

obustness to spoofing attacks ( Beijsterveldt & Boomsma, 1994 ).

t is well-known the importance of EEG signals in several ar-
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as, since one can find a number of works that deal with such

 source of data ( Guo, Rivero, Dorado, Munteanu, & Pazos, 2011;

unes, Coelho, Lima, Papa, & Albuquerque, 2014; Ocak, 2009; Sub-

si, 2007 ). In high security environments, EEG sensors can be inte-

rated in order to contribute to the robustness of the system, and

he person can be continuously authenticated. Although the idea

f using EEG as a biometric trait is not new, there are a few works

hat address such kind of signal only. One possible explanation for

hat is the difficulty in obtaining such signals, and also because

he biometric characteristics of the EEG signal may be held only

or short periods of time ( Pollock, Schneider, & Lyness, 1991 ). 

With the emergence of new mobile devices that capture brain

ignals driven by the most keenly studies in the brain computer in-

erface, the EEG as a biometric trait can now be used in some other

cenarios, such as: (i) distance-based education environments, in

hich the continuous authentication of a student becomes increas-

ngly necessary; (ii) with the increase in life expectancy world-

ide, health monitoring systems may become popular along with

ome automation and smart homes, thus making the EEG-based

dentification very useful in this scenario; (iii) with the popular-

zation of biometric systems for the validation of financial transac-

ions, mobile EEG sensors become a viable alternative in the future.

Basically, an EEG-based biometric approach aims at placing a

et of sensors in the person’s head in order to capture the out-

ut signals for further feature extraction and analysis using signal
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Fig. 1. International 10-10 System standards for sensor positioning. Just for the sake 

of clarification, sensor T9 is placed close to the left ear, as well as sensor #23 is 

placed close to the nose. 
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processing techniques. The signal acquisition session is then re-

peated over time to make the system more discriminative and ro-

bust to errors. In a recent paper, ( Campisi & La Rocca, 2014 ) pre-

sented a review on the state-of-the-art of EEG-based automatic

recognition systems, as well as an overview of the neurophysiolog-

ical basis that constitutes the foundations on which EEG biometric

systems can be built. The authors also discussed about the major

obstacles towards the deployment of EEG based biometric systems

in everyday life. 

One of the main problems of EEG-based person identification is

the acquisition, which may be too invasive to the user. The pro-

cess of putting a considerable amount of sensors up on a person’s

head might be a bit uncomfortable, and it also requires a previous

knowledge by the person in charge of the sensors placement in

order to put them in their correct positions. In light of this con-

text, some questions may rise: “Is it really necessary to put all

these sensors on a persons’ head? If not, can we identify the most

relevant channels for person identification and then use a smaller

number of sensors in order to measure them?”. 

These questions motivated our work in modelling the task of

channel selection as an evolutionary-based optimization problem.

The idea is to propose a wrapper approach composed by an opti-

mization technique and a pattern classifier, in which the accuracy

of the latter is used to guide the evolutionary agents in the search

space looking for the best solutions, i.e., the subset of channels that

maximize the accuracy of the classifier in the validation set. Any

optimization technique and classifier could be used. 

In our work, we propose an optimum channel selection by

means of a binary constrained version of the recently proposed

optimization technique Flower Pollination Algorithm (BFPA) ( Yang,

2012 ), and the Optimum-Path Forest (OPF) ( Papa, Falcão, Albu-

querque, & Tavares, 2012; Papa, Falcão, & Suzuki, 2009 ) classifier,

which is a supervised pattern recognition technique that has the

advantage of providing a faster training phase compared to other

state-of-the-art classifiers. This characteristic of fast training is very

important in the context of this paper, since a training procedure

followed by a classification of a validation set need to be per-

formed for each evolutionary agent (sometimes we may have sev-

eral of them). Additionally, this version of OPF is parameterless,

which is another advantage over other classifiers. 

The main contributions of this paper are three-fold: (i) to eval-

uate a recent binary version of the Flower Pollination Algorithm

(BFPA) proposed by Rodrigues, Yang, Souza, and Papa (2015) un-

der different transfer functions 1 ; (ii) to model the problem of EEG

channel selection as an evolutionary-based optimization task; and

(iii) to introduce the OPF classifier for EEG-based biometric person

identification. The use of evolutionary optimization algorithms for

the EEG channel selection is due to their elegant and simple so-

lutions to solve optimization problems, similar to the way nature

does. 

This paper is organized as follows: Section 2 presents a brief

theoretical background about EEG, and Section 3 discusses previ-

ous works related to this paper. Section 4 presents the proposed

approach for person identification using a reduced number of EEG

channels, and Section 5 presents a description of the dataset and

the experimental setup. Sections 6 and 7 discuss the experiments

and conclusions, respectively. 

