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Abstract

One-way car-sharing systems are becoming increasingly popular, and the

introduction of autonomous vehicles could make these systems even more

widespread. Shared Autonomous Electric Vehicles (SAEVs) could also allow

for more controllable charging compared to private electric vehicles, allowing

large scale demand response and providing essential ancillary services to the

electric grid. In this work, we develop a simulation methodology for evaluat-

ing a SAEV system interacting with passengers and charging at designated

charging stations using a heuristic-based charging strategy. The influence

of fleet size is studied in terms of transport service quality and break-even

prices for the system. We test the potential of the system to supply operating

reserve by formulating an optimization problem for the optimal deployment

of vehicles during a grid operator request. The results of the simulations

for the case study of Tokyo show that a fleet of SAEVs would only need to

be about 10%-14% of a fleet of private cars providing a comparable level of

transport service, with low break-even prices. Moreover, we show that the
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system can provide operating reserve under several operational conditions

even at peak transport demand without significant disruption to transport

service.

Keywords: autonomous vehicles, electric vehicles, mobility-on-demand,

operating reserve, vehicle-to-grid, demand response

1. Introduction

The ubiquitous presence of the internet and smartphones is allowing a

shift from car ownership to intelligent car sharing models of transportation.

One-way car sharing services (in which cars can be taken wherever they

are currently parked and left at any other place within a specified area)

are already commonplace in large cities in Europe [1]. The diffusion of

shared transportation can significantly change the vehicle ownership rateand

improve the efficiency of the transport sector
:
:
::::::

each
::::
car

:::::::::
sharing

:::::::
vehicle

:::
is

::::::::::
estimated

:::
to

::::::::
remove

::
9

::
to

::::
13

::::::::
vehicles

::::::
from

::::
the

::::::
roads

:
[2], as most private cars

are used less than 10% of the time [3].
::
It

::::
can

:::::
also

:::::::::
improve

::::
the

::::::::::
efficiency

:::
of

:::
the

:::::::::::
transport

:::::::
sector,

::::
as

:::::
high

::::::::
annual

::::::::::::
vehicle-km

:::::::::
traveled

::::
per

::::::::
vehicle

:::::::
create

:
a
::::::::

strong
::::::::::
economic

:::::::::::
incentive

:::::::::
towards

:::::::
highly

:::::::::
efficient

:::::::::
vehicles

:::::
[2].

:::::::::
Shared

::::::::::
transport

::
is

::::
also

::::::::::
expected

:::
to

:::
be

::::::::
cheaper

:::::
than

::::::::
private

::::::::::::::::
transportation.

:::::::::
Savings

:::
for

::::
the

::::::::
average

:::::::::::
American

:::::::::::
household

::::
are

::::::::::
estimated

:::
to

:::
be

:::::::
about

:::::::
$6,000

::
a

:::::
year

::
by

::::::::
joining

:::
a

:::::::
shared

:::::::::::
transport

:::::::::
program

:::::::::
instead

:::
of

::::::::
owning

::
a
::::::::
private

::::::::
vehicle

:::
[4].

:

The advent of autonomous driving technology will further speed up the

adoption of this transport mode, making it cheaper, more convenient, and

more suitable to be used efficiently in less densely populated areas [3].
:::::
more
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:::::::::::
convenient:

::::::::::
vehicles

::::
can

::::::
move

:::
to

:::::
pick

::::
up

:::::::::::
customers

:::::::::::::::
autonomously

:::::::::
without

:::
the

::::::
need

:::
to

::::::
move

:::
to

:
a
::::::::
parked

:::::::::
vehicle,

:
a
::::::::
service

:::::::::::::
comparable

:::
to

:::::
that

::
of

::
a
:::::
taxi

::::::::
without

::::
the

:::::
cost

:::
of

::::
the

::::::::
driver.

:::::
The

::::::::::::
popularity

:::
of

::::::::::
similarly

::::::::::::
convenient

::::
but

:::::::::
relatively

:::::::::::
expensive

:::::::::
services

:::::
such

:::
as

:::::
Uber

::::::
show

::::
the

::::::::::
potential

::::
for

::::
this

:::::
kind

:::
of

::::::::::
transport

:::::::
mode.

:
Autonomous vehicles have been extensively tested and are

planned to be commercially available by the next decade [5]. Advantages

of a car sharing system using autonomous vehicles include the efficiency

gains from automated driving(more precise and less wasteful driving, less

incidents),
:::::
with

::::
fuel

:::::::::::
economy

:::::::::::::::
improvements

:::
of

:::
4

:::
to

::::::
10%,

:
elimination of

the time spent for parking, and decreased need for parking spaces in cities

[4]. Autonomous vehicles also have the potential to significantly decrease

greenhouse-gas emissions in the transport sector,
::::::
with

:::::::::::
estimated

::::::::::
87%-94%

:::::::::
decreases

:::
in

::::::::::
per-mile

::::::
GHG

:::::::::::
emissions

:::::::::::
compared

:::
to

::::::::
current

::::::::
private

:::::::::
vehicles

::
in

::::
the

::::::::
United

:::::::
States

:::
by

::::::
2030,

::::::::
mainly

::::
due

:::
to

::::
the

::::::::::::
possibility

::
of

::::::
using

:::::::::
vehicles

:::::
sized

:::
to

::::
the

::::::::
specific

:::::
trip [6].

Shared autonomous vehicles can also facilitate the electrification of the

transport sector, as the cars involved can optimize their state of charge (SOC)

and their charging schedule while reliably ensuring service to the user [7].

This can overcome several problems currently hindering the wider adoption

of electric vehicles, such as the scarcity of charging stations [8], high cost,

and range limitations [9]. It is therefore important to study the impact

of this system on the electricity grid [10]. This type of car sharing—using

autonomous driving technology and battery electric vehicles—will be referred

to as Shared Autonomous Electric Vehicles (SAEV) in this work.

It is predicted that the widespread adoption of electric vehicles could
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significantly change the management and balancing of the electricity system

and facilitate the integration of intermittent renewable energy in the grid

[11].
:::
For

::::::::::
example,

::::::::::
Dallinger

:::::
and

:::::::::::
Wietschel

:::::::::::
[12] found

:::::
that

:::::
EVs

::::
can

::::::::
absorb

::::
over

::::::
50%

::
of

:::::
the

:::::::
yearly

:::::::
excess

:::::::::::
renewable

::::::::::::
generation

:::
in

::::
the

::::::
high

:::::::::::
renewable

::::::::
scenario

:::
of

:::::::::::
Germany

:::
in

::::::
2030

::::::
that

:::::::
would

::::::
have

::::::
been

::::::::::
curtailed

::::::::::::
otherwise.

Electric vehicles with vehicle-to-grid (V2G) power capability can also offer

several additional services to the electric grid, such as peak power gener-

ation, operating reserve, and regulation [13]. Implementation of V2G can

also allow a higher renewable energy penetration by further increasing grid

flexibility [14]. However, private electric vehicles are expected to put a large

burden on distribution systems, especially when considering large scale V2G

implementation [15]. By contrast, SAEVs can be more easily controlled

and optimized to implement fast, large-scale demand response [16]. This

would allow a deeper grid integration, which is fundamental to achieving

the potential environmental benefits of vehicle electrification [17]. SAEVs

would also allow easier utilization of electric vehicles for providing ancillary

services, which may be uneconomical for private vehicles [18]. Another po-

tential advantage of SAEVs is their ability to move autonomously to specific

charging stations. This allows for a direct connection to the high voltage

electricity transmission system in designated points without overloading the

low-voltage distribution network. The centralization of grid connection may

also help to implement efficient V2G connections by providing more balanced

and controlled electricity flow and improved safety equipment.

::::::::
Previous

:::::::
work

:::
on

:::::
the

::::::::
impact

:::
of

::::
car

:::::::::
sharing

:::::::::
systems

:::::
and

::::::::
SAEVs

:::::
has

:::::::
mostly

::::::::
focused

:::
on

::::
the

::::::::::
transport

::::::::::::::
implications,

::::::::
without

:::::::::::::
considering

:::
the

::::::::
impact
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::
on

:::::
the

::::::::
electric

::::::
grid.

