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Abstract: Mueller matrix differential decomposition is a novel method for 
retrieving the polarimetric properties of general depolarizing anisotropic 
media [N. Ortega-Quijano and J. L. Arce-Diego, Opt. Lett. 36, 1942 (2011), 
R. Ossikovski, Opt. Lett. 36, 2330 (2011)]. The method has been verified 
for Mueller matrices available in the literature. We experimentally validate 
the decomposition for five different experimental setups with different 
commutation properties and controlled optical parameters, comparing the 
differential decomposition with the forward and reverse polar 
decompositions. The results enable to verify the method and to highlight its 
advantages for certain experimental applications of high interest. 
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Polarimetry. 
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1. Introduction 

During the past decades Mueller matrix polarimetry has been established as the main 
technique for optically characterizing polarization elements and media [1]. As a consequence 
of the growing interest in the applications of polarimetric characterization techniques, the 
analysis of experimental data is becoming increasingly relevant. Specifically, Mueller matrix 
decomposition techniques play a key role for appropriately studying and interpreting 
measurements. 

A considerable number of Mueller matrix decompositions have been proposed so far [2]. 
Cloude decomposition is a sum-based decomposition that enables to describe the predominant 
polarizing optical behavior of a certain sample, as well as characterizing its depolarizing 
properties [3,4]. However, it is not able to separate all the optical effects and quantify them. 
Lu-Chipman polar decomposition [5] was proposed as the generalization of the polar 
decomposition for depolarizing media [6], and after that the method was extended for all the 
possible orderings of the basic optical elements [7–9]. It is currently the most widely used 
method among experimentalists for analyzing Mueller matrices, and it has enabled to obtain 
fruitful results in many applications. Other remarkable decompositions are the normal form 
decomposition [10] and the symmetric decomposition [11,12], being the latter comparatively 
easier to obtain and to interpret. 

Despite the significant number of decompositions, there are still some difficulties that 
usually arise when experimentally measuring and analyzing samples. First of all, the order in 
which the effects take place in the sample may not be known a priori, and therefore the results 
are subjected to entail some errors [9]. And secondly, there are media in which the effects are 
produced in a distributed way, homogeneously, and not in a sequential fashion. In this case, 
product decompositions are prone to fail. It is not an obvious task to quantify and determine 
the experimental errors committed in this case for real situations. 

Recently, a novel decomposition based on the differential formulation of the Mueller 
calculus has been presented [13–17]. The method was first proposed [14] as a natural 
consequence of the obtainment by means of Group theory of the complete set of differential 
Mueller matrices for describing general depolarizing anisotropic media [15]. Independently, 
the method was also proposed from the point of view of the physical interpretation of the 
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optical properties statistics by using the Minkowski antisymmetric and symmetric 
components [17]. In both cases, the differential Mueller calculus firstly proposed more than 
30 years ago for non-depolarizing media [18] was extended for the general depolarizing case. 
Among the main advantages of the differential decomposition, the fact that it is specially 
suited for analyzing media with simultaneously occurring effects should be highlighted. 

Mueller matrix differential decomposition has been proposed for both the forward and the 
backward direction. However, it has only been verified for a number of Mueller matrices of 
interest that can be found in the Optics literature. The aim of this work is to experimentally 
verify the method for several samples with controlled optical parameters and different 
characteristics in terms of number and ordering of optical effects. 

2. Experimental 

2.1 Polarimetric setup 

The Mueller imaging polarimeter used in this work is schematically depicted in Fig. 1. The 
system can be divided into five main blocks: illumination system, polarization state generator, 
microscope system, polarization state analyzer, and detection system. 

 

Fig. 1. Optical scheme of the microscopic Mueller imaging polarimeter in transmission. 

