
Practical Web-scale Recommender Systems

Yukihiro Tagami

August 2018

Abstract

Recommender systems have become ubiquitous on today’s World Wide Web and are uti-

lized by social networking sites, e-commerce sites, video-sharing sites, and Web portal sites

to help users discover personalized content. These real-world systems need to deal with

scalability issues caused by a huge number of users and candidate items while there is

much user and context information that can be used for recommendation. In this thesis,

we tackle two main challenges for constructing practical Web-scale recommender systems:

1) how to select items suitable for each user from a lot of candidate items in a very limited

time, and 2) how to compose users’ representations from users’ activity histories.

For the former problem, we develop a ranking model suited for an inverted index-based

fast retrieval system. We applied this approach to a real ad serving system and conducted

A/B testing for evaluating its online performance. The system using our approach achieved

significant improvements over the existing production system. Furthermore, we propose

two multi-label classifiers that enable faster and more accurate predictions to be made by

utilizing the tree and graph structure. Experimental results on several large-scale public

datasets, which have hundreds of thousands of labels, show that our classifiers improve the

trade-off between prediction and accuracy. At the same level of accuracy, the prediction

time of our classifiers was up to 58 times shorter than that of a recent state-of-the-art

method.

For the latter problem, we present representation learning for users’ Web browsing

sequences on the basis of analysis of our real-world Web visits data. The users’ low-

dimensional vector representations learned in an unsupervised manner are used among

the user-related prediction tasks in common. For each prediction task, an individual

classifier or regressor is trained by using these common vectors as features and task-specific

users’properties or actions as targets. Our proposed method achieved better results than

those of existing methods on two kinds of ad-related prediction problems based on logs

from large-scale Web services. In addition, the prediction accuracies in some tasks were

successfully improved by simply increasing the data size of users’ Web browsing sequences

as the training data sizes of prediction tasks themselves were not changed.

Published Work

This thesis contains content from the following publications:

• Yukihiro Tagami, Toru Hotta, Yusuke Tanaka, Shingo Ono, Koji Tsukamoto, Akira

Tajima. Translation Method of Contextual Information into Textual Space of Adver-

tisements. In Proceedings of the 23rd International Conference on World Wide Web

Companion (WWW2014 Posters), 2014. (Chapter 3)

• Yukihiro Tagami, Toru Hotta, Yusuke Tanaka, Shingo Ono, Koji Tsukamoto, Akira

Tajima. Filling Context-Ad Vocabulary Gaps with Click Logs. In Proceedings of the

20th ACM SIGKDD International Conference on Knowledge Discovery and Data Min-

ing (KDD2014), 2014. (Chapter 3)

• Yukihiro Tagami, Hayato Kobayashi, Shingo Ono, Akira Tajima. Modeling User Ac-

tivities on the Web using Paragraph Vector. In Proceedings of the 24th International

Conference on World Wide Web Companion (WWW2015 Posters), 2015. (Chapter 5)

• Yukihiro Tagami, Hayato Kobayashi, Shingo Ono, Akira Tajima. Distributed Repre-

sentations of Web Browsing Sequences for Ad Targeting. In Proceedings of the 2nd

International Workshop on Ad Targeting at Scale (TargetAd2016), 2016. (Chapter 5)

• Yukihiro Tagami. Learning Extreme Multi-label Tree-classifier via Nearest Neighbor

Graph Partitioning. In Proceedings of the 26th International Conference on World

Wide Web Companion (WWW2017 Posters), 2017. (Chapter 4)

• Yukihiro Tagami. AnnexML: Approximate Nearest Neighbor Search for Extreme Multi-

label Classification. In Proceedings of the 23rd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (KDD2017), 2017. (Chapter 4)

• Yukihiro Tagami, Toru Hotta, Yusuke Tanaka, Shingo Ono, Koji Tsukamoto, Akira

Tajima. Efficient Retrieval for Contextual Advertising Utilizing Past Click Logs. In

Transactions of the Japanese Society for Artificial Intelligence, Volume 32, Number 6,

pages A-H52 1-10, 2017 (in Japanese). (Chapter 3)

• Yukihiro Tagami, Hayato Kobayashi, Shingo Ono, Akira Tajima. Representation Learn-

ing for Users’ Web Browsing Sequences. In IEICE Transactions on Information and

Systems, Volume E101-D, Number 7, July 2018. (Chapter 5)

• Yukihiro Tagami. Speeding up Extreme Multi-label Classifier by Approximate Nearest

Neighbor Search. In IEICE Transactions on Information and Systems, Volume E101-D,

Number 11, November 2018. (Chapter 4)

1

Acknowledgements

First, I would like to thank my advisor Hisashi Kashima and members of his laboratory

at Kyoto University. Whenever I went to Kyoto University from Tokyo, they warmly

welcomed me and gave me helpful comments.

At Yahoo Japan Corporation, I have been working with many talented engineers and

researchers. I would especially like to thank my great coauthors for many insightful dis-

cussions and comments. Hayato Kobayashi gave me a lot of research ideas and explained

how to write a good paper. Shingo Ono and Akira Tajima, who were both my immediate

bosses, encouraged me to take the doctoral course and made much effort to introduce an

in-company Ph.D. supporting system.

Last but most importantly, this thesis would not have been completed without the

generous support of my wife, Mina.

2

Contents

1 Introduction 6

2 Background 9

2.1 Rating Prediction . 9

2.2 Ranking . 10

2.2.1 Evaluation metrics . 10

2.2.2 Pairwise approaches . 11

2.2.3 Listwise approaches . 13

2.3 Top-k Retrieval . 14

2.3.1 High dimensional sparse vector space 14

2.3.2 Dense vector space . 16

3 Inverted Index-based Retrieval System for Contextual Advertising 19

3.1 Introduction . 19

3.2 Overview and Related Works . 21

3.2.1 Overview of Contextual Advertising 21

3.2.2 Related Works . 22

3.2.3 Our Ad Serving System . 23

3.3 Methods . 24

3.3.1 Matching Function . 24

3.3.2 Learning a Translation Matrix . 25

3.3.3 Retrieval from AD Corpus and Implementation 28

3

3.4 Experiments . 29

3.4.1 Offline Evaluation . 29

3.4.2 Online Evaluation . 34

3.5 Conclusion . 36

4 Multi-label Classification with an Extremely Large Number of Candi-

dates 39

4.1 Introduction . 39

4.2 Problem Formulation . 42

4.3 AnnexML . 42

4.3.1 Learning to Partition Data Points 44

4.3.2 Learning Embeddings . 46

4.3.3 Faster Prediction using Approximate Nearest Neighbor Search on

KNNG . 48

4.3.4 Comparison with SLEEC . 49

4.4 GPT . 51

4.4.1 Constructing an Approximate k-nearest Neighbor Graph using La-

bel Vectors . 52

4.4.2 Learning a Linear Binary Classifier by Finding the Minimum Graph

Cut . 53

4.4.3 Complexity Analysis . 54

4.4.4 Comparison with FastXML . 56

4.5 Experiments . 58

4.5.1 Results . 59

4.6 Related work . 62

4.7 Conclusion . 63

5 Representation Learning for Users’ Web Browsing Sequences 68

5.1 Introduction . 68

5.2 User Activities on the Web . 70

5.2.1 Data Analysis on Web Page Visits 71

4

5.3 Existing Vector Models . 73

5.3.1 PV-DM . 73

5.3.2 PV-DBoW . 74

5.3.3 CBoW and Skip-gram . 75

5.4 Proposed Method . 76

5.4.1 Backward PV-DM . 76

5.4.2 Learning vector models . 78

5.5 Experiments . 78

5.5.1 Datasets . 78

5.5.2 Evaluation settings . 79

5.5.3 Proposed methods and baselines . 79

5.5.4 Results . 81

5.5.5 Effect of the data size . 82

5.6 Related Work . 82

5.7 Conclusion . 83

6 Conclusion 87

6.1 Future Work . 88

Appendix 90

Bibliography 94

5

Chapter 1

Introduction

On the today’s World Wide Web, users cannot go a single day without seeing items

provided by recommender systems. For example, Facebook, Instagram, and Twitter show

personalized news feeds or timelines for each user [31, 60]. YouTube recommendations help

users to discover personalized content from a large number of videos [32, 11]. Contextual

advertising, which is also a kind of recommendation task, also plays a crucial role in today’s

Internet ecosystem. These recommender systems are key components for Web services to

differentiate themselves.

With the success of the Netflix Prize1, it is widely known that matrix factorization-

based collaborative filtering techniques are effective for rating prediction problems, which

is one of recommendation task. However, as Netflix researchers themselves stated [46],

Netflix’s current recommender system consists of various algorithms to help people find

TV programs and movies to watch, not just focusing on high predicted star ratings.

We consider there to be a gap between recommendation methods proposed in state-of-

the-art studies and approaches used in real-world Web-scale recommender systems. Thus,

in this thesis, we tackle some challenges for constructing Web-scale recommender systems.

In real-world recommendation settings, the candidate items typically change as time

progresses. Some items are added while others are removed. In the case of news arti-

cle recommendation, articles are uploaded over time, and old ones are deleted from the

candidates. In the case of online advertising, advertisers start and stop advertising cam-

paigns continually on the basis of their business plans. In short, candidate items frequently

change. Therefore, recommender systems need to select items from candidates at the time

the user requests. This selection should be done quickly. If it takes too long, the user’s

experience is spoiled since some or all of a Web page is not displayed. Real-world recom-

mender systems respond to each request in a very short time by using various techniques

such as pre-calculation and information retrieval methods.

1https://www.netflixprize.com/

6

https://www.netflixprize.com/

Typical benchmark datasets used for comparing recommendation methods only include

user ID and a few pieces of demographic information. For example, the MovieLens 100K

and 1M datasets [49] contain users’ simple demographic information (gender, age, occupa-

tion, and zip code)2. Similarly, the Last.fm3 dataset includes user gender, age, and country

information. In addition to the basic user information described above, various pieces of

information can be obtained from users’ actions on a Web site in real-world settings. In

the YouTube recommendation task [32], users are represented as low-dimensional vectors

on the basis of various user information, such as watched videos, search queries, and user

language. For cross-domain user modeling, Elkahky et al. [40] proposed a multi-view deep

learning approach that uses Web search queries obtained from Bing as user features. They

applied this approach to real-world Microsoft product recommendation tasks: Windows

Apps recommendation, news recommendation, and movie/TV recommendation. Thus,

in real-world settings, useful user representations must also be made from these kinds of

information.

To summarize, the requirements of “practical Web-scale recommender systems” that

we consider in this thesis are two-fold:

1. Selecting suitable items for each user in a very short time

2. Making valuable users’ representations from users’ activity histories

For the first requirement, we develop an inverted index-based retrieval system for con-

textual advertising (in Chapter 3). On the top of the inverted index and efficient retrieval

algorithm, our recommendation model enables each user’s request to be responded to

within tens of milliseconds. We applied this approach to a real ad serving system and con-

ducted A/B testing for evaluating the online performance. The system using our approach

achieved significant improvements over the existing production system. Furthermore, we

tackle multi-label classification tasks with an extremely large number of labels (in Chap-

ter 4). These tasks are called “extreme multi-label classification.” Recommendation and

ranking problems can be formulated as extreme multi-label classification tasks by treating

each candidate as a separate label [53]. For these tasks, we propose two classifiers that

can make a faster predictions by utilizing tree and graph structure. Experimental results

on several large-scale public datasets show that our methods significantly improve the

trade-off between prediction and accuracy, especially on data sets that have larger label

space. At the same level of accuracy, the prediction time of our classifiers was up to 58

times shorter than that of a recent state-of-the-art method.

For the second requirement, we present a representation learning method for users’

Web browsing sequences, which is easily obtained user information (in Chapter 5). Since

users’ representations obtained by this method are intended to be used among various

2On the other hand, bigger MovieLens datasets, such as MovieLens 10M and 20M datasets, just contain

user IDs and do not have users’ side information.
3https://www.last.fm/

7

https://www.last.fm/

recommendation tasks in common, we learn the model and representations in an unsuper-

vised manner. For each prediction task, an individual classifier or regressor is trained by

using these common vectors as features and task-specific users ’properties or actions as

targets. Our method achieved better results than existing methods on two ad-related pre-

diction problems based on logs from large-scale Web services. In addition, the prediction

accuracies of some tasks were successfully improved by simply increasing the data size of

users’ Web browsing sequences as the data sizes of prediction tasks themselves were not

changed.

To summarize, the main contributions of this thesis are as follows:

• We successfully construct an effective recommendation system that responds to each

user’s request in tens of milliseconds on top of an inverted index and efficient retrieval

algorithm (Chapter 3)

• For multi-label classification tasks with hundreds of thousands of labels, we propose

two classifiers that can make a faster and more accurate predictions by utilizing a

tree and graph structure (Chapter 4)

• On the basis of an analysis of users’ Web browsing sequences, we propose a repre-

sentation learning method that obtains common and useful low-dimensional feature

vectors among various user-related prediction tasks (Chapter 5)

The remainder of this thesis is organized as follows: Chapter 2 provides some back-

ground on machine learning and information retrieval techniques for constructing real-

world recommender systems. Chapters 3, 4, and 5 present our proposed methods, as

described above. Finally, Chapter 6 concludes this thesis and presents some directions for

future work.

8

Chapter 2

Background

This chapter describes machine learning and information retrieval techniques for construct-

ing real-world recommender systems.

2.1 Rating Prediction

Rating prediction tasks are well-known recommendation tasks that aim to predict user

ratings for items on the basis of previous ratings. Thus, these tasks are typically regarded

as regression problems. For example, in the Netflix Prize dataset [1], ratings are from 1

to 5 stars.

The rating of the q-th user for the i-th item is represented as y
(q)
i . The objective of

these tasks is to predict some unknown rating y
(q)
i ’s on the basis of already-known ratings.

These tasks are also called “matrix completion” because they are regarded as prediction

problems of some elements in a rating matrix Y = [y
(q)
i]|Q|×|I| ∈ R|Q|×|I|. Here, Q and

I are sets of user and item indices, respectively. Matrix factorization is commonly used

for these tasks. Matrix factorization methods assume that a rating matrix has a low rank

structure and factorize the matrix into two matrices U ∈ R|Q|×K and V ∈ R|I|×K such

that uT
q vi ≈ y

(q)
i . Here, K is a pre-specified dimension size of latent factors, uq ∈ RK is

the q-th row vector of U , and vi ∈ RK is the i-th row vector of V . In other words, uq and

vi are latent factor vectors corresponding to the q-th user and i-th items, respectively.

A typical objective function to be minimized is defined as follows:∑
(q,i)∈R

(uT
q vi − y

(q)
i)2 + λu∥uq∥2 + λv∥vi∥2, (2.1)

where R is a set of index pairs of user and item for already-known ratings. The second and

last terms are L2-regularization terms for avoiding over-fitting. λu and λv are pre-specified

regularization parameters for user and item latent vectors, respectively.

9

Since Equation 2.1 is non-convex for U and V , stochastic gradient methods are com-

monly utilized for optimization [28]. Instead of calculating the full gradient for all index

pairs, these methods randomly choose a pair from R and iteratively optimize the objec-

tive function by calculating the gradient corresponding to the sampled pair. At each step,

a certain index pair (q, i) is selected, then the objective function 2.1 is reduced to the

following sub problem:

(uT
q vi − y

(q)
i)2 + λuu

T
q uq + λvv

T
i vi.

Therefore, uq and vi are updated on the basis of the sampled gradient.

uq ← uq − η
[
(uT

q vi − y
(q)
i)vi + λuuq

]
,

vi ← vi − η
[
(uT

q vi − y
(q)
i)uq + λvvi

]
,

where η is a learning rate. This learning rate is typically a constant value, but can be

dynamically adjusted for faster convergence [29].

After U and V have been iteratively updated, the already-known ratings are well

approximated by using these matrices. Then, unknown ratings are also predicted by

ŷ
(q)
i = uT

q vi for index pairs (q, i) ̸∈ R. The items that have higher predicted rating values

ŷ
(q)
i are recommended to the q-th user.

2.2 Ranking

In the above rating prediction settings, recommender systems first predict items’ ratings,

and then present top-rated items for each user. However, the objective of recommender

systems is to select of items that match a user’s preference. Therefore, recommender

systems do not need to predict rating scores directly but only have to distinguish the

preference order of some items. Thus, recommendation tasks are essentially regarded as

ranking problems. In this section, we present basic approaches for ranking problems.

We use “user” and “query” interchangeably since we consider user information as query

for a recommender (or ranking) system.

2.2.1 Evaluation metrics

In this subsection, we present widely used evaluation metrics for ranking tasks. For more

details, refer to Chapter 8 in the book written by Manning et al. [70]. In the following,

π(q, k) = j means that the j-th item ranks in the k-th position by the predicted score for

q-th query.

10

Mean average precision (MAP) is defined as follows:

MAP =
1

|Q|
∑
q∈Q

APq,

APq =
1∑Nq

i=1 z
(q)
j

Nq∑
k=1

z
(q)
π(q,k)Pq@k,

Pq@k =
1

k

k∑
l=1

z
(q)
π(q,l).

where APq is the average precision for q-th query and Pq@k is precision of the predicted

top-k items for q-th query. z
(q)
i = 1 if the i-th item matches the q-th query, and z

(q)
i = 0

otherwise. In other words, by using threshold parameter t, z
(q)
i = 1 when y

(q)
i ≥ t, and

z
(q)
i = 0 when y

(q)
i < t.

Normalized discounted cumulative gain (nDCG) is another widely used metric for

ranking tasks. However, unlike MAP, nDCG is a metric that considers relevance and

predicted rank and becomes larger when more relevant items are located at higher ranks.

In other words, nDCG uses y
(q)
i ∈ Z instead of z

(q)
i ∈ {0, 1}, which MAP uses.

nDCG =
1

|Q|
∑
q∈Q

DCGq@Nq

maxπ DCGq@Nq
,

DCGq@k =
k∑

l=1

y
(q)
π(q,l)

log2(l + 1)
.

The denominator of DCGq@k (log2(l + 1)) represents that nDCG becomes smaller as

relevant items are allocated at lower positions.

MAP and nDCG are defined by using a whole item set for a query. In the typical

ranking setting, P@k and nDCG@k, which are defined by using the predicted top-k items,

are also used:

P@k =
1

|Q|
∑
q∈Q

Pq@k,

nDCG@k =
1

|Q|
∑
q∈Q

DCGq@k

maxπ DCGq@k
.

2.2.2 Pairwise approaches

In the ranking problem setting, a list of recommended items ordered by predicted scores

is more important than score values themselves.

A feature vector extracted from pairs of q-th query and i-th item is represented as

x
(q)
i . Our objective is to obtain a scoring function f(·) such that the order of scores

f(x
(q)
i) > · · · > f(x

(q)
j) > · · · > f(x

(q)
j) strongly correlates with the desired order. Of

11

course, as described above, we ultimately focus on the ordered list rather than scores.

However, because of simplicity of implementation, this approach is widely used.

Pairwise approaches focus on magnitude of relationship between item pairs in the

candidates. If the q-th user prefer the i-th item to the j-th one, ranking scores are

expected to maintain the relationship f(x
(q)
i) > f(x

(q)
j). Thus, objective function of

pairwise approaches is defined as follows:

min
f

∑
q∈Q

∑
(i,j)∈Pq

L
(
f(x

(q)
i), f(x

(q)
j)
)
+Ω(f), (2.2)

where Pq = {(i, j) | y(q)i > y
(q)
j } is a set of index pairs for the q-th query, L(·, ·) is a loss

function, and Ω(f) is a regularization function (or complexity metric) for scoring function

f(·).

Ranking support vector machine (Rank SVM) [56] is a pairwise method. By using

hinge loss, the loss function is represented as follows:

L
(
f(x

(q)
i), f(x

(q)
j)
)

= max
(
0, 1−

(
f(x

(q)
i)− f(x(q)

j)
))

= max
(
0, 1−∆

(q)
ij

)
,

where ∆
(q)
ij = f(x

(q)
i) − f(x(q)

j) is the difference among scores. RankSVM aims to learn

function f(·) where ∆
(q)
ij ≥ 1 holds for as many pairs (i, j) ∈ Pq as possible.

If we simply use a linear scoring function f(x
(q)
i) = wTx

(q)
i with a weight vector w,

the difference among scores becomes: ∆
(q)
ij = wT

(
x
(q)
i − x

(q)
j

)
. Therefore, by using the

L2 regularization term Ω(f) = 1
2∥w∥

2, the objective function 2.2 is represented as follows:

min
f

∑
q∈Q

∑
(i,j)∈Pq

max(0, 1−wTδ
(q)
ij) +

1

2
∥w∥2.

Here, δ
(q)
ij := x

(q)
i −x

(q)
j is the difference between two feature vectors. Since this objective

function is the same as that of the standard SVM, fast linear SVM implementation such

as LIBLINEAR [41] can be utilized to optimize it.

RankNet [20] is another pairwise method. The cross entropy loss is used as a loss

function as follows:

L
(
f(x

(q)
i), f(x

(q)
j)
)

= − log
exp(f(x

(q)
i))

exp(f(x
(q)
i)) + exp(f(x

(q)
j))

= − log
1

1 + exp
(
f(x

(q)
j)− f(x(q)

i)
)

= log
(
1 + exp

(
f(x

(q)
j)− f(x(q)

i)
))

= log
(
1 + exp

(
−∆(q)

ij

))
.

12

Burges et al. [20] used a neural network as the scoring function f(·) of RankNet. In

this case, the neural network is learned via back-propagation [63]. Of course, if we just

use a linear scoring function f(x
(q)
i) = wTx

(q)
i and L2 regularization term Ω(f) = 1

2∥w∥
2,

the objective function is simplified to that of the L2 regularized logistic regression. Again,

a fast solver such as LIBLINEAR [41] can efficiently optimize the objective function.

2.2.3 Listwise approaches

Cao et al. [24] showed that the pairwise loss of RankNet does not inversely correlate

with nDCG in some cases. That is, nDCG starts to drop after some iterations during

the learning phase even if the pairwise loss continues to decrease. Thus, for tailoring a

loss function that inversely correlates with MAP or nDCG, listwise methods have been

studied. Note that MAP and nDCG are not easy to directly optimize since these metrics

are non-smooth with respect to the scores [22] and we can not simply apply gradient-based

methods to optimize them.

Listwise methods focus on the order relationship in the item list itself.

min
f

∑
q∈Q

L
(
{f(x(q)

i), y
(q)
i }

Nq

i=1

)
+Ω(f) (2.3)

The loss function of ListNet [24] is defined by using cross entropy loss as follows:

L
(
{f(x(q)

i), y
(q)
i }

Nq

i=1

)
= −

Nq∑
i=1

ϕ
(q)
i logψ

(q)
i ,

where ϕ
(q)
i =

exp(y
(q)
i)∑Nq

k=1 exp(y
(q)
k)

, ψ
(q)
i =

exp(f(x
(q)
i))∑Nq

k=1 exp(f(x
(q)
k))

.

ListNet can be viewed as an extended version of RankNet. Whereas RankNet uses item

pairs generated from item lists as instances, ListNet uses item lists themselves.

The loss function of ListNet is originally defined on the basis of top-k probability. Here,

we represent the loss function of top-1 ListNet, which only considers top-1 probability. The

model training in the case of k ≥ 2 has high computational complexity because a large

number of item permutations should be considered. Thus, top-1 ListNet was used in the

experiments in the original paper [24] and other studies [110]. Luo et al. [69] proposed a

stochastic ListNet approach that reduces the complexity by computing the gradient within

a limited permutation subset.

ListMLE [110] is another listwise method. The loss function is defined as follows:

L
(
{f(x(q)

i), y
(q)
i }

Nq

i=1

)
= −

Nq∑
k=1

logφ
(q)
k ,

where φ
(q)
k =

exp(f(x
(q)
τ(q,k)))∑Nq

l=k exp(f(x
(q)
τ(q,l))

.

13

Here, τ(q, k) = j means the j-th items ranks in the k-th position by the relevance score

y
(q)
j for query q.

Xia et al. investigated the desired properties of loss function for ranking problems [110].

They pointed out that cross entropy loss, which ListNet uses, is not very “sound.” Sound-

ness of a loss function guarantees that the loss can well represent the ranking problem. For

example, an incorrect prediction should receive a larger penalty than a correct prediction,

and the penalty should reflect the confidence of prediction [110]. If we apply a monotoni-

cally increasing function (such as exp, log, or sqrt) to target score y
(q)
i , the preference order

of items does not change but cross entropy loss does. On the other hand, likelihood loss,

which ListMLE utilizes, is not affected by this mapping function since this loss focuses on

the order relationship in the item list.

LambdaRank [22, 38] and LambdaMART [21, 23] are regarded as a combination ap-

proach of pairwise and listwise methods. LamdaRank focuses on item pairs in each list, like

RankNet does. However, while RankNet treats all pairs equally in the gradient calculation

for updates, LambdaRank weights gradients of pairs on the basis of their contributions for

target metrics, such as MAP and nDCG. In other words, LambdRank utilizes the weighted

sum of the gradients for updates, by considering their positions of items in the list sorted

by current predicted scores. LambdaMART uses gradient boosting with trees instead of

the above gradient-based model updates. For more details of these methods, refer to the

Burges’s paper [23].

2.3 Top-k Retrieval

As described in the previous section, recommender systems only have to obtain top-k

scored items from a large number of candidates for each user. Therefore, the item selection

tasks are regarded as information retrieval tasks.

In this section, we describe two kinds of top-k retrieval approaches. One is for high

dimensional sparse vector space, and the other is for dense vector space.

2.3.1 High dimensional sparse vector space

Inverted index-based approaches are efficient top-k retrieval methods for dot product on

a high dimensional sparse vector space1. These inverted index-based methods have been

proposed in the information retrieval field for retrieving the documents that include query

terms.

In this task, documents are represented by using a “bag-of-words” model. That is,

we consider each term in the documents as a feature. For example, let the following two

1Here, we consider Euclidean space that has millions or tens of millions of dimensions as “high dimen-

sional space.”

14

sentences be documents.

• d(1): To be, or not to be, that is the question.

• d(2): The worst is not, So long as we can say, ‘This is the worst.’

These two documents are represented as follows:

as be can is long not or question so that the this to we worst

d(1) 0 2 0 1 0 1 1 1 0 1 1 0 2 0 0

d(2) 1 0 1 2 1 1 0 0 1 0 1 1 0 1 2

The feature “worst” has the value 2 in d(2) since this term appears twice in the second

document. Here, punctuation such as “,” and “.” are omitted, and by ignoring the

case, “To” and “to” are regarded as the same term. In the above examples, bag-of-words

representations of documents are typically sparse vectors. This is because the number

of terms in a document is at most thousands whereas the number of words in multiple

documents can be millions.

We represent documents-terms relationships by generalizing the above table as follows.

t1 t2 t3 t4 t5 · · · tM

d(1) 0 1.35 0.65 0 0 · · · 0

d(2) 2.07 0 1.12 0.56 0.71 · · · 0.33
...