2. The EEG signal 

The human central nervous system consists of the encephalous

(brain), which is inside the cranium, and the spinal cord contained

in the spine. The nerve tissue is a complex network formed mostly
1 A transfer function, in this context, aims at mapping a real-valued solution to a 

binary-valued one. 

 

c  

(  

s  
y millions of nerve cells (glial cells and neurons), whose pri-

ary function is the transmission of electrical impulses that run

hrough this intrinsic and huge network, thus propagating informa-

ion among cells ( Sanei & Chambers, 2007; Tau & Peterson, 2009 ).

hese small electrical impulses emitted by the huge amount of

eurons create an electric field that can be measured on the sur-

ace of the human skull, with the help of sensors or electrodes. The

easurement of this complex electrical signal from our nervous

ystem is what is known as electroencephalogram (EEG). In the

iterature, it is common among authors to directly refer to those

rain waves as EEG. 

The neural activity of the human being begins between the 17th

nd 23rd week of gestation. It is believed that, since this stage,

nd throughout the life, the signals from the brain activity repre-

ent not only the functioning of the brain, but also of the whole

ody. Published studies also show that even if a variation in ampli-

ude of EEG signals during the development of a normal person ex-

sts, over the years, their functional connections remain largely un-

hanged ( Gasser, Jennen-Steinmetz, Sroka, Verleger, & Macks, 1988;

au & Peterson, 2009 ). 

Fig. 1 shows an example of a map of sensors located at a per-

on’s head. This map describes the head surface locations via rela-

ional distances, also called as International 10-10 System ( Jurcak,

suzuki, & Dan, 2007; Nuwer et al., 1998 ). The nomenclature of

he electrodes is associated to the human brain areas as follows:

rontal (F), Central (C), Temporal (T), Parietal (P) and Occipital (O)

obes. Electrodes named with two letters refer to a location be-

ween areas, for example: CP electrode is in a position between

entral and parietal lobes. The sub-index indicates the side of the

rain hemisphere (odd numbers are located on the left side and

ven numbers on the right side), and the sub-index “z” indicates

hat the electrode is located in the main vertical axis. 

. Related work 

One of the first studies regarding EEG as a biometric trait was

onducted by Poulos, Rangoussi, Chrissikopoulos, and Evangelou

1999) , which described the EEG signal by means of an autoregres-

ive (AR) model as the basis for a person identification method. In
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heir work, the correct classification rates reached 91% in experi-

ents using data obtained from 45 EEG recordings of 75 subjects,

ho were at rest and with the eyes closed during the test. An-

ther study by Poulos, Rangoussi, and Alexandris (1999) employed

pectral features extracted from the EEG signals followed by the

se of neural networks as classifiers to identify a person. The au-

hors have achieved correct classification rates ranging from 80% to

00%, reaffirming the great potential of using EEG as a biometric

eature. Abdullah, Subari, Loong, and Ahmad (2010) implemented

 practical system that uses four (sometimes fewer) channels and

wo types of EEG signals (one with the eyes open and another one

ith the eyes closed), which were used in ten male subjects at

est in five different sessions conducted over the course of two

eeks. The feature extraction was performed using AR models, and

he classification was performed using a multilayer neural network.

he authors observed classification rates from 70% to 97%, depend-

ng on the amount of channels and EEG type. 

Palaniappan (2004) used the gamma-band spectral power ratio

s features and a Multilayer Perceptron Neural Network to recog-

ize a person based on the EEG signal. Later on, Palaniappan and

andic (2007) proposed to use 61 channels for feature extraction

ollowed by classification using Elman Neural Network. Kostílek

nd Št’astný (2012) focused on the importance of the repeatability

nd the influence of movements during the EEG signal acquisition

ession. In their work, an autoregressive model and a Mahalanobis

istance-based classifier for person identification were applied to

valuate the robustness of the proposed approach. Safont, Salazar,

oriano, and Vergara (2012) used a set of classifiers and multiple

eatures to perform EEG-based person identification. In their work,

ll possible combinations of features and classifiers have been ad-

ressed in order to improve the person recognition results. 

More recently, La Rocca et al. (2014) proposed a novel approach

hat fuses spectral coherence-based connectivity between differ-

nt brain regions as a possibly viable biometric feature. The pro-

osed approach was tested on a dataset of 108 subjects with eyes-

losed (EC) and eyes-open (EO) resting state conditions. Their re-

ults show that using brain connectivity leads to higher distinctive-

ess when compared with the traditional power-spectrum mea-

urements, reaching 100% of recognition accuracy in EC and EO

onditions when integrating functional connectivity between re-

ions in the frontal lobe. 

. Proposed method 

In this section, we present our proposed method for person

dentification based on features from EEG signals, as well as we

riefly review some of the main concepts regarding the techniques

mployed in this paper. 