The illumination system is formed by a halogen lamp (Olympus CLH-SC, 150W) with the 
output fiber bundle at the focus of an aspherical condenser (Thorlabs AC254, f = 30 mm), 
followed by a cold mirror, an achromatic lens (Thorlabs AC254, f = 45 mm), a diffuser and an 
achromatic collimator (Thorlabs AC254, f = 80 mm). This combination is telecentric in both 
the object and the image space. The system provides a total homogeneous illumination spot of 
about 2 cm diameter, which can be reduced by using a diaphragm. A beam splitter enables to 
take a reference in order to perform source normalization. 

After the illumination system, an achromatic lens (Thorlabs AC254, f = 50 mm) focuses 
the incident light on the polarization state generator (PSG), which is composed of a linear 
polarizer (Melles Griot, 03 FPG 007) and two nematic liquid crystals variable retarders 
(Meadowlark LVR 300). At the output, an achromatic lens (Thorlabs AC254, f = 60 mm) 
collimates the spot. The design of the PSG design was performed following the optimized 
method developed in [19]. 

The microscope system is formed by the usual combination of condenser and objective. 
The objective used is a plan achromatic microscopic objective lens (Olympus SLMPlan 20x) 
with a numerical aperture of 0.35. 
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The polarization state analyzer (PSA) is similar to the PSG, with a reverse disposition of 
the optical components, and following the same optimized design. 

An ensemble formed by an achromatic lens (Thorlabs AC254, f = 100 mm) followed by a 
mirror and a second lens (Thorlabs AC254, f = 200 mm) projects the light spot in the 
detection system. Imaging is performed by a CCD camera (AVT Stingray F-080C, 786x432 
pixels, 14 bits) with the aid of a zoom (Pentax TV lens 50 mm). An interference filter with a 
spectral bandwidth of 20 nm is placed before the detector in order to fix the detection 
wavelength, which in this case is fixed to 550 nm. The value of the dark current of the camera 
is taken before each measurement and is subtracted from the signal for each pixel. Five 
acquisitions were averaged for each measure in order to optimize the signal-to-noise ratio and 
subsequently increase the robustness and repeatability of the measurement. The calibration 
was performed using the Eigenvalue Calibration Method [20]. 

2.2 Samples 

We have measured five different types of samples with different combinations of 
commutative and non-commutative optical effects that occur in a sequential and/or distributed 
way. They are shown in Fig. 2, where the arrow indicates the direction of light propagation. 

 

Fig. 2. Experimental samples scheme corresponding to a cuvette filled with a) glucose and 
milk dilution in distilled water, and milk dilution in distilled water with b) a linear polarizer at 
the bottom, c) a linear polarizer at the top, d) a linear polarizer symmetrically fixed inside the 
container, and e) a linear polarizer asymmetrically fixed inside the container. Dimensions are 
given in the text. The small arrow on the left indicates the light propagation direction. 

2.2.1 Glucose and milk dilution in distilled water 

The first sample (Fig. 2a) is an optically active turbid medium. A milk dilution in distilled 
water with different volume fractions was chosen as lipid-based scattering medium. Scattering 
in milk is produced fat globules surrounded by a lipid bilayer, which are typically 1 to 2 µm 
diameter, and also by casein proteins of about 0.15 µm diameter [21]. We used homogenized 
pasteurized milk with a fat content of 1.55%. The general form of the normalized Mueller 
matrix for such turbid medium is a diagonal depolarizer 

 

1 0 0 0

0 0 0
,

0 0 0

0 0 0

l

l

c

d

d

d

 
 
 
 
 
 

turbid
M  (1) 

which is in agreement with the Mueller matrix observed in media with randomly located 

nearly spherical particles [22]. The 
ld  and 

cd  coefficients that characterize the diagonal 

depolarization shown by this kind of sample obviously vary according to the experimental 
parameters that determine the ensemble-averaged Mueller matrix measured in each case. 
Dextrogyre optical activity is obtained by adding different concentrations of glucose to the 

solution. The Mueller matrix for optical activity 
oa

M  is a rotation matrix. As long as the 

linear depolarization of the turbid medium is orientation-independent for linearly polarized 
light, the Mueller matrices of depolarization and optical activity remarkably commute: 
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where   is the rotation angle. The optical rotatory power of glucose at 550 nm is 61.36 

°/(dm·g/mL) [23]. The solution was placed in a transparent glass cuvette with transversal 
dimensions of about 30x30 mm and a sample length of 10 mm. 