...
...

...
...

...
. . .

...

d(N) 0 1.89 0 0.31 0 · · · 0

Here, N is the number of documents and M is the number of terms in the vocabulary. In

this table, a term t4 has the value 0.56 in document d(2). The values are typically derived

by using standard IR techniques, such as term frequency and inverse document frequency

(tf-idf) [70].

Furthermore, we transpose this table, omit the 0 values, and then make an inverted

index.

Term Posting list

t1 2 : 2.07, · · ·
t2 1 : 1.35, · · · , N : 1.89

t3 1 : 0.65, 2 : 1.12, · · ·
t4 2 : 0.56, · · · , N : 0.31

t5 2 : 0.71, · · ·
...

...

tM 2 : 0.33, · · ·

15

The fourth row of the table represents that the term t3 has the value 0.65 in document

d(1) and the value 1.12 in d(2).

By using this inverted index, we can efficiently perform a basic Boolean retrieval [70].

For example, if a query is (t2 AND t5), which means all documents that includes both t2

and t5 are required, we only consider the documents that appear in both posting lists of

t2 and t5. Similarly, if a query is (t2 OR t4), the documents that appear in either posting

lists of t2 or t5 are retrieved.

Next, we consider a ranked retrieval. Thus, documents are scored by their relevance

to a given query. A widely-used scoring function is the dot product between the query

and document vectors by using the vector space model:

score(q,d) = qTd =
M∑
i=1

qidi,

where q and d ∈ RM are vectors of the query and document, respectively. qi is a value of

the i-th element of query vector q, which indicates a weight for term ti in the query. di is

also the value corresponding to term ti in the document.

Here, we consider the case where both vectors q and d are sparse because the number

of terms is typically at most dozens. The scoring function is represented for simplicity as

follows:

score(q,d) =
∑

1≤i≤M,qi ̸=0

qidi.

Thus, similarly to the OR operator in the Boolean retrieval, we only calculate the scores

of documents that appear in either posting lists corresponding to terms where qi ̸= 0.

The above approach only evaluates a part of an entire document set. However, as the

number of documents or terms in a query becomes large, the computational cost of using

this simple approach no longer satisfies our needs. In the real-world settings, retrieval

systems need to respond within tens or hundreds of milliseconds to each query. Therefore,

more sophisticated methods are required, especially for Web-scale retrieval systems.

Since our objective is retrieval of top-k ranked documents, we further skip the scoring

by using some pruning techniques without missing any correct documents. That is, if we

are convinced that scores of documents are less than the final k-th largest score during

the evaluation, we safely skip the scoring of those documents. The WAND algorithm [19]

and its variants [43, 35] are successful methods that use dynamic pruning techniques.

2.3.2 Dense vector space

As described in the previous subsection, in high-dimensional sparse vector space, top-k

documents can be efficiently retrieved without missing any by using an inverted index

and pruning techniques. On the other hand, in dense vector space, where almost no

16

element values of vectors are zero, almost all documents need to be evaluated. This is

because there are not efficient pruning techniques due to the “curse of dimensionality” [45].

Therefore, approximate search techniques have been studied for this case. Approximate

search methods focus on improving the tradeoff between retrieval speed and approximation

quality2.

Locality-sensitive hashing (LSH) [45] is an approximate nearest neighbor search method

for high-dimensional space3. LSH reduces the dimensionality of vectors corresponding to

data points for ease of retrieval. This dimensionality reduction aims to map similar vectors

to the same “bucket” by using a hash function. Some methods use the hash function in-

dependent of the data distribution, whereas others learn the hash function by considering

the target data distribution.

Asymmetric LSH (ALSH) [91] is an extended version of LSH for approximately re-

trieving items that have k-largest dot product values for a given query. LSH variants

typically use the same hash function for both queries and items. For example, Euclidean

distance between a query and an item is minimized when the two vectors are the same.

Cosine distance is also maximized when the two vectors are the same. On the other hand,

when the norm of one item vector becomes larger, the value of the dot product becomes

larger than when the vectors are the same. Therefore, as long as the same hash function

is applied to both queries and items, these conditions are not satisfied. ALSH first applies

the different transformations to queries and items and then uses the hash function of LSH.

For ALSH transformation functions, Shrivastava and Li [91] proposed Q : RM →
RM+m and P : RM → RM+m for the query vector q and the item vector d, respectively.

Q(q) = [q; 1/2; 1/2; . . . ; 1/2] ,

P (d) =
[
d; ∥d∥2; ∥d∥4; . . . ; ∥d∥2m ;

]
,

where [;] is the concatenation. By using squared values and dot product of transformed

vectors:

∥Q(d)∥2 = ∥q∥2 +m/4,

Q(q)TP (d) = qTd+
1

2

(
∥d∥2 + ∥d∥4 + · · ·+ ∥d∥2m

)
,

∥P (d)∥2 = ∥d∥2 + ∥d∥4 + ∥d∥8 + · · ·+ ∥d∥2m+1
,

Euclidean distance between two transformed vectors is represented as follows:

∥Q(q)− P (d)∥2 = ∥Q(q)∥2 − 2Q(q)TP (d) + ∥P (d)∥2

= ∥q∥2 +m/4− 2qTd+ ∥d∥2m+1
.

If ∥d∥2m+1
is sufficiently small, that is ∥d∥ < 1 and m is large, ∥Q(q)− P (d)∥2 inversely

correlates to qTd.

2Of course, index size is also important, but we here focus on retrieval speed and approximation quality.
3Here, we consider Euclidean space that has hundreds or thousands of dimensions as “high dimensional

space”.

17

Note that the above transformation functions can be combined with approximate near-

est neighbor search methods other than LSH even though they were originally proposed

for LSH. There are some methods that transform maximum dot product search problems

into maximum cosine or minimum Euclidean distance search problems [9, 92].

Bernhardsson et al. [10] compare the performances of implementations of approximate

nearest neighbor search methods on various datasets and distance metrics.

18

Chapter 3

Inverted Index-based Retrieval

System for Contextual Advertising

3.1 Introduction

Online advertising is a key component supporting today’s Internet ecosystem and has

grown into a multi-billion dollar industry. Many different types of advertising are used:

sponsored search advertising, contextual advertising, display advertising, real-time bidding

auctions, and more [119]. In this study, we focus on contextual advertising, which consists

of short text messages that are usually displayed on third-party Web pages such as news

sites or blogs. The advertiser is primarily interested in targeting relevant users, and the

publisher is concerned with keeping the user experience pleasant. To satisfy these two

objectives, an ad-networking service selects ads that are relevant to the page content

and/or the user information. In this study, we focus on increasing the click-through

rate (CTR), as this metric directly relates to the user experience, publisher revenue, and

advertising effectiveness objectives.

The relevance of an ad to page content is typically determined using a tf-idf score that

measures the word overlap between the page content and the ad content. Ads that have

high relevance scores to the Web page are selected. This task is therefore regarded as a

similarity search in high-dimensional sparse vector space. Inverted index-based approaches

can retrieve the ads in very short response time by utilizing the sparsity of the vector space.

This is an effective technique when the expected word overlap rate is high, but it falters

when the vocabulary used on the page is different from the vocabulary used in the ad. For

example, an ad for “SIM-free smartphones” would be relevent to a Web page comparing

Mobile Virtual Network Operator (MVNO) services, but the word overlap might not be

very high. Another example could be an ad for “HTC One” and a page about “New Nexus

7.”

To remedy this problem, some previous studies have used a semantic taxonomy in the

19

matching function [18] or introduced a page-ad probability model with hidden classes [86].

However, in these approaches, it is necessary to expand the above inverted index-based

ad retrieval system or build a new index to handle the categories or classes in order to

respond to each ad request in a very restricted time. In addition, a review of the number

and hierarchical structure of categories or a re-creation of clusters is periodically required

in the operation of the ad serving system, and these tasks are not always easy to perform.

To overcome the above problems, we have developed an approach that calculates a

matching score between two term vectors using an inverted index and does not require

modification of an ordinary ad retrieval system. In other words, this approach translates

ad request information into the textual space of ads. With this translation table, the

feature vector of ad requests is transformed into the input term vector of the ad retrieval

system. The process is illustrated in Figure 3.1.

This translation table will become very large because the two spaces are typically quite

large. We can efficiently learn the translation table from past click data with low-rank

approximation of the matrix. However, even if the learning can be done efficiently, the

transformed term vector must be made sparse because the performance of the inverted

index-based ad retrieval system progressively worsens in accordance with the number of

nonzero values in the input vector [35, 43, 96]. Therefore, we first select ad features related

to each query feature in accordance with our metric based on the past CTR, and learn

the translation matrix. In other words, we choose a subset of the matrix elements and

learn only the weights with past click logs. By using these procedures, the ads that have

high CTR are efficiently retrieved without the performance of the ad retrieval system

degrading. Our main contributions are as follows.

• We propose a method of translating contextual information into the textual features

of ads by using past click data.

• Our approach is easy to implement and maintain because there is no need to modify

the existing ad retrieval system.

• We evaluated our approach using a real-world dataset from an ad network and

obtained better results than existing methods.

• We applied our approach to a real ad serving system and achieved an improvement

over the existing production system.

The rest of this study is organized as follows. Section 3.2 provides a general overview of

the contextual advertising system. Section 3.3 presents our method of translating query

information into ad term vector space. Section 3.4 details the experimental setup and

results. We conclude our paper in Section 3.5 by summarizing our findings.

20

User	terms

User	categories

User	gender

User	age

User	location

Web	page	terms

Translator Query	terms Ad	corpus

Context vocabulary Ad vocabulary

Ad retrieval

Figure 3.1: Overview of our proposed approach. Our method is a translation of request

features into the input term vector of an ad retrieval system.

3.2 Overview and Related Works

This section provides a general overview of contextual advertising and related studies.

3.2.1 Overview of Contextual Advertising

There are four players in contextual advertising: the publisher, the advertiser, the ad

network, and the user. The publisher owns Web pages and reserves some space on these

pages for ads. An advertisers place ads in an ad network. Each time a user visits the Web

page, the publisher requests a set of ads to be displayed from the ad network. For the

request, the ad network chooses appropriate ads from candidates and supplies them to the

publisher. Then, the publisher displays the returned ads on the reserved space and the user

sees them. If it takes too long for the ad network to retrieve ads, the user’s experience is

spoiled since some or all of the Web page is not displayed. Thus, the ad network responds

to each ad request from the publisher in a really short time, typically tens or hundreds of

milliseconds. In the common pay-per-click model, which is the prevalent pricing model for

contextual advertising, the advertiser pays the Web publisher and the ad network a fee

only if a user clicks on their advertisement and visits their Web site. Thus, the expected

revenue from displaying each ad is a function of both the bid price and the CTR. The

bid price is the cost that the advertiser agrees to pay per click, so the advertising system

already knows this. In contrast, the CTR for each ad can vary significantly depending

on a variety of factors ranging from the Web page to the user. Consequently, one of the

main problems in contextual advertising is determining how to accurately predict CTR

and efficiently retrieve ads with a high CTR from an ad corpus in the restricted response

time.

21

3.2.2 Related Works

Some previous works have focused on developing methods to match ads to pages, since

ads that are related to the page content are more likely than generic ads to provide a

better user experience. That in turn increases the probability of users clicking on the ads.

In these studies, the problem of matching ads with pages is transformed into a similarity

search in a vector space. The relevance of an ad to page content is indicated by a tf-

idf score that measures the word overlap between the page content and the ad content.

Chakrabarti et al. [25] and Karimzadehgan et al. [59] introduced methods to learn the

weights of each word in a page and an ad using HTML tags and ad sections. They use an

inverted index to efficiently retrieve top-K items from ad corpora.

Althogh both pages and ads are mapped to the same space, there is a discrepancy

(impedance mismatch) between the vocabulary used in the ads and on the pages. Various

approaches have been proposed to overcome this problem. Broder et al. [18] used a 6000-

node semantic taxonomy in the matching function between pages and ads. In addition,

Ratnaparkhi [86] introduced a page-ad probability model in which semantic relationships

between page terms and ad terms are modeled with hidden classes. Yih and Jiang [116]

proposed an approach to map the original term vectors to a “concept space” so that seman-

tically close words would be captured by the same concept. Wang et al. [104] formulated

and tackled the problem of relevance learning for online targeting in heterogeneous social

networks. They inferred user interests and ad concepts from heterogeneous sources and

links, and developed a user-ad relevance feature on the basis of weighted matching between

any pair of concept classes. Murdock et al. [77] applied machine translation techniques to

improve the matching between pages and ads.

Joshi et al. [57] presented a method to leverage user information including a user’s

demographic information (e.g., age, gender, and location) and behavioral information (e.g.,

the user’s recent search history, page visits, and ad clicks) in a content match advertising

setting. They mapped the non-textual user features to the textual space of ads.

In the cases where ad relevance cannot easily be gleaned from the page text alone, the

“clickable terms” approach has been proposed [50]. This approach involves matching a

Web site directly with a set of ad side terms, independent of the page content.

Another line of research attempts to predict the CTR of ads. These studies are related

to not only contextual advertising but also to sponsored search advertising because both

typically use the pay-per-click model. Predictions of CTR for ads are generally based on

a statistical model trained by using past click data. Examples of such models include

logistic regression [26, 27, 73], probit regression [47], boosted trees [34, 103], and factor-

ization machines [58, 80]. The accuracy of the model depends greatly on the design of

the features. Cheng and Cantú-Paz [26] presented a framework for the personalization of

click models. They developed user-specific and demographic-based features that reflect

the click behavior of individuals and groups. These features are based on observations of

22

AD	corpus

Method 1

Method 2

Method N

CTR	
prediction	
model……

ADADADAD

ADADADAD

ADADADAD

Merge
ADADADADADADADADADADAD

First stage Second stage

Figure 3.2: Two-stage approach in the ad serving system. Ads are retrieved by multiple

methods in the first stage. The ads are merged and passed on to the second stage for CTR

prediction.

the search and click behaviors of a large number of users of a commercial search engine.

Other recent works [2, 64, 88] have proposed models to estimate conversion rates (CVR).

3.2.3 Our Ad Serving System

Although machine-learned CTR prediction models are more accurate, as described in

Section 3.2.2, evaluating all the items in an ad corpus is too time-consuming if we want to

ensure that the Web page loads quickly [3]. Our ad serving system therefore adopts a two-

stage approach similar to some other studies [3, 25]. The first stage retrieves top-K items

from an ad corpus using an inverted index. The second stage selects the desired top-k

using brute force CTR prediction on the K retrieved ads (k ≪ K). In the first stage, ads

are independently retrieved by multiple methods in parallel. The retrieved ads in the first

stage are merged and passed on to the second stage for CTR prediction. Ads are ranked

and displayed on the basis of the predicted CTR and the bid price. Thus, the objective of

the first stage is to retrieve the ads that have high estimated CTR (and/or high bid price)

and pass on them to the second stage. This process is illustrated in Figure 3.2. We refer

to the “ad retrieval system” as a part of the first stage and focus on this part. We used a

heavily tuned search engine that uses the WAND algorithm [19, 43, 35].

In this study, we propose a method to efficiently retrieve ads with high CTR using

the search engine without any changes, even building a new index. To simply measure

relevance between contextual information and ads, distributed representations obtained

from trained neural networks may be applicable [51, 32]. However, since such distributed

representations are typically low-dimensional dense vectors, an ad retrieval system that

combines inverted index with the WAND algorithm can not retrieve ads efficiently. Off

course, some methods [67] have been proposed to efficiently retrieve ads for such kinds of

vectors, but these methods are not easy to implement in a large-scale real-world system

at a satisfactory level of quality. Therefore, in this study, we focus on a method that

23

generates high-dimensional sparse vectors and utilizes the existing inverted index-based

retrieval system.

3.3 Methods

In this section, we first define the matching function between a query and an ad and then

describe our approach to mapping the query information to the textual space of ads.

3.3.1 Matching Function

We define a query feature vector as q = (q1, . . . , qDq)
T and an ad feature vector as a =

(a1, . . . , aDa)
T. q is a query feature vector of an ad request that includes Web page and

user information. We also define a general form of the matching function for q and a using

translation matrix W = [wij]Dq×Da , as:

mscore(q,a) = qTWa =

Dq∑
i=1

Da∑
j=1

wijqiaj , (3.1)

where Dq is a dimension of query feature space and Da is a dimension of ad feature space.

Equation (3.1) is a general form of the matching function. If Da is the same as Dq

and W is the identity matrix I, score(q,a) turns out to be a simple dot product:

mscore(q,a) = qTIa =

Dq∑
i=1

qiai.

Of course, the cosine similarity can be calculated if q and a are normalized. Also, in

general cases, by multiplying the query feature vector q by the translation matrix W and

using q′ = WTq as an input vector, we calculate the score mscore(q,a) = qTWa = q′Ta

with an ordinary inverted-index-based ad retrieval system.

When categories or classes are used, translation matrix W is decomposed as:

W = ΓT
q WcΓa,

where Γq ∈ RK×RDq , Γa ∈ RK×RDa , Wc ∈ RK×RK , and K is the number of categories

or classes. Here, Γq and Γa are the respective matrices that convert query feature vector

q and ad feature vector a into categories or classes vector qc and ac. Thus, the matching

function in this case is expressed as:

mscore(q,a) = (Γqq)
TWc(Γaa)

= qTc Wcac,

where qc = Γqq and ac = Γaa. This decomposition can also be viewed as a matrix

factorization or low-rank approximation.

24

3.3.2 Learning a Translation Matrix

As described in Section 3.1, we need to learn the translation matrixW efficiently and make

the transformed term vector sparse for efficient ad retrieval. For this purpose, adding the

L1 regularization term of WTq to the objective function, we may directly optimize it by

using the alternating direction method of multipliers (ADMM) [95]. However, the objec-

tive function including this regularization term is relatively complex to optimize. In this

study, we propose another approach, in which we can directly control the sparseness of

the matrix by considering the performance of the ad retrieval system. Instead of apply-

ing L1 regularization, we first select a subset of the matrix elements and then learn the

corresponding wij .

We calculate the following score mij for each pair of qi and aj presented in the training

data:

mij =
CTR(qi, aj)

max(CTR(qi),CTR(aj))
,

where CTR(qi) denotes the CTR when the query feature vector includes qi and CTR(aj)

denotes the CTR of ads that include feature aj . Similarly, CTR(qi, aj) represents the

CTR of ads that include feature aj when the query feature vector includes qi. A large

mij value means that ads that include feature aj are more likely to be clicked when the

query feature vector includes qi. We conducted preliminary experiments by replacing the

denominator part of mij with some variants, such as the product of the two CTRs and

square root of the product. We observed that this max form empirically achieved better

results. A set of the pairs that has a larger mij is selected:

P = {(i, j) | mij > T},

where T is a thresholding hyper-parameter. The number of non-zero elements in W

decreases as a function of T . We use P and replace the matching function (3.1) as follows:

mscore(q,a) =
∑

(i,j)∈P

wijqiaj .

If we perform an ordinary feature selection using mutual information or L1 regularization,

we obtain features that lead to negative wij ’s as well as positive wij ’s. However, we retrieve

top-K ads that have larger mscore(q,a) from an ad corpus as described in Section 3.2.3.

We cannot retrieve ads that have higher mscore(q,a) even if we use the negative wij ’s.

Thus, we use the above approach in the hope of selecting the features to lead to the

positive wij ’s.

We learn the above wij by using past click data. A score proportional to the click-

25

through rate (CTR) for q and a is therefore defined as having the following linear form:

score(q,a) = mscore(q,a) + bscore(q,a)

=
∑

(i,j)∈P

wijqiaj +wT
basicxbasic

= wT
matchxmatch +wT

basicxbasic

= wTx, (3.2)

where bscore(q,a) is a basic score as bscore(q,a) = wT
basicxbasic. xbasic is a feature vector

that includes features such as the ad’s own clickability. wbasic is a weight vector correspond-

ing to xbasic. For (i, j) ∈ P , wmatch and xmatch are defined as wmatch = [· · · , wij , · · ·]T

and xmatch = [· · · , qiaj , · · ·]T. w =
[
wT

match,w
T
basic

]T
and x =

[
xT
match,x

T
basic

]T
are con-

catenated vectors. The reason for adding bscore(q,a) to mscore(q,a) is that the score

proportional to CTR consists of not only a matching score between the query and ad but

also other factors such as the ad’s own clickability and display position on the Web page.

As described in Section 3.2.3, our focus is improving the first stage of the two-staged

ad serving system. We learn wij with click logs instead of simply using mij , as we expect

that first retrieving top-K ads on the basis of a score approximating the second stage score

leads to better top-k results at the second stage.

We then describe how to utilize click logs to learn weights. In the contextual advertising

setting, a Web publisher typically requests some ads simultaneously because more than

one ad is displayed on a page at the same time. In other words, one ad request r in the

logs includes N (r) impressions of ads:

(q(r),a
(r)
1 , y

(r)
1), (q(r),a

(r)
2 , y

(r)
2), . . . , (q(r),a

(r)

N(r) , y
(r)

N(r)).

Each impression of an ad consists of a tuple (q(r),a
(r)
i , y

(r)
i). Here, q(r) represents the

query feature vector of the request r and a
(r)
i represents the ad feature vector of the i-th

impression in request r. The output variable y
(r)
i = 1 if a user clickes the ad and y

(r)
i = 0

if not.

As described in our previous work [101], we focus on a kind of ad request and apply

the learning-to-rank approach to learn the weights.

There are two kinds of ad requests in data R:

R+ = {r | ∃i(y(r)i = 1)},

R− = {r | ∀i(y(r)i = 0)}.

R+ denotes a set of ad requests that includes at least one clicked impression; hence we

refer to R+ as clicked requests. R− is called non-clicked requests since no ad requests

in R− include clicked impressions. Of course, R = R+ ∪R− and R+ ∩R− = ∅. Examples

of these two kinds of ad request are shown in Figure 3.3.

26

AD1 ✗

AD2 ✓

AD3 ✗

AD4 ✗

AD1 ✓

AD2 ✗

AD3 ✗

AD4 ✓

AD5 ✗

Clicked requests

AD1 ✗

AD2 ✗

AD3 ✗

AD4 ✗

AD1 ✗

AD2 ✗

AD3 ✗

AD4 ✗

AD5 ✗

Non-clicked requests

Figure 3.3: Examples of clicked requests and non-clicked requests. Ticks denote clicked

impressions, and crosses represent non-clicked impressions.

We regard ad impressions in an ad request as documents related to a query in an

information retrieval context and apply the learning-to-rank approach to learn the weights.

We make pairwise preferences from each clicked request r ∈ R+.

{(a(r)
i ,a

(r)
j) | ∀i, j(y(r)i = 1 ∧ y(r)j = 0)}.

This process is illustrated in Figure 3.4.

The preference (a
(r)
i ,a

(r)
j) indicates that a score proportional to the CTR of a

(r)
i for

q(r) is expected to be higher than that of a
(r)
j . We represent the above preference using

score(q,a) and transform using (3.2) as follows:

score(q(r),a
(r)
i) > score(q(r),a

(r)
j)

⇔ score(q(r),a
(r)
i)− score(q(r),a

(r)
j) > 0

⇔ wTx
(r)
i −wTx

(r)
j > 0

⇔ wT(x
(r)
i − x

(r)
j) > 0.

Using the squared hinge loss, we define a pairwise loss function L(w) like RankSVM [56]

as follows:

L(w) =
∑
r∈R+

∑
i:y

(r)
i =1

∑
j:y

(r)
j =0

max(0, 1−wT(x
(r)
i − x

(r)
j))2. (3.3)

We add a regularization term and seek the weight vector ŵ that minimizes the following

optimization problem:

ŵ = arg min
w

1

2
∥w∥22 + C · L(w),

where C ≥ 0 is a penalty parameter. The translation matrixW is restored from the weight

vector ŵmatch, where ŵ =
[
ŵT

match, ŵ
T
basic

]T
. Note that we set wij = 0 for (i, j) /∈ P .

We conducted preliminary experiments using hinge loss and logistic loss in addition to

the above squared hinge loss. We decided to use the squared hinge loss as it was found to

have a favorable balance between accuracy and training time.

27

Clicked requests

AD1 AD2

AD1 AD3

AD1 AD5

Pairwise preferences

>
AD1 ✓

AD2 ✗

AD3 ✗

AD4 ✓

AD5 ✗

>

>

AD4 AD2

AD4 AD3

AD4 AD5

>

>

>

AD1 ✗

AD2 ✓

AD3 ✗

AD4 ✗

AD2 AD1

AD2 AD3

AD2 AD4

>

>

>

Figure 3.4: Making pairwise preferences from clicked requests.

3.3.3 Retrieval from AD Corpus and Implementation

By using the learned matrix W, the query feature vector q is transformed into the input

term vector of the ad retrieval system for each ad request.

qinput = WTq.

Our proposed method only require this transformation. Thus it is easy to implement and

maintain because there is no need to modify the existing inverted index or add new index.

This input term vector includes some non-zero values, which are proportional to the

number of non-zero values in the query feature vector. However, the performance of the

ad retrieval system declines in accordance with the number of non-zero values in the input

vector [43]. Therefore, we need to limit the number of these values with hyper-parameter

M :

∥qinput∥0 ≤M.

∥qinput∥0 is the L0-norm of qinput, which is the number of its non-zero elements. We simply

choose top-M elements, which have larger values.

The computational cost of the above vector transformation using the matrix W is

much cheaper than that of retrieval using the transformed vector as input. Therefore, the

response performance of the ad retrieval system mainly depends onM , which is the number

of non-zero elements in the input vector. By changingM , the response time becomes faster

than linear (superlinear) [96, 43, 35]. The sparsity-adjustment threshold T , introduced in

Section 3.3.2, does not affect the response performance very much. However, when we use

a small value of M , we must increase T . Because a large value of T induces the matrix

W to be sparse, the number of non-zero elements in WTq and the number of elements to

be limited by M becomes small. Thus, when implementing a real ad serving system, we

28

first determine the value of M in order to satisfy the requirement of response time. Then,

we choose the optimal T value on the basis of the M value.

3.4 Experiments

This section describes offline and online evaluations. In the offline evaluation, we com-

pared the proposed method with existing ones by using the past click logs. In the online

evaluation, we applied our approach to a real ad serving system and observed changes

in users’ responses. Due to business confidentiality, we report only relative performance

when showing experimental results.

3.4.1 Offline Evaluation

Our objective in this study is to develop a method that successfully improves ads’ CTRs

without big changes to the existing ad retrieval system. To evaluate the improvement,

we apply our approach to a real ad serving system and compare its online performance

with those of other systems by conducting A/B testing. However, the implementation

cost is not negligible, and there are risks of decreasing revenue and user satisfaction by

conducting online A/B testing. Therefore, we first conduct an offline evaluation by using

past click logs, which is relatively low cost, for estimating the improvement over the

existing methods and the effect of changing values of hyper-parameters. Note that we

do not evaluate response time of the proposed method in this offline setting since the

performance is guaranteed to fulfill the required condition in the later online evaluation

described in Section 3.4.2.

