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Robust control theory has been successfully applied to numerous real-world problems using a small set of
devices called controllers. However, the real systems represented by networks contain unreliable components
and modern robust control engineering has not addressed the problem of structural changes on complex networks
including scale-free topologies. Here, we introduce the concept of structurally robust control of complex networks
and provide a concrete example using an algorithmic framework that is widely applied in engineering. The
developed analytical tools, computer simulations, and real network analyses lead herein to the discovery that
robust control can be achieved in scale-free networks with exactly the same order of controllers required in
a standard nonrobust configuration by adjusting only the minimum degree. The presented methodology also
addresses the probabilistic failure of links in real systems, such as neural synaptic unreliability in Caenorhabditis
elegans, and suggests a new direction to pursue in studies of complex networks in which control theory has a
role.
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I. INTRODUCTION

Real networks contain unreliable components; in critical
infrastructures and technological networks some links may
become nonoperational due to disasters or accidents, and
in natural networks this might occur due to pathologies.
Although the robustness and resilience of networks have
been extensively investigated over the past decade [1–4],
controllability methods for complex networks that can ro-
bustly manage structural changes have not been developed
sufficiently. The existing research is limited to recent studies
of network controllability under node attack and cascading
failures using maximum matching [5–7], the discussion of
quantitative measures of network robustness to investigate the
effect of edge removal on the number of controllable nodes
without a comprehensive theoretical analysis [8] and studies
on multiagent systems under simultaneous failure of links
and agents [9]. Recently, a relation between controllability
robustness and core percolation [10] was investigated as an
extension of the results shown in Ref. [5]. Note that the
problem of how the number of driver nodes change as function
of removal fraction of edges [6–8] and our question of how
to design complex networks with structurally robust control
feature drastically differ. While the former are heavily relying
on percolation and cascading failure techniques well studied
over the past decade, our work studies the minimum number
of driver nodes to control the entire network against arbitrary
single or multiple edge failures.

Robust control theory emerged in the late 1970s and is based
on linear, time-invariant transfer functions. The controller
is designed to change the system’s model dynamics until it
reaches a certain degree of uncertainty or disturbance. Thus,
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the system is designed to be robust or stable against the
presence of bounded modeling errors. To address disturbances,
techniques such as single-input, single-output (SISO) feed-
back and H-infinity loop shaping were developed to avoid
dynamic trajectories that deviate when disturbances enter the
system [11,12]. Modern robust control engineering has been
successfully applied to numerous real-world problems, such as
stability in aircrafts and satellites and the efficiency of power,
manufacturing, and chemical plants. By using a fault-tolerant
control design a system can be robust enough to continue op-
erating as intended even a small system failure occurs. Indeed,
robust control for consensus and synchronization of networks
have been investigated in a number of papers using a variety of
techniques, including complex interconnected neural networks
with delay [13]. The problem of fault-tolerant control aims
to achieve a certain control objective in the presence of
single or multiple edge or node failures. For example, this
is a key technological and well-studied problem in networks
where agents communicate over wireless connections (e.g.,
fault-tolerant control of wireless networks) [14,15].

Here we introduce the concept of structurally robust control
of complex networks from a different perspective. To provide
a concrete example, we adopt the minimum dominating set
(MDS) model because it has been widely applied to the control
of engineering systems, such as mobile ad hoc networks
(MANET), transportation routing, computer communication
networks [16–21], design of swapped networks for construct-
ing large parallel and distributed systems [22], as well as
the investigation of social influence propagation [23–25].
Recently, the relationship between structural controllability
and MDS has been established and the size of MDS in a
certain type of scale-free networks has been theoretically
analyzed [26–28]. Molnár et al. further studied the size of MDS
by exhaustively comparing several types of artificial scale-free
networks using a greedy algorithm [29]. Interestingly, Wuchty
demonstrated the applicability of the MDS approach to the
controllability of protein interaction networks and showed
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FIG. 1. (Color online) The MDS model and the robust domina-
tion configuration. (a) The network is structurally controllable by
selecting a minimum dominating set (MDS) because each dominated
node has its own control signal. A maximum matching approach needs
three driver nodes v1, v2, and v4, assuming a matching link from v1

to v3. In contrast, the MDS only requires one node, v1. The labels u1
1,

u2
1, and u3

1 indicate control. (b) Example of a dominating set (DS) in
a graph G. A set of nodes S (filled) in a graph G is a dominating set if
every node in G is either an element of S or adjacent to an element of
S. (c) The graph G allows for an MDS with cover C = 1 composed
of only three nodes. (d) Example of a robust minimum dominating set
(RMDS) (i.e., an MDS with cover C = 2). In an RMDS, each node
in G is either an element of S or adjacent to at least two elements of
S. (e) Each edge (ti , tj ) has a failure probability of Pti ,tj highlighted
in the figure. In a probabilistic minimum dominating set (PMDS), the
approach shown here, each node must be covered by multiple nodes
in the MDS so the probability that at least one edge is active is at
least θ = 0.7. For instance, t4 must cover itself because the link (t2,t4)
is unreliable with a failure probability of 0.8, which is higher than
θ = 0.7.

that the MDS of proteins were enriched with essential cancer-
related and virus-targeted genes [30]. Moreover, very recently
strategies on vulnerability of dominating sets against random
and targeted attacks have also been reported [31].

A set of nodes S in a graph G is a dominating set (DS) if
every node in G is either an element of S or adjacent to an
element of S. Then the MDS approach states that a network
is made structurally controllable by selecting an MDS (driver
set) because each dominated node has its own control signal
[26–28] [see Fig. 1(a)]. Whereas each element is controlled by
at least one node in G (C = 1) (or is covered by itself) in an
MDS, the novel robust MDS (RMDS) approach states that each
node must be covered by itself or at least two nodes in G (C =
2) [see Figs. 1(c) and 1(d)]. The analytical results and computer
simulations demonstrate that a robust configuration (C = 2,
D = 2) and nonrobust configuration (C = 1, D = 1) of a
scale-free network with minimum degree D require the same
order of driver nodes. The robust configuration guarantees that
the system remains controllable even under arbitrary single or
multiple link failure. This finding has remarkable implications
for designing technical and natural systems that can still
operate in the presence of unavailable or damaged links
because the implementation of such a robust system in a large

network does not change the order of the required controllers
in a conventional system without robustness capability. As a
by-product of this research, our results also demonstrate that
the minimum degree D in a network plays an important role
in network controllability and significantly affects the size of
the MDS. In particular, for γ < 2, the order of the size of
an MDS changes if the minimum degree changes, unveiling
another tool to reduce the number of driver nodes. These
theoretical findings are confirmed by computer simulations
and an analysis of real-world undirected, directed, and bipartite
networks. In addition, the MDS approach is extended to
address probabilistic network domination when we consider
the probability of link transmission failure. The derived
mathematical tools allow us to identify optimal controllability
configurations in real biological systems by mapping the
synaptic unrealiability distribution experimentally observed
in rat brains [32] to the most well-known and recently updated
neural network model for Caenorhabditis elegans [33].

The connections between the proposed study and develop-
ments on graph theory such as eternal domination are worth
mentioning. The robust dominating set can be mathematically
seen as a k-dominating set. Further extensions on k-dominating
sets led to the concept of the Roman k-dominating set and
eternal security [34–36]. An eternal dominating or eternally
secure set can be defined as a dominating set that allows
an eternal defense. The first version of these concepts was
mathematically introduced by Burger et al. [37,38]. For this
definition, we have to understand the nodes as regions, the
edges as adjacent regions, and a dominating set S as military
bases of protecting armies located in some selected regions.
Then, when a node v that does not belong to the current
dominating set S is attacked, the army at a node of S adjacent
to v can be deployed to v to defend the region from the attack.
This process generates a dominating set with the same feature
of eternal defense. However, the relations with robust control
of complex networks were not investigated in these works.