2.2.2 Milk dilution with a linear polarizer at the bottom or at the top 

The second and third samples are a combination a linear diattenuator and the turbid medium 
composed of milk and distilled water described above, which are placed sequentially with the 
diattenuator before (Fig. 2b) or after (Fig. 2c) the depolarizing medium. The diattenuator used 
in this work is a Polaroid film which was fixed into the cuvette with the transmission axis 
aligned with the horizontal axis of the detector. The length of the depolarizing medium in this 
case is 6.5 mm. 

We would like to briefly discuss an important issue to be taken into account when 
analyzing these samples. The Mueller matrix of a horizontal diattenuator is 

    

 

1 2
2

1 2
2

1 0 0

1 0 0

,
0 0 1 0

0 0 0 1

p

p
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 
 
 

  


 
 

  

d
M  (3) 

where p  is the diattenuation coefficient. The four eigenvalues of  p
d

M  are  
1 1

p
p  

dM
, 

 
2 1

p
p  

dM
, and      

1 2
3 4 21

p p
p   

d dM M
. A perfect diattenuator corresponds to the 

limit    
1

lim
p

p p


   
ideal

d d
M M . In that case, the Mueller matrix of the diattenuator is 

singular, with a single non-zero eigenvalue. An important consequence is that the differential 
Mueller matrix cannot be calculated for perfect diattenuators, as long as the matrix logarithm 
is not defined for singular matrices. However, perfect diattenuators are only a theoretical 
idealization, but in practice perfect diattenuators do not exist. Even for values of the 
diattenuation coefficient extremely close to 1, the Mueller matrix still has four non-zero 
eigenvalues, and therefore the calculation of the matrix logarithm is always possible for this 
kind of devices. In addition, the presence of noise in the measurements produces the same 
effect. In this latter situation, special attention should be paid to the physical realizability of 
the measured matrix (see Section 2.3). As a result, we can conclude that, from a 
phenomenological point of view, in practice we will always be applying the method to non-
singular Mueller matrices. 

The Mueller matrices of depolarization and linear diattenuation do not commute. The 
Mueller matrix for the diattenuator followed by the depolarizer is 

    

 

1 2
2

1 2
2

1 0 0

0 0

,
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0 0 0 1

l l

l
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d p

 
 
 

  


 
 

  

turbid d
M M  (4) 

while the matrix for the reverse order (depolarizer followed by the diattenuator) is 
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So, in fact, it is readily verified that the Mueller matrix corresponding to one of the possible 
ordering of the elements is just the transpose of the other one. This fact is relevant for the 
assessment of the experimental data presented in Section 3. 

2.2.3 Milk dilution with a linear polarizer inside the container 

The last two samples are similar to the second and third samples, with the relevant difference 
that the polarizer is placed inside the turbid medium. The Mueller matrix in this case is: 

    

 

1

2 1 2

1 2
2

1 2

1 2
2

1 2

1 0 0

0 0

.
0 0 1 0

0 0 0 1

l

l l l

l l

c c

d p

d p d d

p
d d p

d d p

 
 
 

  


 
 

  

turbid2 d turbid1
M M M  (6) 

In the fourth sample (Fig. 2d) the linear polarizer is symmetrically fixed inside the 
container (which in this case has a total length of 13 mm) so it can be considered that 

1 2l l ld d d  . When macroscopically measured, such type of sample constitutes an 

appropriate model of a medium with distributed simultaneous optical properties. The last 
sample (Fig. 2e) has the linear polarizer asymmetrically fixed inside a glass container of 10 
mm, with a distance of 3.5 mm to the bottom and 6.5 mm to the top, so for this situation 

1 2l ld d . 