In this section, we first describe experimental settings such as datasets, features, mod-

els, and evaluation metrics. Next, we compare our approach with existing methods and

present model performances when changing the hyper-parameters T and M .

Datasets and Features

We compare the models using data sampled from an ad network for a period of eight

weeks. Data from the first six weeks are used as a training set, data from the fifth week

are used as a validation set, and data from the last week are treated as a testing set. This

ad network is for the Japanese market1, so all ads and pages are written in Japanese, with

a few exceptions.

As described in Section 3.3.2, each sample of the datasets is an impression of an ad and

consists of a tuple (q(r),a
(r)
i , y

(r)
i). The output variable y

(r)
i = 1 if a user clicks the ad and

0 if not. The query features q(r) include Web page and user information. The Web page

1http://promotionalads.yahoo.co.jp/service/ydn/index.html

29

http://promotionalads.yahoo.co.jp/service/ydn/index.html

Table 3.1: Summary of features

Feature type Source Details

Query features q

Web page Terms extracted from Web page

User

Terms extracted from behavioral events,

categories based on behavioral events,

gender, age, location

Ad features a Ad Tf-idf weighted terms

Basic features xbasic Past click log
Historical CTR of ad and advertiser,

display position on the Web page

features are extracted terms. These terms are scored on the basis of their position on the

page and HTML tags. Some terms are chosen by the score. The user features are terms

and categories in which the user is interested, as well as gender, age, and location. The

user’s gender falls into three classes: male, female, and unknown. Similarly, the user’s age

is categorized into 13 groups. As in the study by Aly et al. [5], these terms and categories

are extracted from user behavior events such as page visits, search queries, and ad clicks.

These categories are similar to the hierarchical taxonomy in the work of Broder et al. [18].

There are about 900 categories. We simply use textual features as the ad features a
(r)
i ,

which are tf-idf weighted terms based on the title and description in this study. These

features are summarized in Table 3.1.

The basic features xbasic described in Section 3.3.2 include the display position on the

Web page and the historical CTR of the ad and advertiser. As described above, since

CTR can be changed by user-related features, it is natural to include these features into

xbasic. However, ad-independent features do not affect the order relation of scores in an ad

request because these features change scores by the same amount for all ads in the request.

Further, the loss value is not changed because we use the pairwise loss function 3.3 and the

ad-independent features are disappeared when taking into account the difference between

two feature vectors (x
(r)
i − x

(r)
j). Thus, ad-related features are just included in xbasic.

These features are also summarized in Table 3.1.

We chose eight diverse Web sites, including news, blogs, question-and-answer, finance,

sports, weather, and travel sites. The models we evaluate are constructed with respect to

each Web site, since the Web pages and the users that visit them are different. The data

statistics for each Web site are summarized in Table 3.2. The number of clicked requests

|R+| and the average number of impressions per clicked request N (r) changed over the

six weeks, due to seasonal trends, changes in the budget of the advertisers, and actions

carried out by publishers to achieve sales targets. #clicks, which is the average number

of clicked impressions per clicked request, is approximately 1.

30

Table 3.2: Data statistics for Web sites used in evaluation.
Web site Type |R+| N (r) #clicks

training 711,539 6.97 1.03

A validation 142,649 7.03 1.03

testing 119,464 7.11 1.02

training 2,676,577 4.99 1.03

B validation 429,760 4.99 1.03

testing 356,578 4.99 1.01

training 1,648,118 4.64 1.02

C validation 137,646 3.09 1.02

testing 134,168 3.15 1.01

training 919,870 4.11 1.01

D validation 92,547 4.05 1.01

testing 81,077 4.07 1.00

training 905,842 4.07 1.01

E validation 217,165 4.94 1.01

testing 169,627 4.94 1.01

training 153,849 5.00 1.04

F validation 23,836 5.00 1.04

testing 17,879 5.00 1.02

training 297,814 8.13 1.03

G validation 53,306 8.10 1.02

testing 42,098 8.05 1.02

training 4,644,350 4.48 1.02

H validation 780,037 4.54 1.02

testing 498,407 4.15 1.01

Existing Methods and Evaluation Metric

We compared the proposed method with three existing production methods: existing 1,

2, and 3. These methods also use the features described in Section 3.4.1 and Table 3.1.

Existing 1 utilizes only terms extracted from a Web page and weighted via an optimization

procedure similar to the method of Karimzadehgan et al. [59] for ad retrieval. Existing 2

uses terms extracted from user’s behavioral events, such as Web page visits, search key-

words, and ad clicks. Existing 3 uses category information obtained from user’s behavioral

events for ad retrieval. For existing 2 and 3, we extracted terms and categories similarly

to the method of Aly et al. [5].

As noted in 3.2.3, in terms of application to a real ad serving system, we focus on the

method that generates high-dimensional sparse vectors and utilizes the existing retrieval

system with the inverted index and WAND algorithm. The above three existing methods

satisfy this condition by representing both the query and ad as high-dimensional sparse

31

vectors. In contrast, vectors obtained via training neural networks are typically low-

dimensional and dense. Therefore, we excluded these methods in the comparison because

they do not satisfy the condition.

In the comparison, we use the following scoreexisting(q,a) instead of score(q,a) in

Equation (3.2):

scoreexisting(q,a) = w · escore(q,a) + bscore(q,a),

where escore(q,a) is a matching score calculated by an existing method. Each existing

method has a different escore(q,a).

As described in Section 3.3.3, we need to limit the number of query terms because

of the performance of the ad retrieval system. In the experiment, we carried out our

evaluation by changing the value of M . Thus, we rewrite the scoring function for the

prediction as:

t-score(q,a) = t-mscore(q,a) + bscore(q,a), (3.4)

where t-mscore(q,a) is a matching function using truncated qinput = WTq. We changeM

and truncate the query term vector qinput during the evaluation, not during training. This

means the same translation matrix W is used. Note that this evaluation does not reflect

the actual online setting very well when the value of M is limited. We use t-score(q,a)

in the offline evaluation, although ads are retrieved by t-mscore(q,a) from an ad corpus

in the actual online setting. Because of bscore(q,a), the order by t-mscore(q,a) and

t-score(q,a) is not the same for some ad requests in the testing set.

We evaluated the performance of the model by using mean average precision (MAP) [70]:

MAP =
1

|R+|
∑
r∈R+

AP(r),

AP(r) =

∑N(r)

k=1 P
(r)
k y

(r)

π(r)(k)∑N(r)

k=1 y
(r)

π(r)(k)

,

P
(r)
k =

∑k
l=1 y

(r)

π(r)(l)

k
,

where AP(r) is the averaged precision over all relevant documents for request r, and P
(r)
k

is the precision up to rank position k. Here, π(r)(k) = i means that the i-th impression

ranks in the k-th position by the predicted score score(q(r),a
(r)
j). We normalize the scores

of the method by a basic model that uses only bscore(q,a) during both the training and

evaluation. All values of metrics in this study are transformed by

∆MAP =

(
MAP

MAPbasic
− 1

)
× 100.

Note that this MAPbasic is reasonably high because the display position included in xbasic

is a very beneficial feature. In this evaluation setting, we just make predictions for tens of

32

Table 3.3: Experimental results. Values are ∆MAP. The bold elements indicate the best

performance of the methods.

Method
Web site

A B C D E F G H

Existing 1 +1.90% +0.01% −0.04% +0.01% +0.87% +1.22% +0.31% +0.00%
Existing 2 +0.85% +2.71% +0.53% +0.24% +0.85% +0.59% +0.98% +1.00%
Existing 3 +0.04% +0.37% +0.04% +0.03% +0.02% +0.38% +0.01% +0.11%
T = 0.20 +0.60% +6.18% +1.42% +0.50% +1.70% +1.66% +1.73% +2.60%
T = 0.15 +1.16% +6.60% +1.50% +0.60% +1.79% +2.14% +1.86% +2.90%
T = 0.10 +2.97% +6.83% +1.55% +0.64% +1.84% +2.32% +2.00% +3.13%
T = 0.05 +3.56% +6.93% +1.54% +0.68% +1.81% +2.56% +2.12% +3.24%

ads that are selected by the existing retrieval methods, although we need to retrieve ads

from hundreds of thousands to millions candidates in the actual ad serving setting. This

is also a limitation of offline evaluation with past click logs.

Results

We first evaluated our approach when changing the thresholding hyper-parameter T . As

described in Section 3.3.2, the number of non-zero elements inW decreases as a function of

T . This means that model performance is expected to improve with decreasing T . In this

setting, M is not limited during the evaluation. The experimental results are summarized

in Table 3.3. The bold elements indicate the best performance of the methods. Our

proposed method achieved an improvement over the existing methods. As expected, MAPs

improve with decreasing T . For Web sites B and H, which have a lot of training data,

∆MAP is larger than other Web sites and the impact of changes in T is relatively small.

For Web site A, the MAPs of existing 1 are higher than the scores when T = 0.20 and

0.15. The impact of changes in T is large. This result indicates that the model trained

with more data achieves larger and more robust improvement. In comparing the existing

methods, there are strong and weak points for each Web site. Existing 1 achieved the

best results for Web sites A, E, and F. Conversely, existing 2 achieved the best results for

Web sites B, C, D, G, and H. This means is that the importance of the features used to

retrieve ads differs significantly depending on the Web site. In contrast with these existing

methods, our proposed method uses both Web page and user information for ad retrieval,

which is why it had better results.

Next, we investigated the model performance of each T when changingM . As described

in Section 3.4.1, we change M and truncate the query term vector qinput during the

evaluation, not during the training. The experimental results are shown in Figure 3.5.

As expected, the MAPs decay in response to a decrease of M . One might think that our

proposed method is rather worse than the basic model in situations where the ∆MAP is

33

Table 3.4: Example of Web site B’s mapping table for user terms.

User term Translated term Weight

iPhone 0.2114
iPhone ケース (case) 0.1534

iPad 0.0868
プリウス (Toyota Purius) 0.2600

プリウス (Toyota Prius) 燃費 (mileage) 0.0732
HV (Hybrid Vehicle) 0.0607
歯科 (dentistry) 0.3297

歯科 (dentistry) 歯科医師 (dentist) 0.1892
インプラント (implant) 0.1035
毛穴 (pores) 0.2319

毛穴 (pores) 洗顔 (face washing) 0.1001
化粧品 (cosmetics) 0.0663
温泉 (hot spring) 0.1730

温泉 (hot spring) 旅館 (Japanese inn) 0.1272
露天風呂 (outdoor hot spring) 0.0809
カーナビ (car navigation system) 0.1229

カーナビ (car navigation system) トヨタ (Toyota) 0.0906
ホンダ (Honda) 0.0720

a negative value, such as T = 0.05 and M = 50 on Web site H. However, such offline

evaluation results do not reflect the actual online performance very well because of the

difference between t-score(q,a) and t-mscore(q,a), as described in Section 3.4.1. In the

next section, the comparison of the existing methods and our proposed method whenM is

limited is carried over to the online evaluation. Here, we claim that M is first determined

by the performance of the ad retrieval system and that T then needs to be tuned for each

Web site in a real ad serving setting.

Tables 3.4 and 3.5 are examples of the mapping tables used on Web site B for user

terms and categories, respectively. As expected, user terms are translated into the same

term and related terms. In addition, the weight of the same term is larger than that of

related terms in almost all cases. Similarly, user categories are translated into related

terms.

3.4.2 Online Evaluation

In the previous subsection, we confirmed the potential improvement of the proposed

method by conducting the offline evaluation with past click data. In this subsection,

we evaluate the actual performance of our method in an online setting.

To measure the online performance, we applied our approach to a real ad serving

34

Table 3.5: Example of Web site B’s mapping table user interest category.

User category Translated term Weight

クラウン (Toyota Crown) 0.2605
Automotive/Domestic/Toyota トヨタプリウス (Toyota Prius) 0.2171

ランクル (Toyota Land Cruiser) 0.2053
血圧 (blood pressure) 0.1784

Health Pharma/Adult Disease/Hypertensive Disease 高血圧 (high blood pressure) 0.1196
食事法 (diet) 0.0531
海外 (overseas) 0.1181

Travel and Transportation/Overseas/Europe ヨーロッパ (Europe) 0.1168
海外旅行 (foreign travel) 0.0868
婚活 (marriage hunting) 0.1100

Miscellaneous/Sex and Romance/Personals 出会い (matchmaking) 0.0742
カップル (couple) 0.0546
ウェディング (wedding) 0.1398

Life Stage/Wedding 婚約 (engagement) 0.1391
ドレス (dress) 0.1024

system. This ad serving system adopts a two-stage approach, as described in Section 3.2.3

and shown in Figure 3.2. Note that the objective of the first stage is to retrieve the ads

that have high estimated CTR and pass on them to the second stage. We added the

proposed method to the first stage and compared the online performance by conducting

A/B testing. Hyper-parameters are set as (T = 0.20,M = 20). As noted in Section 3.3.3,

we first determine the value of M in order to satisfy the requirement of response time and

then choose the T value by considering the offline evaluation results and model training

time. The response time when changing the value of M was estimated by preliminary

system tests. For a fair comparison, we chose the value of M so as to make the response

time of the two methods compared in A/B testing almost the same (tens milliseconds

for each request). Furthermore, the total number of ads retrieved in the first stage is

set the same because CTR can be higher even if the number of ads just increases. The

CTR prediction model used for each version in the second stage was also the same. This

prediction model was a statistical model trained by using the past click data [101]. We

ran the online test over a 1-week period in November 2013 for each Web site.

We use three metrics for the online test: CTR, cost per click (CPC), and revenue per

request (RPR). These metrics are defined as follows:

CTR =
#clicks

|R|
,

CPC =
revenue

#clicks
,

RPR =
revenue

|R|
,

35

Table 3.6: Online A/B testing results. Metrics are click-through rate (CTR), cost per click

(CPC), and revenue per request (RPR). Values represent the relative gains. We performed

a chi-squared test on the CTR results.

* : p-value < 0.05, ** : p-value < 0.01, *** : p-value < 0.001

Metric
Web site

A B C D

CTR −3.67% ** +4.60% *** +0.48% +2.82% *
CPC +3.63% −2.00% +1.62% +1.31%
RPR −0.18% +2.51% +2.10% +4.17%

Metric
Web site

E F G H

CTR +2.47% ** +1.42% +3.27% +4.02% ***
CPC −1.01% +7.51% −2.42% −2.94%
RPR +1.44% +9.04% +0.77% +0.97%

where |R| denotes the number of ad requests. revenue is the total amount of the fee that

advertisers paid.

The experimental results are summarized in Table 3.6. These percentages also repre-

sent the relative gain. The CTR was improved for all Web sites expect site A. We simply

set the hyper-parameters as (T = 0.20,M = 20) for all Web sites although the result of

T = 0.20 is worse than those of existing 1 and 2 on Web site A in Table 3.3. Thus, this

result is reasonable and indicates that hyper-parameters need to be tuned for each Web

site. Web sites B and H, which have a lot of training data, have larger improvements in

CTR than other Web sites as well as the offline test. We performed a chi-squared test

on the CTR results. The results for the Web sites A, B, D, E, and H are statistically

significant at the 5% level (p-value < 0.05). The RPR also improved for all Web sites

expect A, whereas the CPC decreased for Web sites B, E, G, and H. This drop in CPC is

usually favored by the advertisers. In this online testing, ads were ranked and displayed

by considering revenues. Ads retrieved by our proposed method had a high CTR and

relatively low bid price, which is why the Web sites had the result they did. As described

in Section 3.1, we focus on increasing CTR in this study. Consequently, our proposed

method improves revenue.

3.5 Conclusion

Contextual advertising is a form of textual advertising usually displayed on third-party

Web pages. Because of the need to achieve both effective advertising and a positive user

36

experience, one of the main problems with contextual advertising is determining how to

select ads that are relevant to the page content and/or the user information. In this study,

we introduced a translation method that learns a mapping of contextual information to the

textual features of ads. The contextual information includes the user’s demographic and

behavioral information as well as Web page content information. Our proposed method

only requires the transformation of the context feature vector with a learned matrix into

the input vector of the ad retrieval system. Thus, it is easy to implement and there

is no need to modify the existing inverted index or add new index. We evaluated this

approach offline on a real-world dataset from an ad network and obtained better results

than existing methods. We also applied our approach with a real ad serving system and

achieved significant improvements over the existing production system.

37

10 20 30 40 50 all
M

-2.0%

-1.0%

0.0%

1.0%

2.0%

3.0%

4.0%

∆
M

A
P

Web site A
T = 0.20

T = 0.15

T = 0.10

T = 0.05

10 20 30 40 50 all
M

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

∆
M

A
P

Web site B

10 20 30 40 50 all
M

1.0%

1.1%

1.2%

1.3%

1.4%

1.5%

1.6%

∆
M

A
P

Web site C

10 20 30 40 50 all
M

0.0%

0.1%

0.2%

0.3%

0.4%

0.5%

0.6%

0.7%

∆
M

A
P

Web site D

10 20 30 40 50 all
M

-1.0%

-0.5%

0.0%

0.5%

1.0%

1.5%

2.0%

∆
M

A
P

Web site E

10 20 30 40 50 all
M

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

∆
M

A
P

Web site F

10 20 30 40 50 all
M

-1.0%

-0.5%

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

∆
M

A
P

Web site G

10 20 30 40 50 all
M

-2.0%

-1.0%

0.0%

1.0%

2.0%

3.0%

4.0%

∆
M

A
P

Web site H

Figure 3.5: Experimental results when changing M .

38

Chapter 4

Multi-label Classification with an

Extremely Large Number of

Candidates

4.1 Introduction

Extreme multi-label classification has recently been receiving much attention. Its objective

is to learn a classifier that can automatically annotate a data point with the most relevant

subset from an extremely large label set (104 to 106) [83, 12]. In one example, an extreme

multi-label classifier is learned to tag a new Wikipedia article by using a subset of the most

relevant Wikipedia categories [81]. In another example, a classifier is built to recommend

advertisers bid on some search keywords, given their ad landing pages [4]. Therefore,

extreme multi-label classification tasks are closely related to recommendation and ranking

tasks [83, 53].

When a label space is extremely large, a traditional baseline approach that builds a one-

versus-rest classifier for each label is computationally expensive [114, 8]. More specifically,

this naive approach needs to train an extremely large number of binary classifiers. Thus,

some methods of dealing with this problem attempt to reduce the effective number of

labels.

Some “embedding-based” approaches rely on the low-rank label matrix assumption [118,

75, 111]. This assumption means that there are correlations between labels, so these ap-

proaches learn a small number of “latent” factors of labels. Regressors are learned to

perform prediction on these “latent” factors of labels with features and project them back

onto the original high-dimensional label space. However, this assumption is violated in

many real-world datasets because of the number of “tail” labels that only a few data points

have [12, 111].

39

To address this problem, Sparse Local Embeddings for Extreme Classification (SLEEC) [12]

was developed. SLEEC is also an embedding-based method but is free of any low-rank

label matrix assumptions. This method first partitions data points by using k-means clus-

tering and then learns a projection matrix (or regressor) for each partition by preserving

distances from a relatively small number of nearest neighbors in the label space. In other

words, SLEEC reduces the effective number of labels by converting a multi-label classifi-

cation problem into a set of regression problems by using nearest neighbors in the label

space. The number of these regression problems is independent of the number of labels,

whereas the above naive one-versus-rest approach needs to train the same number of clas-

sifiers as labels. Prediction is performed by using the labels of training points close to

the test point in the embedding space. In other words, SLEEC uses a k-nearest neighbor

classifier in the embedding space.

However, SLEEC also has three problems. The first is learning to partition data.

SLEEC partitions training points with k-means clustering before learning embeddings.

This means SLEEC only uses feature vectors and does not access label information in this

procedure. Therefore, data points that have similar label vectors are not guaranteed to be

assigned to the same partition. This partitioning could affect the quality of embeddings

learned in subsequent steps. The second is learning embeddings. In the prediction step,

SLEEC predicts labels of the test point by using the nearest training points in the embed-

ding space, as described above. Hence, the order of distance plays a crucial role, whereas

the values themselves are not very important. Thus, the objective function of SLEEC

is somewhat indirect for this purpose. In addition, SLEEC’s optimization process for

learning regressors is slightly complicated because of sparsity-induced and rank-constraint

regularization terms. The third problem is prediction speed. Bhatia et al. [12] reported

that SLEEC made predictions within 8 milliseconds per test point compared with 0.5

milliseconds for the tree-based FastXML [83] on a WikiLSHTC-325K dataset, but SLEEC

made predictions much more accurately than FastXML. Although this prediction time

would be acceptable for most real-world applications, much faster prediction is preferable

for scaling up to solve Web-scale classification problems.

In this study, we present a novel graph embedding method named “AnnexML1,” which

copes with the all three problems in a comprehensive and more direct way on the basis

of the k-nearest neighbor graph (KNNG). The key idea of AnnexML is reproducing the

KNNG of label vectors in the embedding space to improve both the prediction accuracy

and speed of the k-nearest neighbor classifier. The KNNG consists of training points as

vertices. A directed edge connects from the i-th vertex to the j-th one if the j-th point is

included in the set of the nearest neighbors of the i-th point in a certain metric space.

More specifically, AnnexML tackles the above three problems as follows. For the

first problem, AnnexML learns a multiclass classifier, which partitions the approximate

KNNG of the label vectors in order to preserve the graph structure as much as possible.

1Approximate Nearest Neighbor Search for EXtreme Multi-Label Classification

40

Then, for the second problem, AnnexML projects each divided subgraph into an individual

embedding space by formulating this problem as a ranking problem instead of regression

one. This objective function is easily optimized with simple stochastic gradient descent.

For the third problem, AnnexML efficiently retrieves approximate nearest neighbors of

a test point by exploring the learned KNNG in the embedding space. This technique

improves the trade-off between prediction time and accuracy.

In parallel with embedding-based approaches, tree-based approaches [4, 106, 83, 53,

55] are also common for extreme multi-label classification. These approaches achieve

logarithmic time prediction because of their tree structure. This property of fast prediction

is preferable for real-world applications. Thus, in this study, we develop a tree-based

method as well as the embedding-based method.

FastXML [83] is a tree-based extreme multi-label classifier. This method learns an en-

semble of multiple trees using random initialization, like random forest does [17]. During

the training phase of each tree, FastXML recursively partitions the feature space corre-

sponding to an internal node using a linear classifier optimized for normalized Discounted

Cumulative Gain (nDCG) based ranking loss. A test point traverses the tree from the

root node to a leaf node, and FastXML then predicts labels using the empirical label

distribution of training points in the leaf node that a test point has reached.

Although FastXML can make fast predictions, it has lower prediction accuracy than

some other approaches [12, 111, 8]. Some authors pointed out that this is due to the

cascading effect of a tree structure [8]. Thus, this study aims to develop a new tree-based

method that predicts more accurately while retaining the fast prediction property.

As described above, the FastXML prediction is made with training points in the leaf

node that a test point has reached. This is considered to be a nearest neighbor classifier

using all training points in the feature subspace of the leaf node. From this point of view,

the key idea of our method is allocating the “nearest neighbors” on the label space to

the same feature subspace. In other words, our method attempts to split each internal

node of a tree while keeping as many “nearest neighbors” on the label space as possible.

The prediction accuracy of the nearest neighbor classifier corresponding to a leaf node is

expected to be improved by this splitting approach. We translate this idea into a graph

partitioning problem and call our method a “graph partitioning tree” (GPT).

To summarize, our main contributions are as follows.

• We propose an extreme multi-label classifier based on graph embedding, AnnexML

(Section 4.3)

– We present a novel method of learning to partition data points by using an ap-

proximate KNNG as weak supervision, instead of unsupervised k-means clus-

tering (Section 4.3.1)

– For learning embeddings, we formulate this problem as a ranking one and op-

41

timize the objective function by using simple stochastic gradient descent (Sec-

tion 4.3.2)

– For faster prediction, we use an approximate k-nearest neighbor search tech-

nique by efficiently traversing the learned KNNG in the embedding space (Sec-

tion 4.3.3)

• We propose the GPT — a tree-based extreme multi-label classifier (Section 4.4)

– We introduce a novel method in which classifiers are learned by finding the

minimum cut of the approximate KNNG (Section 4.4.2)

• We conducted experiments on several large-scale real-world datasets and compared

our methods with recent state-of-the-art methods in terms of prediction accuracy

and time (Section 4.5)

4.2 Problem Formulation

In this study, we consider a dataset D = {(xi,yi)}Ni=1, which consists of N training points,

where xi ∈ X ⊆ RM is an M -dimensional feature vector and yi ∈ Y ⊆ {0, 1}L is the

corresponding L-dimensional label vector. yij = 1 if the i-th sample has the j-th label,

and yij = 0 otherwise. Multi-label learning aims to build a classifier, f : RM → {0, 1}L,
that accurately predicts the label vector for a given sample.

In the context of extreme multi-label learning, the number of labels L is large and in

the same order as the numbers of training points N and features M (see Table 4.2 for the

statistics of the datasets used in the experiments). For example, a naive approach, which

uses the one-versus-rest technique where an independent classifier is learned for each label,

needs to train a massive number of binary classifiers. In addition, at the prediction time

of this approach, all binary classifiers are applied to each test point. Thus, this naive

approach might be computationally expensive in terms of both training and prediction

time.

To overcome the above problem, some methods developed for extreme multi-label

classification attempt to reduce the effective number of labels. We briefly describe these

methods in Section 4.6.

4.3 AnnexML

In this section, we introduce our proposed method, AnnexML.

Hereafter, we represent an index set of entire training points as I = {1, 2, . . . , N}. Let
X = [x1; . . . ;xN] ∈ RM×N be the data matrix and Y = [y1; . . . ;yN] ∈ RL×N be the label

matrix.

42

Algorithm 1 Overview of AnnexML training (single learner)

Require: Training data: D = {(xi,yi)}Ni=1

1: Partition D into K subsets D1, . . . ,DK ▷ Section 4.3.1

2: for each parition c do

3: Learn projection matrix Vc using Dc ▷ Section 4.3.2

4: Zc ← VcXc

5: end for

6: return {(D1,V1,Z1), . . . , (DK ,VK ,ZK)}

Algorithm 2 Overview of AnnexML prediction (single learner)

Require: Test point: xt, number of nearest neighbors: n

1: ct ← partition closest to xt

2: zt ← Vctxt

3: Ñ (t)
Zct
← approximate n-nearest neighbors of zt in Zct ▷ Section 4.3.3

4: ŷt ← empirical label distribution for points in Ñ (t)
Zct

5: return ŷt

First, we describe training and prediction overviews. These high-level overviews are

similar to those of SLEEC [12]. However, we stress that AnnexML is a graph embed-

ding method that copes with the three problems of SLEEC in a comprehensively and

straightforwardly on the basis of KNNG, which consists of training points as vertices.