::
In this work, a system of autonomous electric vehi-

cles is considered and its interaction with the power grid is investigated in

terms of charge scheduling and ability to supply operating reserve.
:
It

:::
is

:::::::::
assumed

:::::
that

::::::::
vehicles

::::
are

::::::::::
managed

:::
by

::
a

::::::::::
company

:::
or

::::::
entity

:::::
that

:::::::::
oversees

::::
the

:::::::
shared

::::::::::
transport

::::::::
service.

:::::::::
Control

::
is

:::
of

::::
two

:::::::
types:

::::
the

::::::::
vehicle

::::::::
routing

::::::::
control

::
is

::::::::::::
centralized,

::::::
with

::
a
::::::::
central

:::::::::::
authority

:::::::::
(control

::::::::
center)

::::::::::
assigning

::::::::::
available

::::::::
vehicles

:::
to

:::::
new

:::::::::::
passenger

::::::
trips;

:::::
the

:::::::::
decision

:::
to

::::::
move

::::
to

:::::::::
charging

:::::::::
station,

::::
and

:::::
how

:::::::
much

:::
to

::::::::
charge,

:::
is

:::::::::::::::
decentralized,

:::::
and

:::::::::
depends

::::
on

:::::
each

::::::::::
vehicle’s

:::::
SOC,

:::::::::
waiting

:::::::
times,

:::::
and

::::
the

:::::::::
current

::::
and

::::::::::
expected

::::::
price

:::
of

:::::::::::
electricity

:::::
and

:::::::::::
aggregated

:::::::::::
transport

::::::::::
demand.

:::::
The

:::::::::
vehicles

:::::
are

:::::::::
assumed

:::
to

:::::::::::::::
communicate

:::::
with

::::
the

::::::::
control

::::::::
center

::::::::::
reporting

::::::
their

::::::::
status

:::::
and

::::::
SOC

:::
in

:::::::
order

::::
for

::::
the

:::::::
control

:::::::
center

:::
to

::::::::::
optimize

::::
the

::::::::::::
assignment

:::
of

::::::
trips.

:::
In

::::::
case

::
of

:::::
grid

::::::::::
requests,

:::
the

::::::::::
charging

:::::::::
decisions

::::
are

::::::::::::
centralized

::::
and

:::::::::::
controlled

:::
by

::::
the

::::::::
control

:::::::
center

:::
to

:::::
reach

::::
the

::::::::::::
aggregated

:::::::
power

::::::::::::
generation

::::::::
needed.

:

The work includes a static transport model based on transport survey

data to simulate the transport patterns. Data from a transport survey for the

city of Tokyo was used as a case study. The vehicles satisfy trip requests while

charging their batteries according to a heuristics-based demand-response

strategy based on electricity price signals from the grid. The potential of

the system to participate in the operating reserve market and the influence

of several parameters on the results were tested.

The aim of this work is first to evaluate the feasibility of the autonomous

car sharing system in terms of transportation service quality and economic

performance. Subsequently, a new system for responding to grid capacity

requests is proposed and tested to evaluate the SAEV system performance
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as an operating reserve provider. In the system, the fleet of SAEVs provide

spinning and non-spinning operating reserve in response to grid operator

requests (both to generate energy and to absorb surplus generation). The

results show that a SAEV system is economically viable in terms of transport

service even at low request densities, and can be used reliably as an emergency

supply of energy when coordinated with the electric grid.

The work is organized as follows. In section 2 the existing literature

on the topic is reviewed. In section 3 the model proposed is presented.

This includes the transport model, the charge scheduling algorithm, and the

operating reserve model. The model evaluation criteria and the assumptions

and limitations of the study are discussed. The methodology related to the

case study is also presented in this section. In section 4 the results of the

simulations for the case study are discussed. This section is divided into two

parts: in the first part the optimal fleet size and the system’s break-even

prices are determined; in the second part the ability of the system to provide

operating reserve under a variety of scenarios using the findings of the first

part is investigated. In section 5 the conclusions are reported.

2. Related work

Previous work on the impact of car sharing systems and SAEVs has

mostly focused on the transport implications, without considering the impact

on the electric grid
:::::
This

::::::::
section

::::::::::
provides

::
a
:::::::::::
summary

:::
of

:::::::::
previous

::::::
work

::::
on

:::::::
shared

:::::::::::::
autonomous

::::::::
electric

:::::::::
vehicles,

:::::::
which

::::
has

::::::::
mainly

::::::::
focused

::::
on

::::::::::
transport

:::::::
aspects. Burns et al. [19] simulate a fleet of shared autonomous vehicles

(SAV) fulfilling the transport demand of a city in which numerical and
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analytical models were developed with simplified assumptions, such as ho-

mogeneous trip rates and simplified distance calculations without a road

network. The model was applied to several case studies in different contexts,

and the authors concluded that in all cases SAVs offered higher efficiencies,

lower costs and higher convenience to users, when compared to other public

and private transport modes. In the specific case study of Manhattan, it

was found that 9,000 SAV could replace over 13,000 taxicabs by satisfying

the same transport demand with a total cost of 0.31 $/km, compared to

2.5 $/km for current taxis, while decreasing waiting times from an average

of 5 minutes to 1 minute. Fagnant and Kockelman [3] also developed an

agent-based model of SAV using simplified transport assumptions. Macro

areas with homogeneous trip generation rates and gridded road network were

used. They concluded that SAV could provide adequate service with a fleet

size of about a tenth of the equivalent fleet of private vehicles, and that the

quality of service was dependent on the density of users. In [20], the transport

modeling framework MATSim was employed to predict the impact of SAV

on the modal share of the transport sector. On a simplified road network, the

results showed that SAV could be the dominant transport mode, potentially

also disrupting public transport. Liu et al. [21] used MATSim to simulate

a fleet of SAV in Austin, Texas, to investigate the rate of penetration of

SAV at different price levels. They found that mode split reaches over 50%

with a 0.31 $/km fare.
::::
The

:::::::::
authors

::::
did

::::
not

::::::::::
consider

:::::::::
changes

::
in

:::::::::::
transport

::::::::
patterns

:::::
due

:::
to

::::::::
SAVs,

::::
but

::::::
only

::::::::
change

:::
in

:::::::
mode

:::::
split

::::
for

::::
the

:::::::
same

::::::
trips.

Other authors have explored the impact of SAV on urban form, including

urban parking demand, suggesting that SAV could eliminate the need for
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90% of current parking space for users of the system [22].

Spieser et al. [23] used a more detailed and realistic transport model to

study the fleet sizing problem and estimate the economic benefits of a fleet

of SAV replacing all other private transport modes in Singapore, based on

actual transport data. The authors determined both the minimum fleet size

to meet the transport demand of the city and the fleet size necessary to obtain

a certain peak waiting time. The results show that, for the specific case of

Singapore, the personal mobility needs of the entire population can be met

with a fleet size of a third of the total number of passenger vehicles currently

in operation.
:::::
This

:::::
work

:::::
also

:::::::::
assumes

::::::::::::
unchanged

::::::::::
transport

::::::::::
patterns.

:

Levin et al. [24] focused on studying the effect of SAVs on traffic conges-

tion by introducing SAVs in existing traffic simulation models. The results

show that the level of service of SAV may be lower than predicted by previous

studies when accounting for traffic congestion, since SAV may shift demand

from other modes and increase the number of passenger-km traveled by car.

However, they found that ride-sharing (more passengers sharing the same

vehicle) was effective at solving this problem. Moreover, differential pricing

(peak price) may also be beneficial in limiting peak congestion.

Several other studies have dealt with the problem of shared autonomous

vehicle rebalancing strategies [25, 26, 27], which is however not considered in

this work. In all these studies the energy aspects were not considered, and

the vehicle energy source was generally not specified.

:::::
Some

::::::::
studies

::::
also

::::::::::::
considered

::::
the

:::::::::
charging

::::::::::::
constraints

:::
of

::::::::
electric

:::::::::
vehicles,

::::::::
however

::::::
they

::::::::
assume

::::::::::::::::
uncoordinated

::::::::::
charging.