2.3 Method 

The microscopic Mueller imaging polarimeter described above gives sixteen images 
corresponding to each Mueller matrix coefficient. Each image is 800x600 pixels, from which 
the active area radius is 350 pixels. For this study we select a fixed 40x40 pixels window in 
the center of the image. All the images are normalized to the first Mueller matrix element. 

The first step is filtering the measured matrix in order to correct residual experimental 
errors and ensure that the physical realizability condition of the measured Mueller matrix is 

fulfilled [4]. The filtering procedure requires calculating the covariance matrix C  from the 

Mueller matrix M  for each pixel 

  
4

, 1

,
i j

  *

ij i j
C M σ σ  (7) 

where * denotes the complex conjugate and   is the Kronecker product that enables to obtain 

the sixteen Dirac matrices from the Pauli spin matrices 
i
σ . The covariance matrix is further 

diagonalized by a conventional eigen decomposition so that  -1

C C C
C V D V , where 

C
D  is a 

diagonal matrix with the eigenvalues of C  (we will denote them 
C ) and 

C
V  contains its 

eigenvectors column-wise. Matrix filtering consists on fixing any negative eigenvalue to zero, 
and subsequently obtaining the filtered Mueller matrix by inverting Eq. (7). 

Once the matrix has been filtered, it is decomposed by two different methods: the polar 
decomposition [5–7] and the differential decomposition [14–17]. Regarding polar 
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decomposition, we will use two specific decompositions out of the six possible products, 
namely the forward decomposition in its most common order 

 , f f f

Δ R D
M M M M  (8) 

which is usually called Lu-Chipman polar decomposition with reference to the authors that 
first proposed it, and the reverse decomposition in its form 

 . r r r

R D Δ
M M M M  (9) 

The differential decomposition is performed by obtaining the accumulated differential 
Mueller matrix from the matrix logarithm of the macroscopic Mueller matrix 

 logm( ),m M  (10) 

which can be easily calculated by the eigen analysis of M , and further decomposing it into 
the 16 differential parameters that characterize general depolarizing anisotropic media 
[14,17]. 

In this work we have used three different parameters to characterize the optical properties 
of the measured samples: optical rotation, diattenuation coefficient, and entropy. These 
parameters are calculated for each pixel, and the results are statistically analyzed to obtain the 
mean value and the standard deviation in the observation window. Optical rotation can be 
calculated from the retardance component of any polar decomposition as 

 
   

   

3,2 2,31
atan ,

2 2,2 3,3
lc

 
   

  

R R

R R

M M

M M
 (11) 

while for differential decomposition the optical rotation is simply given by 

 2,dd v    (12) 

where the minus sign arises from the sign convention adopted in the definition of the general 
differential Mueller matrix. Regarding the diattenuation coefficient, it can be obtained from 
the diattenuation component of polar decomposition 

 
 

     
1 2

2 2 21
1,2 1,3 1,4 .

1,1
lcD    

 D D D

D

M M M
M

 (13) 

In the case of differential decomposition, the diattenuation coefficient is given as a 
function of the elementary optical properties of the sample by 

  
1 2

2 2 2tanh ,dd q u vD      
  

 (14) 

where q , u  and v are the accumulated differential parameters for linear x-y, linear ± 45° 

and circular dichroism, respectively [14]. It should be highlighted that the accumulated 
differential parameters diverge for an ideal depolarizer, while the diattenuation coefficient 
defined in Eq. (14) always takes values below 1, as expected from the definition of this 
metric. This expression for calculating the diattenuation coefficient can be easily obtained 
from the solution of the differential matrix and Mueller matrix eigenvalue equations [18] in a 
similar way as it was performed for the differential Jones matrix of a general diattenuator [5]. 