Algorithm 1 shows an overview of the training procedure. First, AnnexML splits the

data points into K partitions and then learns a linear map Vc ∈ Rd×M that projects the

data points to a low-dimensional subspace for each partition c ∈ {1, . . .K}, instead of a

global projection map. The embedding vector zi ∈ Rd is mapped from the feature vector

xi by using Vc for each i ∈ Ic. Here, Ic is the index set of data points in the partition

c. The data matrix of partition c is denoted as Xc. Similarly, Yc and Zc represent

the label and embedding matrix, respectively. AnnexML is able to improve its prediction

accuracy by learning an ensemble of multiple learners with different random initializations,

as described later (Section 4.3.1).

Algorithm 2 shows an overview of the prediction procedure. AnnexML first determines

the partition to which a test point xt belongs, finds approximate k-nearest neighbors

(training points) in the low-dimensional subspace corresponding to the partition ct, and

finally predicts labels on the basis of the labels of neighbors. To make predictions with

an ensemble of multiple learners, first, all sets of nearest neighbors obtained by learners

are aggregated; then, AnnexML outputs an empirical label distribution of points in the

aggregated nearest neighbors.

In the following subsections, we give details on the training and prediction procedures.

The key point of AnnexML is reproducing the structure of the KNNG of the label vectors

as much as possible in the embedding space. In Section 4.3.1, we represent a novel method

43

Table 4.1: Label frequency of training data used in experiments. For example, more than

174,000 labels occur in at most five training points in WikiLSTHTC-325K dataset.

Frequency WikiLSHTC-325K Amazon-670K

1 79,732 (24.82%) 71,817 (10.76%)
≤ 2 112,788 (35.11%) 309,976 (46.45%)
≤ 3 137,596 (42.84%) 435,442 (65.25%)
≤ 4 157,541 (49.04%) 509,203 (76.31%)
≤ 5 174,341 (54.27%) 555,905 (83.30%)
≤ 10 226,956 (70.65%) 637,379 (95.51%)

All 321,222 (100.00%) 667,317 (100.00%)

of learning to partition data. AnnexML learns a multiclass classifier to divide the KNNG

of the label vectors into subgraphs. Then, in Section 4.3.2, we learn a projection matrix in

order to preserve the edge connections of each subgraph in an individual embedding space.

Regarding this problem as a ranking one, we apply a learning-to-rank technique that uses

cosine similarity. Finally, in Section 4.3.3, we present an approximate nearest neighbor

search method that efficiently explores the learned KNNG in the embedding space. By

replacing the naive brute-force calculation with this method, AnnexML successfully speeds

up the prediction time without a noticeable drop in accuracy.

4.3.1 Learning to Partition Data Points

AnnexML partitions data points before learning embeddings for efficient training and

prediction, like SLEEC does. Whereas SLEEC simply uses k-means clustering for this

purpose, AnnexML aims to allocate the data points that have similar label vectors to

the same partition. This means that AnnexML utilizes label information y but SLEEC

only accesses feature vectors x. The label frequency of an extreme multi-label classification

dataset follows a “heavy tailed” distribution [12, 111]. Table 4.1 shows the label frequency

in the training data of WikiLSHTC-325K and Amazon-670K datasets. About 54% and

83% of the labels occur in at most five training points on each dataset. Without label

information, the data points that have the same tail label might be allocated to different

partitions as the number of partitions increases. Thus, this difference between AnnexML

and SLEEC could affect the quality of the embeddings learned in the subsequent steps

and the final prediction results.

From the perspective of reproducing the KNNG of the label vectors, AnnexML divides

the graph into K subgraphs while maintaining the structure as much as possible. Hence,

this problem can be regarded as finding the minimum K-way graph cut [7]. However,

in contrast with the common minimum K-cut problem, we need to learn a multi-class

classifier to predict the partition of an unknown test point. Thus, we use a novel sequential

maximization procedure for learning the classifier.

44

To construct the KNNG of the label vectors, we find the nearest neighbors N (i)
Y for

each i-th data point from the indices of all training points I. The set of nearest neighbors
N (i)

Y is defined by using the inner product between normalized label vectors y/|y| as:

N (i)
Y := arg max

S:S⊆I,|S|=n,i/∈S

∑
j∈S

yT
i yj

|yi||yj |
, (4.1)

where S is the index set in which the number of elements equals n and |yi| =
∑

j yij is

the number of labels that a data point has.

The computational cost of naively finding N (i)
Y for all data points is O(N2). Thus,

this naive approach is infeasible for a large N ∼ 106. If the label vectors y are sufficiently

sparse, we can efficiently find the nearest neighbors N (i)
Y by using an inverted index. In

this case, we first construct a list of references of data points that have each label, and

then we just have to evaluate pairs of data points in each list. This procedure is similar to

calculating the dot product between two sparse vectors, which only considers dimensions

where both vectors have nonzero elements and sums up the products of their values. The

estimated computational cost is
∑L

j=1 nj(nj−1)/2, where nj is the number of data points

that have the j-th label or the size of the j-th list. However, if a few nj corresponding

to “head” labels are near N , which means almost all data points have the same label,

the above cost reaches O(N2). Efficient algorithms for top-k retrieval on an inverted

index [43] or finding approximate k-nearest neighbors [37] can be applied to this situation.

However, we focus on tail labels and ignore head labels in some cases. In other words,

we expect that the number of data points corresponding to head labels in each partition

is not enough to affect the subsequent step, even if head labels are ignored in this step.

Thus, we only consider the l tail labels and their corresponding lists under the conditions∑l
j=1 nj(nj − 1)/2 ≤ αN, n1 ≤ n2 ≤ . . . ≤ nL to find approximate nearest neighbors Ñ (i)

Y

in order to keep the computational cost within O(N) by using the adjusting parameter

α ≪ N . Note that it is easy to determine l that satisfies the above condition by sorting

njs and accumulating nj(nj − 1)/2 in ascending order.

After approximate nearest neighbors Ñ (i)
Y are obtained for all data points, we learn

the weight vector wc for each partition c in order that the data points having the same

tail labels are allocated in the same partition while the data points are divided almost

equally among partitions. Using a sequential maximization procedure like stochastic k-

means clustering [16], we sequentially maximize the following objective function for each

i-th sample.

max
wci

∑
j∈Ñ (i)

Y

log σ(wT
cixj) +

∑
k∈S−

log σ(−wT
cixk)− λ|wc|1, (4.2)

where ci = arg max
c

wT
c xi is the partition to which the i-th point belongs at this time

step, S− is the set of indices randomly selected from I, σ(z) = 1/(1+exp(−z)) is a sigmoid

function, and λ is a regularization parameter. We learn the linear classifier wc’s by using

the FTRL-Proximal algorithm [72] with AdaGrad [39] learning rate adjustment.

45

The first term of the above objective function is intended to assign the approximate

nearest neighbors Ñ (i)
Y to the same partition ci to which the i-th point belongs. The

second term aims for the randomly selected points S− to not be included in the partition

ci. Since some partitions that have a lot of data points cause the training and prediction

time to become long, this term prevents a lot of data points from being allocated in a

single partition. The last term is the L1-regularization term to make wc’s sparse. Sparse

wc’s are also preferable for faster prediction.

The above L1-regularization term reduces the final model size as well as the prediction

time. At training time, wc’s should be stored in dense vectors for faster training. These

vectors use O(KM) space. Note that the number of partitions K depends on the number

of all training points N (see Section 4.5). Thus, this space complexity is infeasible for

large N and M . To remedy this problem, we use a hashing trick [105] for storing wc’s in

24-bit space (approximately 16.7 million bins) instead of O(KM) space. In practice, we

did not notice a drop in accuracy when using this technique.

Since the above objective function is non-convex (when ci is not fixed), AnnexML is

also able to improve its prediction accuracy by learning an ensemble of multiple learners

with different random initializations of wc, like the k-means clustering of SLEEC.

At the prediction step (line 1 in Algorithm 2), the partition ct to which a test point

xt belongs is determined by using the learned wc’s as:

ct = arg max
c

wT
c xt.

4.3.2 Learning Embeddings

For learning embedding vector zi and projection matrix Vc, AnnexML uses a pairwise

learning-to-rank approach. This is because the learning objective of AnnexML is to re-

construct the KNNG of label vectors in the embedding space. In other words, arranging

the k-nearest neighbors of the i-th sample is regarded as a ranking problem if we con-

sider an i-th point and other points as a query and items, respectively. Thus, we use the

pairwise learning-to-rank approach similar to S2Net [117] and deep structured sementic

models (DSSM) [51] in order to optimize k-nearest neighbors in the embedding space more

directly.

To represent the objective function of AnnexML, we first define the relevance score

between xi and xj as cosine similarity between embedding vectors zi = Vcxi and zj =

Vcxj :

R(xi,xj) := cos(zi, zj) =
zT
i zj

∥zi∥∥zj∥
=

xT
i V

T
c Vcxj

∥Vcxi∥∥Vcxj∥
.

We also represent the conditional probability by using the above relevance score and

46

softmax function as follows:

P (xj | xi) :=
exp(γR(xi,xj))

exp(γR(xi,xj)) +
∑

k∈S−
c
exp(γR(xi,xk))

=
exp(γ cos(zi, zj))

exp(γ cos(zi, zj)) +
∑

k∈S−
c
exp(γ cos(zi, zk))

,

where γ is a scaling parameter that magnifies cos(zi, zj) from [−1,+1] to the range of

larger values and S−
c ⊆ Ic is the set of indices randomly selected from data points in the

corresponding partition c. Then, we minimize the negative log likelihood:

min
Vc

∑
i∈Ic

∑
j∈N (i)

Yc

− logP (xj | xi).

Here, the set of nearest neighbors N (i)
Yc

is almost the same as N (i)
Y (see Equation 4.1) but

is selected from Ic rather than I. Note that the computational cost of finding exact N (i)
Yc

for all i is not very large since the number of data points in a cluster |Ic| is much smaller

than that of all training points N = |I| (the number of clusters to which K should be set

to fulfill this condition). Thus, we can use the exact N (i)
Yc

for learning embeddings. The

above negative log likelihood is transformed as:

− logP (xj | xi)

= − log

(
exp(γ cos(zi, zj))

exp(γ cos(zi, zj)) +
∑

k∈S−
c
exp(γ cos(zi, zk))

)

= − log

(
1

1 +
∑

k∈S− exp(γ(cos(zi, zk)− cos(zi, zj)))

)

= log

1 +
∑
k∈S−

c

exp(−γ∆ijk))

 ,

where ∆ijk = cos(zi, zj)− cos(zi, zk) is the difference between two cosine values. Hence,

this objective function aims to increase the difference between these cosine values.

We learn the projection matrix Vc by using stochastic gradient descent with Ada-

Grad [39]. Let a, b, and c be zT
i zj , 1/∥zi∥, and 1/∥zj∥, respectively. The gradient of the

cos(zi, zj) is derived as:

∂ cos(zi, zj)

∂Vc
=

∂

∂Vc

(
zT
i zj

∥zi∥∥zj∥

)
= −abc3zixT

i − acb3zjxT
j + bc(zix

T
j + zjx

T
i).

Using cosine similarity instead of the inner product has two advantages. First, the

objective function is regularized by the normalizing factor of a cosine. Hence, the explicit

regularization term of Vc is not needed, so this learning procedure is simple. Second, we

can easily apply an approximate nearest neighbor search technique that uses the learned

KNNG for speeding up the prediction. We give the details of this technique in Section 4.3.3.

47

Algorithm 3 ANNSearch(Query q, Ball tree T , KNNG G)

1: H ← empty heap

2: TreeSearch(q, T .root, H)

3: GraphSearch(q, G, H)

4: return H

4.3.3 Faster Prediction using Approximate Nearest Neighbor Search on

KNNG

The prediction of AnnexML mostly relies on the k-nearest neighbor search in the em-

bedding space (see Algorithm 2). Thus, for faster prediction, we need to speed up this

nearest neighbor search task. Instead of SLEEC’s naive brute-force search, we apply an

approximate k-nearest neighbor search method to this task. This method efficiently ex-

plores the learned KNNG in the embedding space by using an additional tree structure

and a pruning technique via the triangle inequality. Note that we construct the KNNG

precisely in the training phase and perform an approximate and fast search on the graph

in the prediction phase.

Representing the nearest neighbor search task more concretely, we find the following

index set N (t)
Zc

from training points Ic in a certain partition c with cosine similarity:

N (t)
Zc

= arg max
S:S⊆Ic,|S|=n

∑
j∈S

cos(zt, zj) = arg max
S:S⊆Ic,|S|=n

∑
j∈S

zT
t zj
∥zj∥

,

where zt = Vcxt is the embedding vector that corresponds to a test point xt.

For efficient indexing in a metric space, the triangle inequality is a key element, as

suggested by Sugawara et al. [97]. We also want to utilize the triangle inequality for

efficient retrieval, but the cosine distance 1 − cos(zt, zj) cannot satisfy this inequality.

Fortunately, if the indexed vectors zj are normalized in advance, that is, ∥zj∥ = 1 for all

j, the above N (t)
Zc

becomes the same as the following index set of nearest neighbors by

using the Euclidean distance:

arg min
S:S⊆Ic,|S|=n

∑
j∈S
∥zt − zj∥2 = arg min

S:S⊆Ic,|S|=n

∑
j∈S

(
∥zj∥2 − 2zT

t zj
)
.

Thus, we use the Euclidean distance between normalized vectors as metrics for searching.

Note that this transformation does not change the structure (or edge connections) of the

learned KNNG.

Algorithms 3, 4, 5, and 6 are the pseudo codes that represent the approximate k-nearest

neighbor search procedure using the KNNG. In these pseudo codes, the embedding of a

test point zt is represented as query vector q. To efficiently find reasonable starting points

from the graph, our method combines the KNNG with a ball tree. For the indexing

method of the ball tree, refer to the papers [79, 85].

48

Algorithm 4 TreeSearch(Query q, Tree node N , Heap H)

1: if N is a leaf node then

2: LineSearch(q, N.S, H)

3: else

4: ldist ← d(q, N .left.center)

5: rdist ← d(q, N .right.center)

6: if ldist < rdist then

7: TreeSeach(q, N .left, H) ▷ follow the left child node

8: else

9: TreeSeach(q, N .right, H) ▷ follow the right child node

10: end if

11: end if

Algorithm 5 LineSearch(Query q, Index set S, Heap H)

1: for i ∈ S do

2: dist ← d(q, zi)

3: if dist < LargestDistance(H) then

4: PopAndPushHeap(H, i, dist)

5: end if

6: end for

A query q first traverses from the root to the leaf nodes of the ball tree (Algorithm 4).

At each internal node, the test point determines which child node (left or right) is to be

followed by using the distances from the centers of the balls. After the test point reaches

a leaf node, the distance from each indexed point corresponding to the node is calculated

and pushed into the heap (Algorithm 5). Using these data points as seeds, the KNNG

is explored (Algorithm 6). In the exploration step, if a data point is satisfied by the

condition and pushed into the heap, the nearest neighbors are also pushed into the queue

of candidates for the subsequent evaluation.

To summarize, we first obtain a reasonable set of approximate nearest neighbors by

using a ball tree and then improve the approximation quality by exploring the KNNG on

the basis of local search. Since we only need to calculate the distances to a small number

of balls’ centers and subset of training points, we can speed up this search task.

4.3.4 Comparison with SLEEC

In this subsection, we clarify the difference between AnnexML and SLEEC.

As noted in the beginning part of this section, the training and prediction procedures

of AnnexML are similar to those of SLEEC. In other words, Algorithms 1 and 2 also

show overviews of the training and prediction procedures of SLEEC, respectively. How-

ever, AnnexML has three improvements over SLEEC, which are described in the above

49

Algorithm 6 GraphSearch(Query q, KNNG G, Heap H)

1: C ← index of H ▷ a queue of candidates

2: D ← empty set ▷ a set of already evaluated

3: while C is not empty do

4: i← pop from C

5: if i in D then

6: continue

7: end if

8: D ← D ∪ {i}
9: dist ← d(q, zi)

10: if dist < LargestDistance(H) then

11: PopAndPushHeap(H, i, dist)

12: for j in N (i)
Zc

do ▷ nearest neighbors in G

13: push j to C

14: end for

15: end if

16: end while

subsections.

For partitioning data points (line 1 in Algorithm 1), SLEEC simply applies usual k-

means clustering to feature vectors of data points whereas AnnexML learns the classifiers

by considering both feature and label vectors. Therefore, AnnexML is more likely to

allocate the data points that have similar label vectors to the same partition and improve

the quality of embeddings learned in subsequent steps.

For learning embeddings (line 3 in Algorithm 1), SLEEC utilizes the following objective

function:

min
Vc

∑
i∈Ic

∑
j∈N (i)

Yc

∥∥yT
i yj − xT

i V
T
c Vcxj

∥∥2 + λ
∑
i∈Ic

|Vcxi|1 + µ ∥Vc∥2F .

The first term indicates the sum of squared errors between the inner product of label

vectors and that of embedding vectors. The second term is an L1-regularization term

for embedding vectors zi = Vcxi, which leads to sparse embeddings for reducing the

size of models and the prediction time as well as avoiding overfitting. The last is the

L2-regularization term of Vc. λ and µ are regularization parameters corresponding to

the second and last terms, respectively. This objective function is non-convex and non-

differentiable. Thus, the optimization process is divided into two phases and done using

singular value projection [54] and ADMM [95].

Obviously, the above objective function of SLEEC is a regression problem of minimizing

the sum of squared errors. This means SLEEC learns the projection matrix Vc to reproduce

the inner product values of label vectors by using embedding vectors. However, at the

prediction step, these learned values are used only for retrieving k-nearest neighbors. In

50

contrast, the objective function of AnnexML focuses on whether a data point is included

in the set of k-nearest neighbors or not. Thus, the learning procedure of AnnexML is more

intuitive and consistent with the prediction procedure.

Instead of the approximate nearest neighbors search of AnnexML (line 3 in Algo-

rithm 2), SLEEC just performs an exact and brute-force search for prediction. Note that

the brute-force calculation of SLEEC cannot be directly replaced with our approximate

search procedure because it does not use cosine similarity (or Euclidean distance) but

rather the inner product as the metric in the embedding space. Some Maximum Inner-

Product Search (MIPS) methods [85, 9, 91] might be applicable to SLEEC for faster

prediction. However, such a study is beyond the scope of this paper. We leave this

direction as future work.

4.4 GPT

In this section, we present our tree-based method, the GPT.

Algorithm 7 shows an overview of the training procedure. This overview is almost the

same as that for conventional decision tree learning [17] and FastXML, but the procedure

for splitting the internal node (SplitNode) is tailored for multi-label classification with

an extremely large label space. This splitting procedure learns a binary linear classifier

(or hyperplane), which partitions the feature space and training points. If the number of

training points corresponding to the node n becomes less than the predefined threshold

(Line 9), splitting is terminated, and the node is treated as a leaf node. The leaf node

stores the empirical label distribution of the data points as follows:

ȳn =
1

|In|
∑
i∈In

yi.

Here, we represent the index set corresponding to node n as In ⊆ I = {1, 2, . . . , N}. This
averaged label distribution is used for the subsequent prediction step.

Algorithm 8 shows an overview of the prediction procedure. This overview is also

almost the same as that of traditional decision trees and FastXML. A test point traverses

from the root node to a leaf node of a tree. At each internal node, the test point determines

which child node to follow by using the linear classifier. After the test point reaches a leaf

node, the label distribution corresponding to the leaf node is returned. When predicting

with multiple trees, the predicted label vectors are aggregated.

In the following subsections, we describe the details of the splitting procedure for each

internal node of the tree. First, the GPT constructs an approximate k-nearest neighbor

graph of the label vectors (Section 4.4.1). Then, it learns the linear binary classifier using a

sequential optimization procedure (Section 4.4.2). We also discuss the computational com-

plexity of the training procedure and its scalability (Section 4.4.3). Finally, we compare

the GPT with FastXML and explain the difference between them (Section 4.4.4).

51

Algorithm 7 Training overview of the GPT

Require: Training data: D = {(xi,yi)}Ni=1

1: for i = 1, 2, . . . , T do

2: Droot ← D
3: Ti ← new tree

4: Ti.root ← GrowTree(Droot)

5: end for

6: return {T1, T2, . . . , TT }

7: procedure GrowTree(Dn)

8: n← new node

9: if |Dn| < MaxInLeaf then

10: n.y ← empirical label distribution of Dn ▷ process leaf node

11: else

12: (Dleft, Dright, wn) ← SplitNode(Dn)

13: n.w ← wn

14: n.left ← GrowTree(Dleft)

15: n.right ← GrowTree(Dright)

16: end if

17: return n

18: end procedure

19: procedure SplitNode(Dn)

20: Gn ← ConstructApproximateKNNG(Dn) ▷ Section 4.4.1

21: wn ← LearnPartitioner(Gn,Dn) ▷ Algorithm 9 and Section 4.4.2

22: Dleft ← {(xi,yi) ∈ Dn | wTxi ≥ 0}
23: Dright ← {(xi,yi) ∈ Dn | wTxi < 0}
24: return (Dleft, Dright, wn)

25: end procedure

4.4.1 Constructing an Approximate k-nearest Neighbor Graph using La-

bel Vectors

To split data points at each internal node of a tree, we first construct a KNNG on the

label space. Each vertex of the graph corresponds to a training point. A directed edge is

connected from the i-th vertex to the j-th one if the j-th point is included in the set of the

“nearest neighbors” of the i-th point on the label space. In this study, the set of “nearest

neighbors” of the i-th sample is defined by using the inner product between normalized

label vectors y/|y| as follows:

N (i)
n := arg max

S:S⊂In,|S|=k,i/∈S

∑
j∈S

yT
i yj

|yi||yj |
,

52

Algorithm 8 Prediction overview of the GPT

Require: Test point: xt

1: ŷ ← 0 ▷ initialize

2: for i = 1, 2, . . . do

3: n← Ti.root ▷ start with root node of i-th tree

4: while n is not a leaf node do

5: wn ← n.w

6: if wT
nxt ≥ 0 then

7: n← n.left ▷ follow the left child node

8: else

9: n← n.right ▷ follow the right child node

10: end if

11: end while

12: ŷ ← ŷ + n.y ▷ add a label distribution corresponding to the leaf node

13: end for

14: return ŷ

where S is the index set in which the number of elements equals k and |yi| =
∑

j yij is

the number of labels a data point has.

Because the label vectors y are typically sparse, we can efficiently find the nearest

neighbors N (i)
n by using an inverted index. The estimated computational cost for all data

points is
∑L

j=1 nj(nj − 1)/2, where nj is the number of data points that have the j-th

label. However, if a few nj corresponding to “head” labels are near N , which means

almost all data points have the same label, the above cost reaches O(N2) at the root

node. Therefore, we focus on tail labels and ignore some head labels. We only consider

tail labels under the condition nj < nth to find approximate nearest neighbors Ñ (i)
n by

using the threshold parameter nth. Using this simple approximation, we only consider tail

labels when the node is close to the root and has a lot of training points. Even if we ignore

some head labels, the partitioned two feature subspaces are expected to contain sufficient

data points that have these labels. In contrast, we construct the graph using all labels

when the node is near a leaf and it includes a relatively small number of data.

4.4.2 Learning a Linear Binary Classifier by Finding the MinimumGraph

Cut

After an approximate KNNG is constructed using Ñ (i)
n , we want to learn a linear classifier

wn ∈ RM by finding the minimum graph cut.

The graph cut is a partition that splits the vertices of the graph into two disjoint

subsets [90]. In our problem setting, the set of training points In is partitioned into two

disjoint subsets: Il and Ir. Here, we denote the index sets corresponding to the left and

53

right child nodes of node n as Il and Ir, respectively. That is, Il ∪ Ir = In, Il ∩ Ir = ∅.
The size of the cut is defined as the number of edges between the two subsets (or edges

crossing the partition). More concretely, we represent the size of the cut as follows:

cut(Il, Ir) =
∑
i∈In

∑
j∈Ñ (i)

n

[1(i ∈ Il ∧ j ∈ Ir) + 1(i ∈ Ir ∧ j ∈ Il)] ,

where 1(P) = 1 if the condition P is true, and 1(P) = 0 otherwise.

In contrast to the common minimum cut problem [90], we need to partition the graph

with a hyperplane wn on the feature space in order to predict unknown test points. wn

also splits the training points:

Il = {i ∈ In | wT
nxi ≥ 0},

Ir = {i ∈ In | wT
nxi < 0}.

In addition, because a balanced tree is preferable for fast training and prediction, we want

Il and Ir to be almost the same size.

Thus, similarly to stochastic k-means clustering [16], we sequentially maximize the

following objective function for each i-th sample:∑
j∈Ñ (i)

n

log σ(ciw
T
nxj) +

∑
j∈S−

n

log σ(−ciwT
nxj)− λ|wn|1 (4.3)

where σ(z) = 1/(1+exp(−z)) is a sigmoid function, S−
n ⊂ In is the set of indices randomly

selected from data points the node of the tree has, and λ is a regularization parameter. ci

is an indicator variable representing to which side of the partition the i-th point belongs.

ci = +1 if wT
nxi ≥ 0, and ci = −1 otherwise.

The first term of the Equation 4.3 is intended to assign the approximate nearest neigh-

bors Ñ (i)
n to the same side of hyperplane ci to which the i-th point belongs. However, the

second term aims to avoid assigning the randomly selected points S−
n to the same side

ci. This term prevents a lot of data points from being allocated to the same side of the

hyperplane. The last term is the L1-regularization term to make wn sparse. Sparse wn’s

are also preferable for faster prediction as well as small model size.

We learn the linear separator wn using the FTRL-Proximal algorithm [72] with Ada-

Grad [39] learning rate scheduling. Algorithms 9 and 10 show the pseudo codes of the

optimization procedure.

Because the above objective function is non-convex (when ci is not fixed), the GPT

can improve its prediction accuracy by learning an ensemble of multiple learners with a

different random seed, like FastXML does.

4.4.3 Complexity Analysis

In this subsection, we present a complexity analysis of our training procedure.

54

Algorithm 9 Sequential optimization procedure for learning a linear classifier wn

1: procedure LearnPartitioner(Gn,Dn)

2: In ← index set of Dn

3: (wn,n, z)← (0,1,0)

4: for epoch = 1, 2, . . . do

5: [i1, i2, . . .]← random permutation of In
6: for j = 1, 2, . . . , |In| do
7: i← ij

8: if wT
nxi ≥ 0 then

9: yi ← 1 ▷ ci = +1 in Equation 4.3

10: else

11: yi ← 0 ▷ ci = −1 in Equation 4.3

12: end if

13: Ñ (i)
n ← taken from Gn

14: S−
n ← indices randomly selected from In

15: for j in Ñ (i)
n do

16: β ← yi − σ(wT
nxj)

17: (wn,n, z) ← UpdateVectors(xj , β,wn,n, z) ▷ Algorithm 10

18: end for

19: for j in S−
n do

20: β ← 1− yi − σ(wT
nxj)

21: (wn,n, z) ← UpdateVectors(xj , β,wn,n, z) ▷ Algorithm 10

22: end for

23: end for

24: end for

25: return wn

26: end procedure

The computational cost of constructing the approximate nearest neighbor graph is

estimated as O(m̄n2thL̂). Here, m̄ is the average number of nonzero features per sample

and L̂ is the number of labels corresponding to at most nth training points. Typically,

we set nth to a value much smaller than N . m̄ is also much smaller than M because

the feature vector x is basically a sparse vector. The datasets used in our experiments

(see Section 4.5) fulfill this condition. If the number of training points corresponding to

all labels is smaller than or equal to nth, L̂ equals L. Therefore, the cost is basically

proportional to the number of labels L and independent of N and M .