:
Zhang et al. [28] developed

a model predictive control approach for the optimization of an autonomous
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car-sharing system with rebalancing which considers electric charging con-

straints. The problem is solved as a mixed integer linear program (MILP).

Although
::::
The

:::::::
model

::::::
does

:::::
not

:::::::::
consider

:::::
the

:::::::::
position

:::
of

::::::::::
charging

:::::::::
stations

::::
and

:::::::::
assumes

:::::::::::::
uncontrolled

::::::::::
charging

:::
of

:::::::::
vehicles.

:::::::::::::::
Furthermore,

:::::::::
although

:
their

approach is optimal within the model assumptions, the MILP approach to

the problem make the model not scalable to systems with large number of

nodes.

Rigas et al. developed a mixed integer programming optimization for

shared electric vehicles with battery swapping [29]. Biondi et al. [30] propose

an optimization formulation for the positioning of charging station for electric

car sharing systems and analyze the impact of these fleets on the electricity

grid.

Chen et al. [7] studied the operation of a SAEV system with a model

based on [3]. The agent-based transport model methodology is similar, but

the investigation is expanded by including charging of the electric vehicles

serving 10% of trip demand in a medium-sized metropolitan area. The

analysis includes a charging station generation phase to find the number

and position of charging stations needed to serve passengers within a certain

waiting time. The model was run in different scenarios to investigate the

sensitivity to several parameters. The study considers short- and long-range

type of vehicles, with slow and fast charging. It was found that although

double the number of vehicles are needed for the case with short-range and

slow charging vehicles, this is the most profitable scenario. For the case study

in Austin, Texas, the results indicate that each SAEV can replace between 5

and 9 private vehicles, depending on range and speed of charge. The model
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does not consider ‘smart’ charging and found that simultaneous charging of

the fleet at peak times may be problematic for the electric grid.

Shared non-autonomous electric vehicles (car sharing systems) have also

received much interest in recent years, and there are a number of studies

focused on the integration of these vehicles with the electricity system. Fre-

und et al. [31] developed a control and optimization system to manage

the charging of shared electric vehicles in a smart microgrid in order to

maximize the use of renewable energy sources. In another study [1], a model

of an electric vehicle car sharing system with reservation was developed. The

model was based on charging stations serving requests in the vicinity. The

fact that demand is known in advance through reservation allows for the use

of an optimization algorithm, which is also used to determine the optimal

fleet size by maximizing the car sharing operator’s net revenues and the

user’s benefit, also taking into account the necessary car relocations among

charging stations. Several authors explore the feasibility of taxi services using

electric vehicles. Bischoff and Maciejewski [32] studied a fleet of electric (non-

autonomous) taxis through MATSim. The authors conclude that electric

vehicles can be used as taxis and only a limited number of charging pods

is sufficient. However, the work does not focus specifically on the grid-side

aspects. In another study [33], the operation of a electric taxi fleet with

trip reservation in Singapore was investigated. An interesting aspect of the

results is that changing the number of charging stations had limited effect

on the performance of the system.

The use of electric vehicles as grid service providers has been studied

extensively [34], demonstrating the feasibility and effectiveness of using these
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vehicles for grid stabilization and to replace fossil fuel power plants in grids

with high penetration of renewable energy [35]. However, these studies all

focus on private vehicles.

In summary, while there have been a number of studies considering as-

pects of electric vehicle systems—some as shared taxis, some looking at

charging-system balancing—it is apparent that these have not covered the

situation of shared autonomous electric vehicles operating as both transport

and grid storage / ancillary services provider under situations with minimal

advance knowledge of the transportation required (i.e. no reservation). The

present study therefore seeks to address this gap in knowledge.

Nomenclature

A. Indices

h Hour

k Trip

t Time step

v Vehicle

B. Simulation variables

Ai Area of node i

av(t) Waiting time variable

BEP Break-even price

di,j Distance between node i and j

ev(t) Energy exchanged

f(h) Frequency of trips at hour h

` Length of time step (minutes)

m(t) Price of electricity

pv(t) Charging power

qv(t) State of charge (SOC) of battery
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rdk Destination node of trip k

rok Origin node of trip k

rtk Time (hour) of trip k

rwk Weight of trip k

isv Binary state variable i

T Total number of time steps

TPH Average trips per hour

V Total number of vehicles

wv(t) Distance to current destination

Wpass,v Total distance traveled with passengers

Wtot,v Total distance traveled

λ(t) Expected number of requests at time step t

∆max Price of electricity at which car charge at maximum rate

πv(t) Agent price

C. Operating reserve simulation variables

rmax(t) Total power available for request at time t

αv Initial delay of v before connection

Γ Duration of the request

δ Allowed delay of request

εv(τ) Energy delivered by v at minute τ

τ Time step

D. Parameters and constants

acon Time needed to connect to charging station

aidle Maximum idle time

acharge Minimum charging time

Cbattery Cost of battery

Ccar Cost of car (with no battery)

CAP Battery capacity (kWh)

EC Electricity consumption of cars (kWh/km)

hz Prediction horizon
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Lbattery Life of battery in equivalent full cycles

Lcar Life of car not including battery (years)

pi,j(t) Probability of a trip starting in i with destination j

pmax Maximum charge rate (kW)

ppeak Peak charge rate for short periods (kW)

qcharge SOC at which car move to charging stations

qmax Maximum SOC in normal operation

qmin Minimum SOC in normal operation

u(t) Average speed of vehicles (km/time step)

PSP Passenger service priority factor (JPY/km or USD/km)

β Ratio of trip distance to Euclidean distance

η Battery round-trip efficiency

E. Acronyms

JPY Japanese Yen

SAV Shared autonomous vehicle

SAEV Shared autonomous electric vehicle

SOC State of charge

TOD Time of day pricing

USD U.S. Dollars

V2G Vehicle to grid

3. Methods

This section describes the methods used in the work. The first part of the

section deals with the general methodology for the transport model and the

operating reserve request model. In the second part, the specific case study

methods are reported. These include the calculation of the parameters used.
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3.1. Transport model

The first, and fundamental component of this study, was the transport

route and trip selection model. This is used to determine where SAEVs

travel, which is primarily in order to satisfy customer requests. The model

applied in this study was developed in MATLABTM and is based on a

simplified road network, represented by nodes at specific coordinates and

their associated areas.

The simulation evolves through T time steps. At each time step, trip

requests can arrive at each node of the model, with an associated destination

node. A fleet of V autonomous electric vehicles move from one node to

another satisfying trip requests.

In order to have an acceptable computational time for the simulation,

the actual street layout is not considered. The distance is calculated as the

Euclidean distance times a tortuosity factor β that represents the lengthening

due to the city’s street layout. The distance between nodes is stored in a

distance matrix where each element di,j represents the distance between node

i and node j.

Distances inside the same node (for trips starting and ending in the same

node) are calculated using the approximation of the average distance between

two uniformly distributed random points in a square:

di,i = 0.52 ·
√
Ai · β (1)

Where Ai is the area associated with node i.

These assumptions do not alter the probabilistic location of requests’

origins or destinations, as these are the initial given conditions of the model.
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They do, however, fail to consider the congestion effect and the fact that a

real road network is not homogeneous. This is considered acceptable for this

work, as the aim is not to simulate the change in the city traffic patterns,

but to understand the energy aspects of SAEV as a ‘marginal’ player (that

does not significantly alter the transport patterns) in the transport system.

This also makes the model readily adjustable to alternative cities if the other

required data is available. It is, however, important to consider the average

effect of traffic congestion, because it can significantly change the pattern

of availability of vehicles during peak times. Traffic congestion is therefore

introduced in the model as a variable average speed of vehicles. This is

represented with a periodic time-varying vector u(t) which represents the

distance traveled by each vehicle in a time step of the simulation. This is

related to the average speed of vehicles in km/h by a factor `/60.