.1. Autoregressive model 

An autoregressive model can be described by a linear difference

quation in the time domain as follows: 

 (k ) = P + 

p ∑ 

i =1 

a (i ) x (t − i ) + e (t) , (1)

here P is a constant, p stands for the number of parameters of

he model and e ( t ) denotes a white noise input ( Jain & Deshpande,

004 ). Notice In this work, we used the Yule–Walker method to

stimate the coefficients of the AR model by employing the least

quare method criterion. 

.2. EEG channel selection 

In order to select the best subset of channels, we evaluate a

ecent proposed binary version of the Flower Pollination Algo-
ithm ( Rodrigues et al., 2015 ) under different transf er functions,

nd we also show we can obtain distinct results for each one.

irstly, we present the theoretical basis about FPA, and then its bi-

ary version. 

.2.1. Flower pollination algorithm 

The Flower Pollination Algorithm proposed by Yang (2012) is

nspired by the flow pollination process of flowering plants. The

PA is governed by four basic rules: 

1. Biotic cross-pollination can be considered as a process of global

pollination, and pollen-carrying pollinators move in a way that

obeys Lévy flights; 

2. For local pollination, abiotic pollination and self-pollination are

used; 

3. Pollinators such as insects can develop flower constancy, which

is equivalent to a reproduction probability that is proportional

to the similarity of two flowers involved; and 

4. The interaction or switching of local pollination and global pol-

lination can be controlled by a switch probability p ∈ [0, 1],

slightly biased towards local pollination. 

In order to model the updating formulas, the above rules have

o be converted into proper updating equations. For example, in

he global pollination step, flower pollen gametes are carried by

ollinators such as insects, and pollen can travel over a long dis-

ance because insects can often fly and move over a much longer

ange. Therefore, Rules 1 and 3 can be represented mathematically

s follows: 

 

(t+1) 
i 

= x t i + αL (λ)(g ∗ − x t i ) , (2)

here 

 (λ) = 

λ · �(λ) · sin (λ) 

π
· 1 

s 1+ λ , s � s 0 > 0 (3)

here x t 
i 

is the pollen i (solution vector) at iteration t, g ∗ is the

urrent best solution among all solutions at the current generation,

nd α is a scaling factor to control the step size. L ( λ) is the Lévy-

ights step size, that corresponds to the strength of the pollination,

( λ) stands for the gamma function and s is the step size. Since

nsects may move over a long distance with various distance steps,

 Lévy flight can be used to mimic this characteristic efficiently. 

For local pollination, both Rules 2 and 3 can be represented as:

 

(t+1) 
i 

= x t i + ε(x t j − x t k ) , (4)

here x t 
j 

and x t 
k 

are pollen from different flowers j and k of the

ame plant species at time step t . This mimics flower constancy

n a limited neighbourhood. Mathematically, if x t 
j 

and x t 
k 

come

rom the same species or are selected from the same population,

t equivalently becomes a local random walk if ε is drawn from a

niform distribution in [0,1]. In order to mimic the local and global

ower pollination, a switch probability (Rule 4) or proximity prob-

bility p is used. 

.2.2. Binary flower pollination algorithm 

In the standard FPA, the solutions are updated in the search

pace towards continuous-valued positions. However, in the pro-

osed Binary Flower Pollination Algorithm the search space is

odelled as an n -dimensional boolean lattice, in which the solu-

ions are updated across the corners of a hypercube. In addition,

s the problem is to select or not a given feature, a solution bi-

ary vector is employed, where 1 corresponds to a feature being

elected to compose the new set, and 0 otherwise. In order to build

his binary vector, ( Rodrigues et al., 2015 ) employed Eqs. (5) and

 6 ), which can restrict the new solutions to only binary values: 

(x j 
i 
(t)) = 

1 

1 + e −x j 
i 
(t) 

, (5) 
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2 http://physionet.org/pn4/eegmmidb . 
x j 
i 
(t) = 

{
1 if S(x j 

i 
(t)) > σ, 

0 otherwise 
(6)

in which σ ∼ U (0, 1). Algorithm 1 presents the proposed approach

that employs BFPA for EEG-channel selection using the OPF classi-

fier as the objective function and Eqs. (5) and ( 6 ) as the transfer

function. Note that the proposed approach can be used with any

other supervised classification technique. 

Algorithm 1: BFPA - Binary Flower Pollination Algorithm 

input : Training set Z 1 and evaluating set Z 2 , α, number 

of flowers m , dimension d and iterations T . 

output : Global best position ̂

 g . 

auxiliaries : Fitness vector f with size m and variables acc, 

max f it , gl obal f it ← −∞ and maxindex . 