The concept of structural controllability was first introduced
by Lin [39] for single-input systems and it was quickly
extended to multi-input systems [40–43]. The maximum
matching (MM) algorithm identifies the minimum number of
nodes to control the entire network by providing a mapping
between structural controllability and network structure [5].
However, there are several striking differences with MDS
approach: (1) By using the MM approach, the fraction of driver
nodes tends to be minimized in random networks. The MDS
does not necessarily give a minimum number of driver nodes
in the sense of MM approach. However, MDS gives fewer
driver nodes in many cases, including scale-free networks in
which hubs are present [1,44]. For example, consider the star
graph (all nodes but one node are leaves) with n leaves. The
MM approach then needs n-1 driver nodes, whereas the MDS
approach needs only one driver node. (2) The MM approach is
based on linear systems, whereas the MDS approach does not
even need structural controllability: It is enough to assume that
a node is controllable if it is directly connected to a driver node.
This represents one of the unique features of the MDS model
because it suggests that it can be applied to a certain kind
of nonlinear and/or discrete model. However, these striking
advantages have a price. (1) The set of driver nodes in MDS
is O(n) in scale-free networks with γ > 2. (2) Each edge has
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to be controlled independently. However, even in the case of
O(n), a relatively small number of drivers is required in most
cases. Above all, the proposed concept of structurally robust
control is an algorithmic-independent framework. Therefore,
engineering applications of structurally robust control may
flexibly give preference to one algorithm over another.

II. THEORETICAL RESULTS FOR ROBUST DOMINATION

A. Analysis for the case γ < 2 with minimum degree D
and MDS with cover C = 1

In the following, we present analytically derived predic-
tions for the minimum number of drivers using the MDS
controllability approach by considering specific cases for the
degree exponent γ and the minimum degree D. Then the robust
control is also analyzed by considering the number of drivers C

required to cover each node. We first assume that the minimum
degree of an undirected graph G(V,E) with n nodes and a
degree distribution that follows a power law P (k) = αk−γ is
D. We then use a standard mean-field approach that assumes
a continuum approximation for the degree k, so it becomes a
continuous real variable [1,44].

We also note that there are some discussions on degree
cutoff [45] because our analysis assumes that there exist
high-degree nodes. However, we do not introduce such a
degree cutoff because we are performing a kind of mean-field
analysis. It is to be noted that scale-free networks are a kind of
random networks and thus we can have a node with even degree
n − 1 with very small probability if P (n − 1) > 0 [1]. In the
mean-field analysis, such rare cases are taken into account.
However, discussions of degree cutoff are based on average
case analysis, and there is no consensus for a cut-off value.
Therefore, we do not introduce degree cutoff in our analysis.
The results of computer simulation support that our analysis is
appropriate. Note also that each node with degree more than
1 must be covered by C nodes (not by C edges) in our integer
linear programming (ILP) formulation and thus the effect of
multiple edges is eliminated in computer simulation. As it
has been shown in the field of complex network science, the
analysis and classification of networks in terms of their degree
distribution is a key feature to understand the complex behavior
of complex systems. In particular, the scale-free topology
fundamentally changes the system’s behavior, with broad
implications from spreading processes on networks (like,
for example, the spread of infectious diseases) to cascading
failures [1,5,44]. It is therefore appropriate to examine the
controllability problem in networks governed by power-law
degree distributions.

First we assume that the minimum degree D is 2 in an
undirected graph G(V,E), where V is a set of n nodes and E

is a set of edges connecting nodes in V . From the following
equation:

αn

∫ n

2
k−γ dk = αn

γ − 1

(
1

2γ−1
− 1

nγ−1

)

≈ αn

γ − 1

1

2γ−1
= n

we have α = 2γ−1(γ − 1).

Let DS be the set of nodes with degree between nβ and n.
Then, the number of nodes in DS (denoted by NDS) is

NDS ≈ αn

∫ n

nβ

k−γ dk = −2γ−1n[k1−γ ]n
nβ

= −2γ−1n(n1−γ − nβ(1−γ )) ≈ 2γ−1n1+β(1−γ ).

Let EG be the number of edges in G(V,E). Then EG is
given by

EG ≈ αn

2

∫ n

2
kk−γ dk ≈ αn

2(2 − γ )
n2−γ ,

where the factor 2 in αn
2 comes from the fact that each edge is

counted by two nodes. The number of edges that are connected
to at least one node in DS (i.e., the number of edges covered
by DS) is lower bounded by

EDS = αn

2

∫ n

nβ

kk−γ dk = αn

2(2 − γ )
[n2−γ − nβ(2−γ )].

It should be noted that EDS gives a lower bound and the number
of edges covered by DS may be much larger because this
estimate considers the case where both end points of these
edges are in DS.

The probability that an arbitrary edge is not covered by DS
is upper bounded by

EG − EDS

EG

≈ nβ(2−γ )

n2−γ
= n(β−1)(2−γ ).

Then the probability that a node with degree k does not have
any edge connected to DS is upper bounded by

nk(β−1)(2−γ ),

which is also upper bounded by n2(β−1)(2−γ ) because the
minimum degree is assumed to be 2. Therefore, the number of
nodes (denoted by NG−DS) not covered by DS is

NG−DS � O(nn2(β−1)(2−γ )) = O(n1+2(β−1)(2−γ )).

Since we can have a dominating set if we merge these nodes
with DS, the number of nodes in an MDS is upper bounded by
NDS + NG−DS. To minimize the order of NDS + NG−DS. we
let

1 + β(1 − γ ) = 1 + 2(β − 1)(2 − γ ),

which results in

β = 2(2 − γ )

3 − γ
.

By using this β, an upper bound of the size of an MDS is
estimated as

O
[
n

1− 2(γ−1)(2−γ )
3−γ

]
.

We can see that this order is smaller than that of our previous
result on D = 1 [27]

O[n1−(γ−1)(2−γ )].

In particular, the above takes the minimum order O(n0.75)
when γ ∗ = 1.5 for D = 1, whereas the new bound for D = 2
takes the minimum order O(n0.657) when γ ∗ = 3 − √

2 [see
Figs. 2(a) and 2(b)]. This difference comes from the fact that
a node v is regarded as not covered by DS if one specific edge
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FIG. 2. (Color online) The theoretical predictions for the MDS
order. Theoretical analysis illustrates that the MDS size scales
according to nδ [see Eq. (3)] in scale-free networks of size n. The
scaling exponent δ as a function of the degree exponent γ for the (a)
C = 1, D = 2 and (b) C = 1, D = 1 configurations. (c) The degree
exponent that minimises the MDS as a function of the minimum
degree D. (d) The dependence of the δ exponent on the degree
exponent γ calculated for several D values.

connected to v is not covered by DS in an existing analysis [27],
whereas a node v is regarded as not covered by DS if no edge
connected to v is not covered by DS in this analysis.

We can extend the above result for the case where the
minimum degree is D by replacing

NG−DS � O[nn2(β−1)(2−γ )] = O[n1+2(β−1)(2−γ )],

with

NG−DS � O[nnD(β−1)(2−γ )] = O[n1+D(β−1)(2−γ )].

Then we have

1 + β(1 − γ ) = 1 + D(β − 1)(2 − γ ), (1)

β = D(2 − γ )

D(2 − γ ) + (γ − 1)
. (2)

By using this β, an upper bound of the size of MDS is estimated
as

O
[
n

1− D(2−γ )(γ−1)
D(2−γ )+γ−1

]
. (3)

This order of the MDS size that scales as nδ takes the minimum
value when

γ ∗ = (2D − 1) − √
D

D − 1
.

It is to be noted that although α depends on D, it does not affect
the order of the MDS size. The scaling exponent δ for the order
of the MDS size is shown as a function of the degree exponent
γ in Fig. 2(d). This is our first main result and demonstrates
that for scale-free networks with γ < 2, the order of the MDS
size changes (the exponent δ changes in functional form of
nδ) when the minimum degree increases. The dependence of
the degree exponent γ ∗ that minimizes the MDS size on the
minimum degree D is also shown in Fig. 2(c). The results

demonstrate that a higher minimum degree makes it easier to
control scale-free networks with γ < 2 [Fig. 2(d)].