Table 2: States of vehicles

state condition
:::::::::::
description

:

0 charging, not available

1 charging, available

2 idle, available

3 moving, available after drop-off

4 moving to charging station, not available

5 connecting to charging station, not available

The current state of each vehicle v is registered as a binary variable

isv(t):::::::::::::::

isv(t) ∈ {0, 1}, representing different situations. If the vehicle is cur-

rently in state i, the corresponding state variable isv(t) is set to 1, otherwise
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it is set to 0. A summary of the different states is presented in Table 2 and

Fig. 1. Vehicles can be in only one state at any given time:
:
.
:

5∑
i=0

isv(t)= 1

Figure 1: Simplified outline of the model. Yellow backgrounds indicate connection

to the grid, green backgrounds indicate movement.

3.2. Trip requests

Trip requests are generated stochastically during the simulation. The

number of requests at each time step t is decided through a Poisson pro-

cess with a periodically time-varying rate λ(t). The number of requests in

each time step t is therefore sampled from the Poisson distribution with a

cumulative mass function (CMF) defined as:
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CMF (x) =
x∑
i=1

λ(t)i · e−λ(t)

i!
; (2)

Each request is then associated with a starting node and a destination

node [i, j]. The origin/destination pair is extracted from a periodically time-

varying distribution where pi,j(t) is the probability associated with the pair

[i, j] at time t and
∑

i

∑
j pi,j(t) = 1. It is assumed that no reservation

is possible: all passenger requests are expected to be fulfilled immediately.

This can be considered to be the worst case (conservative) scenario, because

if reservations were possible, this would always allow cars to be repositioned

more efficiently. This is a significant difference from much of the previous

work that includes reservations, making the system predictable in advance,

and potentially more efficient.

Trip requests generated are assigned at each time step to available vehicles

through the Kuhn-Munkres algorithm (Hungarian algorithm, [36]), which

matches vehicles and requests to minimize total travel distance. A vehicle is

considered to be available in any of the following cases:

• it is charging and has been charging for more than a minimum charging

time (state 1);

• it is parked idle (state 2);

• it is currently transporting a passenger (state 3)

In the last case, the vehicle will travel to pick up the next passenger after

the current one has reached their destination. In terms of system states the

constraint is:
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1sv +2 sv +3 sv = 1 (3)

A further necessary condition is that the vehicle has enough charge for

the specific trip request:

(wv(t) + dk,i + di,j) · EC < (qv(t)− qmin) · CAP (4)

Node k is the last destination of the vehicle (or the current position for

idle or charging vehicles), wv is the distance to the last destination, EC is the

energy consumption, q is the SOC and CAP is the battery capacity. Note

that the charge available is calculated considering that vehicles should never

be below a minimum SOC when the destination is reached, in order to have

enough charge to move to a charging station. When a request is assigned,

the vehicle’s distance to destination wv is increased, the destination node k

is updated and the vehicle’s state is changed:

wv(t+ 1) = wv(t) + dk,i + di,j

1sv(t+ 1) = 0

2sv(t+ 1) = 0

3sv(t+ 1) = 1

(5)

At each time step, the distance to destination will decrease: wv(t+ 1) =

wv(t)− u(t), until wv(t) = 0 and the destination is reached.

The request is rejected if it is not assigned to a vehicle in the same

time step, thus not allowing request queuing. The number of these rejected

requests is later used as one indicator of system performance.
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3.3. Charging stations

Vehicles can only charge their batteries at designated charging stations.

The charging stations are placed at specific nodes in the grid, and vehicles

need to travel to these nodes in order to charge. Autonomous vehicles

are assumed to be able to connect to a charging pod automatically and

with minimum delay. Several implementations of this technology have been

proposed [37]. Charging station congestion has not been assessed in this

work, so it is assumed that charging spaces are always available. This is

considered reasonable since charging stations would be sized according to

usage patterns.

A vehicle with no requests pending moves to a charging station either

when its battery’s SOC is below a certain level qcharge, or when it has not

been assigned requests for a certain period of time (maximum idle time

aidle). In this last case, this also helps the re-positioning of vehicles that find

themselves in peripheral nodes with limited request rates. Vehicle reaching

a charging station start charging after a certain delay acon, to account for

the time to physically connect to the pod. Once it starts charging, the

vehicle keeps charging for at least a minimum charging time acharge to avoid

continuous disconnection (see Table 3). After the time threshold is reached,

the vehicle becomes available for passengers, while still connected to the

grid. It therefore participates in the assignment algorithm, although with

lower priority compared to an idle vehicle: if the two vehicles have the same

distance to the request, the idle vehicle is chosen. The vehicle stays connected

otherwise and it therefore counts as an additional storage for the grid.

The number of time steps of delay in each case is assigned to the variable
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av(t), which evolves as follows:

av(t+ 1) = max(av(t)− 1

+ (0sv(t+ 1) ·5 sv(t)) · acharge

+ (2sv(t+ 1)−2 sv(t)) · aidle

+ (5sv(t+ 1) ·4 sv(t)) · acon, 0)

(6)

The first two terms inside the max expression in (6) accounts for the

decreasing delay at each time step. The third term accounts for the minimum

charging time, the fourth term for the maximum idle time, and the fifth term

for the time to connect to a charging station. Note that av is always non-

negative. Moreover, when terms 3 and 5 are nonzero, they are always positive

and av(t) in (6) is necessarily zero per (12) and (17).

3.4. Charging

All vehicles in the simulation are battery electric and therefore need to

charge to be able to serve the passenger requests. A heuristics-based charge

scheduling algorithm is used in the simulations, and the interaction between

the power grid and the vehicles is mediated by the electricity price from the

grid. A price-based demand response is helpful in balancing the grid in the

case of high penetration of renewable energy [38].

The charge scheduling algorithm is based on an ‘agent price’ πv. In this

work, the agent price is a measure of the value of electricity stored in each

vehicle. In other words, the agent price is the ‘perceived’ value of electricity

for each agent (vehicle) at a certain time.
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The vehicle will buy electricity when the agent price is higher than the

electricity price. In particular, the vehicle will charge at a rate proportional

to the difference between π and the electricity price, up to a maximum ∆max,

which corresponds to the maximum charging rate pmax. The unconstrained

rate of charge, or the proportion of the maximum power that would be used

in absence of other constraints, can therefore be defined as:

bv(t) = max(min(
πv(t)−m(t)

∆max

, 1) , −1) (7)

Where m(t) is the price of electricity from the grid. ∆max was set at

30 JPY/kWh. This behavior was introduced to increase the system stability

when the agent price is close to the price of electricity. The energy exchanged

(in kWh) at time step t is therefore:

ev(t) = (0sv(t) +1 sv(t)) ·max

(
min

(
bv(t) ·

pmax · `
60

,

CAP · (qmax − qv(t))+
)
, CAP · (qmin − qv(t))−

) (8)

The shorthand notation used in (8) is defined as: x+ := max(x, 0), x− :=

min(x, 0). Equation (8) refers to the energy reaching the vehicle and thus

does not account for the efficiency of the battery, which is counted only for

the charging cycle when calculating the cost of the energy. ev(t) is positive

when the vehicle is charging, and negative when discharging.

It is assumed that in order to calculate the agent price, predictions of

short-term future price and transport demand are available to the system up

to a certain horizon. Moreover, it is assumed that the electricity price is not
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influenced by the behavior of SAEVs (the model simulates a small enough

fleet of SAEVs). This is justified by the scale used in the simulations. Even

assuming 2000 vehicles (the maximum number used in simulations) charging

at the same time at 10 kW, the total load would be 20 MW, which is less

than a thousandth of the average power generation by Tokyo Electric Power

Company (TEPCO) of ∼23 GW in 2015 [39].

The algorithm is based on the average of expected future prices and

transport demand as follows:

πv(t) =

∑hz
j=1 (m(t+ j) + λ′(t+ j) · PSP/EC)

2 · qv(t) · hz
(9)

λ′(t) =
λ(t) · 60

` ·
∑t−1

t−1440/` λ(t)
(10)

Where πt is the agent price at time t, hz is the prediction horizon for future

prices, PSP is the passenger service priority factor, and λ′ represents the

relative rate of requests in the time step compared to the total in the previous

24 hours, normalized as a rate of trips per hour. The PSP (expressed in

JPY/km or USD/km) is a weighting parameter used to allocate a certain

amount of energy to transport requests as opposed to energy storage. A

higher PSP would put more priority on passengers, reducing probability of

dropped requests and possibly waiting times, but also rendering storage less

effective. The simple equation allows for a fast calculation of the agent price

at each time step for each vehicle.