1 for each flower i (∀ i = 1 , . . . , m ) do 

2 for each dimension j (∀ j = 1 , . . . , d) do 

3 x 
j 
i 
(0) ← Random { 0 , 1 } ; 

4 f i ← −∞ ; 

5 for each iteration t (t = 1 , . . . , T ) do 

6 for each flower i (∀ i = 1 , . . . , m ) do 

7 Create Z ′ 
1 

and Z ′ 
2 

from Z 1 and Z 2 , respectively, such 

that both contains only features such that x 
j 
i 
(t) 
 = 0 , 

∀ j = 1 , . . . , d; 

8 Train OPF over Z ′ 
1 
, evaluate its over Z ′ 

2 
and stores the 

accuracy in acc; 

9 if (acc > f i ) then 

10 f i ← acc; 

11 for each dimension j (∀ j = 1 , . . . , d) do 

12 ̂ x 
j 
i 

← x 
j 
i 
(t) ; 

13 [ max f it, maxindex ] ← max ( f ) ; 

14 if (max f it > gl obal f it) then 

15 gl obal f it ← max f it; 

16 for each dimension j (∀ j = 1 , . . . , d) do 

17 ̂ g j ← x 
j 

maxindex 
(t) ; 

18 for each flower i (∀ i = 1 , . . . , m ) do 

19 for each dimension j (∀ j = 1 , . . . , d) do 

20 rand ← Random { 0 , 1 } ; 
21 if rand < p then 

22 x 
j 
i 
(t) ← x 

j 
i 
(t − 1) + α � Lévy (λ) ; else 

23 x 
j 
i 
(t) ← x 

j 
i 
(t − 1) + ε(x 

j 
i 
(t − 1) − x k 

i 
(t − 1)) ; 

24 if (σ < 

1 

1+ e x 
j 
i 
(t) 

) then 

25 x 
j 
i 
(t) ← 1 ; else 

26 x 
j 
i 
(t) ← 0 ; 

Lines 1–4 initialize each pollen’s position as being a binary

string with random values, as well as the fitness value f i of each

individual i . The main loop in Lines 6–27 is the core of the pro-

posed algorithm, in which the inner loop in Lines 7–13 is respon-

sible for creating the new training Z ′ 
1 

and evaluating sets Z ′ 
2 
, and

then OPF is trained over Z ′ 
1 

and it is used to classify Z ′ 
2 
. The recog-

nition accuracy over Z ′ 2 is stored in acc and then compared with

the fitness value f i (accuracy) of individual i : if the later is worse

than acc , the old fitness value is kept; in the opposite case, the fit-

ness value is then updated. Lines 12–13 update the best local posi-

tion of the current pollen. Lines 14–18 update the global optimum,
nd the last loop (Lines 19–27) moves each pollen to a new binary

osition restricted by Eqs. (5) and ( 6 ) (Lines 25–27). 

.3. Optimum-path forest classifier 

We used the Optimum-Path Forest classifier ( Papa et al., 2012;

apa et al., 2009 ) applied to the features learned from the AR

odel to classify a person based on the EEG signal. The OPF works

y modelling the samples as graph nodes, whose arcs are defined

y an adjacency relation and weighted by a distance function. Fur-

her, a role competition process between some key nodes (proto-

ypes) is carried out in order to partition the graph into optimum-

ath trees (OPTs) according to a path-cost function. In fact, each

PT is rooted at one prototype, which means a sample that be-

ongs to a given tree is more strongly connected to its root than to

ny other in the forest. 

. Methodology 

In this section, we present the proposed approach for channel

election in EEG-based signal acquisition, as well as we briefly de-

cribe the employed dataset, the nature-inspired meta-heuristic al-

orithms, and the experimental setup. 

.1. Dataset 

The EEG signals used in this work were obtained from the EEG

otor Movement/Imagery dataset 2 ( Goldberger et al., 20 0 0 ). The

ata was collected from 109 healthy volunteers using the BCI20 0 0

ystem ( Schalk, McFarland, Hinterberger, Birbaumer, & Wolpaw,

004 ), which makes use of 64 channels (sensors) and provides a

eparated EDF (European Data Format) file for each of them. The

ubjects performed different motor/imagery tasks: such tasks are

ainly used in BCI (Brain-Computer Interface) applications and

eurological rehabilitation, and consists of imagining or simulating

 given action, like open and close the eyes, for example. 

Each subject performed four tasks according to the position of

 target that appears on the screen placed in front of the volun-

eers (if the target appears on the right or left side, the subject

pens and closes the corresponding fist; if the target appears on

he top or bottom side, the subject opens and closes both fists

r both feets, respectively). In short, the four experimental tasks

ere: 

1. To open and close left or right fist; 

2. To imagine opening and closing left or right fist; 

3. To open and close both fists or both feet; and 

4. To imagine opening and closing both fists or both feet. 

Each of these tasks were performed three times, thus generat-

ng 12 recordings for each subject of a two-minutes run, and the

4 channels were sampled at 160 samples per second. 