After the set of nearest neighbors is obtained, the computational cost of optimizing the

Equation 4.3 is obviously made independent of the number of labels L (See Algorithms 9

and 10). The estimated cost for learning wn is O
(
m̄
(
|Ñ (i)

n |+ |S−
n |
)
|In|

)
. Typically,

we set |Ñ (i)
n | and |S−

n | to a value that is much smaller than N . Therefore, these values

are considered to be constant, and the above cost turns out to be O (m̄|In|) for each

55

Algorithm 10 Update vectors using FTRL-Proximal with AdaGrad learning rate schedul-

ing

Require: Initial learning rate: η0, L1-regularization parameter: λ

1: procedure UpdateVectors(x, β,w,n, z)

2: I = {i | xi ̸= 0} ▷ indices corresponding to nonzero features

3: for i ∈ I do

4: gi ← βxi

5: si ← 1
η0

(√
ni + g2i −

√
ni

)
6: zi ← zi + gi + siwi

7: ni ← ni + g2i
8: if |zi| ≤ λ then

9: wi ← 0

10: else

11: wi ← η0√
ni

(zi − sign(zi)λ)

12: end if

13: end for

14: return (w,n, z)

15: end procedure

wn. Because the total number of data points included in nodes at any tree depth d is

less than or equal to N , the sum of computational costs of the nodes at tree depth d is

O (m̄N). In addition, because the maximum tree depth is expected to be O(logN) (if

the tree is balanced well), the expected overall computational cost of all nodes in a single

tree is O (m̄N logN). Thus, the cost is proportional to the number of samples N and

independent of M and L.

The above analysis shows that the proposed training procedure can address the prob-

lems with large N and L.

4.4.4 Comparison with FastXML

In this subsection, we first describe the learning procedure to partition a node of FastXML

and then explain the differences between the GPT and FastXML.

FastXML optimizes the following nDCG-based objective function for an internal node

n of the tree:

max
wn,c,r+,r−

∑
i∈In

log σ(ciw
T
nxi)− λ|wn|1

+
∑
i∈In

1

2
(1 + ci)LnDCG@L(r

+,yi)

+
∑
i∈In

1

2
(1− ci)LnDCG@L(r

−,yi),

56

where wn ∈ RM is the linear separator and c ∈ {+1,−1}N is a cluster assignment vector

that consists of ci’s. r± ∈ Π(1, L) are label ranking vectors corresponding to clusters,

as we denote the set of all permutations of {1, 2, . . . , L} as Π(1, L). Note that the above

objective function is slightly changed from that described in the original paper [83] for

easy comparison to our Equation 4.3. However, they are basically identical. The function

LnDCG@L(r,y) in the third and fourth terms is defined on the basis of nDCG as follows:

LnDCG@L(r,y) =
LDCG@L(r,y)∑min(L,1Ty)
l=1

1
log2(1+l)

,

LDCG@L(r,y) =

L∑
l=1

yrl
log2(1 + l)

.

Since the above function includes non-continuous nDCG-based terms, direct optimiza-

tion is difficult. Thus, the optimization process is divided into two phases. First, FastXML

optimizes c and r± by keeping wn = 0. Then, it optimizes wn with fixed c.

The first step, which optimizes c and r±, is regarded as a variant of k-means clustering

algorithm with the nDCG-based metric and k = 2. At the beginning, each cluster assign-

ment ci is randomly initialized by +1 or −1. Then the optimization procedure updates

r± using label vectors yi’s, where ci = ±1 for increasing the objective value. This is

analogous to a k-means clustering algorithm setting the mean vector using data points

currently allocated in each cluster. Similarly, whereas r± is fixed, ci for each data point

is reassigned. These update and reassignment steps are repeated alternately until cluster

assignments no longer change.

The second step, which learns wn, is identical to solving the ordinal L1-regularized lo-

gistic regression problem [119] because the first and second terms in the objective function

are only considered in the optimization.

As described above, whereas FastXML considers the difference between each label

vector yi and the “mean” label ranking vector r± corresponding to the cluster to which

it belongs, GPT simply focuses on whether a data point and its nearest neighbor are

allocated to the same side of the hyperplane or not. This difference should improve the

prediction accuracy of the k-nearest neighbor classifier in a leaf node.

Furthermore, FastXML first determines cluster assignments c using a variant of the

k-means clustering algorithm on the label space and then learns a linear separator wn

by solving a classification problem on the feature space using the cluster assignments

as class labels. On the other hand, GPT optimizes wn and updates c on the feature

space sequentially and simultaneously. Therefore, GPT is expected to obtain a better

optimization result. Of course, FastXML can update wn multiple times by repeating the

above two steps alternately. However, Prabhu and Varma reported that multiple updates

of wn do not improve the prediction accuracy much [83].

57

Table 4.2: Statistics of datasets used in experiments

Dataset
#Train #Test #Features #Labels Avg. labels
N Ntest M L per point

AmazonCat-13K 1,186,239 306,782 203,882 13,330 448.57
Wiki10-31K 14,146 6,616 101,938 30,938 18.64

Delicious-200K 196,606 100,095 782,585 205,443 75.54
WikiLSHTC-325K 1,778,351 587,084 1,617,899 325,056 3.19

Amazon-670K 490,449 153,025 135,909 670,091 5.45

4.5 Experiments

In this section, we evaluated our methods on five large scale multi-label datasets: AmazonCat-

13K [71], Wiki10-31K [120], DeliciousLarge-200K [107], WikiLSHTC-325K [81], and Amazon-

670K [71]. These datasets were provided by the Extreme Classification Repository [13]

and had already been pre-processed and separated into training and test sets. We did not

use any additional meta data. The statistics for the datasets are summarized in Table 4.2.

We compared AnnexML and GPT with several state-of-the-art methods: SLEEC [12],

FastXML [83], PfastreXML [53], PLT [55], and PD-Sparse [114]. To represent the pre-

diction difficulty of each dataset, we also show the performance of a naive baseline that

makes predictions by using the k-most common labels in the training data.

We evaluated the performance of the methods with precision at k (k ∈ {1, 3, 5}), which
is a widely used metric for extreme multi-label classification and ranking tasks:

P@k :=
1

Ntest

Ntest∑
i=1

yiπ(l)

k
.

Here, π(k) = j means that the j-th label is ranked in the k-th position by the predicted

score. We also evaluated the performances with normalized Discounted Cumulative Gain

(nDCG) at k. However, since the results showed the same tendency, we only report those

with P@k2. At least, by definition, the value of nDCG@1 is the same as that of P@1.

We implemented AnnexML and GPT in C++. In all experiments, we used 10 de-

fault hyper-parameters for training AnnexML: the number of partitions in a learner:

K = ⌊N/6000⌋, the embedding dimension: d = 50, the number of learners: 15, the

number of (approximate) nearest neighbors and randomly sampled points used in learn-

ing both partitionings and embeddings: n = 10, the number of epochs for learning both

partitionings and embeddings: 10, the initial learning rate of AdaGrad: η0 = 0.1, the

L1-regularization parameter in Equation 4.2: λ = 4, the scaling parameter for cosine:

γ = 10, the adjustment parameter for finding approximate nearest neighbors: α = 5000,

and the number of edges in the KNNG for prediction: 50. We also used common hyper-

2We show the results of nDCG@k for AnnexML and GPT in the Appendix section.

58

parameters to train GPT; the threshold parameter for finding approximate nearest neigh-

bors: nth = 50, the number of approximate nearest neighbors and randomly sampled

points used in learning: |Ñ (i)
n | = |S−

n | = 10, the number of epochs for optimization wn:

10, the initial learning rate: η0 = 0.1, the L1 regularization parameter: λ = 4.0, and the

maximum number of data points allowed in a leaf node: MaxInLeaf = 10. These default

values of hyper-parameters were determined in preliminary experiments with small-scale

datasets. Thus, we avoided hyper-parameter tuning for the large-scale datasets and sig-

nificantly reduced the total training time. In fact, the AnnexML and GPT models learned

with these common values achieved sufficiently good results on various datasets as shown

in the next subsection.

For the other baseline methods, if P@k on each dataset is reported in the original

papers, we used those values for fair comparison. Otherwise, we used the C++ and MAT-

LAB implementations for SLEEC, FastXML, PfastreXML and PD-Sparse, provided by

the authors [13]. In this case, the suggested hyper-parameters were used. Since we use

ordinary (not propensity scored) precision at k as the evaluation metric, the propensity

scores of PfastreXML were set to the same value for all labels. Thus, trees that Pfas-

treXML learns are basically the same as those that FastXML learns in this setting. The

difference between these methods is the use additional classifiers for improving tail label

predictions. For PLT, we referred only to the values reported in the original paper because

hyper-parameters were tuned by an off-the-shelf optimizer in the experiments.

4.5.1 Results

The experimental results are summarized in Table 4.3. The bold elements indicate the

best performance of the methods. The underlined scores are the best results of the

tree-based methods. The scores of PD-Sparse on Delicious-200K and WikiLSTHC-325K

datasets are unavailable because of excessive memory usage and training time in our exper-

imental setting. Thus, we referred to the scores on these datasets reported in the Extreme

Classification Repository [13].

AnnexML performed the best in 8 of 15 cases. There were especially large improve-

ments for datasets that have larger label spaces. For example, AnnexML improved over

SLEEC by about 8% and 6% in absolute terms of P@1 and P@5 on the WikiLSHTC-

325K dataset. On the Amazon-670K dataset, AnnexML was also superior to SLEEC by

approximately 7% and 4% in absolute terms of P@1 and P@5. These substantial im-

provements indicate AnnexML is not just a minor updated version of SLEEC. Although

there is still much room to improve the prediction accuracy of AnnexML by tuning the

hyper-parameters for each dataset, like SLEEC does, we leave this as future work.

The GPT achieved the best performances of the four tree-based methods for four of five

datasets. For example, on the WikiLSHTC-325K dataset, it was superior to PfastreXML,

the second best, by approximately 5% in absolute terms of P@1. On the Amazon-670K

59

dataset, GPT was also superior to PfastreXML by about 3% in absolute terms of P@1.

From these results, we see that the proposed graph cut approach successfully improves

prediction accuracy.

Table 4.4 compares the results of the three improvements for AnnexML, proposed

in Section 4.3. Method E+P+A equals AnnexML in Table 4.3. When we did not use the

proposed partitioning or approximate nearest neighbor search, we used k-means clustering

and a brute-force cosine calculation, like SLEEC does. Method E outperformed SLEEC on

almost all datasets. Thus, our learning procedure that uses the learning-to-rank approach

successfully improved the embedding quality. In comparison with E and E+P, the proposed

partitioning method significantly improved P@k on the datasets that have a larger label

space. In comparison with E and E+A, the approximate nearest neighbor search technique

for faster prediction had slightly poorer accuracy on all datasets except Delicious-200K.

These results are consistent with our reason for proposing method A, which is not to

make prediction more accurate, but faster. One possible explanation for the unexpected

improvement on Delicious-200K was that the number of nearest neighbors retrieved for

prediction was small (set to be 10 for all datasets). The number suggested by SLEEC’s

authors is 70 for this dataset. Hence, the approximate nearest neighbor search retrieved

more diverse samples, and these samples could fortunately stabilize the prediction result.

Next, we present the speed-up effect of the approximate nearest neighbor search.

Figure 4.1 plots the prediction time and performances of AnnexML, AnnexML-BF,

SLEEC, GPT, FastXML, and PfastreXML when the number of learners changes. A higher

precision at the same prediction time (upper left line) indicates better results. Due to space

limitations, we only show the P@1 and P@5 results. This experiment was conducted by

using a single CPU thread on a machine with two Xeon E5-2680v3 processors and 128 GB

of RAM that ran the Linux operating system. AnnexML-BF is the same method as E+P in

Table 4.4, which uses a brute-force cosine calculation for prediction, instead of approximate

nearest neighbor search. Note that AnnexML is the same as E+P+A. We chose SLEEC,

FastXML and PfastreXML for comparison since they are also ensemble methods, and we

can easily control the trade-off between prediction time and accuracy by just changing the

number of learners. To conduct a fair comparison, we used our own C++ implementation

for SLEEC’s prediction, instead of the provided MATLAB codes. This is almost the

same as the implementation of AnnexML-BF. For FastXML and PfastreXML, we used the

provided C++ implementations with careful coding optimizations for improving efficiency.

Comparing AnnexML and AnnexML-BF, we see that the approximate nearest neighbor

search technique successfully sped up prediction time with a slight drop in accuracy. On

the WikiLSHTC-325K dataset, AnnexML made predictions more than four times faster

than AnnexML-BF when using the same number of learners. In other words, the prediction

time with an ensemble of four AnnexML learners was almost the same as that of a single

AnnexML-BF model. In this case, AnnexML made predictions in approximately 0.34

milliseconds per test point and achieved an about 5% higher P@1 than that of AnnexML-

60

BF in absolute terms (0.6121 vs. 0.5657).

Compared with FastXML and PfastreXML, AnnexML also achieved a higher P@k at

a 1 millisecond budget per test point in almost all cases. AnnexML achieved the same

prediction accuracy as SLEEC with an ensemble of at most four learners, which also made

predictions within 1 millisecond per test point. In particular, on the WikiLSHTC-325K

dataset, a single model of AnnexML achieved almost the same P@1 as an ensemble of 15

SLEEC learners. This AnnexML’s prediction time was about 58 times shorter than that

of SLEEC (0.08 vs. 4.66 milliseconds).

The results show that the GPT achieves higher prediction accuracy than FastXML

and PfastreXML in the same prediction-time budget in almost all cases. For example,

on the WikiLSHTC-325K dataset, the ensemble of 16 GPT trees made predictions in

approximately 0.25 milliseconds per test point. In other words, GPT can predict about

4000 examples per second using a single CPU thread. In this case, it achieves higher P@1

than the 128 PfastreXML trees (0.6159 vs. 0.5885). The difference in prediction time

between FastXML and PfastreXML was caused by additional classifiers.

Table 4.5 shows the tree balance learned by the GPT and FastXML. As mentioned

earlier, because FastXML and PfastreXML basically learn the same trees in our setting,

we omitted the results for PfastreXML. The experimental results show that both GPT

and FastXML learn well-balanced trees. On the WikiLSTHC-325K dataset, which has

the largest number of training points among the datasets used in our experiments, about

18 linear classifiers are evaluated on average for a prediction of a test point using a single

GPT tree. Even if an ensemble of 50 trees is used for the prediction, the number of applied

classifiers is much smaller than the number of labels. Therefore, the computational cost

of prediction using these classifiers is much lower. Next, we present the actual prediction

time of these methods.

The sizes of learned models are presented in Table 4.6. This experiment was also

conducted using the C++ implementations for a fair comparison. The GPT obtained

small models on almost all datasets expect WikiLSTC-325K, for which the GPT model

is about twice the size of the FastXML and PfastreXML models. However, P@1 of 16

GPT trees is higher than that of 32 PfastreXML trees on the WikiLSTC-325K dataset

(see Figure 4.1). Therefore, under the condition of the same model size, GPT can predict

more accurately.

By using 24 CPU threads on the aforementioned machine, the ensemble of 15 AnnexML

models on WikiLSTHC-325K datasets were trained within 4 hours. Under the same

conditions, the 50 trees of the GPT could be learned in approximately 6 hours on the

same dataset. Thus, the AnnexML and GPT can handle the problems with hundreds of

thousands of labels on a single commodity machine within a reasonable training time.

61

4.6 Related work

Extreme multi-label learning typically follows two major types of approaches: tree based [83,

53, 55] and embedding based [118, 12, 75, 111].

Tree-based methods are common for extreme multi-label classification because of their

fast prediction. Multi-label random forests (MLRF) [4] extends random forest to efficiently

handle extreme multi-label problems. The node splitting criterion is calculated using posi-

tive labels alone. The authors reported that distributed learning on a cluster of a thousand

compute nodes make it possible to train on 90 million training points in less than a day.

Label partitioning for sublinear ranking (LPSR) [106] improves the prediction speed of an

already learned classifier in a post-hoc manner. This method converts a predictor that has

linear time in the number of labels to a sublinear one via label partitioning. FastXML [83]

can be trained on problems with more than a million labels on a standard desktop in a few

hours. PfastreXML [53] is an improved version of FastXML that replaces the nDCG loss

with its propensity scored variant and uses additional classifiers designed for tail labels.

Jasinska et al. [55] developed PLTs, which are tree-based classifiers that maximize the

F-measure. GBDT-Sparse [94] is the gradient boosted decision trees (GBDT) when the

output space is high dimensional and sparse. Thus, GBDT-Sparse efficiently deals with

extreme multi-label classification tasks.

Most embedding-based approaches reduce the effective number of labels on the ba-

sis of the low-rank label matrix assumption. Low rank empirical risk minimization for

multi-Label learning (LEML) [118] learns a low-rank projection matrix, which maps fea-

tures to labels, by using a generic empirical risk minimization framework. Mineiro and

Karampatziakis developed another embedding-based method, named “Rembrandt” [75],

by using techniques of randomized linear algebra. Robust extreme multi-label learning

(REML) [111] decomposes the label matrix into a low-rank structure and sparse com-

ponent, which represent label correlations and outliers, respectively. Si et al. proposed

Goal-directed Inductive Matrix Completion (GIMC) [93] and applied it to multi-label

classification. In this study, since SLEEC was reported to perform better than or compa-

rably to the above embedding-based methods on larger datasets [12, 75, 111, 93], we only

compared our method with SLEEC.

An extreme multi-label classifier also needs to be able to keep the model size small.

Therefore, some authors have proposed sparsity-induced methods. PD-Sparse [114] uses

primal and dual-sparse formulation, which consists of dual-sparse loss and a primal-sparse

regularizer. By using these two types of sparsity and hashing techniques, PD-Sparse can

be efficiently learned and it achieves fast prediction. PPDsparse [113] extends PD-Sparse

for efficient parallelization in large-scale distributed settings.

Distributed learning is another approach to extreme multi-label classification. Babbar

and Schölkopf proposed distributed sparse machines for extreme multi-label classification

(DiSMEC) [8], which is a large-scale distributed framework for learning one-versus-rest

62

linear classifiers. By using a distributed framework, DiSMEC learns a L2-regularized L2-

loss SVM for each label in parallel. To reduce the model size and make prediction faster,

they pruned ambiguous weights in the region near zero after training. They reported that

the model for an entire WikiLSHTC-325K dataset can be trained in approximately 6 hours

on 400 cores and 3 hours on 1,000 cores. In this study, we did not compare our method

with DiSMEC because we focus on non-distributed approaches.

Liu et al. [66] proposed a convolutional neural network based model for extreme multi-

label classification. The training and prediction procedure is efficiently done by using a

graphics processing unit (GPU).

In an approximate similarity search task for neural word embeddings, Sugawara et al.

[97] compared hash-based, tree-based, and graph-based algorithms. They reported that

a graph-based indexing method (neighborhood graph and tree; NGT [52]) outperformed

other methods. NGT is an indexing method that combines a variant of a vantage point

tree [115] with an approximate KNNG. In our experiments, the KNNG combined with

the ball tree also successfully accelerated the prediction speed without a noticeable drop

in accuracy.

Tang et al. developed LargeVis [102] for visualizing large-scale and high-dimensional

data (100 to 784 dimensions in their experiments) in 2- or 3-dimensional space. First,

LargeVis constructs an approximate KNNG. Then, the model allocates the data points

in low-dimensional space by preserving the structures of the graph. Thus, LargeVis is

somewhat similar to AnnexML. However, AnnexML tries to find approximate k-nearest

neighbors in the label space Y for classification, whereas LargeVis attempts to find them

on feature space X for (unsupervised) visualization. Furthermore, AnnexML learns the

projection matrix Vc that maps feature vectors x to embeddings z to predict unseen test

points, although LargeVis directly learns the z of data points.

4.7 Conclusion

In this study, for extreme multi-label classification tasks, we presented AnnexML and

GPT. Experimental results on several large-scale datasets showed that our proposed meth-

ods can significantly improve prediction accuracy, especially on larger datasets.

For future work, we plan to incorporate some of the ideas of approximate nearest

neighbor search methods into an extreme multi-label classifier based on more complex

nonlinear models, such as kernel machines and deep neural networks. In addition, we will

investigate some model compression techniques. These techniques will provide compact

models while keeping the prediction fast and accurate.

We released our implementation of AnnexML on the github.com3. Our code should be

3https://github.com/yahoojapan/AnnexML

63

github.com
https://github.com/yahoojapan/AnnexML

useful for both researchers who want to compare their results with ours and practitioners

who try to solve real-world Web-scale classification problems.

64

Table 4.3: Experimental results

Dataset
Embedding-based Others

AnnexML SLEEC PD-Sparse Most common

P@1 0.9355 0.8919 0.8931 0.2988
AmazonCat-13K P@3 0.7838 0.7517 0.7403 0.1878

P@5 0.6332 0.6109 0.6011 0.1486
P@1 0.8650 0.8554 0.7771 0.8079

Wiki10-31K P@3 0.7428 0.7359 0.6573 0.5050
P@5 0.6419 0.6310 0.5539 0.3675
P@1 0.4666 0.4703 0.3437 0.3873

Delicious-200K P@3 0.4079 0.4167 0.2948 0.3675
P@5 0.3764 0.3888 0.3621 0.3552
P@1 0.6336 0.5557 0.6126 0.1588

WikiLSHTC-325K P@3 0.4066 0.3306 0.3948 0.0603
P@5 0.2979 0.2407 0.2879 0.0380
P@1 0.4208 0.3505 0.3370 0.0028

Amazon-670K P@3 0.3665 0.3125 0.2962 0.0027
P@5 0.3276 0.2856 0.2684 0.0023

Dataset
Tree-based

GPT FastXML PfastreXML PLT

P@1 0.9084 0.9310 0.8994 0.9147
AmazonCat-13K P@3 0.7676 0.7818 0.7724 0.7584

P@5 0.6255 0.6338 0.6353 0.6102
P@1 0.8476 0.8295 0.8263 0.8434

Wiki10-31K P@3 0.7322 0.6756 0.6874 0.7234
P@5 0.6320 0.5770 0.6006 0.6272
P@1 0.4746 0.4320 0.3762 0.4537

Delicious-200K P@3 0.4165 0.3868 0.3562 0.3894
P@5 0.3871 0.3621 0.3403 0.3588
P@1 0.6336 0.4975 0.5810 0.4567

WikiLSHTC-325K P@3 0.3997 0.3310 0.3761 0.2913
P@5 0.2906 0.2445 0.2769 0.2195
P@1 0.4236 0.3697 0.3919 0.3665

Amazon-670K P@3 0.3725 0.3332 0.3584 0.3212
P@5 0.3384 0.3053 0.3321 0.2885

65

Table 4.4: Comparing results of our three improvements for AnnexML

AnnexML-BF AnnexML
E E+P E+A E+P+A

Learning Embeddings 3 3 3 3

Learning to Partition data 7 3 7 3

ANN search for prediction 7 7 3 3

P@1 0.9381 0.9353 0.9374 0.9355
AmazonCat-13K P@3 0.7835 0.7853 0.7809 0.7838

P@5 0.6320 0.6353 0.6289 0.6332
P@1 0.8703 0.8655 0.8690 0.8650

Wiki10-31K P@3 0.7448 0.7431 0.7446 0.7428
P@5 0.6454 0.6435 0.6447 0.6419
P@1 0.4670 0.4660 0.4669 0.4666

Delicious-200K P@3 0.4018 0.4038 0.4077 0.4079
P@5 0.3705 0.3717 0.3770 0.3764
P@1 0.6108 0.6378 0.6024 0.6336

WikiLSHTC-325K P@3 0.3907 0.4102 0.3836 0.4066
P@5 0.2875 0.3008 0.2819 0.2979
P@1 0.3670 0.4248 0.3631 0.4208

Amazon-670K P@3 0.3190 0.3698 0.3161 0.3665
P@5 0.2862 0.3309 0.2834 0.3276

Table 4.5: Average length of the path traversed by a point in the trees that each tree-based

method learned. IdealDepth is the value when perfectly balanced trees are learned, which

is defined as log2(N/MaxInLeaf). The values in parentheses are the ratios to IdealDepth

(values closer to 1 are better).

Dataset GPT FastXML IdealDepth

AmazonCat-13K 17.38 (1.03) 17.84 (1.06) 16.86
Wiki10-31K 11.25 (1.07) 11.21 (1.07) 10.47

Delicious-200K 15.57 (1.09) 15.06 (1.06) 14.26
WikiLSHTC-325K 18.29 (1.05) 18.34 (1.05) 17.44

Amazon-670K 16.03 (1.03) 16.29 (1.05) 15.58

Table 4.6: Model sizes of tree-based methods. The number of trees for each method was

set to 50.
Dataset GPT FastXML PfastreXML

AmazonCat-13K 11,310 MB 17,089 MB 17,294 MB
Wiki10-31K 205 MB 522 MB 1102 MB

Delicious-200K 5,930 MB 6,766 MB 15,046 MB
WikiLSHTC-325K 22,414 MB 11,018 MB 11,585 MB

Amazon-670K 6,102 MB 9,019 MB 9,939 MB

66

10−2 10−1 100

Prediction time [msec/sample]

0.75

0.80

0.85

0.90

0.95

P
re

ci
si

on
@

1

AmazonCat-13K

AnnexML

AnnexML-BF

SLEEC

GPT

FastXML

PfastreXML

10−2 10−1 100

Prediction time [msec/sample]

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

P
re

ci
si

on
@

5

AmazonCat-13K

10−1 100

Prediction time [msec/sample]

0.65

0.70

0.75

0.80

0.85

0.90

P
re

ci
si

on
@

1

Wiki10-31K

10−1 100

Prediction time [msec/sample]

0.40

0.45

0.50

0.55

0.60

0.65

P
re

ci
si

on
@

5

Wiki10-31K

10−1 100 101

Prediction time [msec/sample]

0.32
0.34
0.36
0.38
0.40
0.42
0.44
0.46
0.48
0.50

P
re

ci
si

on
@

1

DeliciousLarge-200K

10−1 100 101

Prediction time [msec/sample]

0.28

0.30

0.32

0.34

0.36

0.38

0.40

P
re

ci
si

on
@

5

DeliciousLarge-200K

10−2 10−1 100

Prediction time [msec/sample]

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

P
re

ci
si

on
@

1

WikiLSHTC-325K

10−2 10−1 100

Prediction time [msec/sample]

0.10

0.15

0.20

0.25

0.30

0.35

P
re

ci
si

on
@

5

WikiLSHTC-325K

10−2 10−1 100

Prediction time [msec/sample]

0.15

0.20

0.25

0.30

0.35

0.40

0.45

P
re

ci
si

on
@

1

Amazon-670K

10−2 10−1 100

Prediction time [msec/sample]

0.10

0.15

0.20

0.25

0.30

0.35

P
re

ci
si

on
@

5

Amazon-670K

Figure 4.1: Precision versus prediction time when the number of learners changes. Number

of learners was {1, 2, 4, 8, 15} for AnnexML, AnnexML-BF, and SLEEC, and {1, 2, 4, 8, 16,
32, 64, 128} for GPT, FastXML, and PfastreXML. This experiment was conducted with

C++ implementations on a single CPU thread of the same machine for fair comparison.