Finally, depolarization is quantified by the entropy-like depolarization metric H  [3], 
defined from the eigenvalues of the Cloude coherency matrix as 

 
4 4

4

1 1

log , .i i i Ci Ci

i j

H x x x  
 

    (15) 
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3. Results 

3.1 Validation for commutative distributed effects 

The first set of measurements was performed on optically active turbid samples as already 
described in Section 2.2. Glucose concentrations of 0M, 0.62M, 1.15M, 1.62M and 2.03M 
were measured with several milk concentrations for each of them, in order to have entropy 
values from 0 (no depolarization) to nearly 1 (complete depolarization). First of all, the 
scattering solution without glucose was measured for control purposes. Figure 3 shows the 
mean values and standard deviations obtained for the 40x40 pixels window as described in 
Section 2.3. The calculated optical rotation is nearly zero for all cases. The standard deviation 
of the measurement (which coincides for the three decompositions) increases as 
depolarization becomes stronger, but the stability of the average optical rotation values 
confirms the quality of the measurements. It can be observed that the results all the 
decompositions overlap, as expected for commutative optical effects, as long as the order 
assumption performed in polar decomposition does not affect in this case. 

 

Fig. 3. Optical rotation as a function of the scatterer concentration for a milk dilution in 
distilled water without glucose. The theoretical value (zero) is depicted as a reference. The 
inset at the bottom shows the Cloude entropy for each value of milk volume fraction. Error 
bars represent the standard deviation, which overlaps for the three decompositions. 

The results for glucose concentrations of 1.15M are presented in Fig. 4 (similar results 
were obtained for the rest of concentrations and are not shown here for the sake of 
conciseness). The calculated optical rotation for the cuvette length is 1.47 degrees (it has been 
depicted with a grey line). The experimental results are in very good agreement with the 
expected value. A remarkable increase in the standard deviation is observed in the same way 
as above. It is interesting to note that the observed optical rotation slightly increases for higher 
milk concentrations. This effect is due to the average path length increase caused by multiple 
scattering, and has already been observed in other experimental measurements [24]. The 
results obtained by the three decompositions coincide again, which enables to validate the 
experimental accuracy of Mueller matrix differential decomposition. 

The previous results show the optical rotation values for a fixed glucose concentration and 
increasing milk volume fraction. However, there is a remarkable effect that can be observed 
when the glucose concentration increases for a fixed milk volume fraction. Scattering depends 
on both the size parameter and the optical contrast between the scattering particles and the 
background medium. Provided that glucose refractive index at 550 nm is 1.48, the refractive  
 

#156594 - $15.00 USD Received 14 Oct 2011; accepted 17 Nov 2011; published 4 Jan 2012
(C) 2012 OSA 16 January 2012 / Vol. 20,  No. 2 / OPTICS EXPRESS  1158



 

Fig. 4. Optical rotation as a function of the scatterer concentration for a milk dilution in 
distilled water with a glucose molar concentration of 1.15M. The theoretical value (zero) is 
depicted as a reference. The inset at the bottom shows the Cloude entropy for each value of 
milk volume fraction. Error bars represent the standard deviation, which overlaps for the three 
decompositions. 

index of the glucose dilution in distilled water 
dilutionn  can be expressed as a function of the 

glucose volume fraction glucosef  by the equation  glucose glucose1.33 1 1.48dilutionn f f   . On the 

other hand, a typical value of the lipid globules refractive index is about 1.45. Therefore, an 
increase in glucose concentration can significantly reduce the optical contrast between the 
scattering particles and the background medium, with a subsequent reduction in the scattering 
coefficient of the sample. This effect has been previously observed and proposed for non-
invasively determining glucose concentration in blood [25,26] and in the eye sclera [27]. We 
have experimentally observed such type of variations in the depolarizing properties of our 
samples. Figure 5 shows the reduction of the Cloude entropy as a function of the glucose  
 

 

Fig. 5. Variation of the Cloude entropy as a function of the glucose concentration for a milk 
volume fraction of 12%. 
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concentrations for a fixed milk volume fraction, which in this case is 12%. It can be observed 
that the entropy diminishes from 1 to 0.16 for the considered glucose concentrations, which 
highlights the relevance of this effect as well as its influence on the measurements. 