The features of the twelve recordings are extracted by means

f an AR model with three output configurations for each EEG-

hannel: 5, 10 and 20 features. Further, the average of each con-

guration is then been computed in order to obtain just one fea-

ure per EEG-channel (sensor). In short, for each sensor, we have

xtracted three different numbers of AR-based features, being the

utput of each sensor the average of their values. Henceforth, we

ave adopted the following notation for each of the dataset config-

rations: AR 5 for 5 autoregression coefficients extracted, and AR 10 

nd AR 20 for 10 and 20 autoregression coefficients, respectively. 

http://physionet.org/pn4/eegmmidb
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Table 1 

Parameters used for each meta-heuristic optimization tech- 

nique. Notice the inertia weight w for PSO was linearly de- 

creased from 0.9 to 0.4. 

Technique Parameters 

BGA mutation = 0 . 1 

BPSO c 1 = c 2 = 2 

BFA γ = 0 . 8 , β0 = 1 . 0 , α = 0 . 01 

BCSS –

BHS HMCR = 0 . 9 

BFPA α = 1 . 0 , p = 0 . 8 
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3 We have used the same variable notation for different methods because we be- 

lieve it makes it easier to understand since it is the same notation used in the 

respective original papers. 
.2. Nature-inspired meta-heuristic algorithms 

In this work, we have compared our proposed method with

ther meta-heuristic-based optimization methods described below:

Genetic algorithm (GA): The Genetic algorithm was proposed

by Holland (1975) , and its main concept is to emulate the bi-

ological evolution to solve optimization problems. It is com-

posed of an initial population (or a set of unique elements)

and a set of operators inspired by the nature. These opera-

tors can change the elements, and according to the evolu-

tionary theory, only the most capable individuals are able

to survive and transmit their biological heredity to the next

generations. 

Particle swarm optimization (PSO): This method is inspired

on the social behaviour of a bird flocking or a fish school-

ing ( Kennedy & Eberhart, 2001 ). The fundamental idea is

that each particle represents a potential solution which is

updated according to its own experience and from its neigh-

bours’ knowledge. The motion of an individual particle for

the optimal solution is governed through its position and ve-

locity interactions, and also by its own previous best perfor-

mance and the best performance of their neighbours. 

Firefly algorithm (FA): This method was proposed by Yang

(2010) , being derived from the flash attractiveness of fire-

flies for mating partners (communication) and attracting po-

tential preys. The brightness of a firefly at a given position

is determined by the value of the objective function in that

position. Each firefly is attracted by a brighter firefly through

the attraction factor. 

Harmony search (HS): This method is a meta-heuristic algo-

rithm inspired in the improvisation process of music play-

ers ( Geem, 2009 ). Musicians often improvise the pitches of

their instruments searching for a perfect state of harmony.

The main idea is to use the same process adopted by musi-

cians to create new songs to obtain a near-optimal solution

according to some fitness function. Each possible solution is

modelled as a harmony, and each musical note corresponds

to one decision variable. 

Charged system search (CSS): This method, based on the

governing Coulomb’s law (a physics law used to describe

the interactions between electrically charged particles), was

proposed by Kaveh and Talatahari (2010) . In this method,

named CSS, each Charged Particle (CP) in the system is af-

fected by the electrical fields of the others, generating a re-

sultant force over each CP, which is determined by using

the electrostatic laws. The CP interaction movement is de-

termined by Newtonian mechanics laws. 

We have used the binary optimization version of each afore-

entioned method, as proposed in: Binary GA (BGA) ( Holland,

975 ), Binary PSO (BPSO) ( Firpi & Goodman, 2004 ), Binary HS

BHS) ( Ramos, Souza, Chiachia, Falcão, & Papa, 2011 ), Binary Firefly

BFA) ( Falcon, Almeida, & Nayak, 2011; Palit, Sinha, Molla, Khanra,

 Kule, 2011 ), and Binary CSS ( Rodrigues et al., 2013 ). The opti-

ization algorithms were implemented in C language following

he guidelines provided by their references. Notice the transfer

unction defined by Eqs. (5) and ( 6 ) were the very same for all

echniques compared in this work. 

.3. Experimental setup 

We partitioned our fully labeled dataset into Z = Z 1 ∪ Z 2 ∪ Z 3 

ubsets, in which Z 1 , Z 2 and Z 3 stand for training, validation,

nd test sets, respectively. The training dataset contains 50% of the

riginal dataset, followed by 30% and 20% concerning the valida-

ion and test sets, respectively. The idea is to employ Z and Z 
1 2 
o find the subset of features that maximize the accuracy over Z 2 ,

ith the accuracy being the fitness function. 