The state of charge of each vehicle will then evolve according to:

qv(t+ 1) = qv(t) +
ev(t)

CAP
− u(t) · EC

CAP
· (3sv(t) +4 sv(t)) (11)
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In accordance with the model described, the state variables evolve ac-

cording to the following equations:

0sv(t+ 1) =0 sv(t) + (5sv(t)−0 sv(t)) · (1− sgn (av(t))) (12)

1sv(t+ 1) =1 sv(t) +0 sv(t) · (1− sgn (av(t))) (13)

2sv(t+ 1) =2 sv(t) +3 sv(t) · (1− sgn (wv(t))) (14)

3sv(t+ 1) =3 sv(t) · sgn (wv(t)) (15)

4sv(t+ 1) =4 sv(t)−4 sv(t)) · (1− sgn (wv(t))) (16)

5sv(t+ 1) =5 sv(t)−5 sv(t) · (1− sgn (av(t))) +4 sv(t) · (1− sgn (wv(t))) (17)

with sgn(x) the sign function which is 0 when x = 0, 1 when x is positive

and −1 when x is negative.

3.5. Operating reserve model

The potential for the cars to act as operating reserve is subject to the

speed at which they can deploy capacity, and for how long. To evaluate these

factors, a request mechanism was implemented in the model. An operating

reserve request in this model is characterized by a duration Γ and an allowed

delay δ. At time step t of the simulation the system is tested to calculate
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the maximum theoretical operating reserve power available rmax(t). This is

the maximum constant power deliverable for the request duration.

It is assumed that during an operating reserve request the vehicles will put

priority in satisfying the grid operator request over new passengers’ requests

if necessary. Vehicles can therefore be called back to charging stations to

contribute. The rate at which these vehicles can be called back determines

the delay in fulfilling the request and the overall energy and power available.

Vehicles with pending passenger requests (already accepted) can move to

charging stations only after transporting their passengers, thus affecting

their connection time
::
or

:::::
grid

::::::::
waiting

:::::
time. Moreover, in these special cases,

vehicles are allowed to reach the full range of battery capacity from 0% to

100% SOC if needed.

The calculation of the power available progresses with a time step τ

through the duration of the grid operator request. For each vehicle v, the

time needed to deploy capacity α is calculated, subtracting the allowed delay

δ of the request:

αv = max

(
0 , (2sv(t) +3 sv(t) +4 sv(t)) ·

(
wv(t) + di,j

u(t)
+ acon

)

+5 sv(t) · av(t)− δ

) (18)

with i the vehicle’s node (or current passenger’s drop-off node) and j the

node with the closest charging station. Vehicles which are already connected

to a charging station will always have a time delay of 0 minutes. The state

of charge at the time of connection to the charging station is also calculated

for each vehicle:
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qv,conn = qv(t)− (wv(t) + di,j) ·
EC

CAP
· (2sv +3 sv +4 sv) (19)

The energy delivered at each time step of the request by each vehicle is

referred to with εv(τ). In order to have the maximum energy delivered the

following objective function should be maximized:

fp(εv) =
∑
τ

∑
v

εv(τ) (20)

Also, it is desirable that the minimum number of vehicles are used for the

grid request, in order to limit the disruption to the transport service. The

cost function can therefore be introduced:

fs(cv) = ·
∑
v

cv (21)

cv ∈ {0, 1} (22)

where cv is a binary variable that represents the commitment of vehicle

v for the request. Equation (21) can be considered the cost of commitment

of each vehicle, which is paid only when the vehicle is used (called back to

the charging station). The overall objective function to maximize is then:

f(x) = fp(εv)− b · fs(cv) (23)

b is the secondary objective’s relative weight. Only vehicles that are

connected at time τ can contribute to energy delivery:

εv(τ) = 0 τ < αv (24)
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moreover, the energy deliverable at each time step is constrained by the

maximum power:

0 6 εv(τ) 6
ppeak
60

(25)

The state of charge of each vehicle has to remain within the interval [0, 1]

at each time step:

0 6 qv,conn −
∑τ

k=1 εv(k)

CAP
6 1 τ ∈ Γ (26)

The commitment costs are introduced as:

∑
τ

εv(τ) 6
ppeak
60
· Γ · cv (27)

meaning that if the commitment variable cv is 0, vehicle v can not supply

energy. A limit to how many vehicles can be used was also introduced, to

ensure that there are always enough vehicles left for the transport service:

∑
τ

cv 6 z · V (28)

where z is the maximum ratio of vehicles that can be used for the grid

request. This value is only relevant during periods of relatively low passenger

request rates, for example at night, since most of the times the number of

vehicles used is limited by other factors. In the simulations, z was chosen

as 0.7. Choosing a lower value would put more priority on the passenger

requests. The last constraint dictates that the power delivered should stay

constant during the request time:
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∑
v

εv(τ + 1) =
∑
v

εv(τ) τ ∈ Γ (29)

The problem can therefore be stated as:

maximize
x

f(x)

subject to (22), (24), (25), (26), (27), (29)

(30)

The problem (30) is a mixed integer linear program and was solved with

the built-in MATLAB function intlinprog.

The disruption to the transport service during and after the request is

also investigated. During a request, the vehicles participating will stay in

state 0, thus not available, and their power exchange will be determined by

the optimization results. Vehicles not participating in the operating reserve

request are not permitted to exchange power with the grid during the request

time, so that the system acts as a single agent. Moreover, as mentioned

previously, during the request vehicles can discharge until they reach 0 state

of charge. The final impact on the transport service is assessed by the number

of extra rejected requests and extra minutes of waiting times when compared

to the base scenario.

3.6. Transport system evaluation

In order to evaluate the economic feasibility of the SAEV system, a

conservative estimate of the costs was made (see Table 4). The values were

estimated based on currently available electric vehicles and on estimates of

the price of autonomous vehicle control hardware (see section 3.9). The life

expectancy of the vehicle is defined in years, while the life of the battery is
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defined by its total number of full cycles (100-0-100% SOC). The cost of the

vehicle will therefore be considered a fixed cost based on the lifetime of the

vehicle, while the cost of the battery will depend on its use (charge/discharge

cycles).

To assess the cost of the system, the break-even price (BEP) is used. This

is defined as the minimum price per km the passengers have to pay to cover

the total costs of the SAEV system. Any price higher than the BEP will be

a net profit for the system. The BEP is calculated based on the results of

the simulation:

BEP =

∑
v (V Cv + FCv)∑

vWpass,v

(31)

where V Cv and FCv are the variable and fixed cost, respectively, for

vehicle v, and Wpass,v is the distance traveled with passengers for vehicle v.

The BEP is expressed in JPY/km (or USD/km). The system would incur

further overhead costs, such as the cost for managing the assignment system.

However, for simplicity, these are assumed to be included in the overall price

of the vehicle (fixed costs). The variable and fixed costs are:

V Cv =

∑
t ev(t)

Lbattery · CAP
· Cbattery +

∑
T

ev(t) ·m(t) (32)

FCv =
Ccar · T · `
Lcar · 525600

(33)

Where Cbattery and Ccar are the cost of the battery and the vehicle,

respectively; Lbattery and Lcar are, respectively, the life of the battery (in

number of cycles) and the vehicle (in years); 525600 is the total number of

minutes in a year.
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The variable cost depends on the specific vehicle (function of the total

distance traveled), while the fixed cost is the same for each vehicle. The total

costs are then the sum of all the individual vehicles’ costs. Moreover, the

system efficiency is also calculated as:

Efficiency =

∑
vWpass,v∑
vWtot,v

(34)

where Wtot,v is the total distance traveled.

3.7. Model assumptions, validation and limits

Validation of the model is important in ensuring the credibility of the

results. While it is not possible to validate the model with real world demon-

stration or experiment, it is possible to validate the internal consistency

and performance against theoretical expectations. The influence of model

parameters was verified with sensitivity analysis. Model parameters such as

idle time and battery capacity were chosen through sensitivity analysis to

maximize BEP and minimize waiting times. The model’s limitations come

primarily from the assumptions made to make the simulations possible with

limited data. The main simplifying assumption is related to the transport

simulation, as the city’s road network is not considered. This is to allow for

a faster simulation time and also due to the difficulty of properly considering

traffic congestion in the simulations.