B. Analysis on robust domination with minimum degree D
and a generic C cover

1. Analysis for the case of γ < 2

Next we show the results for the robust domination (RMDS)
[Fig. 1(d)]. For an undirected graph G(V,E) and a positive
integer C, RDS ⊆ V is called a C-robust dominating set
if each node v ∈ V satisfies the following: either v ∈ RDS
or v is connected to C or more nodes in RDS. Here, we
provide an upper bound of the size of the minimum C-robust
dominating set. Note that an RDS is a special case of a
generalized dominating set [46,47], which has been studied
in the context of the computational complexity. However, it
has not been investigated from the perspective of complex
networks. We consider the case of C-robust domination in
which the minimum degree of G(V,E) is D, where C and D

are constants such that D � C.
As in Sec. II A, let DS be the set of nodes with degree

between nβ and n. Then the probability that a node is not
covered by C or more nodes in DS is bounded by

O

(
D∑

k=D−C+1

(
D

k

)
n(β−1)(2−γ )k

)
,

where we do not include the factor of [1 − O(n(β−1)(2−γ )]D−k

because we consider an upper bound. This number is further
bounded by

O[DDD−C+1n(β−1)(2−γ )(D−C+1)]

for sufficiently large n. Therefore, the number of nodes not
covered by DS is

O[nn(β−1)(2−γ )E] = O[n1+E(β−1)(2−γ )],

where we let E = D − C + 1. It is to be noted that a constant
factor is ignored here because we use O notation.

As before, by balancing the size of DS and the number of
noncovered nodes, we have

1 + β(1 − γ ) = 1 + E(β − 1)(2 − γ ), (4)

β = E(2 − γ )

E(2 − γ ) + (γ − 1)
. (5)

By using this β, an upper bound of the size of RMDS is
estimated as

O
[
n

1− E(2−γ )(γ−1)
E(2−γ )+γ−1

]
. (6)

This is our second and most important finding. This result
suggests that the case of an RMDS with minimum cover C

and minimum degree D corresponds to the case of an MDS
with the minimum degree D − C + 1. For example, the case
of an RMDS with C = D = 2 [i.e., the case where each node
(with a degree of at least 2) must be covered twice, and the
minimum degree D is 2] corresponds to the case of an MDS
with D = 1.

In all theoretical analyses in Secs. II A and IIB, we assume
that multiedges (i.e., multiple edges between the same pair
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of nodes) are allowed because it is known that there does
not exist a network strictly following a power-law distribution
with γ < 2 if multiedges are not allowed [48]. However, even
if multiedges between the same pairs are replaced by single
edges after generating a power-law network with multiedges,
the results should hold if the cover parameter C is 1 because
MDS is only concerned with existence of an edge from each
node not in MDS to a node in MDS. If C > 1, we need to
consider the possibility that some of C edges are connected to
a node v are multiedges because such v may not be dominated
by C nodes. We will show that such a factor can be ignored
in many cases if we discuss the order of the size of MDS.
Of course, the resulting network does not strictly follow a
power-law distribution if multiedges are replaced by single
edges. However, because any network with γ < 2 cannot
strictly follow a power-law distribution, our assumption seems
reasonable.

Here we note that Eqs. (4) and (5) are identical to Eqs. (1)
and (2) if we replace E by D. It suggests that the case of
RMDS with the minimum cover C and the minimum degree
D corresponds to the case of MDS with the minimum degree
D − C + 1. For example, the case of RMDS with C = D = 2
corresponds to the case of MDS with D = 1.

In the above, we implicitly assumed that all C edges are
connected to different nodes in DS. However, we need to
consider the possibility that some of C edges are connected
to the same node in DS because we allow multiedges in
theoretical analyses. Suppose that C (or more) edges from
v are connected to DS. Since the number of edges connected
to a node of degree k in DS is O(k), there exist O(nk−γ ) nodes
of degree k in DS, and there exist O(n3−γ ) edges connected to
DS, the probability that C edges contain at least one common
end point in DS is

O

(
C2

∫ n

k=1 k2(nk−γ )dk

(n3−γ ]2

)
= O

(
C2 1

n2−γ

)
.

Since there exist O(n) nodes covered by DS, the number of
nodes not covered by C different nodes would be

O(C2nγ−1).

If the exponent γ − 1 is smaller than that in Eq. (6), this factor
does not affect the order of Eq. (6). For γ < 1.5, it is true for
E � 10. However, if γ � 1.7, it is true only for E = 1 (i.e.,
C = D). Therefore, we need to be careful if we consider the
case of D > C and γ � 1.7.

2. Analysis for the case of γ > 2

a. Analysis of lower bound. First we consider a lower
bound. Let D be the minimum degree. From αn

∫ n

D
k−γ dk =

n, we have α = (γ − 1)Dγ−1.
For S ⊆ V , �(S) denotes the set of edges between S and

V − S [i.e., �(S) = {{u,v}|u ∈ S and v ∈ V − S}]. Here we
assume without loss of generality that |S| < n/2 because we
are interested only in cases where |S| is small compared with
n. The following property is trivial:

if |�(S)| < n/2, S cannot dominate V . (7)

Let S be the set of nodes whose degree is greater than or
equal to K . We estimate the size of �(S) as follows:

|�(S)| < αn

∫ n

K

kk−γ dk ≈ n(γ − 1)Dγ−1
∫ n

K

k−γ+1dk

= nDγ−1

(
γ − 1

γ − 2

)(
1

Kγ−2
− 1

nγ−2

)

< nDγ−1

(
γ − 1

γ − 2

)
1

Kγ−2
.

If S is a dominating set, the last term should be no less than
n/2. Therefore, the following inequality should be satisfied:

nDγ−1

(
γ − 1

γ − 2

)
1

Kγ−2
> n/2. (8)

By solving this inequality, we have

K <

[
Dγ−1

(
γ − 1

γ − 2

)(
n

n/2

)]1/(γ−2)

=
[

2Dγ−1

(
γ − 1

γ − 2

)]1/(γ−2)

.

Then the size of S is estimated as

|S| ≈ αn

∫ n

K

k−γ dk ≈ n

(
1

Kγ−1
− 1

nγ−1

)
≈ n

1

Kγ−1

>

[
2Dγ−1

(
γ − 1

γ − 2

)]− γ−1
γ−2

n.

We extend the above analysis to C domination (i.e., each
node must be covered by C or more edges). In this case,
Ineq. (7) should be replaced by

if |�(S)| < nC/2, S cannot C-dominate V .

Then, Ineq. (8) is also replaced by

nDγ−1

(
γ − 1

γ − 2

)
1

Kγ−2
> (nC)/2.

Finally, we have

|S| >

[(
Dγ−1 2

C

)(
γ − 1

γ − 2

)]− γ−1
γ−2

n

=
(

C

2Dγ−1

) γ−1
γ−2

[(
γ − 1

γ − 2

)]− γ−1
γ−2

n. (9)

For example, consider the case of C = 2 and γ = 3 for fixed
D. In this case, 2-domination requires 22 = 4 times larger
MDS.

b. Analysis of upper bound. Next we consider an upper
bound. As in the above, we have α = (γ − 1)Dγ−1. Let DS be
the set of nodes with degree between B and n. Then, the size
of DS, NDS, is estimated as

NDS ≈ αn

∫ n

B

k−γ dk = −nDγ−1[k1−γ ]nB

= −nDγ−1(n1−γ − B1−γ ) ≈ n
Dγ−1

Bγ−1
.

As in Sec. II B 2, let EG and EDS be the number of
edges in G(V,E) and the number of edges connected to DS,
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respectively. In addition, let D denote the minimum degree.
Then we have

EG ≈ αn

∫ n

D

kk−γ dk ≈ γ − 1

γ − 2
n
Dγ−1

Dγ−2
,

EDS ≈ αn

∫ n

B

kk−γ dk ≈ γ − 1

γ − 2
n
Dγ−1

Bγ−2
.

The probability that an arbitrary edge is covered by DS is

EDS

EG

≈
(

D

B

)γ−2

.