Each agent is initialized with random binary positions and the

riginal dataset is mapped to a new one that contains the features

hat were selected in this first sampling. In addition, the fitness

unction of each agent is set to the OPF recognition rate over Z 2 

fter training in Z 1 . The final subset will be the one that max-

mizes the curve over the range of values, i.e., the features that

aximize the accuracy over Z 2 . The accuracy over the test set Z 3 

s then assessed by using the final subset of the selected features.

otice the fitness function employed in this paper is the accuracy

easure proposed by Papa et al. (2009) , which is capable of han-

ling unbalanced classes. Fig. 2 presents the methodology used to

valuate the proposed approach. 

Table 1 shows the parameters used for each optimization tech-

ique employed in this work 3 . The c 1 and c 2 parameters of PSO

ontrol the pace during the particles movement, and the “Harmony

emory Considering Rate” (HMCR) of BHS stands for the amount

f information that will be used from the artist’s memory (songs

hat have been already composed) in order to compose a new har-

ony. In regard to BFA, α and β0 are related to the step size of a

refly, and γ stands for the light absorption coefficient. 

. Experimental results 

The experimental results stand for the mean accuracy and

tandard deviation over 25 rounds using the methodology pre-

ented in Section 5.3 . Since the meta-heuristic algorithms are non-

eterministic, we adopt this protocol to avoid biased results. The

xperiments were executed in a computer with a Pentium Intel

ore i 7 ® 1.73Ghz processor, 6 GB of RAM and Linux Ubuntu Desk-

op LTS 13.04 as the operational system. 

Figs. 3 and 4 present the mean OPF accuracy over the three dif-

erent feature sets (AR 5 , AR 10 and AR 20 ), as well as the average

umber of selected channels, respectively. Notice the “yellow” bar

tands for the standard OPF, i.e., without channel selection. From

ig. 3 , one can observe there is not a relevant difference in terms of

ccuracy considering the different number of autoregression coeffi-

ients. As the coefficients are averaged at the output of each chan-

el, such non-linear operation may have alleviated the influence of

ach approach. However, this operation seems to work well, since

 recognition rate of around 86% is very competitive when com-

ared to other works in the literature ( Section 3 ). 

Table 2 presents the percentage of selected EEG-channels. From

he data, it is possible to observe three important points: (i) BGA

nd BHS have selected the lowest number of channels for all

ataset configurations; (ii) considering the accuracy results shown

n Fig. 3 , we can conclude that we can achieve similar performance

f that obtained using all the 64 channels by using less than a half



86 D. Rodrigues et al. / Expert Systems With Applications 62 (2016) 81–90 

Fig. 2. Block diagram of the proposed approach. 

Fig. 3. Average OPF accuracy over (a) AR 5 , (b) AR 10 and (c) AR 20 configurations. 

Fig. 4. Average number of selected channels of all techniques over (a) AR 5 , (b) AR 10 and (c) AR 20 configurations. These values have been truncated for sake of simplicity. 

Table 2 

Percentual of selected EEG-channels. 

Dataset BGA BPSO BFA BHS BCSS BFPA 

AR 5 36% 38% 45% 38% 44% 46% 

AR 10 36% 39% 44% 36% 45% 45% 

AR 20 37% 40% 44% 36% 44% 45% 
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of them; and (iii) the proposed BFPA has been very competitive in

terms of binary-constrained optimization tasks when compared to

the techniques addressed in this work. 

Fig. 5 depicts the mean computational load (in seconds) for

all optimization techniques regarding the learning step (dark gray

module in Fig. 2 ). As we did not consider the feature extraction
rocedure, i.e., the autoregression coefficients computation, the ex-

cution time over all dataset configurations are quite similar for

ach specific optimization technique. It is possible to observe BHS

as been the fastest technique in all situations, since it only up-

ates one agent per iteration. Although it may be a drawback in

erms of convergence, it is still the fastest approach. 

Finally, we performed the Wilcoxon signed-rank statistical

est ( Wilcoxon, 1945 ) to verify whether there is a significant dif-

erence between BFPA and the other techniques used in this work

considering the OPF recognition rate). Table 3 displays a pair-wise

omparison against all techniques and BFPA, showing whether two

echniques are considered similar (‘ = ’) or not (‘ 
 = ’) to each other.

he only technique that has been considered similar to BFPA in all

ituations is BFA, followed by BPSO. An interesting point is related
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Fig. 5. Mean execution times of all techniques over (a) AR 5 , (b) AR 10 and (c) AR 20 configurations. 

Fig. 6. Frequency of selected sensors during the experimental evaluation using AR 5 
and BFPA. 

Table 3 

Wilcoxon signed-rank test evaluation. 

Dataset BGA BPSO BFA BHS BCSS 

AR 5 
 = = = 
 = = 

AR 10 
 = = = 
 = = 

AR 20 
 = = = 
 = = 
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o the number of parameters, since BFPA requires only two, mean-

hile BFA needs three parameters. 