3.2 Comparison for non-commutative sequential effects 

The results obtained by polar decomposition depend on the choice of the most appropriate 
sub-type of decomposition for a certain measurement. The accuracy of the results is obviously 
better if the assumption about the order in which the optical effects take place corresponds to 
the real physical conditions of the experiment. However, the choice becomes difficult if no 
aprioristic information about the sample is known. In this case, the non-commutativity of 
matrix products can lead to erroneous results [7–9]. 

The order-dependence of polar decomposition is evident for the milk dilution with a linear 
polarizer at the bottom and at the top (second and third samples described in Section 2.2). The 
Mueller matrix for such samples has been presented in Eqs. (4) and (5). The first step in polar 
decomposition is calculating the diattenuator matrix. Both the first row and the first column of 
the diattenuator matrix are directly obtained from the measured Mueller matrix. The forward 
polar decomposition takes the diattenuation vector (the first row of the Mueller matrix under 
analysis) while the reverse polar decomposition takes the polarizance vector (the first column 
of the Mueller matrix) [8]. The diattenuation coefficient can be subsequently calculated by the 
expression given in Eq. (13) from the first column of the Mueller matrix of the diattenuator 
obtained from the previous step [8]. As a result, it can be readily verified that the calculated 
diattenuation coefficient for the second and third samples is p  as expected when the order 

assumption is correct, while it is 
ld p  when the order assumption is wrong. Consequently, for 

nearly perfect polarizers, the calculated diattenuation coefficient is roughly the linear diagonal 

depolarization coefficient 
ld  when using the inappropriate polar decomposition. 

Several measurements have been performed on samples with sequential effects in order to 
observe the order-dependence of polar decomposition and compare it with the results obtained 
by the differential decomposition for such kind of samples. The first sample is a diattenuator 
followed by a depolarizer (Fig. 2b). The measured diattenuation coefficient for the Polaroid 
film alone is 0.9992. Figure 6 shows the diattenuation coefficient obtained for several milk 
volume fractions, as well as the Cloude entropy of each sample. The diattenuation coefficient 
calculated by the differential decomposition and the forward polar decomposition is roughly 
one for all cases, as expected. However, it can be observed that the reverse polar  
 

 

Fig. 6. Diattenuation coefficient as a function of the milk volume fraction for the configuration 
diattenuator-depolarizer (Fig. 2b). The inset at the bottom shows the Cloude entropy for each 
value of milk volume fraction. 
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decomposition is assuming the wrong order, which provokes a stronger error in the results for 
increasing depolarization. We should recall that the forward and reverse polar decompositions 
obviously give the same result when the entropy is small (in that situation there is only an 
optical effect, as long as no depolarization is produced in the sample). 

A similar situation is observed for the opposite configuration: a depolarizer followed by a 
diattenuator (Fig. 2c). In that case, the reverse polar decomposition is assuming the correct 
order, while the forward decomposition fails. As a result, the forward decomposition gives 
wrong diattenuation coefficients, with an error trend that is similar to the one observed for the 
previous experimental configuration. The results can be observed in Fig. 7. In fact, the 
calculated values obtained for the forward and reverse experimental setup are nearly the same 
(reversing the correct and wrong order for each case), which corroborates the accuracy of the 
measurements. 

 

Fig. 7. Diattenuation coefficient as a function of the milk volume fraction for the configuration 
depolarizer-diattenuator (Fig. 2c). The inset at the bottom shows the Cloude entropy for each 
value of milk volume fraction. 

3.3 Comparison for non-commutative distributed-like effects 

Apart from the choice of the order, there is another problem that usually arises: there are 
many samples in which the optical effects take place simultaneously, in a distributed way. 
Biological tissues constitute a relevant example of such kind of media. In that case, the 
assumption of sequential and discrete optical effects is arbitrary and does not correspond to 
the real physical characteristics of the sample. Even if the errors can remain moderate for 
certain conditions [28], using a family of decompositions that are based on non-commutative 
matrix products constitutes a not so suitable methodology. For such kind of experimental 
samples, the differential Mueller matrix decomposition constitutes a more appropriate 
approach, as long as it is order-independent and it appropriately models simultaneous optical 
effects at the microscopic level. 