Thus, a lower bound of the probability that an arbitrary node
is not covered by C or more edges is estimated as

1 −
D∑

k=C

(
D

k

) [(
D

B

)γ−2]k[
1 −

(
D

B

)γ−2]D−k

=
C−1∑
k=0

(
D

k

) [(
D

B

)γ−2]k[
1 −

(
D

B

)γ−2]D−k

.

Since it is very difficult to consider a general pair (C,D), we
consider the case of C = D. Then this probability is simplified
into

1 −
(

D

B

)C(γ−2)

.

Therefore, an upper bound f (B) of the size of MDS is
estimated as

f (B) = n

[(
D

B

)γ−1

+ 1 −
(

D

B

)C(γ−2)]
.

It is to be noted that this number does not give a meaningful
bound for many (C,γ ). For example, if C = 1 and γ = 3,
f (B) = n holds.

By solving f ′(B) = 0, we see that f (B) takes the minimum
value

n

{
1+

[
C(γ − 2)

γ − 1

] γ−1
C(2−γ )+(γ−1)

−
[
C(γ − 2)

γ − 1

] C(γ−2)
C(2−γ )+(γ−1)

}
(10)

at B = D
[

γ−1
C(γ−2)

]1/(C(2−γ )+(γ−1))
. It is interesting to note that

this minimum value does not depend on the minimum degree
D. If C = D = 1 (i.e., original MDS), this minimum value is
simplified into

n

[
1 +

(
γ − 2

γ − 1

)γ−1

−
(

γ − 2

γ − 1

)γ−2]
.

It is also interesting to consider the case of C = 1 and
D = 2. In this case, f (B) is given by

f (B) = n

{(
2

B

)γ−1

+
[

1 −
(

2

B

)(γ−2)]2}
.

Although it is difficult to analytically derive its minimum, we
can estimate it by numerical computation. Figure 3 compares
upper bounds for (C,D) = (1,1) and (C,D) = (1,2) and lower
bounds for (C,D) = (1,1). This figure shows that the upper
bound becomes smaller as D increases in the case of C = 1.
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FIG. 3. (Color online) Analytical results for several configura-
tions. Comparison of upper bounds for (C,D) = (1,1),(1,2) and
lower bounds for (C,D) = (1,1).

Although, as shown in Fig. 4, the gap between the derived
lower and upper bounds is large (especially for larger C and
D), these are not trivial. For example, suppose that there exist
two nodes with degree no less than n − 1. Then the size of
RMDS for C = 2 is 2, which is O(1) [much less than O(n)].
The �(n) lower bound suggests that such a case seldom occurs
in random scale-free networks.
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FIG. 4. (Color online) The theoretical predictions for MDS
(C = 1) and robust domination RMDS (C = 2,3) with D = C. (a)
Lower and upper bound predictions for the fraction of nodes required
to control the entire network for covers C = 1,2,3. (b) Ratio of lower
bound MDS sizes for C = 2 and C = 1 (circles) and C = 3 and
C = 1 (triangles). (c) Ratio of upper bound MDS sizes for C = 2
and C = 1 (circles) and C = 3 and C = 1 (triangles).
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III. COMPUTATION OF ROBUST DOMINATION

A. ILP formulation for MDS in unipartite networks

Let G(V,E) be an undirected graph, where V and E are
sets of nodes and edges, respectively. We begin with the ILP
formulation for computation of an MDS [26]. From G(V,E),
we construct the following ILP instance:

minimize
∑
v∈V

xv,

subject to xu +
∑

{u,v}∈E

xv � 1 for all u ∈ V ,

xv ∈ {0,1} for all v ∈ V .

Then the set {v|xv = 1} clearly gives an MDS. It is known that,
in contrast to the bipartite matching [5], the MDS problem is
NP-hard. Therefore, it is reasonable to use ILP.

B. ILP formulation for robust domination

Suppose that each node must be covered twice except the
degree 1 and 0 nodes. Then we can formulate that this robust
dominating set problem for C = 2 [i.e., each node (with degree
greater than 2) is either in MDS or is covered by at least two
nodes in MDS, where each node with degree 1 is either in
MDS or is covered by at least one node in MDS] as follows.
Because it is impossible to cover each degree 1 node by two
edges, we have introduced this exceptional handling of degree
1 nodes. However, if the minimum degree is 2 or more, we
need not consider this exceptional case,

minimize
∑
v∈V

xv,

subject to 2xu +
∑

{v,u}∈E

xv � 2 for all u ∈ V such that deg(u) > 1,

xu +
∑

{v,u}∈E

xv � 1 for all u ∈ V such that deg(u) = 1,

xv ∈ {0,1} for all v ∈ V .

However, the GNU Linear Programming Solver (glpsol) executable could not solve this problem in reasonable CPU time. So
we strengthen the condition so each node with degree greater than 2 is covered by at least two nodes in MDS even if the node
belongs to MDS. Then the resulting IP becomes as follows:

minimize
∑
v∈V

xv,

subject to xu +
∑

{v,u}∈E

xv � 2 for all u ∈ V such that deg(u) > 1,

xu +
∑

{v,u}∈E

xv � 1 for all u ∈ V such that deg(u) = 1,

xv ∈ {0,1} for all v ∈ V .

It is to be noted that the solution obtained by the above ILP also satisfies the conditions of the original formulation. Therefore,
the solution obtained by use of this ILP also gives a robust dominating set although it is not necessarily minimum. We can also
consider a variant of MDS in which weight w(u,v) is assigned for each edge and each node u must be covered by edges with
total weight Wu. Then this variant can be formulated as

minimize
∑
v∈V

xv,

subject to w(u,u)xu +
∑

{v,u}∈E

(w(u,v)xv) � Wu for all u ∈ V such that deg(u) > 0,

xv ∈ {0,1} for all v ∈ V .

C. Implementation of the ILP problems

For the MDS (C = 1) and RMDS (C = 2) configurations
computed in real-world and simulated networks, the optimal
solution was calculated using the glpsol solver [49]. The
GNU Linear Programming Kit (GLPK) supplies a software
package intended for solving large-scale linear programming,
mixed integer programming, and other related problems. In

our problem, after translating the mathematical problem into
an ILP problem, the input model is solved using the glpsol
executable.

For the probabilistic MDS (PMDS), to be shown later,
the optimal solution for the ILP formulation was calculated
using the IBM ILOG CPLEX OPTIMIZER STUDIO, ver. 12.02.
As the GLPK, it is a software package that allows us to
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solve large-scale mathematical optimization problems. The
computation of the PMDS is more intensive than that of MDS
and RMDS, therefore we used CPLEX because it performed
faster than GLPK to find the optimal solution.

D. Generation of unipartite scale-free networks

We employ the following algorithm to construct unipartite
scale-free networks of size n, in which the degree distribution
of V (a set of nodes) follows P (k) ∝ k−γ under the constraint
that the minimum and maximum degrees are D and n,
respectively.

For given n,γ,D we generate a random unipartite network
in the following way:

(1) For each node v ∈ V , generate half edges ei = (v,ui)
(ui is a virtual node) according to the degree distribution
α1k

−γ under the constraint of the minimum degree D and
the maximum degree n, where α is selected so the number of
nodes in V is almost n.

(2) Repeat the following until there are almost no remain-
ing half edges: randomly select nonconnected ei = (v,ui) and
ej = (v′,uj ) such that v 	= v′ and then connect v and v′.