Since the nature of the proposed task in the EEG recording

ession has a close relation with different brain areas, like the

ovements of the hands and feet that mainly activates the cen-

ral region of the brain ( Wang, Gao, & Gao, 2005; Yang, Kyrgyzov,

iart, & Bloch, 2013 ), it is important to figure out whether the

xpected channels are actually included in the subset selected by

he optimization techniques. Therefore, since we executed a cross-

alidation procedure with 25 runnings, and due to the stochastic

ehaviour of the meta-heuristic techniques, this means a certain

eature may not be selected at a given execution, and may be at

nother. In order to cope with this challenge, we opted to display

he frequency of occurrence concerning each sensor, as displayed

n Fig. 6 . In this case, we considered BFPA with feature extraction

y model AR . 
5 
Some interesting conclusions can be drawn if we consider

he different range of frequencies modelled by distinct colours. It

eems the frontal sensors are slightly more important than the

ack ones, since we can find more “yellow” and “blue” sensors

ight below the horizontal line (i.e., the one that goes from the

eft ear to the right one) than above that line. Another observation

s that the “yellow” sensors are place everywhere, i.e., they corre-

pond to the sensors that have been selected in between the range

85%, 89%], which is a considerable frequency. This means BFPA

ried to select sensors placed at different positions of the brain in

rder to capture different information. 

.1. Transfer function analisys 

In order to map the possible solutions (i.e., a position in the

earch space) from a continuous-valued space to a binary one, a

ransfer function needs to be employed ( Mirjalili & Mohd Hashim,

011; Rashedi, Nezamabadi-pour, & Saryazdi, 2010 ). A transfer

unction defines the probability of changing the position of a possi-

le solution from 0 to 1 and vice-versa forcing the agents to move

nto a binary space. Mirjalili and Lewis (2013) introduced a study

f two families of transfer functions on binary-based PSO. Since

he binary version of FPA makes use of a transfer function either,

e also investigated these two different families of transfer func-

ions (S-shaped and V-shaped) on Binary FPA. In short, we evalu-

ted 8 transfer functions, as follows: 

• S-shaped: S1, S2, S3 and S4; and 

• V-shaped: V1, V2, V3 and V4. 

Notice the transfer function S2 is the same one used in the

xperiments conducted in the previous section ( Eqs. (5) and ( 6 )).

n this section, we just reproduced the results obtained with S2.

or a more detailed explanation about the functions employed in

his section, the reader can refer to the work by Mirjalili and

ohd Hashim (2011) ; Rashedi et al. (2010) . 

First of all, we evaluated the convergence of all tranfer functions

onsidering the AR models used in this work. Fig. 7 displays this

xperiment, in which transfer function S1 obtained the best results

n all AR models, followed by S2 and V1. According to Mirjalili and

ewis (2013) , the larger the velocity of a given particle, the highest

t should be the probability to change its position from 1 to 0 and

ice-versa, since this particle probably is far away from the best

lobal solution. In this context, the “most abrupt” transfer func-

ions are S1 and V1, i.e., they are more prone to switch the binary

alues. 

Following a similar behaviour to the ones obtained in the

onvergence-driven experiment, functions S1 and V1 provided very

ood recognition rates over the test set, as displayed in Fig. 8 .

uch behaviour can be observed for all AR models. Additionally,
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Fig. 7. Convergence evaluation of the transfer functions considering all AR models. 

Fig. 8. Average OPF accuracy over (a) AR 5 , (b) AR 10 and (c) AR 20 configurations considering different transfer functions. 

Fig. 9. Average number of selected channels of all techniques over (a) AR 5 , (b) AR 10 and (c) AR 20 configurations considering different transf er functions. These values have 

been truncated for sake of simplicity. 
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the number of selected features can influence the recognition rates,

as one can observe in Fig. 9 . Although transfer function V3 has

selected less features, it obtained the lowest recognition rates

( Fig. 8 ), which is somehow expected. In regard to the computa-

tional load, Fig. 10 presents the mean execution time to learn the

most representative subset of features. Since transfer function S1

has selected more features, it is expected a higher computational

burden when compared to the others. 

Table 4 displays the Wilcoxon signed-rank test considering the

experiment with different transfer functions. Considering model

AR 5 , the most accurate techniques were S1, S2 and S4, and with

respect to AR 10 we can highlight S1, S4 and V2 as the top-3 tech-

niques. Finally, S1 and S4 obtained the best results considering the

model AR 20 . 
.2. Discussion 

Roughly speaking, all techniques achieved similar recognition

ates considering all AR models, with an advantage to BFPA and

FA, which are swarm-oriented. It is important to highlight one

ight obtain better recognition rates using a different feature ex-

raction, but the main goal of this work is to evaluate BFPA in the

ontext of sensor selection, as well as to show the importance of

electing sensors in order to make such approach less prone to er-

ors and probably cheaper. 