In order to verify the differential decomposition for such kind of media, we have measured 
the milk dilution with the polarizer in the middle (Fig. 2d) described in Section 2.2, as long as 
it mimics a medium with non-commutative distributed effects. The fact that this sample has 
controlled optical properties is determinant for the verification of our method, as a necessary 
step before applying it for analyzing media of increasing complexity. 

For this sample, both the forward and reverse polar decompositions give erroneous results 
for the diattenuation coefficient. From Eq. (6) it can be easily seen that a diattenuation 

coefficient of ld p  is obtained by both polar decompositions when the Polaroid is 

symmetrically placed inside the container. The experimental results are shown in Fig. 8. 
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Effectively, it can be observed that the diattenuation coefficient calculated by polar 
decomposition begins to fail as soon as the depolarization shown by the sample becomes 
noticeable. The values calculated by the forward and reverse decompositions are roughly the 
same, as predicted (the slight difference between them is likely due to small differences in the 
turbid medium length before and after the polarizer). However, the differential decomposition 
shows a robust behavior in the determination of the diattenuation coefficient for all cases. In 
effect, it manages to decouple the optical effects and successfully characterizes the 
diattenuation properties of the sample. 

 

Fig. 8. Diattenuation coefficient as a function of the milk volume fraction for the polarizer 
symmetrically placed inside the turbid medium (Fig. 2d). 

It is important to note that the maximum depolarization observed in the previous 
measurements corresponds to a Cloude entropy of 0.09, as can be observed in Fig. 8. This 
weak depolarization effect does not enable to observe a stronger decrease in the diattenuation 
coefficients calculated by both types of polar decompositions. This constraint is due to 
experimental limitations of the polarimeter for measuring this sample, as long as the high 
extinction forced to reach the limit of the acquisition time. The last sample considered in this 
work enables to better observe the effect of the sample depolarization in the obtained 
coefficients. The milk dilution with the polarizer asymmetrically placed inside the container 
(Fig. 2e) presents interesting characteristics for our study. In this case, each type of polar 
decomposition fails in a different way. From Eq. (6), and for this sample, both the forward 
and reverse polar decompositions give erroneous results for the diattenuation coefficient. 
Following the same considerations as above, it can be readily verified that the forward 

decomposition estimates a diattenuation coefficient of 1ld p , while the reverse decomposition 

calculates a diattenuation coefficient of 2ld p . The measurements for this sample are 

presented in Fig. 9. The maximum Cloude entropy observed in this case is 0.306. The errors 
committed by polar decompositions are in agreement with the expected behavior. In 

depolarizing media, the ld  coefficient is directly proportional to the length of the sample. 

Therefore, for the experimental configuration shown in Fig. 2e and according to the order 

established in Eq. (6), 1ld  is smaller than 2ld , and therefore the error committed in this case 

should be smaller for the forward decomposition, as confirmed by the experimental results. 
The behavior of the differential decomposition is the same as in all the previous samples 
considered above, giving a diattenuation coefficient of roughly 1 for all the measurements. 
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Fig. 9. Diattenuation coefficient as a function of the milk volume fraction for the polarizer 
asymmetrically placed inside the turbid medium (Fig. 2e). 

4. Conclusions 

The experimental verification of Mueller matrix differential decomposition has been 
presented for the first time. The validation of this method has been demonstrated for several 
types of media measured in transmission. Samples with commutative distributed effects, non-
commutative sequential effects, and non-commutative distributed-like ones have been 
measured and analyzed using the forward and reverse polar decompositions and the 
differential decomposition. The results enable to assess the validity of the differential 
decomposition for appropriately analyzing the experimental data obtained by imaging Mueller 
polarimeters. The order-independence of the differential decomposition and its suitability for 
studying media with simultaneous optical effects makes it a technique with a high potential 
for many applications. In particular, the analysis of biological tissues polarimetric images 
seems one of the most interesting applications of this novel method. 
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