The probabilistic MDS, to be introduced later, was com-
puted using generated samples of synthetic scale-free networks
with a variety of scaling exponent γ and average degree 〈k〉
values using the Havel-Hakimi algorithm with random (Monte
Carlo) edge swaps (HMC) [50].
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FIG. 5. (Color online) Computer simulations for MDS size for
γ < 2. The MDS size calculated in computer-generated scale-free
networks for γ = 1.3, 1.5, and 1.7 are shown in (a), (b), and (c),
respectively. The configurations for minimum degree D and cover C

are shown in the figure legend. The lines display a scaling law of nδ .
The precise values for δ are, from top to bottom, (a) 0.804 ± 0.011,
0.8234 ± 0.009, 0.791 ± 0.015; (b) 0.771 ± 0.007, 0.781 ± 0.006,
0.704 ± 0.007; and (c) 0.810 ± 0.006, 0.804 ± 0.003, 0.714 ±
0.008. As predicted by the theory, configurations D = 1, C = 1 (blue)
and D = 2, C = 2 (red) exhibit very similar scaling exponents. Note
that D = 2 significantly decreases the MDS size. (d) The scaling
exponent δ predicted by theory compared with the scaling exponent
observed in computer simulations for each D and C configurations.
The results were averaged over 10 realizations. The error bars (s.e.m.)
are shown in the figure. The correlation coefficient r is above 0.999
in all cases.
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FIG. 6. (Color online) The MDS size calculated in computer
generated scale-free networks for γ = 2.3, 2.5. Configurations for
minimum degree D and cover C are shown in figure legend. The
lines show a scaling law as nδ . The precise values for δ are
from up to down (a) 0.976 ± 0.005, 0.978 ± 0.011, 0.951 ± 0.010
and (b) 0.993 ± 0.005, 0.995 ± 0.005, 0.986 ± 0.010. All three
configurations show very similar scaling exponents close to 1, as
predicted by theory. Note that D = 2 significantly decreases the MDS
size. The error bars (s.e.m.) are shown in the figure. The correlation
coefficient r is above 0.999 in all cases.

E. Computer simulations for RMDS

To confirm the theoretical predictions shown above, we
constructed artificial scale-free networks with a variety of
degree exponents γ and minimum degree D = 1 and D = 2.
An ensemble of scale-free networks was constructed for
each network size up to 10 000 nodes, and the mean value
together with standard error of the mean (s.e.m.) for MDS
size with C = 1 and C = 2 were computed. For γ < 2, the
theoretical results predict the same order of MDS size (the
same exponent δ in the scaling function nδ) for configurations
(D = 2, C = 2) and (D = 1, C = 1) [see Eq. (6)]. In contrast,
the results predict a different scaling for the configuration
(D = 2, C = 1), as shown by Eq. (3). Figure 5 presents the
simulation results for γ < 2, which agree with the analytical
predictions.

For γ > 2, the analytical computations predict the same
scaling functional form nδ with δ = 1 for all the three configu-
rations. The simulation results agree with this prediction with
high accuracy (see Figs. 6 and 7).

F. Robust control of real-world networks

We used the concepts and mathematical tools presented
above to investigate the robust control of several real networks.
The experimental data analysis includes undirected, directed,
and bipartite networks from biological and sociotechnical
systems (see Tables I, II, and III). We first present the results
for undirected networks and show that the MDS density for
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FIG. 7. (Color online) The MDS size calculated in computer
generated scale-free networks for γ = 2.7, 3.0. Configurations for
minimum degree D and cover C are shown in figure legend. The
lines show a scaling law as nδ . The precise values for δ are
from up to down (a) 0.994 ± 0.002, 0.999 ± 0.004, 0.986 ± 0.006
and (b) 0.998 ± 0.008, 0.992 ± 0.011, 0.993 ± 0.022. All three
configurations show very similar scaling exponents close to 1, as
predicted by theory. Note that D = 2 significantly decreases the MDS
size. The error bars (s.e.m.) are shown in the figure. The correlation
coefficient r is above 0.999 in all cases.

C = 1 increases with increasing γ . The computation of the
robust MDS density (C = 2) exhibits a similar dependency,
as predicted by Eq. (9) [Figs. 8(a) and 8(b)]. Interestingly,
the MDS ratio for C = 2 and C = 1 differs, on average, by a

factor of 2 or less [Fig. 9(d)], in agreement with the theoretical
predictions shown in Fig. 4(c). When overlapping the real data
and the predictions from Eqs. (9) and (10) for the lower and
upper bounds, respectively, for networks with γ > 2, we see
that the real data are always within the theoretical boundaries
(Fig. 10).

The MDS size for both C = 1 and C = 2 scales linearly
with n [see Fig. 9(a)], which is in agreement with the
theoretical predictions shown in Eqs. (9) and (10) for γ > 2
and the computer simulations (see Figs. 6 and 7). Note that
Fig. 8 displays the MDS fraction, and Fig. 9(a) represents the
MDS size.

To investigate the influence of the frequency of nodes with
degree 1 and 2 [P (1) = n(1)/n and P (2) = n(2)/n] on robust
control, we computed MDS1 and MDS2 versus P (1) and P (2).
We then calculated the ratio of MDS2:MDS1 versus P (1)
and P (2). The results indicate that a small P (1) and large
P (2) tend to be associated with a small MDS density (see
Fig. 11). The ratio of MDS2:MDS1 is less than 2 in most
cases.

The analysis for directed networks included an Internet
peer-to-peer (P2P) network, the transcriptional regulatory
network for Escherichia coli from the Regulon database, a
set of food webs from different ecosystems, U.S. political
blogs, and the chemical synapse network for C. elegans. The
results demonstrate that MDS1 and MDS2 densities increase
with increasing γout [Figs. 12(a) and 12(b)] and γin [Figs. 13(a)
and 13(b)], which is in agreement with the dependence found
for undirected networks. In addition, the MDS sizes for
C = 1 and C = 2 scale linearly with n [Figs. 9(b) and 9(c)].
Moreover, as in the undirected case, the MDS ratio between
C = 1 and C = 2 is almost always less than 2, with only
one exception [see Figs. 9(d)–9(f)]. Moreover, less than 50%
of nodes are needed to control the network in both the
typical (C = 1) and robust (C = 2) control configurations [see
Figs. 12(c), 12(d), 13(c), and 13(d)].

TABLE I. The real undirected networks analysed in this work. Type, name, and description of each undirected network. We used the discrete
maximum-likelihood fitting method to estimate the degree exponent γ from the cumulative degree distribution of each network [56,57]. The
standard error of γ is derived from the width of the maximum likelihood. The same method was used to estimate the degree exponent in the
directed and bipartite networks shown in Tables II and III.

Type Name Description

Protein PPI network DIPS (6 org.) [58] Protein networks for 6 organisms from DIPS.
PPI Human HPRD [59] Protein network of H. sapiens from HPRD.
PPI Yeast BioGrid [60] Protein network of S. cerevisiae from BioGrid.

Transportation U.S. airports [61] The largest U.S. airports connected by flights.

Collaboration Hep-Th [62] The High Energy Physics-Theory collaboration.
Gr-QC [62] The Quantum Cosmology research collaboration.

Communication Email [63] Email network in a university.

Languages Japanese [64] The connectivity of words in Japanese.
Spanish [64] The connectivity of words in Spanish.

Neuronal Neuronal junction [33] The electric junction network of C. elegans.

Intra-org. Sawmill [65] A communication network within a small enterprise.

Information Wiki [66] Linked information.

Recommendation U.S. politics books [67] U.S. politics books copurchased by the same buyers.

012826-9



JOSE C. NACHER AND TATSUYA AKUTSU PHYSICAL REVIEW E 91, 012826 (2015)

TABLE II. The real directed networks analyzed in this work. Type, name, and description of each directed network. The networks whose
degree distribution follows a power law for in-degree or out-degree are indicated by I or O, respectively.

Type Name Description

Internet Internet P2P [68] Gnutella peer to peer network from August 5, 2002.
Internet P2P [68] Gnutella peer to peer network from August 6, 2002.
Internet P2P [68] Gnutella peer to peer network from August 8, 2002.
Internet P2P [68] Gnutella peer to peer network from August 9, 2002.

Gene regulation Transcriptional network (O) [69] Transcription regulatory network of E. coli.

Food web Cheslower (I) [70] Lower Chesapeake Bay in Summer food web.
Chespeake (I) [70] Chesapeake Bay Mesohaline food web.
Everglade [70] Everglades Graminoid Marshes food web.
Florida (O) [70] Florida Bay Trophic food web.
Michigan (I) [70] Lake Michigan food web.
St. Marks [70] St. Marks River (Florida) flow network.
Mondego (O) [70] Mondego Estuary - Zostrea site.

Political Political blogs [71] Blog network related to politics.

Neuronal Chemical Synapse [33] The chemical synapse network of C. elegans.