Using AR models with different number of coefficients seemed

o does not provide different recognition rates, since the output

f each AR model is given by the average of the coefficients.

his could be a plausible explanation for that case. Such assump-
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Fig. 10. Mean execution times of all techniques considering different transfer functions over (a) AR 5 , (b) AR 10 and (c) AR 20 configurations. 

Table 4 

Wilcoxon signed-rank test computed between the transfer 

functions. 

AR 5 S1 S2 S3 S4 V1 V2 V3 V4 

S1 — = 
 = = 
 = 
 = 
 = 
 = 

S2 = — 
 = = = 
 = 
 = 
 = 

S3 
 = 
 = — = = = 
 = = 

S4 = = = — = = 
 = 
 = 

V1 
 = = = = — = 
 = 
 = 

V2 
 = 
 = = = = — 
 = = 

V3 
 = 
 = 
 = 
 = 
 = 
 = — = 

V4 
 = 
 = = 
 = 
 = = = —

AR 10 S1 S2 S3 S4 V1 V2 V3 V4 

S1 — = = = 
 = = 
 = 
 = 

S2 = — 
 = = 
 = = 
 = 
 = 

S3 = 
 = — = = = = 
 = 

S4 = = = — = = = 
 = 

V1 
 = 
 = = = — = = = 

V2 = = = = = — 
 = 
 = 

V3 
 = 
 = = = = 
 = — = 

V4 
 = 
 = 
 = 
 = = 
 = = —

AR 20 S1 S2 S3 S4 V1 V2 V3 V4 

S1 — = 
 = = 
 = 
 = 
 = 
 = 

S2 = — = = = 
 = 
 = = 

S3 
 = = — = = = = = 

S4 = = = — = = 
 = = 

V1 
 = = = = — = = = 

V2 
 = 
 = = = = — 
 = = 

V3 
 = 
 = = 
 = = 
 = — = 

V4 
 = = = = = = = —
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ion can be applied to all meta-heuristic techniques used in this

aper. 

Another important point concerns with the sensors selected by

FPA. A more detailed study showed the most frequent sensors

re located in the front of the head, tough they are also spread

long the head. That is an interesting observation, which means

FPA tried to select sensors that are not so close to each other

n order to capture relevant information from all places of the

ead. 

Finally, an additional study with different transf er functions

howed we can obtain different results, being the number of se-

ected features strongly related to the final recognition rates. It

eems the more features one has, the most accurate the transfer

unction. However, we still need to deal with a trade-off between

he number of features and the computational efficiency. Using all

ensors does not give us too much different results, which sup-

orts the idea of this work, that is to emphasize one can find out

he subset of sensors that can obtain reasonable results. 
. Conclusions and future work 

We have addressed the problem of channel selection in EEG-

ased biometric person identification. The goal of this work to

ighlight we may not need to employ all EEG channels available in

rder to obtain high identification rates. Therefore, we proposed to

odel the problem of channel selection as a meta-heuristic-based

ptimization task, in which the subset of channels that maximize

he recognition rate over a validation set is used as the fitness

unction. 

For the identification (classification) task, we have used the

ptimum-Path Forest classifier, which has demonstrated to be sim-

lar to the state-of-the-art supervised pattern recognition tech-

iques, but faster for training. In regard to the meta-heuristics,

e have introduced a binary-constrained optimization version of

he recently proposed Flower Pollination Algorithm, which seemed

o be very competitive to other state-of-the-art optimization tech-

iques employed in this paper: Binary Genetic Algorithm, Binary

article Swarm Optimization, Binary Firefly Algorithm, Binary Har-

ony Search, and Binary Charged System Search. 

The experimental results showed the BFPA outperformed many

f the other methods, obtaining very good person identification

ates using much less channels. It is important to emphasize that

educing EEG channels while keeping high identification rates is

rucial towards the effective use of EEG in biometric applications.

n addition, the selected sensors seemed to cover all the person’s

ead, mainly in the front. Moreover, the number of coefficients

n the AR model does not seem to impact in the final results,

lthough we are taking the average of the coefficients as the fi-

al feature. Finally, different transfer functions were also analyzed,

hich allowed slightly better results. 

Although using EEG data for biometric purposes seems to be a

ittle bit far from reality in non-controlled environments, we would

ike to shed light over the importance in keep going with such

tudies, since good recognition rates can be obtained, being such

ort of biometric approaches much less prone to spoofing attacks.

robably, in the future when mobile devices can be used to easily

apture EEG signals, such techniques can be widely employed for

iometric purposes as well. 

Our future work will involve using modified versions of FPA to

erform channel selection aiming at improving the overall identi-

cation performance while selecting fewer channels. 
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