67

Chapter 5

Representation Learning for

Users’ Web Browsing Sequences

5.1 Introduction

Large-scale Web sites that provide various Web services and mobile apps deal with a

lot of user-related prediction tasks, such as news article recommendation [78] and ad

click prediction [26, 73]. Feature engineering of user representations is very important

to achieve high prediction accuracy for the tasks but is labor-intensive and inefficient

for small-scale tasks. On the other hand, logs of user activities on the whole Web site

are sufficiently available, such as Web page visits and search queries. For such cases,

informative user representations, obtained via leveraging the history of user activities, are

useful as features for the prediction tasks. In addition, low-dimensional feature vectors

are preferable to high-dimensional sparse vectors for the tasks that have few training data.

Figure 5.1 shows an overview of this approach.

In natural language processing (NLP), distributed representations of words in a vector

space have received much attention [74]. The studies that use this approach represent

words as fixed length dense vectors, whereas the conventional approach treats individual

words as unique symbols. These vector representations, which are learned by using various

training methods, capture syntactic and semantic word relationships. In addition, some

researchers have proposed models to learn vector representations for variable-length pieces

of text such as sentences, paragraphs, and documents [62]. In a sentiment analysis task,

this approach achieves better results than the conventional word n-gram model and simple

averaging of word vectors.

Following these successful techniques, in our work-in-progress paper [100], we proposed

an approach that summarizes each sequence of user Web page visits using Paragraph

Vector [62], which is an unsupervised method that learns continuous distributed vector

representations from pieces of text. In other words, we apply the vector model to sequences

68

User 1
Time

User 2

User N

……

User representations

Sequences of user activities on the Web

News article
recommendation

Ad click
prediction

Other tasks

Prediction tasks

Summarizing

……

Input

Figure 5.1: Overview of our approach. Low-dimensional vectors, in which sequences of

user activities are summarized, are used as common features among various user-related

prediction tasks. Note that targets of prediction tasks, such as ad clicks, do not need to

be included in sequences.

of user Web page visits, considering users and visits as paragraphs (or documents) and

words, respectively. The learned low-dimensional vector representations of users are used

among the user-related prediction tasks in common. For each prediction task, an individual

classifier or regressor, such as logistic regression, is trained by using these common vectors

as features and task-specific users’ properties or actions as targets. Note that we do not

directly use Paragraph Vector to predict these targets but utilize it to create predictive

fix-sized feature vectors from variable-length sequences.

However, do we simply treat the Web page visits data the same way as we treat

natural language data? These two types of data are probably generated from different

distributions. Therefore, in this study, we first investigate the difference in the distribution

between Yahoo! JAPAN access logs and English Wikipedia data. Then, on the basis of the

difference, we propose Backward PV-DM, which is a modified version of Paragraph Vector.

We report the extensive evaluations as well as the details of the improved methods.

Our main contributions are as follows.

• By comparing our Web page visits data with English Wikipedia data, we show the

similarities and differences of frequency distributions between the two types of data.

(Section 5.2.1)

• On the basis of the analysis of our Web page visits data, we propose Backward PV-

DM. The difference between PV-DM and the proposed model is the context window.

(Section 5.4)

69

Table 5.1: Examples of user activities on the Web.

i t ai,t

1 https://www.yahoo.co.jp

2 https://weather.yahoo.co.jp/weather/

3 https://www.yahoo.co.jp

1 4 https://news.yahoo.co.jp/

5 https://news.yahoo.co.jp/hl?c=c_sci

6 https://news.yahoo.co.jp/pickup/6270977

7 Session end

1 https://m.yahoo.co.jp/

2 https://m.finance.yahoo.co.jp/

3 https://m.finance.yahoo.co.jp/stock?code=998407.O

4 https://m.finance.yahoo.co.jp/stock?code=4689.T

2 5 Session end

6 https://m.yahoo.co.jp/

7 https://auctions.yahoo.co.jp/

8 https://auctions.yahoo.co.jp/reu/project?id=1131

9 Session end

• We evaluated our approach using two real-world datasets from an ad network and

obtained better results than those of existing methods. (Section 5.5)

5.2 User Activities on the Web

We define A as a set of possible user activities that we consider. For an i-th user ui, the

sequence of activities on the Web is also defined as (ai,1, ai,2, . . . , ai,Ti) where ai,t ∈ A is

the t-th activity of user ui, and Ti is the size of this sequence.

In this work, we focus on Web page visits and represent each visit ai,t as a URL of

the Web page. These URLs are just extracted from logs of Web services. Therefore, this

method of representing the data is easy to use and scalable. Another option is to obtain

hashed URLs that users have visited in the past via data partners in a similar way to the

earlier studies [33, 82] for targeting tasks in display advertising. Thus, our approach is

simple and widely applicable. Since we represent each Web page visit as a URL, we use

“Web page visit” and “URL” interchangeably. Table 5.1 shows examples of sequences.

Our approach can be easily extended to other types of events such as search queries

and ad clicks. Therefore, we describe our approach using the generic activities ai,t in

Sections 5.3 and 5.4.

70

https://www.yahoo.co.jp
https://weather.yahoo.co.jp/weather/
https://www.yahoo.co.jp
https://news.yahoo.co.jp/
https://news.yahoo.co.jp/hl?c=c_sci
https://news.yahoo.co.jp/pickup/6270977
https://m.yahoo.co.jp/
https://m.finance.yahoo.co.jp/
https://m.finance.yahoo.co.jp/stock?code=998407.O
https://m.finance.yahoo.co.jp/stock?code=4689.T
https://m.yahoo.co.jp/
https://auctions.yahoo.co.jp/
https://auctions.yahoo.co.jp/reu/project?id=1131

5.2.1 Data Analysis on Web Page Visits

In this section, we reveal the difference between our Web page visit data and English

Wikipedia data, since we apply an NLP-based approach to our data.

We collected part of the Yahoo! JAPAN access logs of July 22, 2014 and extracted the

URLs of the Web pages that each user visited. These access logs included one of the mobile

apps for smartphones and tablet computers as well as ordinary Web services. The data

of users whose numbers of Web page visits were between 10 and 1000 were sampled. We

discarded URLs that occurred fewer than five times in the extracted data. If the interval

of time between two consecutive page visits exceeded 30 minutes, we considered that it

was the start of a new session. A session in a sequence of Web page visits corresponds

to a sentence in a paragraph or document. Consequently, there were about 3.87 million

unique URLs and one billion page visits in the data.

For English Wikipedia data, we preprocessed the latest Wikipedia dump using Matt

Mahoney’s script1 and the sentence segmenter in the natural language toolkit (NLTK) [14].

In summary, we obtained two kinds of observations by comparing the data.

• The frequencies of URLs in our Web page visit data follow a power-law distribution.

The frequencies of words in English Wikipedia data have the same property, as is

widely known [30].

• By focusing on the relative position in a session or sentence, on the other hand, the

two distributions of frequencies are significantly different.

The following part elaborates these two observations in detail.

First, the frequencies of URLs and words in the data are shown in Figure 5.2. It is

widely known that the frequencies of words in most languages follow a power-law distri-

bution [30]. A power-law distribution looks like a roughly straight line in a log-log plot.

Clearly, the plot of Web page visits shows as an approximately straight line2. The expo-

nents of the regression lines with power-law distribution are about -1.0. The plot of the

Wikipedia data seems to be a piecewise linear function. The exponents of the regression

lines are -1.1 for the early part of the data and -1.5 for all of the data. Therefore, the

frequencies in both data approximately follow a power-law distribution. However, the tail

part of Web page visit data is “fatter” than that of English Wikipedia.

Next, the average of log frequency ratio for relative positions is shown in Figure 5.3.

1http://mattmahoney.net/dc/textdata.html
2A straight line in a log-log plot is a necessary, but not sufficient, condition for the data following a

power-law distribution [30]. Data generated by a log-normal distribution also looks roughly straight on

the log-log plot.

71

http://mattmahoney.net/dc/textdata.html

100 101 102 103 104 105 106 107 108

Rank

100

101

102

103

104

105

106

107

F
re

qu
en

cy
Web page visits - unigram

f (x) ∝ x−0.9584

f (x) ∝ x−1.0797

100 101 102 103 104 105 106 107

Rank

100

101

102

103

104

105

106

107

108

F
re

qu
en

cy

English Wikipedia - unigram

f (x) ∝ x−1.5587

f (x) ∝ x−1.1231

Figure 5.2: Log-log plot for Web page visit data (left) and English Wikipedia data (right).

X-axis represents rank of activity or words in frequency table, and y-axis is number of

occurrences. Solid and dashed lines represent regression lines for all data and early part

of the data (rank less than 104), respectively.

The log frequency ratio for relative position k, that is ai,t and ai,t+k, is defined as follows:

log

(
freq(ai,t+k)

freq(ai,t)

)
,

where freq(ai,t) represents the frequency of the Web page visit ai,t (or a word) in the data.

We average the log frequency ratio of t and t+k in a session or sentence. The average values

of English Wikipedia are around zero, which indicates that word frequencies do not change

depending on the position in a sentence. By contrast, the average log frequency ratio of

Web page visit data decreases as the relative position k becomes larger. This suggests

that URLs that appear in the latter part of a session are the “tail” URLs whereas the

URLs that exist in the former part are the “head” URLs. This is caused by a trend of

users’ Web browsing behavior. As shown in the examples in Table 5.1, most users of

Yahoo! JAPAN visit the front page 3 at the beginning of the session and then follow the

hyperlinks in the Web pages to move to different sites, such as news, sports, finance, and

shopping. Similarly, on each site, users visit the Web pages in which they are interested

by following the hyperlinks or using the search engine.

According to the above analysis, to capture the users’ interests or preferences suitably,

the Web page visits of the “tail” URLs that appear in the latter part of the session are

more important.

The above analysis is based on Yahoo! JAPAN access logs. However, we believe that

there are access logs of other Web sites that have similar properties since most Web sites

have a hierarchical structure similar to Yahoo! JAPAN. Our proposed approach in this

study may work well on these sites. On the other hand, more recently developed Web

sites, such as social networking sites, show a personalized listing page that consists of

3https://www.yahoo.co.jp/ for PCs and https://m.yahoo.co.jp for mobile devices.

72

https://www.yahoo.co.jp/
https://m.yahoo.co.jp

−4 −2 0 2 4
Relative position

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

A
ve

ra
ge

of
lo

g
fr

eq
u

en
cy

ra
ti

o

Web page visits

English Wikipedia

Figure 5.3: Average of log frequency ratio for relative positions. Because of symmetric

property of log ratio (y-axis) and relative position (x-axis), these plots are symmetric with

respect to origin.

other users’ posts and news articles recommended for each user. In this case, most users

just move backward and forward between the listing page and posts. Thus, the access logs

of these Web sites are regarded as having different properties, so other approaches may

be suitable.

5.3 Existing Vector Models

In this section, we describe Paragraph Vector [62] and other vector models [74, 36] for our

problem settings. We obtain the vector representations of users and URLs via learning

these vector models with users’ URL sequences.

5.3.1 PV-DM

We first describe the PV-DM, Distributed Memory Model of Paragraph Vectors [62]. The

objective of the vector model for an i-th user ui’s sequence is to maximize the sum of log

probabilities: ∑
t

log p(ai,t | ai,t−1, . . . , ai,t−s, ui),

where s is the size of the context window. This means the conditional probability of the

activity ai,t given preceding activities ai,t−1, . . . , ai,t−s and user ui. The PV-DM defines

the probability of this multi-class problem using the softmax function as follows:

p(ai,t | ai,t−1, . . . , ai,t−s, ui) :=
exp(wT

ai,tvI)∑
a∈A exp(wT

a vI)
, (5.1)

73

ai,t�1

vI

ai,t�2 ai,t�s ui

Concatenate

Look up

vui

Classify

ai,t

……vai,t�1

ui

Look up

vui

Classify

ai,t ai,Tiai,1 …………
PV-DM PV-DBoW

……

Va Vu

Wa

Wa

VuVaVa

Figure 5.4: Overviews of PV-DM (left) and PV-DBoW (right) architectures

where wai,t is the “output” vector corresponding to ai,t, and vI is the “input” vector

corresponding to the previous activities ai,t−1, . . . , ai,t−s and user ui. We also define

the “input” activity vector corresponding to ai,t as vai,t and user “input” vector as vui .

Therefore, vI is represented as a concatenated vector:

vI = [vT
ai,t−1

, . . . , vT
ai,t−s

, vT
ui
]T.

For the case of j ≤ 0, an input activity vector vai,j is replaced with a special padding

vector vNULL. We define the size of input activity vector as vai,j ∈ Rva and the size of the

input user vector as vui ∈ Rvu , so both the sizes of the input vector and output vector are

represented as vI ,wai,j ∈ Rsva+vu .

The overview of the model architecture is shown in Figure 5.4 (left). The matrices Va,

Vu and Wa consist of the vectors vai,t , vu, and wai,t , respectively. In other words, the

vectors correspond to the row vectors in the matrices. We first randomly initialize the

matrices, learn them, and then obtain the vectors by using a procedure described later in

Section 5.4.2.

The user vector vui is used as a feature vector of various user-related prediction tasks,

such as ad click prediction. We also use the “input” activity vectors vai,j as features and

show their effectiveness in the experiment.

5.3.2 PV-DBoW

The PV-DBoW, Distributed Bag of Words version of Paragraph Vector, is another version

of Paragraph Vector [62]. The objective of the PV-DBoW for an i-th user ui’s sequence

is to maximize the sum of log probabilities:∑
t

log p(ai,t | ui).

74

The probability of this multi-class problem is also defined using the softmax function

as follows:

p(ai,t | ui) :=
exp(wT

ai,tvui)∑
a∈A exp(wT

a vui)
. (5.2)

For PV-DBoW, the input user vector vui ∈ Rvu and output word vector wai,j ∈ Rvu are

the same size. The overview of the model architecture is also presented in Figure 5.4

(right).

PV-DBoW can be viewed as a simplified version of PV-DM where the size of the

context window s is zero.

5.3.3 CBoW and Skip-gram

For comparison with the above Paragraph Vectors, we also describe word vector models,

CBoW and Skip-gram model [74].

Similar to Paragraph Vectors, the objective of CBoW (continuous bag of words model)

and Skip-gram is also to maximize the sum of log probabilities, which is defined using the

softmax function. However, these two vector models are proposed for obtaining word

representation. Therefore, in our problem settings, these models just provide the repre-

sentations for activities, not for users directly.

The objective function of the CBoW is defined as follows:∑
t

log p(ai,t | ai,t−s, . . . , ai,t−1, ai,t+1, . . . , ai,t+s).

p(ai,t | ai,t−s, . . . , ai,t−1, ai,t+1, . . . , ai,t+s) :=
exp(wT

ai,tvI)∑
a∈A

exp(wT
a vI)

,

where vI is the averaged vector of the context vectors:

vI =
1

2s

∑
−s≤k≤s,k ̸=0

vai,t+k
.

On the other hand, the objective function of the Skip-gram model is as follow:∑
t

∑
−s≤k≤s,k ̸=0

log p(ai,t+k | ai,t),

p(ai,t+k | ai,t) :=
exp(wT

ai,t+k
vai,t)∑

a∈A exp(wT
a vai,t)

. (5.3)

Figure 5.5 shows the overviews of these model architectures.

The Directed Skip-gram model proposed by Djuric et al. [36] is a modified model that

considers the future activities given by the past activity:∑
t

∑
0<k≤s

log p(ai,t+k | ai,t).

75

ai,t�1

vI

ai,t�s

Average

Look up

Classify

ai,t

……

ai,t+1

……

ai,t+s

vai,t�s vai,t+s

Look up

vui

Classify

ai,t

………… ai,t�1 ai,t+1 ai,t+sai,t�s

CBoW Skip-gram

Va

Wa

Va Va Va

Wa

Va

Figure 5.5: Overview of CBoW (left) and Skip-gram (right) architectures

5.4 Proposed Method

In this section, we propose Backward PV-DM. Then, we explain the learning method for

these vector models.

5.4.1 Backward PV-DM

On the basis of the analysis of our Web page visit data in Section 5.2.1, the Web page visits

of “tail” URLs, which appear in the latter part of the session, are more important to cap-

ture the users’ interests or preferences suitably. Thus, we propose a modified model called

Backward PV-DM. The difference between PV-DM and this model is the context window.

The objective of the Backward PV-DM is to maximize the sum of log probabilities:∑
t

log p(ai,t | ai,t+1, . . . , ai,t+s, ui).

For predicting “output” activity ai,t, Backward PV-DM uses the following activities ai,t+1, . . . , ai,t+s

as “input” whereas PV-DM uses the previous activities ai,t−1, . . . , ai,t−s. The conditional

probability is defined as follows:

p(ai,t | ai,t+1, . . . , ai,t+s, ui) :=
exp(wT

ai,tvI)∑
a∈A exp(wT

a vI)
, (5.4)

vI = [vT
ai,t+1

, . . . , vT
ai,t+s

, vT
ui
]T.

The above modification of the context window encourages the storage of the informa-

tion of URLs that appear in the latter part of a session in the user vector. Equation 5.4 is

considered as a prediction for a URL of current time step ai,t given user ui and following

URLs ai,t+1, . . . , ai,t+s. For the former part of a session, the prediction is relatively easier

because future URLs can be used. For example, in Table 5.1, a prediction of a2,2 given a2,3

is not difficult. Both URLs have the same domain (m.finance.yahoo.co.jp), and a2,3 is

76

m.finance.yahoo.co.jp

t
Time

t+1 t+2t-1t-2

Sliding

PV-DM

t
Time

t+1 t+2t-1t-2

Sliding

Reverse PV-DM

p(ai,t | ai,t�1, ai,t�2, ui)

p(ai,t | ai,t+1, ai,t+2, ui)

t
Time

t+1 t+2t-1t-2

Backward PV-DM

p(ai,t | ai,t+1, ai,t+2, ui)

Sliding

Figure 5.6: Illustration of PV-DM, Reverse PV-DM, and Backward PV-DM where size of

context window s is two. Differences between these models are conditional probability to

be maximized and sliding direction of context window.

more specific than a2,2. Thus, user vector vu2 does not need to memorize the information

of a2,2. The user vector in the model acts as a memory that remembers what is missing

from the current context. On the other hand, for the latter part of a session, the predic-

tion is more difficult. For example, a prediction of a1,6 given a1,7 is not easy because a1,7

(Session end) has less information to predict a1,6. Therefore, user vector vu2 needs to

incorporate the information of a1,6 for the prediction. In this way, the modified objective

function encourages the user vector to store the information of URLs that appear in the

latter part of a session. On the other hand, plain PV-DM, which is based on Equation 5.1,

is likely to memorize the information of URLs in the former part of a session.

We also present Reverse PV-DM whose input sequences are just reversed from future

to past. Therefore, the conditional probabilities of Reverse PV-DM and Backward PV-

DM are the same, but the sliding directions of the context window are different. The

differences between PV-DM, Reverse PV-DM, and Backward PV-DM are summarized in

Figure 5.6.

The sliding direction of the context window does not change the whole objective to

be maximized. However, this objective is not concave because of the bilinear form, and

we search for a better local maximum of the objective using a stochastic gradient descent

(SGD) as described in Section 5.4.2. In our implementation, the sliding direction is the

same as the input order of the SGD procedure. Since the latter input is more memorable

77

than the former input, the sliding direction and input order affect the quality of the user

vector. In other words, the informative Web page visits that occur in the latter part of a

session should be inputted last. The experimental results present the effect.

For comparison with Backward PV-DM, we use Backward Skip-gram in the experi-

ment, which is a reversed version of Directed Skip-gram:

∑
t

∑
−s≤k<0

log p(ai,t+k | ai,t) =
Ti∑
t=1

∑
0<k≤s

log p(ai,t−k | ai,t).

5.4.2 Learning vector models

Equations (5.1) – (5.4) and their first derivative are impractical to compute because the

number of unique activities |A| is typically large. Le and Mikolov [62] originally used

hierarchical softmax with a Huffman binary tree on the basis of word frequencies for fast

training. Here, instead of hierarchical softmax, we use a negative sampling approach [74].

Hence an alternate objective to log p(ai,t | ai,t−1, . . . , ai,t−s, ui) with Eq. (5.2) is defined

as:

log σ(wT
ai,tvI) + k · Ean∼pn(a)

[
log σ(−wT

anvI)
]
,

where σ(z) = 1/(1+exp(−z)) is a sigmoid function, k is the number of randomly sampled

negative instances, and pn(a) is noise distribution generating negative instances. We

use the “unigram” distribution U(a) raised to the 3/4th power as pn(a) in the same

way as Mikolov et al. [74] did. We train the model using asynchronous SGD [87] with

AdaGrad [39]. In the inference step for new users, the user vectors vu are learned while

input and output activity vectors va and wa are fixed.

5.5 Experiments

In this section, we evaluated our approach using two real-world datasets from the Web

services of Yahoo! JAPAN.

5.5.1 Datasets

We evaluated the proposed method using two supervised learning datasets: AdClicker and

SiteVisitor. AdClicker consists of the users who clicked contextual ads that are included

in the five selected ad campaigns. Similarly, SiteVisitor consists of the users who visited

Web sites of the five selected advertisers.

In real application settings, sequences of user activities are typically summarized on

a daily basis. Thus, we created these two datasets in view of predicting users’ particular

actions on a day on the basis of the history of Web pages visited the previous day. The

78

Table 5.2: Statistics for two datasets. #Features is the number of unique URLs that

occurred five or more times in each dataset.
Dataset #Train #Validation #Test #Features

AdClicker 51,576 10,000 10,000 66,957

SiteVisitor 1,862,693 20,000 20,000 1,219,850

training and validation sets were generated from logs of July 22 and 23, 2014. Web page

visits on the former day are used as features, and the target activity in the latter day is

treated as labels. Similarly, a test set was generated from logs of July 23 and 24, 2014,

as features and labels, respectively. Since these features were extracted from Web service

logs of Yahoo! JAPAN, they are only a small fraction of the entire user activities on the

Web. These features do not include visits to advertisers’ sites, which are the labels of

SiteVisitor, as well as ad clicks.

The contextual ads displayed in AdClicker are determined by the Web page content as

well as user information. Therefore, learning each Web page representation is also helpful

for this task. On the other hand, SiteVisitor is the dataset based on more active user

interests.

The statistics for datasets are summarized in Table 5.2.

5.5.2 Evaluation settings

AdClicker and SiteVisitor are multi-label datasets because a user can click more than one

ad or visit various advertisers’ sites. In the experiment, we transformed the multi-label

problem into a set of binary classification problems. We represent the binary classification

tasks for AdClicker as Ac1 to Ac5 and for SiteV isitor as Sv1 to Sv5.

For each binary classification task, we trained logistic regression classifiers using fea-

tures extracted by each method. The evaluation measure is area under receiver operating

characteristic (ROC) Curve (AUC).

5.5.3 Proposed methods and baselines

We compared the methods using Paragraph Vector with some baselines. Bin and Freq are

simple baselines that use raw URLs as features. Freq takes into account the frequencies

of the user’s site visits, whereas Bin considers only whether a user visits the Web page

or not (binary features). The feature vectors of these two methods are high dimensional

sparse vectors.

We refer to CBoW, Skip-gram, Directed Skip-gram, and Backward Skip-gram as word

vector models. We also refer to PV-DM, Reverse PV-DM, Backward PV-DM, and PV-

DBoW as Paragraph Vectors. By using the word vectors models, a user is represented as

79

Table 5.3: Method summary

Method Dimension Density #Models

Bin
High Sparse –

Freq

CBoW

400

Dense
1

Skip-gram

Directed Skip-gram

Backward Skip-gram

PV-DM

Reverse PV-DM

Backward PV-DM

PV-DBoW

PV-DM(both)

800Backward PV-DM(both)

PV-DM+Skip-gram 2

the simple averaging of input activity vectors va in the sequence, which is similar to the

approach of Djuric et al. [36]. We use the user vectors vu in Paragraph Vectors as user

representations. These methods using the vector models are represented in italics. For

example, the proposed method using the PV-DM model is represented as PV-DM.

For PV-DM and Backward PV-DM, we also use the averaging of input activity vectors

va in the same way as for the word vector models. We concatenated the user vectors

and the averaged vector for the input of prediction tasks. These methods are called PV-

DM(both) and Backward PV-DM(both). In addition, we evaluated a method that uses

the concatenated vectors learned by the PV-DM and Skip-gram models. This method is

called PV-DM+Skip-gram.

The settings of learning the vector models are as follows: the size of input vectors

va = vu = 400, the size of context window s = 5, the number of randomly sampled

negative instances k = 5, and the number of epochs (full pass through the data) is five.

For Paragraph Vectors, we create the user vectors vu via an inference step, considering

all the users as new users. Because of the stochastic behavior of asynchronous SGD and

random initialization, we report the mean value of five runnings for the methods using

vector models.

The methods we described above are summarized in Table 5.3. Note that each vector

model is learned by only using sequences of users’ activities extracted from logs of July

22, 2014. Therefore, any label information of the prediction tasks is not included in these

models.

80

5.5.4 Results

The experimental results are summarized in Table 5.4. The bold elements indicate the

best performance of the methods. The underlined scores are the best results of the word

vector models and Paragraph Vectors.

The proposed Backward PV-DM achieved statistically significant improvements over

PV-DM on almost all datasets. In addition, the results of Backward PV-DM are better

than those of Reverse PV-DM. The difference between these models is just the sliding

direction of the context window, in other words, the input order of the SGD procedure.

However, since the Web page visits that appear in the latter part of a session have more

information on the user’s interests, the direction and input order are important to improve

the quality of the user vectors, which can act as a memory of the interests. On the other

hand, the results of Backward Skip-gram are almost the same as or slightly worse than

those of Skip-gram and Directed Skip-gram.

Backward PV-DM and PV-DM achieved better results than Skip-gram in SiteVisitor

whereas the opposite trend is shown in AdClicker because of the difference between the

two datasets as described in Section 5.5.1. For AdClicker datasets, displayed ads are

determined by using Web page information as well as user information. In addition, users

passively see the ads and click them only if they are interested in them. Thus, learning Web

page representations vai,t is also helpful for these tasks. On the other hand, Paragraph

Vectors consistently performed superiorly on the SiteVisitor dataset. This dataset is

just based on users’ active interests since users willingly visit the advertisers’ Web sites.