Other simplifying assumptions are related to the energy aspects of the

model. Detailed charge and discharge behavior of batteries is not considered:

charge power and charging/discharging efficiency are assumed to be the same

at any SOC level. This is considered acceptable for this level of analysis.
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This is further justified by the fact that the simulations assume relatively

conservative charging power levels. Moreover, the detailed electric grid is

not considered: the model assumes that there are no transmission capacity

constraints, and does not consider transmission losses. This is justified by

the assumption that the centralized nature of charging stations allow vehicles

to be connected directly to the medium or high voltage transmission grid,

as opposed to the distribution network. Moreover, the positioning of these

charging stations could be optimized to minimize power losses. These aspects

were not considered in this paper, and are planned as the focus of future work.

Another limitation of the model is the consideration of static transport

patterns. It is possible that the service will also attract people currently

using public transportation or other means, thus affecting the position and

time of trips from the survey. All these simplifying assumptions have been

previously used in most of the models reviewed in section 2. Numerical

assumptions in the case study were backed by references whenever possible.

The results are intrinsically uncertain due to the lack of real-world examples

of commercial shared autonomous vehicle fleets and due to the experimental

nature of this technology, which makes it impossible to compare the model

with real data. However, despite this limitation, the internal and theoretical

consistency should provide sufficient validation of the model‘s demonstrative

analytical capacity for the case study presented.

3.8. Case study: transport data

The case study examined here is based on the Tokyo Person Trip Survey

2008 [40], a survey of around 2 million trips in the Tokyo metropolitan area.

The 2008 survey is the latest available survey released for Tokyo. Although
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somewhat old, the demographics and infrastructure of Tokyo has remained

stable and it is expected that this importantly implies a relatively stable

demand pattern when compared to 2008. Infrastructure and ridership of all

major railways are shown to be mostly unchanged between 2008 and 2015,

and in the same period, the length of roads in Tokyo city changed by less

than 1% [41].

The survey associates the origins and destinations of trips to zones, cor-

responding to specific addresses in Tokyo. These geographical zones were

used in the model as the reference nodes. The geographic coordinates of

the zones were found from the addresses reported in the survey using the

Google Maps Geocoding API [42]. The approximate area of the zones was

also found and was used as the area associated with the node. In order to

have a representative collection of trip characteristics for a city, the area of

service in the simulations was limited to a central 40x40 km area of Tokyo,

so only trips starting and ending in zones in this area were considered. This

is approximately equivalent to the 23 special wards of Tokyo, which are the

core and the most populous part of the city. The selected area includes 514

zones, which are selected as the nodes in the model. 34.5% of all the trips

in the survey start and end in the central zones selected. The centers of the

nodes selected are shown in Fig. 2.

Most of the trips in the survey are by public transport. However, for

the purpose of this study, only trips by car or taxi were considered. These

are the trips with characteristics more likely to be similar to trips done with

the SAEV system. These trips represent about 20% of the total trips in the

survey. Trips by car or taxi in the selected area are a total of 73,000, or
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Figure 2: Map of nodes in central Tokyo. Blue and red dots
:::::
Dots

:
represent the

approximate location of the center of the node. From [40]. Red dots represent the

position of
:::::
nodes

:::::
with

:
charging stations in the simulation.

3.8% of the total trips in the survey. Of these, only about 70,000 are found

to have a reported trip starting time. These are the trips that were used in

this work. Although this is a small proportion of the total trips, it should be

noted that the aim of the system is not to cover 100% of trips, but rather

enough of them for the system to be sustainable. Further work could consider

the migration of bus or train-based trips onto the SAEV service, but that is

not the focus of the current study.

Each trip in the survey also has a starting time and a weight. The
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(a)

(b)

Figure 3: (a) cumulative distribution of trip distance and (b) distribution of trip

starting time from transportation survey [40]

weight is used to indicate the relative significance of that specific trip and to

normalize the survey results over the total demographics of Tokyo. Although

trip starting time is specified by hour and minute, it was found that most

trips start at minute 0 of each hour. The minute information was therefore

judged to be unreliable and was not considered in this work.

Each selected trip k is then defined with four values [rwk, rtk, rok, rdk]

to indicate respectively associated weight, hour of departure (0-23), origin

node, and destination node. The probability pi,j(t) was found as:
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pi,j(t) =

∑
k′ rwk′∑
k rwk

, k : rtk = t′, k′ : rtk′ = t′, rok′ = i, rdk′ = j (35)

where t′ = b((t · `− 1) mod 1440)/60c is the hour of the day correspond-

ing to time step t.

The relative number of trips departing at hour h from the survey is:

f(h) =

∑
k′ rwk′∑
k rwk

, k′ : rtk′ = h (36)

At each time step t (at hour of the day h), the rate of the Poisson process

in (2) is then:

λ(t) = TPH · 24 · f(t′) · `/60 (37)

where TPH is the average rate of trips per hour.

The ratio of trip distance to Euclidean distance (tortuosity factor) was

determined by testing random trips within the selected area and averaging

the value of effective distance to Euclidean distance between the coordinates.

Only coordinates associated with an address in the immediate vicinity were

considered, thus excluding unoccupied areas. The associated addresses and

the actual travel distance was found with the Google Maps Geocoding API

[42]. 1298 origin-destination pairs were tested, with a resulting average β =

1.48, which was used in the simulations. It was also confirmed that the value

of β is not significantly correlated with any trip characteristic, such as travel

distance or geographic area, so that the use of a single average value can be

considered acceptable.
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30 charging stations were positioned in total. A sensitivity analysis

showed that increasing the number of stations up to 30 had a significant

impact on the model, while a higher number of charging stations did not

significantly change the results. The position of charging stations in the case

study was determined in order to minimize (to a large extent) the distance of

travel from each node to the closest station. The first station was positioned

in the node for which the sum of the distances to all other nodes is minimal.

Subsequent stations were positioned in the same way, taking into account the

presence of previous stations (i.e. considering only distances to the closest

station). This algorithm is not optimal, but provides a good approximation

of a distribution minimizing travel distances from each point.

Three levels of traffic congestion were considered: peak, average, and off-

peak, at 20, 30 and 40 km/h, respectively. The lowest speed of 20 km/h was

chosen as the reported average speed in central Tokyo at peak time [43]. The

average and off-peak speeds were chosen as 1.5 and 2 times the peak speed,

as precise data on average speed in Tokyo could not be found. It should be

noted that the off-peak speed does not affect results significantly, since the

limiting factor for fleet sizing and operating reserve service is the minimum

speed at the moment of maximum transport request rate. The speed in km/h

is related to the distance traveled in one time step u(t) in the simulation as:

u(t) = speed · `/60.

3.9. Case study: vehicle characteristics and costs

The parameters chosen for the vehicles are summarized in Table 4. Elec-

tricity consumption of vehicles EC was chosen at 0.15 kWh/km, taken

from [44] and similar to the Nissan Leaf energy consumption at city speeds
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Figure 4: Average speed during the day.

[45]. Battery cycle life was estimated at 1500 full cycles. Studies show

that lithium-ion batteries for electric vehicles have low capacity fade even

after 1000 cycles [46]. Real-life examples for lithium-ion batteries confirm

these findings. Tesla Model S batteries have shown less than 10% capacity

degradation over 700 cycles in surveys of private users [47] and the Powerwall

(stationary Li-ion battery) from the same company offers a warranty of 60%

capacity retention after 10 years with unlimited cycles [48]. A more controlled

charging schedule can also contribute to increase battery life. Uddin et al.

demonstrate an increase in battery life for electric vehicles when using smart
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charging with V2G compared to private charging at home [49]. Capacity

fade of the battery is not considered in the model, thus the stated capacity

should be considered as an average during the battery life.