IV. ANALYSIS ON ROBUST DOMINATION IN
BIPARTITE NETWORKS

A. Computation of MDS in bipartite networks

We define a bipartite graph as G(V�,V⊥; E), where V� is
a set of top nodes, V⊥ is a set of bottom nodes, and E is a
set of edges (E ⊆ V� × V⊥). In our analysis, the directions of
the edges are considered from V� to V⊥. Therefore, the set of
driver nodes will be a subset of V�, where nodes in V� need
not be covered.

The computation of an MDS of a bipartite network is
equivalent to the computation of a minimum set cover.
Although it is an NP-hard problem, we have verified that
the optimal solution is obtained in networks with power-law
distributions of up to approximately 110 000 nodes within a
few seconds. The computation was formalised as the following
ILP problem:

minimize
∑
v∈V�

xv,

subject to
∑

{v,u}∈E

xv � 1 for all u ∈ V⊥,

xv ∈ 0,1 for all v ∈ V�. (11)

B. Computation of RMDS in bipartite networks

The above-mentioned ILP can be extended for computation
of an RMDS in bipartite networks. It is formalized as

minimize
∑
v∈V�

xv,

subject to
∑

{v,u}∈E

xv�1 for all u ∈ V⊥ such that deg(u) = 1,

∑
{v,u}∈E

xv�2 for all u ∈ V⊥ such that deg(u) > 1,

where deg(u) indicates the degree of node u. It should be noted
that for any node u ∈ V⊥ with degree 1, it is not possible to
cover u twice and thus we must relax the condition for these
nodes.

C. Generation of bipartite scale-free networks

We employ the following algorithm to construct bipartite
scale-free networks, in which the degree distributions of V�
and V⊥ follow P�(k) ∝ k−γ1 and P⊥(k) ∝ k−γ2 , respectively.
Here we consider n1 = |V�| and n2 = |V⊥|. The maximum
degree for the nodes in V� corresponds to n1.

TABLE III. The real bipartite networks analyzed in this work. Type, name, and description of each bipartite network.

Type Name Description

Social Firms-World Cities [72] Services of firms across cities.
Facebook Forum UCA [73] Facebook users linked to topics.
Davis’s Southern Women Club [74] Attendance at social events by women.
Cond-Mat Sci. Coll. [75] Collaboration of scientists and papers.
Graph Book Bibliography [76] Author-by-paper network.
The Dutch Elite [77] Individuals connected to administrative bodies.

Biological Drugs-Targets [78] Drugs binding to protein targets.
Transcriptional network (Yeast) [79] Transcription regulatory network of S. cerevisiae.
ncRNA-protein network (human) [80] Interactions between ncRNAs and proteins in H. sapiens.
ncRNA-protein (6 organisms) [80] All ncRNA-protein interactions of six organisms.
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Then, for given n1, γ1, γ2, we generate a random bipartite
network in the following way:
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(1) For each node v ∈ V�, generate half edges ei = (v,ui)
(ui is a virtual node) according to the degree distribution
α1k

−γ1 , where α1 is selected so the number of nodes in V�
is almost n1.

(2) For each node w ∈ V⊥, generate half edges e′
j =

(u′
j ,w) (u′

j is a virtual node) according to the degree distri-
bution α2k

−γ2 , where α2 is selected so the number of e′
j s is

equal to the number of ej s.
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(a) 0.934 ± 0.046 (r = 0.981), 0.931 ± 0.036 (r = 0.989); (b) 1.094 ± 0.053 (r = 0.990), 1.034 ± 0.044 (r=0.992); and (c) 1.134 ± 0.071
(r=0.984), 1.092 ± 0.067 (r = 0.985), respectively. The correlation coefficient r is indicated between parentheses. The ratio between the MDS
sizes (MDS2:MDS1) computed with covers C = 2 and C = 1 is shown in parts (d)–(f) for the same real networks. The results show that the
ratio is almost always lower than 2. See Tables I and II for real data details.
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FIG. 11. (Color online) The dependence of the MDS fraction
on the degree distribution for real undirected networks. The MDS
fraction with C = 1 (MDS1) (a) and C = 2 (MDS2) (b) as a function
of the degree probability with degree 1 [P (1) = n(1)/n] and 2
[P (2) = n(2)/n]. The ratio of MDS2:MDS1 versus (c) P (1) and
(d) P (2), respectively. The ratio is below 2 in most cases. The results
demonstrate that small P (1) and large P (2) tend to be associated with
a small MDS fraction.

(3) Randomly connect eis and e′
j s in a one-to-one manner.

It is to be noted that n2 (the number of nodes of V⊥) is
determined automatically in step (2) to satisfy the condition
on edge numbers.
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FIG. 12. (Color online) The MDS fraction as a function of the
degree exponent γout for real directed networks C = 1 in (a) and
C = 2 in (b). The MDS fraction as a function of the network size for
the same real directed networks for C = 1 in (c) and C = 2 in (d).
In all cases the MDS fraction is lower than 0.5 (dotted line). Note
that four of seven food webs show power-law behavior for outgoing
degrees. Each color in circles corresponds to a network type as shown
in the legend.
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FIG. 13. (Color online) The MDS fraction as a function of the
degree exponent γin for real directed networks C = 1 in (a) and
C = 2 in (b). The MDS fraction as a function of the network size for
the same real directed networks for C = 1 in (c) and C = 2 in (d).
In all cases the MDS fraction is lower than 0.5 (dotted line). Note
that five of seven food webs show power-law behavior for incoming
degrees. The data for the transcriptional regulatory network is absent
because it does not follow a power law for incoming degrees. Each
color in circles corresponds to a network type as shown in the legend.

D. Data analysis of real-world bipartite networks

We collected a set of 10 real-world bipartite networks
corresponding to sociotechnical [Fig. 14(a)] and biological
systems [Fig. 14(b)]. We then formalized and computed the
MDS for the C = 1 and C = 2 configurations. Although the
MDS with C = 2 is always larger than the MDS with C = 1,
the difference is proportionally very small in most cases.
Figures 14(a) and 14(b) also illustrates that biological systems
tend to require a larger MDS size than sociotechnical systems.
The computer simulation of ensembles of bipartite scale-free
networks with a variety of degree exponents also demonstrates
that C = 1, D = 1 and C = 2, D = 2 can control the network
with a similar fraction of nodes. Therefore, robustly controlling
a bipartite network requires a similar fraction of nodes as the
typical, nonrobust system [see Figs. 14(c) and 14(d)].

V. THEORETICAL ANALYSIS FOR THE PROBABILISTIC
DOMINATION (PMDS)

In some real networks, each link has a probability of
failing, which leads to the probabilistic concept of robust
control (PMDS). For example, experimental analyses on
neural networks have confirmed the unreliability of central
synaptic transmission in rat brains [32]. The mean transmission
failure probability was found to be p = 0.71, with a range
of 0.3 to 0.95 (w = 0.24). In this work, we used the well-
studied C. elegans neural network to investigate probabilistic
robust control. To investigate this type of systems from a
theoretical perspective using the robust MDS approach, we
assume that each edge (v,u) has the probability of failure
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FIG. 14. (Color online) The MDS size computed on real-world bipartite networks. (a) Social networks and (b) biological networks computed
for C = 1 and C = 2 as shown in the legend. Note that social networks tend to be controlled with a smaller fraction of nodes compared to
biological networks. [(c)–(d)] Computation of the MDS in synthetic bipartite networks generated with the model shown in Sec. IV C with
several values of degree exponents γ1 and γ2 and three configurations (C = 1, D = 1), (C = 2, D = 1), and (C = 2, D = 2). Note that the
minimum degree D = 2 almost completely compensates the increasing of the MDS size from the robust control C = 2.