Therefore, Paragraph Vectors achieved better results. Note that the proposed Backward

PV-DM achieved statistically significant improvements over PV-DM on the AdClicker

dataset as well. Thus, our proposed improvement for PV-DM, which was inspired by data

analyses, worked effectively.

Backward PV-DM(both) achieved the best results in seven of ten tasks. Since this

method utilizes both user and URL vectors obtained by Backward PV-DM training, it

achieved statistically significant improvements over Skip-gram, even on three of five Ad-

Clicker tasks. As described above, Skip-gram achieved better results than plain Backward

PV-DM for this dataset. Backward PV-DM(both) is based on the vectors obtained from

Backward PV-DM whereas PV-DM+Skip-gram needs to train both PV-DM and Skip-gram

models. Thus, Backward PV-DM(both) is easy to train.

To summarize the above results, Backward PV-DM outperformed plain PV-DM, and

Backward PV-DM(both) which utilizes both user and URL vectors achieved the best results

in most tasks.

81

5.5.5 Effect of the data size

As described in Section 5.1, we focus on achieving better prediction accuracy for the

small-scale tasks, leveraging the history of user activities. The experimental results when

changing train data size of AdClicker and SiteVisitor are shown in Figure 5.7. Compared

with Bin and Freq, whose features are high-dimensional sparse vectors, the vector models

achieve the better results when the size of training data are small. Since the vector models

learn the low-dimensional dense vector, they have an advantage in this case.

We also evaluate whether the prediction accuracy is improved whenWeb page visit data

are bigger. Figure 5.8 shows the experimental results when changing the number of Web

page visits in learning the vector models. The results of some tasks show improvements.

In other words, the prediction accuracies for user-related tasks can be improved by simply

increasing the data when learning the vector models. The degree of the improvements

is relatively small. However, since the learned user representations are used among the

user-related prediction tasks in common, it is not a small effect for all small-scale tasks.

5.6 Related Work

In the online advertising field, some previous works focused on finding the user segments

that might be interested in a given advertiser’s products, inferred from web-browsing be-

havior information. These approaches are known as behavioral targeting [5] or conversion

optimization [68, 82]. Advertisers increase the effectiveness of advertising to deliver their

ads to the audience found by the approaches.

Perlich et al. [82] presented a transfer learning approach for online display targeting.

In the first stage of the approach, users are represented as a bag-of-words representation

of the users browsing history, with each URL hashed into its own binary feature. The Bin

method, which is compared with the proposed method in Section 5.5, is similar to this

approach.

Djuric et al. [36] proposed an approach for improving estimation of ad click or con-

version probability on the basis of a sequence of a user’s online actions modeled using the

Hidden Conditional Random Fields (HCRF) model [84]. To address the sparsity problem

at the input side of the HCRF model, they proposed a directed version of the Skip-gram

model, which maximizes the log-probabilities of future activities given users’ preceding

activities. Input “words” of the Directed Skip-gram model consist of entities found on a

Web page visited by the user and tokens in search queries.

Okura et al. [78] tackled news article recommendation tasks. They generated user

representations by using Recurrent Neural Networks (RNNs) with browsing histories as

input sequences. Therefore, this approach is similar to ours. However, they learned task-

specific RNNs by using users’ clicks as labels whereas we simply learned common vector

82

models for various user-related prediction tasks in an unsupervised manner.

White et al. [109] focused on Web site recommendations and studied the effectiveness of

various sources of contextual information for user interest modeling. Similar to ours, their

method modeled user interests by using the URLs that the user visited. However, they

represented each Web page as pre-defined Open Directory Project (ODP) categories by

using trained classifiers, and these aggregated categories are regarded as user interests. On

the other hand, we obtained both the URL and user vectors simultaneously by learning

the vector models from sequences of user visits without supervision. In addition, they

just aimed at recommending Web pages to each user whereas we intend to use learned

low-dimensional vectors among the user-related prediction tasks in common.

Yan et al. [112] studied Web caching and prefetching. They improved these policies

by mining frequent access patterns of Web documents and building association-based

prediction models. Therefore, their objective is predicting users’ upcoming Web accesses.

On the other hand, our study focuses on extracting common user representations from

sequences of Web page visits via prediction.

For an English-to-French translation task, Sutskever et al. [99] reported that the re-

versed input of the words in the source sentence when using a Long Short-Term Memory

(LSTM) model achieved the better results. This technique is related to our discussion of

the difference between Reverse PV-DM and Backward PV-DM.

For obtaining continuous word representations, Bojanowski et al. [15] proposed an

approach where each word is represented as a bag of character n-grams. A vector rep-

resentation of each character n-gram is learned using a large corpus, and each word is

represented as the sum of these vectors. The authors showed that their word vectors

achieved state-of-the-art performance on several word similarity and analogy tasks. This

idea may be applied to our approach by representing each URL as a bag of substrings,

such as domain names.

5.7 Conclusion

In this study, we presented an approach that summarizes each sequence of user Web page

visits using the Paragraph Vector, considering users and Web page visits as paragraphs

and words, respectively. The learned user representations are used among the user-related

prediction tasks in common, such as news article recommendation and ad click prediction.

In addition, on the basis of the analysis of our Web page visit data, we proposed Backward

PV-DM, which is a modified version of Paragraph Vector. We evaluated this approach on

two ad-related datasets based on logs from Yahoo! JAPANWeb services. The experimental

results demonstrated its effectiveness.

83

Table 5.4: Experimental results. Values are AUC. We report mean values of five runnings

with different random initialization for methods using vector models (see Section 5.5.3 for

more details). ♢ and ♣ indicate statistically significant improvements (p-value < 0.05)

over Skip-gram and PV-DM, respectively.

AdClicker
Ac1 Ac2 Ac3 Ac4 Ac5

Bin 0.9753 0.8063 0.6641 0.7052 0.7524
Freq 0.9814 0.8184 0.6580 0.6961 0.7509

CBoW 0.9903♣ 0.8323♣ 0.6533♣ 0.7154 0.7700♣

Skip-gram 0.9906♣ 0.8354♣ 0.6562♣ 0.7163 0.7725♣

Directed Skip-gram 0.9904♣ 0.8374♣ 0.6533 0.7159 0.7706♣

Backward Skip-gram 0.9905♣ 0.8328♣ 0.6525 0.7138 0.7712♣

PV-DM 0.9899 0.8151 0.6483 0.7242♢ 0.7633
Reverse PV-DM 0.9884 0.8263♣ 0.6481 0.7274♢ 0.7618

Backward PV-DM 0.9902♣ 0.8247♣ 0.6537♣ 0.7345♢♣ 0.7661♣

PV-DBoW 0.9894 0.8288♣ 0.6507 0.7290♢ 0.7581
PV-DM(both) 0.9910♣ 0.8193 0.6531♣ 0.7379♢♣ 0.7704♣

Backward PV-DM(both) 0.9914♢♣ 0.8281♣ 0.6575♣ 0.7463♢♣ 0.7760♢♣

PV-DM+Skip-gram 0.9912♢♣ 0.8358♣ 0.6622♢♣ 0.7391♢♣ 0.7752♢♣

SiteVisitor
Sv1 Sv2 Sv3 Sv4 Sv5

Bin 0.7619 0.8188 0.7087 0.7920 0.7292
Freq 0.7821 0.8163 0.7006 0.7781 0.7256

CBoW 0.7999 0.8277 0.7067 0.7849 0.7339
Skip-gram 0.8017 0.8328 0.7135 0.7931 0.7417

Directed Skip-gram 0.8019 0.8308 0.7120 0.7914 0.7394
Backward Skip-gram 0.8018 0.8307 0.7125 0.7909 0.7388

PV-DM 0.8051♢ 0.8343♢ 0.7180♢ 0.7964♢ 0.7479♢

Reverse PV-DM 0.8011 0.8343♢ 0.7207♢♣ 0.7992♢♣ 0.7488♢

Backward PV-DM 0.8092♢♣ 0.8366♢♣ 0.7222♢♣ 0.8028♢♣ 0.7491♢

PV-DBoW 0.7965 0.8294 0.7198♢♣ 0.7945 0.7489♢

PV-DM(both) 0.8134♢♣ 0.8373♢♣ 0.7229♢♣ 0.7998♢♣ 0.7506♢♣

Backward PV-DM(both) 0.8162♢♣ 0.8396♢♣ 0.7276♢♣ 0.8069♢♣ 0.7513♢♣

PV-DM+Skip-gram 0.8128♢♣ 0.8396♢♣ 0.7252♢♣ 0.8026♢♣ 0.7531♢♣

84

29 210 211 212 213 214 215

Train data size

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

A
U

C

Ac1

29 210 211 212 213 214 215

Train data size

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

A
U

C

Ac2

29 210 211 212 213 214 215

Train data size

0.56

0.58

0.60

0.62

0.64

0.66

0.68

A
U

C

Ac3

29 210 211 212 213 214 215

Train data size

0.50

0.55

0.60

0.65

0.70

0.75

A
U

C

Ac4

29 210 211 212 213 214 215

Train data size

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

A
U

C

Ac5

29 210 211 212 213 214 215 216 217 218 219 220

Train data size

0.65

0.70

0.75

0.80

A
U

C

Sv1

29 210 211 212 213 214 215 216 217 218 219 220

Train data size

0.72

0.74

0.76

0.78

0.80

0.82

0.84

A
U

C

Sv2

29 210 211 212 213 214 215 216 217 218 219 220

Train data size

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74
A

U
C

Sv3

29 210 211 212 213 214 215 216 217 218 219 220

Train data size

0.55

0.60

0.65

0.70

0.75

0.80

0.85

A
U

C

Sv4

29 210 211 212 213 214 215 216 217 218 219 220

Train data size

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

A
U

C

Sv5

Bin

Freq

Skip-gram

PV-DM

Backward PV-DM

Figure 5.7: Experimental results when changing training data size. Horizontal axis (train

data size) is logarithmic scale.

85

225 226 227 228 229 230

Number of Web page visits

0.9885

0.9890

0.9895

0.9900

0.9905

0.9910

0.9915

A
U

C

Ac1

225 226 227 228 229 230

Number of Web page visits

0.815

0.820

0.825

0.830

0.835

0.840

A
U

C

Ac2

225 226 227 228 229 230

Number of Web page visits

0.635

0.640

0.645

0.650

0.655

0.660

A
U

C

Ac3

225 226 227 228 229 230

Number of Web page visits

0.705

0.710

0.715

0.720

0.725

0.730

0.735

0.740

A
U

C

Ac4

225 226 227 228 229 230

Number of Web page visits

0.762

0.764

0.766

0.768

0.770

0.772

0.774

A
U

C

Ac5

225 226 227 228 229 230

Number of Web page visits

0.798

0.800

0.802

0.804

0.806

0.808

0.810

0.812

A
U

C

Sv1

225 226 227 228 229 230

Number of Web page visits

0.815

0.820

0.825

0.830

0.835

0.840

A
U

C

Sv2

225 226 227 228 229 230

Number of Web page visits

0.690

0.695

0.700

0.705

0.710

0.715

0.720

0.725
A

U
C

Sv3

225 226 227 228 229 230

Number of Web page visits

0.765

0.770

0.775

0.780

0.785

0.790

0.795

0.800

0.805

A
U

C

Sv4

225 226 227 228 229 230

Number of Web page visits

0.715

0.720

0.725

0.730

0.735

0.740

0.745

0.750

A
U

C

Sv5

Skip-gram

PV-DM

Backward PV-DM

Figure 5.8: Experimental results when changing the number of Web site visits in learning

the vector models. Horizontal axis (number of Web site visits) is logarithmic scale.

86

Chapter 6

Conclusion

Recommender systems have become ubiquitous on the today’s World Wide Web and are

utilized by various Web sites, such as Facebook, Instagram, Twitter, and Youtube, to help

users discover personalized content. These real-world systems need to deal with scalability

challenges caused by a huge number of users and candidate items while there is much user

and context information that can be used for recommendation.

In this thesis, we focused on two main challenges for constructing “practical Web-scale

recommender systems”:

1. Selecting suitable items for each user in a very short time

2. Making valuable users’ representations from users’ activity histories

For the former challenge, we developed an inverted index-based retrieval system for

contextual advertising in Chapter 3. We applied this approach with a real ad serving

system and conducted A/B testing for evaluating the online performance. Our approach

achieved significant improvements over the existing production system. In Chapter 4, we

tackled extreme multi-label classification and proposed two methods that enable faster

and more accurate predictions to be made by utilizing tree and graph-based index. Ex-

perimental results on several large-scale public datasets showed that our methods improve

the trade-off between prediction and accuracy. At the same level of accuracy, the predic-

tion time of our classifiers was up to 58 times shorter than that of a recent state-of-the-art

method (0.08 vs. 4.66 milliseconds per test point).

For the latter challenge, in Chapter 5, we presented a method for learning representa-

tions of users’ Web browsing sequences in an unsupervised manner on the basis of analysis

of our real-world Web visits data. The learned users’ representations, which are repre-

sented as low-dimensional vectors, are used among the user-related prediction tasks in

common. For each prediction task, an individual classifier or regressor is trained by using

the common vectors as features and task-specific users ’properties or actions as targets.

87

Our proposed method achieved better results than existing methods on two ad-related

prediction tasks based on logs from large-scale Web services. In addition, the prediction

accuracies of some tasks were successfully improved by simply increasing the data size of

users’ Web browsing sequences as the training data sizes of prediction tasks themselves

were not changed.

Our findings from these studies are summarized as follows:

• For making more favorable recommendations in a very limited time, it is promising to

construct a machine learning model suitable for an efficient retrieval system (Chapter

3) or a model that includes a search index (Chapter 4).

• To capture the users’ interests or preferences from their Web browsing sequences

suitably, it is important to construct a model in consideration of their appearance

positions in a session (Chapter 5).

We hope that these findings will help to construct scalable recommender systems more

efficiently and that these systems will enrich the people’s daily lives.

6.1 Future Work

Although we proposed approaches to construct “practical Web-scale recommender sys-

tems” more efficiently, a lot of problems remain as future work.

First, we want to develop models suitable for efficient retrieval on computing devices

other than common CPU. New computing devices such as GPU have also been developed

in parallel with the improvement in neural networks. By learning models in the form

where these devices efficiently computes, fast retrieval can be done. Shan et al. [89] used

an approach with exhaustive search on GPUs instead of using some pruning techniques

or approximate nearest neighbor search methods on CPUs. They proposed the Recurrent

Binary Embedding (RBE) model, which learns compact representations suitable for real-

time retrieval. Top-k items are retrieved quickly by computing bit-wise operations on

GPUs in parallel. We will explore this research direction in future work.

There are some studies that construct efficient index structures by considering target

data distribution. Kraska et al. [61] claimed that all existing structures, such as B-trees,

hash maps and Bloom filters, can be replaced with machine learning models. For example,

bloom filters are regarded as binary classifiers to determine whether a target key exists in a

set. AnnexML presented in Chapter 4 can be regarded as search index-included classifiers.

Therefore, we expect to improve the tradeoff between prediction speed and accuracy1 by

optimizing a whole model including a search index in an end-to-end manner.

1The model size can also be optimized.

88

We mainly focused on retrieval for the vector space model in this thesis. On the other

hand, in online advertising, advertisers want to show their ads to only a subset of users.

For example, some ads are requested to be shown to women in their twenties or thirties.

Typically, this condition is represented by Boolean expressions like:

Gender ∈ {female} ∧Age ∈ {20s ∨ 30s}.

In information retrieval, methods have been proposed that efficiently evaluate Boolean

expressions by using some data structures have been proposed [108, 44]. We will investigate

optimization methods to these data structures by utilizing machine learning techniques.

In real-world recommendation setting, since the candidate items typically change as

time progress, systems are required to balance exploration and exploitation [65]. We can

not determine actual worth of a new coming item without presenting the item to users.

On the other hand, users have been annoyed if unfavorable items are shown to them too

much. Therefore, exploration and exploitation must be balanced. Development of an

efficient exploration method for a lot of candidates by utilizing a search index is also a

promising direction of our future work.

Our representation learning method obtains low-dimensional vectors from users’ Web

browsing sequences in an unsupervised manner, as described in Chapter 5. These learned

vectors are used as common features among various user-related prediction tasks. Thus,

this method does not utilizes users’properties or actions, which are targets of each task, for

generating user representations. To remedy this problem, we plan to investigate a method

that obtains user representations via learning other than unsupervised learning, such as

semi-supervised, multi-label, and multi-task learning. We also consider that meta-learning

or learning-to-learn approaches [42, 76, 98] can be helpful for this task.

Diversity [6] and fairness [48] in recommendation have received much attention. These

topics are not necessarily required to simply improve recommendation quality or speed.

However, we believe that these topics will play crucial role in future recommendation

systems as systems become integrated into people’s daily lives.

89

Appendix

In this chapter, some additional experimental results are shown.

Table 1 shows the experimental results of AnnexML and GPT in terms of nDCG@k.

Experimental settings are the same as those of Figure 4.3.

Table 1: Experimental results for nDCG@k

AnnexML GPT

nDCG@1 0.9355 0.9084
AmazonCat-13K nDCG@3 0.8730 0.8496

nDCG@5 0.8512 0.8314
nDCG@1 0.8650 0.8476

Wiki10-31K nDCG@3 0.7714 0.7599
nDCG@5 0.6944 0.6834
nDCG@1 0.4666 0.4746

Delicious-200K nDCG@3 0.4219 0.4303
nDCG@5 0.3981 0.4079
nDCG@1 0.6336 0.6336

WikiLSHTC-325K nDCG@3 0.5664 0.5623
nDCG@5 0.5626 0.5568
nDCG@1 0.4208 0.4236

Amazon-670K nDCG@3 0.3881 0.3935
nDCG@5 0.3680 0.3771

Figures 1 and 2 plot the prediction time and performances of AnnexML, AnnexML-BF,

SLEEC, GPT, FastXML, and PfastreXML in terms of Precision@3, nDCG@3, nDCG@5.

These experiments were performed in settings the same as those in Figure 4.1.

Table 2 shows the experimental results of AnnexML and GPT in terms of propensity

scored Precision@k (PSP@k) and propensity scored nDCG@k (PSnDCG@k) [53]. Again,

experimental settings are the same as those in Figure 4.3.

90

10−2 10−1 100

Prediction time [msec/sample]

0.60

0.65

0.70

0.75

0.80

P
re

ci
si

on
@

3

AmazonCat-13K

AnnexML

AnnexML-BF

SLEEC

GPT

FastXML

PfastreXML

10−1 100

Prediction time [msec/sample]

0.55

0.60

0.65

0.70

0.75

P
re

ci
si

on
@

3

Wiki10-31K

10−1 100 101

Prediction time [msec/sample]

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

P
re

ci
si

on
@

3

DeliciousLarge-200K

10−2 10−1 100

Prediction time [msec/sample]

0.15

0.20

0.25

0.30

0.35

0.40

0.45

P
re

ci
si

on
@

3

WikiLSHTC-325K

10−2 10−1 100

Prediction time [msec/sample]

0.15

0.20

0.25

0.30

0.35

0.40

P
re

ci
si

on
@

3

Amazon-670K

Figure 1: Precision@3 versus prediction time when the number of learners changes.

91

10−2 10−1 100

Prediction time [msec/sample]

0.65

0.70

0.75

0.80

0.85

0.90

n
D

C
G

@
3

AmazonCat-13K

AnnexML

AnnexML-BF

SLEEC

GPT

FastXML

PfastreXML

10−2 10−1 100

Prediction time [msec/sample]

0.65

0.70

0.75

0.80

0.85

0.90

n
D

C
G

@
5

AmazonCat-13K

10−1 100

Prediction time [msec/sample]

0.55

0.60

0.65

0.70

0.75

0.80

n
D

C
G

@
3

Wiki10-31K

10−1 100

Prediction time [msec/sample]

0.50

0.55

0.60

0.65

0.70

n
D

C
G

@
5

Wiki10-31K

10−1 100 101

Prediction time [msec/sample]

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

n
D

C
G

@
3

DeliciousLarge-200K

10−1 100 101

Prediction time [msec/sample]

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

n
D

C
G

@
5

DeliciousLarge-200K

10−2 10−1 100

Prediction time [msec/sample]

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

n
D

C
G

@
3

WikiLSHTC-325K

10−2 10−1 100

Prediction time [msec/sample]

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

n
D

C
G

@
5

WikiLSHTC-325K

10−2 10−1 100

Prediction time [msec/sample]

0.15

0.20

0.25

0.30

0.35

0.40

0.45

n
D

C
G

@
3

Amazon-670K

10−2 10−1 100

Prediction time [msec/sample]

0.15

0.20

0.25

0.30

0.35

0.40

n
D

C
G

@
5

Amazon-670K

Figure 2: nDCG versus prediction time when the number of learners changes.

92

Table 2: Experimental results for propensity scored Precision@k (PSP@k) and propensity

scored nDCG@k (PSnDCG@k) [53]

AnnexML GPT

PSP@1 0.4902 0.4720
AmazonCat-13K PSP@3 0.6111 0.5967

PSP@5 0.6964 0.6933
PSP@1 0.1190 0.1088

Wiki10-31K PSP@3 0.1277 0.1250
PSP@5 0.1328 0.1358
PSP@1 0.0716 0.0725

Delicious-200K PSP@3 0.0806 0.0819
PSP@5 0.0873 0.0894
PSP@1 0.2537 0.2657

WikiLSHTC-325K PSP@3 0.3069 0.3057
PSP@5 0.3440 0.3335
PSP@1 0.2147 0.2321

Amazon-670K PSP@3 0.2467 0.2667
PSP@5 0.2755 0.3007

AnnexML GPT

PSnDCG@1 0.4902 0.4720
AmazonCat-13K PSnDCG@3 0.5882 0.5701

PSnDCG@5 0.6547 0.6419
PSnDCG@1 0.1190 0.1088

Wiki10-31K PSnDCG@3 0.1211 0.1254
PSnDCG@5 0.1310 0.1269
PSnDCG@1 0.0716 0.0725

Delicious-200K PSnDCG@3 0.0779 0.0790
PSnDCG@5 0.0821 0.0837
PSnDCG@1 0.2537 0.2657

WikiLSHTC-325K PSnDCG@3 0.3133 0.3192
PSnDCG@5 0.3443 0.3459
PSnDCG@1 0.2147 0.2321

Amazon-670K PSnDCG@3 0.2327 0.2521
PSnDCG@5 0.2466 0.2690

93

Bibliography

[1] Netflix prize data. https://www.kaggle.com/netflix-inc/netflix-prize-data.

Last Accessed: May 23, 2018.

[2] Deepak Agarwal, Rahul Agrawal, Rajiv Khanna, and Nagaraj Kota. Estimating

rates of rare events with multiple hierarchies through scalable log-linear models.

In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’10, pages 213–222. ACM, 2010.

[3] Deepak Agarwal and Maxim Gurevich. Fast top-k retrieval for model based rec-

ommendation. In Proceedings of the Fifth ACM International Conference on Web

Search and Data Mining, WSDM ’12, pages 483–492. ACM, 2012.

[4] Rahul Agrawal, Archit Gupta, Yashoteja Prabhu, and Manik Varma. Multi-label

learning with millions of labels: Recommending advertiser bid phrases for web pages.

In Proceedings of the 22Nd International Conference on World Wide Web, WWW

’13, pages 13–24. ACM, 2013.

[5] Mohamed Aly, Andrew Hatch, Vanja Josifovski, and Vijay K. Narayanan. Web-scale

user modeling for targeting. In Proceedings of the 21st International Conference on

World Wide Web, WWW ’12 Companion, pages 3–12. ACM, 2012.

[6] Arda Antikacioglu and R. Ravi. Post processing recommender systems for diversity.

In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’17, pages 707–716. ACM, 2017.

[7] Kevin Aydin, MohammadHossein Bateni, and Vahab Mirrokni. Distributed balanced

partitioning via linear embedding. In Proceedings of the Ninth ACM International

Conference on Web Search and Data Mining, WSDM ’16, pages 387–396. ACM,

2016.

[8] Rohit Babbar and Bernhard Schölkopf. Dismec: Distributed sparse machines for

extreme multi-label classification. In Proceedings of the Tenth ACM International

Conference on Web Search and Data Mining, WSDM ’17, pages 721–729. ACM,

2017.

[9] Yoram Bachrach, Yehuda Finkelstein, Ran Gilad-Bachrach, Liran Katzir, Noam

Koenigstein, Nir Nice, and Ulrich Paquet. Speeding up the xbox recommender

94

https://www.kaggle.com/netflix-inc/netflix-prize-data

system using a euclidean transformation for inner-product spaces. In Proceedings

of the 8th ACM Conference on Recommender Systems, RecSys ’14, pages 257–264.

ACM, 2014.

[10] Erik Bernhardsson, Martin Aumüller, and Alexander Faithfull. Benchmarking near-

est neighbors. https://github.com/erikbern/ann-benchmarks, 2015. Last Ac-

cessed: June 2, 2018.

[11] Alex Beutel, Paul Covington, Sagar Jain, Can Xu, Jia Li, Vince Gatto, and Ed H.

Chi. Latent cross: Making use of context in recurrent recommender systems. In

Proceedings of the Eleventh ACM International Conference on Web Search and Data

Mining, WSDM ’18, pages 46–54. ACM, 2018.

[12] Kush Bhatia, Himanshu Jain, Purushottam Kar, Manik Varma, and Prateek Jain.

Sparse local embeddings for extreme multi-label classification. In C. Cortes, N. D.

Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural

Information Processing Systems 28, pages 730–738. Curran Associates, Inc., 2015.

[13] Kush Bhatia, Himanshu Jain, Yashoteja Prabhu, and Manik Varma. The extreme

classification repository. http://manikvarma.org/downloads/XC/XMLRepository.

html, 2016. Last Accessed: May 22, 2018.

[14] Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing with

Python. O’Reilly Media, Inc., 2009.

[15] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching

word vectors with subword information. CoRR, abs/1607.04606, 2016.

[16] Léon Bottou and Yoshua Bengio. Convergence properties of the k-means algorithms.

In G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Advances in Neural Infor-

mation Processing Systems 7, pages 585–592. MIT Press, 1995.

[17] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, Oct 2001.

[18] Andrei Broder, Marcus Fontoura, Vanja Josifovski, and Lance Riedel. A semantic

approach to contextual advertising. In Proceedings of the 30th Annual International

ACM SIGIR Conference on Research and Development in Information Retrieval,

SIGIR ’07, pages 559–566. ACM, 2007.

[19] Andrei Z. Broder, David Carmel, Michael Herscovici, Aya Soffer, and Jason Zien.

Efficient query evaluation using a two-level retrieval process. In Proceedings of

the Twelfth International Conference on Information and Knowledge Management,

CIKM ’03, pages 426–434. ACM, 2003.

[20] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,

and Greg Hullender. Learning to rank using gradient descent. In Proceedings of

the 22Nd International Conference on Machine Learning, ICML ’05, pages 89–96.

ACM, 2005.

95

https://github.com/erikbern/ann-benchmarks
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html

[21] Chris J. C. Burges, Krysta M. Svore, Qiang Wu, and Jianfeng Gao. Ranking,

boosting, and model adaptation. Technical report, October 2008.