Prices are given in Japanese Yen (JPY) and US Dollars (USD), with a

conversion rate of 1 JPY=0.009 USD (rate as of January 2018). Autonomous

driving technology is expected to add $7,000 to $10,000 to the price of a

vehicle by 2025 [50]. Fagnant and Kockelman estimate $10,000 added cost

for early adoption [51]. A conservative estimate of 5 million JPY ($45,000)

was used for the cost of the vehicle and other expenses (such as control center,

maintenance etc.), excluding battery. The cost of the battery was calculated

assuming 200 USD/kWh (22,200 JPY/kWh) [52].

Maximum charging/discharging power was set at 10 kW for normal op-

eration and at 20 kW for short times (peak power when responding to grid

requests). These power levels can be provided by several existing technolog-

ical standards [34], which are not discussed in this work. Simulations were

also run with a hypothetical 50 kW connection to investigate the influence

of charging speed on performance.

Minimum SOC was set at 25% in order to enhance durability of the

battery (see Table 3) [53]. The maximum SOC was set at 80% in normal

operation, to increase the ability to absorb excess generation from the grid

when needed. This has also been shown to further extend battery life as

lithium-ion batteries suffer higher stress at high SOC [54].

The vehicle connection time
:::::
time

::::::::
needed

::::
for

::::
the

:::::::
vehicle

:::
to

:::::::::
connect

:::
to

::
a

:::::::::
charging

::::::::
station has been assumed to be 3 minutes. This includes the time

to park the vehicle and connect it to a charging pod. Internal parameters
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Table 3: Summary of simulation parameters

Name/symbol Value Unit

qcharge 0.35 -

qmin 0.25 -

qmax 0.8 -

` 1 minutes

acon 3 minutes

acharge 30 minutes

aidle 5 minutes

of the model, such as minimum charging time and maximum idle time, were

chosen through sensitivity analysis to minimize waiting times and BEP.

Due to the uncertainties related to future implementations of autonomous

driving technology, conservative parameters were chosen in the simulations.

However, it is possible that prices and vehicle performance would be better

than in the current study. For example, cheaper and more durable batteries

could increase the energy available and the storage capability, while keeping

costs low.

3.10. Case study: electricity prices

The influence of electricity pricing was also studied. Three example price

profiles were considered to test the model (see Fig. 5):

1. TOD - Time-of-day pricing with 2 price periods (peak/off-peak).

2. TOD+solar - TOD with high solar penetration, with peaks at early

morning and evening.
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Table 4: Summary of technical and economic assumptions

Name/symbol Value Unit

EC 0.15 kWh/km

CAP 50 kWh

η 0.9 -

pmax 10 kW

ppeak 20 kW

Lcar 5 years

Lbattery 1500 full cycles

Ccar 5,000,000

45,000

JPY

USD

Cbattery 1,110,000

10,000

JPY

USD

3. HighRe - Free
::::::::::
Wholesale

:::::::::::
electricity market with high renewable energy

penetration: random price profile extracted from a gamma distribution

with shape parameter k = 2 and scale parameter θ = 20.

The electricity market in Japan is undergoing a process of liberalization,

and some electricity providers already offer several time-of-day pricing op-

tions [55]. All price profiles were normalized to the same average value of

40 JPY/kWh (0.36 USD/kWh), in order to investigate the ability of the

proposed charge scheduling algorithm to minimize energy expenditures. The

average price is conservatively higher than current average prices (about

20 to 30 JPY/kWh for TEPCO, depending on type of connection [55]) to

account for a possible future rise of energy prices. This may happen due
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Figure 5: Comparison of 24-hours samples of price profiles used in the simula-

tions. The average for all profiles is 40 JPY/kWh (0.36 USD/kWh). (a) Time-of-

day pricing with two periods; (b) time-of-day pricing with high solar penetration;

(c) free market with high renewable energy penetration, modeled with a gamma

distribution.
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to the rising cost of renewable energy subsidies and dispatch and cost of

energy imports.
::
In

::::
the

::::::
third

::::::
case,

::::
the

:::::::
system

::::::
buys

::::
and

::::
sell

:::::::::::
electricity

:::
in

::::
the

::::::::::
wholesale

:::::::::::
electricity

::::::::
market

:::
as

::
a

::::::
price

::::::
taker.

:::::::::::
Although

::::
the

:::::::::::
generated

::::::
price

:::::::
profiles

:::
in

:::::
this

:::::
case

:::::
may

::::
not

:::::::
reflect

::::
the

::::::::
specific

:::::
time

:::::::::::::
distribution

:::
of

::::::
prices

:::
in

:::::::
current

::::::::::
markets,

::::
the

::::::::::
temporal

:::::::::::
variability

::
is

:::::::::
justified

:::
by

::::
the

:::::
high

:::::::::::::
intermittent

::::::::::
renewable

::::::::
energy

::::::::::::
penetration

:::::
that

:::
is

:::::::::
assumed

:::
in

::::
this

::::::::::
scenario.

:

4. Results from case study

In this section, the results from the case study are presented. In the first

section, the model is tested with different trip rates and number of vehicles

to investigate the optimal fleet size as a trade-off between costs and transport

service performance. In the second section, the effect of different price profiles

on costs and transport performance is investigated using the optimal fleet

size from the previous section. In the third section, the results of operating

reserve simulations are presented for several request characteristics.

4.1. Fleet sizing

The aim of the first part of the simulations is to estimate the number of

vehicles needed to satisfy the transportation requests. Simulations were run

with different numbers of vehicles to estimate the optimal fleet size based

on a number of output parameters. The parameters chosen were the waiting

time for passengers, the break-even price of the system and the number of

rejected requests.

The simulations have a time step of 1 minute over a period of 20 days.

One extra day was added at the beginning to avoid start-up transients.

The forecast horizon was set at 12 hours (720 time steps). Considering
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that both electricity price and passenger request rates change hourly, there

are effectively only 12 distinct forecast values for each. Several trip rates

were tested to show the influence of the rate on the system performance.

This is useful to understand the sustainability of the system at different

levels of request density, for example during the initial implementation phase

when adoption rates are low. The passenger priority factor (PSP) was set

at 100 JPY/km (0.9 USD/km). This value implies a bigger priority for

transport service compared to grid services, as it corresponds to an equivalent

electricity price of 667 JPY/kWh (6 USD/kWh), considering the electricity

consumption of vehicles.

The simulations are based on numbers of vehicles that are constant pro-

portions of the average rate of trips in order to compare the results. For

example, if the average rate of trips per hour is 500, then a proportion of 1.4

vehicles per average rate of trip per hour would be a fleet of 500 · 1.4 = 700

vehicles. The charging of the vehicles is managed by the charging algorithm

introduced in section 3.4. A simple time-of-day hourly price profile with

two periods was chosen for the electricity price (Fig. 5a), with an average

electricity price of 40 JPY/kWh (0.36 USD/kWh).

Results are shown in Fig. 6 and 7. Waiting times tend to stabilize when

the number of SAEVs available is more than 1.2—1.4 times the average rate

of trips per hour. The median waiting time drops to 7 minutes and 95% of

requests are fulfilled within 18 minutes for a simulation with 1000 TPH and

1400 vehicles (Fig. 6). Waiting times tend to reach a plateau with a certain

amount of vehicles over TPH, depending on the TPH. After this plateau

is reached, the waiting times are essentially not dependent on the number
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Figure 6: Waiting times as a function of the number of SAEVs and trips per

hour (tph). The marker indicates the median value and the error bars the 5th and

95th percentiles.

of vehicles. Waiting times are strongly dependent on position and time of

day, with increased waiting for requests in peripheral areas and during peak

demand. An important characteristic of the system is that the expected

waiting time is always known when a trip request is accepted (otherwise

the request is rejected), so in a real case scenario the user can always plan

in advance for the time needed (or use another means of transportation).

Moreover, waiting times are quite predictable, depending on a certain time

and position of the trip request. All these factors may be investigated further

in future work.

Break-even prices tend to increase as the fleet size increases (Fig. 7a).

This is due to the increased investment needed for a larger fleet while ef-

ficiency levels and number of passengers served are stable (no rejected re-
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Figure 7: System performance parameters as a function of the number of SAEVs

and trips per hour (tph). (a) Break-even prices; (b) efficiency

quests). Overall, BEP decreases as the TPH increase, together with the

increase in efficiency of the system (Fig. 7b). For 1000 TPH and a fleet size

of 1200 vehicles the BEP is about 30 JPY/km (0.27 USD/km), about 10 times

lower than the average Japanese standard taxi fare of about 300 JPY/km
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(2.70 USD/km) [56]. This is a price comparable with public transport fares.