Pv,u [see Fig. 1(e)]. We require that each node is covered
by multiple nodes in an MDS so the probability that at least
one edge is active is at least θ . Let S be a DS. Then S must
satisfy

(∀u)(1 −
∏
v∈S

Pv,u) � θ. (12)

As we will show later, this problem can be also formalized
and solved using ILP.

p-w p+w

p+w

p-w

(1-θ)/(p+w)

(a)

xy=1-θ

p-w p+w

p+w

p-w

(b)

xy=1-θ

(1-θ)/(p-w)

FIG. 15. Graphical representation of the case D = 2 and w > 0.
In order to estimate the fraction of degree-2 nodes to be added to a DS,
it is enough to consider the regions (A) and (B) for the cases of (p +
w)(p − w) < 1 − θ < (p + w)(p + w) and (p − w)(p − w) < 1 −
θ < (p + w)(p − w), respectively.

A. The case of D = 1

First, we consider the case of D = 1 (i.e., the minimum
degree is 1) and w = 0. Let DS be an MDS for G(V,E) for
the nonprobabilistic version. Let U be a set of degree 1 nodes,
each of which does not belong to DS but is dominated by a
node in DS. Let {u,v} be the only edge connecting to v ∈ U .
We can observe:

if 1 − Pu,v < θ , v must be covered by itself.

Therefore, all nodes in U should be added to DS (in a
probabilistic version) when θ > 1 − Pu,v . Therefore, it is
expected that the MDS size increases approximately from |DS|
to |DS| + |U | at around θ = 1 − p. For example, consider the
case of p = 0.71. Then there should be great increase of the
MDS size at θ = 1 − 0.71 = 0.29. It shows good agreement
with the simulation result (see Figs. 16 and 17).

B. The case of D = 2

We can extend the above analysis to the case of D = 2 (i.e.,
the minimum degree is 2) and w = 0. Let DS be an MDS
for G(V,E) for the nonprobabilistic version. In this case, we
consider two types of nodes of degree 2:

(a) v has one edge connecting to a node in DS,
(b) v has two edges connecting to nodes in DS,
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FIG. 16. (Color online) Probabilistic MDS simulation results.
The probabilistic MDS fraction in simulated scale-free networks with
(a) D = 1 and (b) D = 2 for γ = 1.5 and D = 2 (c) D = 1 and
(d) D = 2 for γ = 1.7. The predicted theoretical thresholds (dashed
lines) that significantly changes the MDS size are in fair agreement
with observed results in computer simulations. The configurations for
the probability of link failure P and the variability change w of the
failure probability [p − w, p + w] are shown in the figure legend.

where each node does not belong to DS but is dominated by
a node in DS. Let U1 and U2 be the sets of type (a) and type
(b) nodes, respectively. Then nodes in U1 should be added to
DS if 1 − p < θ . On the other hand, nodes in U2 should be
added to DS if 1 − p2 < θ . Therefore, it is expected that the
MDS size increases approximately from |DS| to |DS| + |U1| at
around θ = 1 − p and from |DS| + |U1| to |DS| + |U1| + |U2|
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FIG. 17. (Color online) The probabilistic robust domination on
synthetic scale-free networks. The probabilistic MDS fraction in
simulated scale-free networks with (a) D = 1 and (b) D = 2 for
γ = 2.5 and (c) D = 1 and (d) D = 2 for γ = 3.0. The predicted
theoretical thresholds (dashed lines) that significantly change the
MDS size are in fair agreement with the observed results from
the computer simulations. The configurations for the probability of
link failure p and the variability change w of the failure probability
[p − w, p + w] are shown in the figure legend.

at around θ = 1 − p2. In the case of p = 0.71, these two
threshold values are 0.29 and 0.49, in good agreement with
the simulation result.

C. The case of D = 1 and w > 0

Next we consider the case of D = 1 and w > 0. As in the
above, let DS be an MDS for G(V,E) for the nonprobabilistic
version, and let U be a set of degree 1 nodes each of which
does not belong to DS but is dominated by a node in DS. Let
e = {u,v} be the only edge connecting to v ∈ U . Let p + 	v

be the failure probability of this edge e, where −w � 	 � w.
We can observe:

if 1 − (p + 	v) < θ , v must be covered by itself.

We define U	 by

U	 = {v|v ∈ U,p + 	v > p + 	}.
Therefore, all nodes in U	 should be added to a DS (in a
probabilistic version) where 	 = 1 − p − θ . Here the size of
U	 is estimated as

|U	| ≈
(

	 + w

2w

)
|U |,

where −w � 	 � w. By replacing 	 with 1 − p − θ , we
have

|U	| ≈
(

1 − p − θ + w

2w

)
|U |.

Therefore, it is expected that the MDS size is approximately
given by |DS| + ( 1−p−θ+w

2w
)|U |. It should be noted that

1−p−θ+w

2w
becomes 0 and 1 at θ = 1 − p − w and θ = 1 − p +

w, respectively. In the case of p = 0.71 and w = 0.29, these
two threshold values are 0.05 and 0.53, in good agreement with
the simulation results (see Figs. 16 and 17). This discussion
can be generalized for the cases in which 	v does not follow
the uniform distribution.

D. The case of D = 2 and w > 0

Finally, we consider the case of D = 2 and w > 0. Let v

be a degree-2 node and u1 and u2 be the neighboring nodes to
v. Then we estimate the fraction of degree-2 nodes that does
not satisfy

1 − Pu1,vPu2,v � θ,

where such a node v should be added to a DS. For that purpose,
it is enough to calculate the area shown in Fig. 15.

For θ satisfying (p + w)(p − w) < 1 − θ < (p + w)(p +
w), we consider the region (A) whose area is given by

PA = (p + w)

[
(p + w) −

(
1 − θ

p + w

)]
−

∫ p+w

1−θ
p+w

1 − θ

x
dx

= (p + w)

[
(p + w) −

(
1 − θ

p + w

)]

− (1 − θ )

[
ln(p + w) − ln

(
1 − θ

p + w

)]
.
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Therefore, in this case, the fraction is given by PA/((2w)2)
because (Pu1,v,Pu2,v) is uniformly distributed in the region of
[p − w,p + w] × [p − w,p + w].

For θ satisfying (p − w)(p − w) < 1 − θ < (p + w)(p −
w), we consider the region (B) whose area is given by

PB = (2w)2 −
∫ 1−θ

p−w

p−w

1 − θ

x
dx + (p − w)

×
[(

1 − θ

p − w

)
− (p − w)

]

= (2w)2 − (1 − θ )

[
ln

(
1 − θ

p − w

)
− ln(p − w)

]

+ (p − w)

[(
1 − θ

p − w

)
− (p − w)

]
.

Again, the fraction is given by PB/((2w)2). The simulation
results with 1000 nodes for D = 1, D = 2 with w > 0
configurations are shown in Figs. 16 and 17. We also compared
the theoretical results for the case D = 2 with those from the
simulations performed on scale-free networks with D = 2 and
γ = 3. The plots show a similar overall tendency, although the
inflection point is more noticeable in the theoretical curve (see
Fig. 18). It is worth noticing that the theoretical values PA

and PB are scaled so these take almost the same values as
the simulated ones at the beginning and ending points (i.e.,
so the values take between 0.3 and 0.85 instead of between
0.0 and 1.0) since it is assumed in theoretical analysis that
all nodes are of degree 2 and the effects of the other nodes
are ignored (note also that degree 2 nodes occupy a major
portion of nodes in the case of D = 2). This comparison result
suggests that theoretical analysis captures some tendency even
if nodes with degree more than 2 are ignored.
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FIG. 18. (Color online) Theoretical predictions and simulations
of PMDS. Comparison of the probabilistic MDS size computed in
simulated scale-free networks with D = 2 and γ = 3 and the case
of D = 2 predicted by theory. Theoretical values are scaled so these
take almost the same values as the simulated ones at the beginning
and ending points because, in the theoretical analysis, it is assumed
that all nodes are of degree 2 and the effects of the other nodes are
ignored.

E. ILP formulation for probabilistic robust domination (PMDS)

We assume that each edge (v,u) has the probability of
failure Pv,u. We want each node be covered by multiple nodes
in MDS so the probability that at least one edge is active is at
least θ . Let S be a dominating set. Then we require S to satisfy

(∀u)(1 −
∏
v∈S

Pv,u) � θ.