[22] Christopher J. Burges, Robert Ragno, and Quoc V. Le. Learning to rank with

nonsmooth cost functions. In B. Schölkopf, J. C. Platt, and T. Hoffman, editors,

Advances in Neural Information Processing Systems 19, pages 193–200. MIT Press,

2007.

[23] Christopher J.C. Burges. From ranknet to lambdarank to lambdamart: An overview.

Technical report, June 2010.

[24] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank:

From pairwise approach to listwise approach. In Proceedings of the 24th International

Conference on Machine Learning, ICML ’07, pages 129–136. ACM, 2007.

[25] Deepayan Chakrabarti, Deepak Agarwal, and Vanja Josifovski. Contextual adver-

tising by combining relevance with click feedback. In Proceedings of the 17th Inter-

national Conference on World Wide Web, WWW ’08, pages 417–426. ACM, 2008.

[26] Haibin Cheng and Erick Cantú-Paz. Personalized click prediction in sponsored

search. In Proceedings of the Third ACM International Conference on Web Search

and Data Mining, WSDM ’10, pages 351–360. ACM, 2010.

[27] Haibin Cheng, Roelof van Zwol, Javad Azimi, Eren Manavoglu, Ruofei Zhang, Yang

Zhou, and Vidhya Navalpakkam. Multimedia features for click prediction of new

ads in display advertising. In Proceedings of the 18th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’12, pages 777–785.

ACM, 2012.

[28] Wei-Sheng Chin, Yong Zhuang, Yu-Chin Juan, and Chih-Jen Lin. A fast parallel

stochastic gradient method for matrix factorization in shared memory systems. ACM

Trans. Intell. Syst. Technol., 6(1):2:1–2:24, March 2015.

[29] Wei-Sheng Chin, Yong Zhuang, Yu-Chin Juan, and Chih-Jen Lin. A learning-rate

schedule for stochastic gradient methods to matrix factorization. In Tru Cao, Ee-

Peng Lim, Zhi-Hua Zhou, Tu-Bao Ho, David Cheung, and Hiroshi Motoda, editors,

Advances in Knowledge Discovery and Data Mining, pages 442–455. Springer Inter-

national Publishing, 2015.

[30] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. Power-law distribu-

tions in empirical data. SIAM Review, 51(4):661–703, 2009.

[31] Josh Constine. How instagram ’s algorithm works. https://techcrunch.com/

2018/06/01/how-instagram-feed-works/. Last Accessed: June 7, 2018.

[32] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube

recommendations. In Proceedings of the 10th ACM Conference on Recommender

Systems, RecSys ’16, pages 191–198. ACM, 2016.

96

https://techcrunch.com/2018/06/01/how-instagram-feed-works/
https://techcrunch.com/2018/06/01/how-instagram-feed-works/

[33] Brian Dalessandro, Daizhuo Chen, Troy Raeder, Claudia Perlich, Melinda

Han Williams, and Foster Provost. Scalable hands-free transfer learning for online

advertising. In Proceedings of the 20th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’14, pages 1573–1582. ACM, 2014.

[34] Kushal S. Dave and Vasudeva Varma. Learning the click-through rate for rare/new

ads from similar ads. In Proceedings of the 33rd International ACM SIGIR Con-

ference on Research and Development in Information Retrieval, SIGIR ’10, pages

897–898. ACM, 2010.

[35] Shuai Ding and Torsten Suel. Faster top-k document retrieval using block-max in-

dexes. In Proceedings of the 34th International ACM SIGIR Conference on Research

and Development in Information Retrieval, SIGIR ’11, pages 993–1002. ACM, 2011.

[36] Nemanja Djuric, Vladan Radosavljevic, Mihajlo Grbovic, and Narayan Bhamidipati.

Hidden conditional random fields with deep user embeddings for ad targeting. In

2014 IEEE International Conference on Data Mining, pages 779–784, Dec 2014.

[37] Wei Dong, Charikar Moses, and Kai Li. Efficient k-nearest neighbor graph con-

struction for generic similarity measures. In Proceedings of the 20th International

Conference on World Wide Web, WWW ’11, pages 577–586. ACM, 2011.

[38] Pinar Donmez, Krysta M. Svore, and Christopher J.C. Burges. On the local optimal-

ity of lambdarank. In Proceedings of the 32Nd International ACM SIGIR Conference

on Research and Development in Information Retrieval, SIGIR ’09, pages 460–467.

ACM, 2009.

[39] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for

online learning and stochastic optimization. Journal of Machine Learning Research,

12:2121–2159, July 2011.

[40] Ali Mamdouh Elkahky, Yang Song, and Xiaodong He. A multi-view deep learning

approach for cross domain user modeling in recommendation systems. In Proceedings

of the 24th International Conference on World Wide Web, WWW ’15, pages 278–

288. International World Wide Web Conferences Steering Committee, 2015.

[41] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.

Liblinear: A library for large linear classification. Journal of Machine Learning

Research, 9:1871–1874, June 2008.

[42] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for

fast adaptation of deep networks. In Doina Precup and Yee Whye Teh, editors,

Proceedings of the 34th International Conference on Machine Learning, volume 70

of Proceedings of Machine Learning Research, pages 1126–1135. PMLR, 06–11 Aug

2017.

97

[43] Marcus Fontoura, Vanja Josifovski, Jinhui Liu, Srihari Venkatesan, Xiangfei Zhu,

and Jason Zien. Evaluation strategies for top-k queries over memory-resident in-

verted indexes. Proceedings of the VLDB Endowment, 4(12):1213–1224, 2011.

[44] Marcus Fontoura, Suhas Sadanandan, Jayavel Shanmugasundaram, Sergei Vassil-

vitski, Erik Vee, Srihari Venkatesan, and Jason Zien. Efficiently evaluating complex

boolean expressions. In Proceedings of the 2010 ACM SIGMOD International Con-

ference on Management of Data, SIGMOD ’10, pages 3–14. ACM, 2010.

[45] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high di-

mensions via hashing. In Proceedings of the 25th International Conference on Very

Large Data Bases, VLDB ’99, pages 518–529. Morgan Kaufmann Publishers Inc.,

1999.

[46] Carlos A. Gomez-Uribe and Neil Hunt. The netflix recommender system: Algo-

rithms, business value, and innovation. ACM Transactions on Management Infor-

mation Systems, 6(4):13:1–13:19, December 2015.

[47] Thore Graepel, Joaquin Quiñonero Candela, Thomas Borchert, and Ralf Herbrich.

Web-scale bayesian click-through rate prediction for sponsored search advertising

in microsoft’s bing search engine. In Proceedings of the 27th International Con-

ference on International Conference on Machine Learning, ICML’10, pages 13–20.

Omnipress, 2010.

[48] Moritz Hardt. Fairness in machine learning. https://fairmlclass.github.io/.

Last Accessed: June 20, 2018.

[49] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and

context. ACM Transactions on Interactive Intelligent Systems, 5(4):19:1–19:19, De-

cember 2015.

[50] Andrew Hatch, Abraham Bagherjeiran, and Adwait Ratnaparkhi. Clickable terms

for contextual advertising. In Proceedings of the Fourth International Workshop on

Data Mining and Audience Intelligence for Advertising, 2010.

[51] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck.

Learning deep structured semantic models for web search using clickthrough data. In

Proceedings of the 22Nd ACM International Conference on Information & Knowl-

edge Management, CIKM ’13, pages 2333–2338. ACM, 2013.

[52] Masajiro Iwasaki. Pruned bi-directed k-nearest neighbor graph for proximity search.

In International Conference on Similarity Search and Applications, pages 20–33.

Springer, 2016.

[53] Himanshu Jain, Yashoteja Prabhu, and Manik Varma. Extreme multi-label loss

functions for recommendation, tagging, ranking & other missing label appli-

98

https://fairmlclass.github.io/

cations. In Proceedings of the 22Nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’16, pages 935–944. ACM, 2016.

[54] Prateek Jain, Raghu Meka, and Inderjit S. Dhillon. Guaranteed rank minimization

via singular value projection. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor,

R. S. Zemel, and A. Culotta, editors, Advances in Neural Information Processing

Systems 23, pages 937–945. Curran Associates, Inc., 2010.

[55] Kalina Jasinska, Krzysztof Dembczynski, Robert Busa-Fekete, Karlson

Pfannschmidt, Timo Klerx, and Eyke Hullermeier. Extreme f-measure maxi-

mization using sparse probability estimates. In Maria Florina Balcan and Kilian Q.

Weinberger, editors, Proceedings of The 33rd International Conference on Machine

Learning, volume 48 of Proceedings of Machine Learning Research, pages 1435–1444.

PMLR, 20–22 Jun 2016.

[56] Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceed-

ings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, KDD ’02, pages 133–142. ACM, 2002.

[57] Amruta Joshi, Abraham Bagherjeiran, and Adwait Ratnaparkhi. User demographic

and behavioral targeting for content match advertising. In Proceedings of the Fifth

International Workshop on Data Mining and Audience Intelligence for Advertising,

2011.

[58] Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. Field-aware factor-

ization machines for ctr prediction. In Proceedings of the 10th ACM Conference on

Recommender Systems, RecSys ’16, pages 43–50. ACM, 2016.

[59] Maryam Karimzadehgan, Wei Li, Ruofei Zhang, and Jianchang Mao. A stochastic

learning-to-rank algorithm and its application to contextual advertising. In Proceed-

ings of the 20th International Conference on World Wide Web, WWW ’11, pages

377–386. ACM, 2011.

[60] Nicolas Koumchatzky and Anton Andryeyev. Using deep learning at scale in twitter’s

timelines. https://blog.twitter.com/engineering/en_us/topics/insights/

2017/using-deep-learning-at-scale-in-twitters-timelines.html, 2017.

Last Accessed: May 22, 2018.

[61] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. The case

for learned index structures. In Proceedings of the 2018 International Conference on

Management of Data, SIGMOD ’18, pages 489–504. ACM, 2018.

[62] Quoc Le and Tomas Mikolov. Distributed representations of sentences and doc-

uments. In Proceedings of the 31st International Conference on International

Conference on Machine Learning - Volume 32, ICML’14, pages II–1188–II–1196.

JMLR.org, 2014.

99

https://blog.twitter.com/engineering/en_us/topics/insights/2017/using-deep-learning-at-scale-in-twitters-timelines.html
https://blog.twitter.com/engineering/en_us/topics/insights/2017/using-deep-learning-at-scale-in-twitters-timelines.html

[63] Yann LeCun, Leon Bottou, Genevieve B. Orr, and Klaus Robert Müller. Efficient

BackProp, pages 9–50. Springer Berlin Heidelberg, 1998.

[64] Kuang-chih Lee, Burkay Orten, Ali Dasdan, and Wentong Li. Estimating conversion

rate in display advertising from past performance data. In Proceedings of the 18th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

KDD ’12, pages 768–776. ACM, 2012.

[65] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. A contextual-bandit

approach to personalized news article recommendation. In Proceedings of the 19th

International Conference on World Wide Web, WWW ’10, pages 661–670. ACM,

2010.

[66] Jingzhou Liu, Wei-Cheng Chang, Yuexin Wu, and Yiming Yang. Deep learning for

extreme multi-label text classification. In Proceedings of the 40th International ACM

SIGIR Conference on Research and Development in Information Retrieval, SIGIR

’17, pages 115–124. ACM, 2017.

[67] Ting Liu, Andrew W. Moore, Ke Yang, and Alexander G. Gray. An investigation

of practical approximate nearest neighbor algorithms. In L. K. Saul, Y. Weiss, and

L. Bottou, editors, Advances in Neural Information Processing Systems 17, pages

825–832. MIT Press, 2005.

[68] Yandong Liu, Sandeep Pandey, Deepak Agarwal, and Vanja Josifovski. Finding

the right consumer: Optimizing for conversion in display advertising campaigns. In

Proceedings of the Fifth ACM International Conference on Web Search and Data

Mining, WSDM ’12, pages 473–482. ACM, 2012.

[69] Tianyi Luo, Dong Wang, Rong Liu, and Yiqiao Pan. Stochastic top-k listnet. In

Proceedings of the 2015 Conference on Empirical Methods in Natural Language Pro-

cessing, pages 676–684. Association for Computational Linguistics, September 2015.

[70] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schtze. Introduction to

Information Retrieval. Cambridge University Press, 2008.

[71] Julian McAuley and Jure Leskovec. Hidden factors and hidden topics: Understand-

ing rating dimensions with review text. In Proceedings of the 7th ACM Conference

on Recommender Systems, RecSys ’13, pages 165–172. ACM, 2013.

[72] H. Brendan McMahan. Follow-the-regularized-leader and mirror descent: Equiva-

lence theorems and l1 regularization. In Proceedings of the 14th International Con-

ference on Artificial Intelligence and Statistics (AISTATS), 2011.

[73] H. Brendan McMahan, Gary Holt, D. Sculley, Michael Young, Dietmar Ebner, Julian

Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, Sharat Chikkerur,

Dan Liu, Martin Wattenberg, Arnar Mar Hrafnkelsson, Tom Boulos, and Jeremy

Kubica. Ad click prediction: A view from the trenches. In Proceedings of the 19th

100

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

KDD ’13, pages 1222–1230. ACM, 2013.

[74] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-

tributed representations of words and phrases and their compositionality. In C. J. C.

Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors,

Advances in Neural Information Processing Systems 26, pages 3111–3119. Curran

Associates, Inc., 2013.

[75] Paul Mineiro and Nikos Karampatziakis. Fast label embeddings via randomized

linear algebra. In Annalisa Appice, Pedro Pereira Rodrigues, Vı́tor Santos Costa,

Carlos Soares, João Gama, and Aĺıpio Jorge, editors, Machine Learning and Knowl-

edge Discovery in Databases, pages 37–51. Springer International Publishing, 2015.

[76] Tsendsuren Munkhdalai and Hong Yu. Meta networks. In Doina Precup and

Yee Whye Teh, editors, Proceedings of the 34th International Conference on Machine

Learning, volume 70 of Proceedings of Machine Learning Research, pages 2554–2563.

PMLR, 06–11 Aug 2017.

[77] Vanessa Murdock, Massimiliano Ciaramita, and Vassilis Plachouras. A noisy-channel

approach to contextual advertising. In Proceedings of the 1st International Workshop

on Data Mining and Audience Intelligence for Advertising, ADKDD ’07, pages 21–

27. ACM, 2007.

[78] Shumpei Okura, Yukihiro Tagami, Shingo Ono, and Akira Tajima. Embedding-

based news recommendation for millions of users. In Proceedings of the 23rd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD

’17, pages 1933–1942. ACM, 2017.

[79] Stephen M. Omohundro. Five balltree construction algorithms. Technical report,

International Computer Science Institute, 1989.

[80] Junwei Pan, Jian Xu, Alfonso Lobos Ruiz, Wenliang Zhao, Shengjun Pan, Yu Sun,

and Quan Lu. Field-weighted factorization machines for click-through rate prediction

in display advertising. In Proceedings of the 2018 World Wide Web Conference,

WWW ’18, pages 1349–1357. International World Wide Web Conferences Steering

Committee, 2018.

[81] Ioannis Partalas, Aris Kosmopoulos, Nicolas Baskiotis, Thierry Artières, George

Paliouras, Éric Gaussier, Ion Androutsopoulos, Massih-Reza Amini, and Patrick

Gallinari. LSHTC: A benchmark for large-scale text classification. CoRR,

abs/1503.08581, 2015.

[82] C. Perlich, B. Dalessandro, T. Raeder, O. Stitelman, and F. Provost. Machine learn-

ing for targeted display advertising: Transfer learning in action. Machine Learning,

95(1):103–127, April 2014.

101

[83] Yashoteja Prabhu and Manik Varma. Fastxml: A fast, accurate and stable tree-

classifier for extreme multi-label learning. In Proceedings of the 20th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, KDD ’14, pages

263–272. ACM, 2014.

[84] Ariadna Quattoni, Sybor Wang, Louis-Philippe Morency, Morency Collins, and

Trevor Darrell. Hidden conditional random fields. IEEE transactions on pattern

analysis and machine intelligence, 29(10), 2007.

[85] Parikshit Ram and Alexander G. Gray. Maximum inner-product search using cone

trees. In Proceedings of the 18th ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, KDD ’12, pages 931–939. ACM, 2012.

[86] Adwait Ratnaparkhi. A hidden class page-ad probability model for contextual ad-

vertising. In Workshop on Targeting and Ranking for Online Advertising at the 17th

International World Wide Web Conference, 2008.

[87] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-

free approach to parallelizing stochastic gradient descent. In J. Shawe-Taylor, R. S.

Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances in Neural

Information Processing Systems 24, pages 693–701. Curran Associates, Inc., 2011.

[88] Rómer Rosales, Haibin Cheng, and Eren Manavoglu. Post-click conversion modeling

and analysis for non-guaranteed delivery display advertising. In Proceedings of the

Fifth ACM International Conference on Web Search and Data Mining, WSDM ’12,

pages 293–302. ACM, 2012.

[89] Ying Shan, Jian Jiao, Jie Zhu, and J. C. Mao. Recurrent binary embedding for

gpu-enabled exhaustive retrieval from billion-scale semantic vectors. In Proceedings

of the 24th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, KDD ’18. ACM, 2018. To appear.

[90] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE

Transactions on pattern analysis and machine intelligence, 22(8):888–905, 2000.

[91] Anshumali Shrivastava and Ping Li. Asymmetric lsh (alsh) for sublinear time maxi-

mum inner product search (mips). In Z. Ghahramani, M. Welling, C. Cortes, N. D.

Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Process-

ing Systems 27, pages 2321–2329. Curran Associates, Inc., 2014.

[92] Anshumali Shrivastava and Ping Li. Improved asymmetric locality sensitive hashing

(alsh) for maximum inner product search (mips). In Proceedings of the Thirty-First

Conference on Uncertainty in Artificial Intelligence, UAI’15, pages 812–821. AUAI

Press, 2015.

[93] Si Si, Kai-Yang Chiang, Cho-Jui Hsieh, Nikhil Rao, and Inderjit S. Dhillon. Goal-

directed inductive matrix completion. In Proceedings of the 22Nd ACM SIGKDD

102

International Conference on Knowledge Discovery and Data Mining, KDD ’16, pages

1165–1174. ACM, 2016.

[94] Si Si, Huan Zhang, S. Sathiya Keerthi, Dhruv Mahajan, Inderjit S. Dhillon, and

Cho-Jui Hsieh. Gradient boosted decision trees for high dimensional sparse output.

In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International

Conference on Machine Learning, volume 70 of Proceedings of Machine Learning

Research, pages 3182–3190. PMLR, 06–11 Aug 2017.

[95] Pablo Sprechmann, Roee Litman, Tal Ben Yakar, Alexander M Bronstein, and

Guillermo Sapiro. Supervised sparse analysis and synthesis operators. In C. J. C.

Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors,

Advances in Neural Information Processing Systems 26, pages 908–916. Curran As-

sociates, Inc., 2013.

[96] Trevor Strohman and W. Bruce Croft. Efficient document retrieval in main memory.

In Proceedings of the 30th Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, SIGIR ’07, pages 175–182. ACM, 2007.

[97] Kohei Sugawara, Hayato Kobayashi, and Masajiro Iwasaki. On approximately

searching for similar word embeddings. In Proceedings of the 54th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers), pages

2265–2275. Association for Computational Linguistics, August 2016.

[98] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip H.S. Torr, and Timothy M.

Hospedales. Learning to compare: Relation network for few-shot learning. In 2018

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

[99] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with

neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and

K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 27,

pages 3104–3112. Curran Associates, Inc., 2014.

[100] Yukihiro Tagami, Hayato Kobayashi, Shingo Ono, and Akira Tajima. Modeling user

activities on the web using paragraph vector. In Proceedings of the 24th International

Conference on World Wide Web, WWW ’15 Companion, pages 125–126. ACM, 2015.

[101] Yukihiro Tagami, Shingo Ono, Koji Yamamoto, Koji Tsukamoto, and Akira Tajima.

Ctr prediction for contextual advertising: Learning-to-rank approach. In Proceed-

ings of the Seventh International Workshop on Data Mining for Online Advertising,

ADKDD ’13, pages 4:1–4:8. ACM, 2013.

[102] Jian Tang, Jingzhou Liu, Ming Zhang, and Qiaozhu Mei. Visualizing large-scale and

high-dimensional data. In Proceedings of the 25th International Conference on World

Wide Web, WWW ’16, pages 287–297. International World Wide Web Conferences

Steering Committee, 2016.

103

[103] Ilya Trofimov, Anna Kornetova, and Valery Topinskiy. Using boosted trees for

click-through rate prediction for sponsored search. In Proceedings of the Sixth Inter-

national Workshop on Data Mining for Online Advertising and Internet Economy,

ADKDD ’12, pages 2:1–2:6. ACM, 2012.

[104] Chi Wang, Rajat Raina, David Fong, Ding Zhou, Jiawei Han, and Greg Badros.

Learning relevance from heterogeneous social network and its application in online

targeting. In Proceedings of the 34th International ACM SIGIR Conference on Re-

search and Development in Information Retrieval, SIGIR ’11, pages 655–664. ACM,

2011.

[105] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh Atten-

berg. Feature hashing for large scale multitask learning. In Proceedings of the 26th

Annual International Conference on Machine Learning, ICML ’09, pages 1113–1120.

ACM, 2009.

[106] Jason Weston, Ameesh Makadia, and Hector Yee. Label partitioning for sublinear

ranking. In Sanjoy Dasgupta and David McAllester, editors, Proceedings of the 30th

International Conference on Machine Learning, volume 28 of Proceedings of Machine

Learning Research, pages 181–189. PMLR, 17–19 Jun 2013.

[107] Robert Wetzker, Carsten Zimmermann, and Christian Bauckhage. Analyzing social

bookmarking systems: A del. icio. us cookbook. In Proceedings of the ECAI 2008

Mining Social Data Workshop, pages 26–30, 2008.

[108] Steven Euijong Whang, Hector Garcia-Molina, Chad Brower, Jayavel Shanmuga-

sundaram, Sergei Vassilvitskii, Erik Vee, and Ramana Yerneni. Indexing boolean

expressions. Proc. VLDB Endow., 2(1):37–48, August 2009.

[109] Ryen W. White, Peter Bailey, and Liwei Chen. Predicting user interests from contex-

tual information. In Proceedings of the 32Nd International ACM SIGIR Conference

on Research and Development in Information Retrieval, SIGIR ’09, pages 363–370.

ACM, 2009.

[110] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. Listwise approach

to learning to rank: Theory and algorithm. In Proceedings of the 25th International

Conference on Machine Learning, ICML ’08, pages 1192–1199. ACM, 2008.

[111] Chang Xu, Dacheng Tao, and Chao Xu. Robust extreme multi-label learning. In

Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’16, pages 1275–1284. ACM, 2016.

[112] Qiang Yang, Haining Henry Zhang, and Tianyi Li. Mining web logs for predic-

tion models in www caching and prefetching. In Proceedings of the Seventh ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD

’01, pages 473–478. ACM, 2001.

104

[113] Ian E.H. Yen, Xiangru Huang, Wei Dai, Pradeep Ravikumar, Inderjit Dhillon, and

Eric Xing. Ppdsparse: A parallel primal-dual sparse method for extreme classi-

fication. In Proceedings of the 23rd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’17, pages 545–553. ACM, 2017.

[114] Ian En-Hsu Yen, Xiangru Huang, Pradeep Ravikumar, Kai Zhong, and Inderjit

Dhillon. Pd-sparse : A primal and dual sparse approach to extreme multiclass and

multilabel classification. In Maria Florina Balcan and Kilian Q. Weinberger, editors,

Proceedings of The 33rd International Conference on Machine Learning, volume 48

of Proceedings of Machine Learning Research, pages 3069–3077. PMLR, 20–22 Jun

2016.

[115] Peter N. Yianilos. Data structures and algorithms for nearest neighbor search in

general metric spaces. In Proceedings of the Fourth Annual ACM-SIAM Symposium

on Discrete Algorithms, SODA ’93, pages 311–321. Society for Industrial and Applied

Mathematics, 1993.

[116] Wen-tau Yih and Ning Jiang. Similarity models for ad relevance measures. In

MLOAD - NIPS 2010 Workshop on online advertising, 2010.

[117] Wen-tau Yih, Kristina Toutanova, John C. Platt, and Christopher Meek. Learning

discriminative projections for text similarity measures. In Proceedings of the Fif-

teenth Conference on Computational Natural Language Learning, CoNLL ’11, pages

247–256. Association for Computational Linguistics, 2011.

[118] Hsiang-Fu Yu, Prateek Jain, Purushottam Kar, and Inderjit Dhillon. Large-scale

multi-label learning with missing labels. In Eric P. Xing and Tony Jebara, editors,

Proceedings of the 31st International Conference on Machine Learning, volume 32 of

Proceedings of Machine Learning Research, pages 593–601. PMLR, 22–24 Jun 2014.

[119] Shuai Yuan, Ahmad Zainal Abidin, Marc Sloan, and Jun Wang. Internet advertising:

An interplay among advertisers, online publishers, ad exchanges and web users.

CoRR, abs/1206.1754, 2012.

[120] Arkaitz Zubiaga. Enhancing navigation on wikipedia with social tags. In Proceedings

of Wikimania 2009, 5th International Conference of the Wikimedia Community,

2009.

105

	Introduction
	Background
	Rating Prediction
	Ranking
	Evaluation metrics
	Pairwise approaches
	Listwise approaches

	Top-k Retrieval
	High dimensional sparse vector space
	Dense vector space

	Inverted Index-based Retrieval System for Contextual Advertising
	Introduction
	Overview and Related Works
	Overview of Contextual Advertising
	Related Works
	Our Ad Serving System

	Methods
	Matching Function
	Learning a Translation Matrix
	Retrieval from AD Corpus and Implementation

	Experiments
	Offline Evaluation
	Online Evaluation

	Conclusion

	Multi-label Classification with an Extremely Large Number of Candidates
	Introduction
	Problem Formulation
	AnnexML
	Learning to Partition Data Points
	Learning Embeddings
	Faster Prediction using Approximate Nearest Neighbor Search on KNNG
	Comparison with SLEEC

	GPT
	Constructing an Approximate k-nearest Neighbor Graph using Label Vectors
	Learning a Linear Binary Classifier by Finding the Minimum Graph Cut
	Complexity Analysis
	Comparison with FastXML

	Experiments
	Results

	Related work
	Conclusion

	Representation Learning for Users' Web Browsing Sequences
	Introduction
	User Activities on the Web
	Data Analysis on Web Page Visits

	Existing Vector Models
	PV-DM
	PV-DBoW
	CBoW and Skip-gram

	Proposed Method
	Backward PV-DM
	Learning vector models

	Experiments
	Datasets
	Evaluation settings
	Proposed methods and baselines
	Results
	Effect of the data size

	Related Work
	Conclusion

	Conclusion
	Future Work

	Appendix
	Bibliography