The efficiency of the system tends to increase with larger fleets, thanks to

a more ubiquitous presence of vehicles to satisfy transport demand without

extra empty trips (Fig. 7c). However, as with waiting times, efficiency

also tends to reach a plateau, the value of which is a function of the total

TPH. Higher TPH values are associated with higher overall efficiency of the

system. Rejected requests drop to zero for fleet sizes larger than a threshold

size, which is dependent on the total TPH (Table 5).

Table 5: Requests served

vehicles/TPH

TPH 1 1.2 1.4 1.6 1.8

100 95.65% 99.64% 99.98% 99.99% 100%

200 98.16% 99.95% 99.99% 99.99% 100%

500 99.70% 99.99% 100% 100% 100%

1000 99.79% 99.99% 100% 100% 100%

Results show that the system is able to operate efficiently with between

1.2 and 1.6 vehicles per trip per hour, or about 5 to 7 vehicles per 100 trips per

day. Assuming an average of 2 trips per private vehicle per day, this suggests

that autonomous vehicles can replace private vehicles with a proportion of

about 1:7 to 1:10, depending on the expected quality of service (waiting times

and prices), in accordance with previous studies as discussed in section 2. The

results also demonstrate the feasibility of the system even without planned

active re-balancing of the vehicles. However, with an effective re-balancing

strategy waiting time can be reduced further.
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Figure 8: Cumulative waiting time distribution for simulations with 1000 TPH

and 1 to 1.8 vehicles per TPH.

4.2. Charge scheduling algorithm

The influence of electricity pricing was investigated by testing the model

with the price profiles introduced in section 3.10. Fig. 9 shows the results

of different charging strategies with the different price profiles. In all the

simulations there are no rejected requests and the waiting times are the same

as those found in section 4.1, thus demonstrating that the charge scheduling

algorithm has no negative effect on the transport service quality.

The charge scheduling algorithm lowers the BEP, with the benefits sub-

stantially higher when employing V2G. The non-V2G strategy differs only

in that the vehicle can not sell back to the grid, thus only the positive

values of (8) are considered. The savings are particularly significant with

highly volatile price profiles such as profile 3. V2G can therefore play a

role in making the system more economically viable. In a scenario with
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Figure 9: BEP for different charging strategies and price profiles. Simulation

with 1000 trips per hour over 20 days.

rapidly changing electricity prices, that is, with a high penetration of non-

dispatchable generation, under the assumptions of this work V2G has the

potential to significantly decrease the energy costs for the system and help

to balance the grid.

4.3. Operating reserve capacity

The performance of the system as a supplier of operating reserve is tested

with the model introduced in section 3.5. Two types of operating reserve were

tested: spinning reserve, modeled with requests with no allowed delay; and

non-spinning reserve, modeled with an allowed delay of 15 minutes. In both

cases, the capacity of the system was tested for different request duration of

30 and 60 minutes. Two types of grid connection for peak power were also

tested: 20 kW and 50 kW. Moreover, the possibility for the system to be used

to supply reserve storage was also tested in the same way. The secondary
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objective weight in (23) was chosen as 0.001. This is an arbitrarily small

value in order not to affect the main optimization, while still allowing for the

optimization of the use of vehicles for the same amount of power delivered.

The results would not change as long as the secondary objective weight is

small enough.

The available power varies significantly depending on the time of day,

due to variable number of vehicles connected to charging stations and the

available SOC. The limiting period was identified as the peak transport

demand between 8 and 9 in the morning. The system was therefore tested

for this period, to calculate the minimum power available. The tests were

run at 10 minutes intervals for 50 times.

Fig. 10 and 11 show the results with a maximum power connection of 20

kW and duration of 30 minutes. The results of the tests with a duration of 60

minutes were the same as for the 30 minutes, thus are not shown. The allowed

delay is the most significant factor in determining the amount of available

power for a 20 kW connection: when 15 minutes delays are allowed, the

power available grows by about 1-1.5 MW per 1000 vehicles. This results

from the fact that the limiting factor in this case is the power deliverable

(that is, the number of vehicles connected to charging stations), and not the

energy stored in the batteries. A longer allowed delay allows more vehicles to

move to charging stations to contribute during an operating reserve request.

This conclusion is supported by the results of the 50 kW connection in Fig.

12, which are almost exactly increased by a factor 50/20.

Figures 13-14 show the results for negative operating reserve capacity, or

to absorb excess generation (storage). This service may become relevant as
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Figure 10: Results of 50 tests for operating reserve capacity with no delay for 30

minutes. Results for 60 minutes duration were found to be the same. Whiskers

in the boxplot include the upper and lower values up to 1.5 IQR distance from the

third and first quartiles, respectively. Red plus signs indicate outliers.
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Figure 11: Results of 50 tests for operating reserve capacity with 15 minutes

delay for 30 minutes.Results for 60 minutes duration were found to be the same.

penetration of intermittent renewable energy increase.

The impact on the transport service was also investigated. In Fig. 15 the
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Figure 12: Results of 50 tests for operating reserve capacity with no delay for 30

minutes, with a 50 kW connection

average waiting times are shown for a 30 minutes non-spinning request in the

morning peak and at the afternoon peak. Note that the 15 minutes allowed

delay is the worst case scenario since with no allowed delay the vehicles

participating in the request will necessarily be fewer.

Providing operating reserve with 20 kW connection does not influence the

request rejection rate, and momentarily increase the average waiting time for

passengers during peak times.

5. Conclusions

A simulation model was developed in MATLABTM to study the feasibility

of a shared autonomous electric vehicle transport system and its integration

with the electricity grid, in particular its potential to supply operating re-

serve. The model simulates a SAEV fleet serving passengers and charging

at designated charging stations. A charge scheduling algorithm based on
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Figure 13: Results of 50 tests for negative operating reserve capacity (storage of

excess generation) with no delay for 30 minutes, with a 20 kW connection
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Figure 14: Results of 50 tests for negative operating reserve capacity (storage of

excess generation) with 15 minutes delay for 30 minutes, with a 20 kW connection

electricity prices was used and tested with several price profiles.

The city of Tokyo was taken as a case study, with passenger data based

on a transport survey. The system is studied in a transitional phase, with the

assumption of unchanged transport demand patterns and a limited number
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Figure 15: Average waiting times for base case and for a case with a 30 minutes

non-spinning operating reserve request. (a) morning peak; (b) afternoon peak.

Average over 10 simulations for each case. For all the simulations, there were no

rejected requests.
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of vehicles, and assuming that the power flow of vehicles does not influence

electricity prices or transmission congestion levels.

The results of the simulations show that every shared vehicle in a fleet of

SAEVs in Tokyo could replace 7 to 10 private cars, depending on the trade-off

between waiting time and cost of the system. The system’s break-even price

per km is significantly lower than the fare of traditional taxis, and comparable

to the average cost of car ownership and public transport. The results also

suggests that the integration of a charge scheduling algorithm can further

lower the cost of transport by providing load shifting and storage for the

grid. In the case of highly volatile price profiles, the break-even prices of the

system drop by up to 40% thanks to charge scheduling with vehicle-to-grid.

The model also suggested the viability of SAEVs for providing spinning

and non-spinning operating reserve to the grid. The amount of operating

reserve power available depends strongly on the time of day and the allowed

delay. In particular, the system is able to supply spinning reserve of up to

about 3.5 MW per 1000 vehicles even at the worst time for 1 hour with a 20

kW connection. This increase to 8-9 MW per 1000 vehicles when using a 50

kW connection.

In a scenario of a wide implementation of this system, our model suggest

that SAEVs could provide significant grid-scale storage and spinning reserves.

However, to assess the real impact of this technology implemented at large

scale, a dynamic transport model needs to be developed to account for the

change in transport patterns and congestion levels. Moreover, a model of the

electricity transmission network could be included in future work to account

for transmission constraints for a full-scale system.
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