Then we have

1 −
∏
v∈S

Pv,u � θ,

∏
v∈S

Pv,u � 1 − θ,

∑
v∈S

ln(Pv,u) � ln(1 − θ ),

∑
v∈S

− ln(Pv,u) � − ln(1 − θ ).

Then we have

minimize
∑
v∈V

xv,

subject to xu � 1, for all u ∈ V such that deg(u) = 0,

− ln(1 − θ )xu +
∑

{v,u}∈E

((− ln(Pv,u))xv)

� − ln(1 − θ ),

for all u ∈ V such that deg(u) > 0,

xv ∈ {0,1}, for all v ∈ V ,

where deg(u) indicates the degree of node u.

F. Probabilistic robust domination applied to the C. elegans
neuronal network

Recent reconstructions of the C. elegans neural network
have significantly updated the wiring diagram of the somatic
nervous system. The new reconstruction includes original data
from White et al. [51] and Hall and Russel [52] and adds new
information. In particular, 3000 synaptic contacts, including
gap junctions, chemical synapses, and neuromuscular juctions,
were updated or added to the latest network version [33].
As as a result, the large-scale structure of the network has
significantly changed with respect to that of White et al. Here
we focus on the connectivity of gap junction and chemical
synapse networks of C. elegans neurons. The channels that
provide electrical coupling between neurons are called gap
junctions. In contrast, chemical synapses use neurotransmitters
to link neurons. Because these network biologically differ,
they are treated independently, as done in Ref. [33]. Although
it might be possible that gap junctions could conduct current
in only one direction, this feature has not been observed or
confirmed yet in C. elegans [33]. Therefore, this network was
considered as undirected network. The chemical synapses,
in contrast, contains directionality capability, a feature that
has been confirmed using micrographs [33]. The analyzed
gap junction network consisted of 279 neurons and 514
gap junction connections. The giant connected component is
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composed of 248 neurons and two smaller components of 2
and 3 neurons. After removing the 26 isolated neurons, we per-
formed our analysis using 253 neurons and 514 connections.
The statistical analysis revealed a power-law distribution for
the degree distribution with a characteristic degree exponent
of γ = 3.14 [33]. The chemical synapse network consisted
of 279 neurons and 2194 directed connections. The statistical
analysis showed that the in-degree (out-degree) distribution
followed a power law with degree exponent γin = 3.17 (γout =
4.22), respectively. These results contrast with analyses done
using the data set from White et al. [51], which reported an
exponential decay for the degree distribution [53].

Experimental analyses on neural networks have confirmed
the unreliability of central synaptic transmission in rat
brains [32]. The mean transmission failure probability was
found to be p = 0.71, with a range from 0.3 to 0.95 (w =
0.24). In this work, we used the most well-studied neural
network corresponding to the C. elegans (chemical synapse
and gap junction) to investigate probabilistic robust control.
A visual representation of experimental neural gap junction
(undirected) for C. elegans is shown in Fig. 19. A transmission
failure probability distribution similar to that observed in rat
brains was mapped on the links of these networks, making
a fraction of them unreliable. The results of the analyses are
described in Figs. 16 and 17 for computer simulations and
Figs. 20–22 for real neural gap junction and chemical synapse
networks and suggest that the presence of variance of the

FIG. 19. (Color online) The neural gap junction network. Visu-
alization of the experimental gap junction undirected network for
C. elegans. A probability distribution of synapse transmission failure
with a peak at p = 0.71 and width of w = 0.24 (0.47–0.95) is mapped
onto the links.
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FIG. 20. (Color online) The probabilistic MDS size computed on
the neural gap junction undirected network. The computation of the
probabilistic MDS size using the real neural gap junction network
for C. elegans organism where a distribution of link failure was
mapped onto the network as shown in legend for three values of
w (circle, square, and diamond symbols). The results of synthetic
scale-free networks constructed using the model shown in Sec. III
D and calculated with the same degree exponent and the number
of nodes observed in the real C. elegans network (star symbols).
When simulated networks have a minimum degree D = 2, the MDS
size decreases as predicted by theory. Because in this simulation the
synthetic network have different average degree, the results tend to
be higher than those from the real network.

failure probability w does not significantly affect the fraction
of driver nodes. In contrast, it is strongly affected by both the
minimum degree D and the average failure probability p. This
biological example of unreliable links suggests that theoretical
results and simulations on probabilistic robust control analysis
may have an impact on understanding and controlling at will
real-world systems with unreliable components.
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FIG. 21. (Color online) The probabilistic robust domination on a
real neural gap junction network. The computation of the probabilistic
MDS size using (a) the real neural gap junction network for C. elegans
where the distribution of link failures was mapped to the network as
shown in the legend. (b) The results of synthetic scale-free networks
constructed using the HMC model with the same number of nodes and
average degree display a similar tendency. The MDS size decreases
as predicted by theory when simulated networks have a minimum
degree D = 2.
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FIG. 22. (Color online) The probabilistic MDS size computed
on the chemical synapse directed network. The computation of the
probabilistic MDS size using the real chemical synapse directed
network for C. elegans where a distribution of link failure was mapped
onto the network as shown in legend for three values of w. Note that
the distribution follows a curve function rather than a straight line as
shown in the undirected case.

VI. CONCLUSION

We have introduced the concept of structurally robust
control of complex networks and have used the MDS model,
which is widely applied in engineering problems, to illus-
trate an example of robust complex network controllability.
Counterintuitively, the developed analytical tools, computer
simulations and real-world network analyses demonstrate that
robust control in a large network does not change the order
of required driver nodes compared to a conventional system
without such robust capability. When using an MDS with
C = 1, D = 1, the system can easily become uncontrollable
if only one power or communication line fails during major
natural disasters. In contrast, in the RMDS framework (C = 2,
D = 2) the system remains controllable even under arbitrary
single or multiple link failure. Therefore, both configurations
require exactly the same order of controllers. Engineering and
biological systems could benefit from these findings.

In addition, the order of the MDS changes for γ < 2 by
changing the minimum degree D (e.g., constructing real net-
works with degree D > 1), unveiling another tool to decrease
the number of driver nodes. Because some real networks
have unreliable links, we have extended our framework to
PMDS and have successfully applied the developed analytical
tools to real neural networks of C. elegans with unreliable
synaptic transmission. With the forthcoming comprehensive
map of neural connections in the human brain [54,55], the
presented method could offer new avenues to examine the
brain’s large-scale structure to address synaptic reliability and

to stimulate large fractions of the brain by interacting only
with relatively few components.

It is worth remarking that our analysis on robust net-
work control emphasizes the importance of the network
topology and focuses on deriving the relative change of the
required number of controllers in both robust and nonrobust
configurations. Studies done in the context of fault-tolerant
control often include more elaborate node dynamics to
simulate synchronization of networks and agents communi-
cating over wireless connections. Instead, our MDS model-
based mathematical analysis relies on mean-field theory
concepts. To our best knowledge, there is no other theo-
retical results for robust property of MDS size on scale-
free networks in both control theory and network science
fields.

The proposed concept of structurally robust control of
complex networks could also be investigated using a different
algorithmic framework. As discussed above, we selected
the MDS model because it has already found applications
in real engineering systems. However, the concept could
also be mathematically formalized and implemented using,
for example, the maximum matching model [5]. In this
case, additional computations would be needed to inves-
tigate the order of drivers in an optimal robust control
configuration; therefore, this analysis is left for future
work.

In addition, the presented method can also address the
simultaneous failure of multiple links. The aim of the RMDS
(C = 2) framework is to construct a system that remains
controllable even if an arbitrary link is damaged. However,
the developed analytical tools also allow us to design a system
with a more robust configuration (C = 3) or (C = 4) so the
network is still controllable even in case of arbitrary failure of
pair or triplet of links, respectively.

The emerging picture for probabilistic failure or mal-
function of transportation and transmission lines in real-
world complex infrastructures, sociotechnical networks, and
biological networks emphasizes the importance and role of the
presented robust DS approach for controllability. The proposed
framework and tools offer a new direction for understanding
the linkage between controllability and robustness in complex
networks, with implications from engineering to biological
systems.
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