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Abstract: Conventional methods are less robust in terms of accurately forecasting non-stationary and nonlineary 7 

carbon prices. In this study, we propose an empirical mode decomposition-based evolutionary least squares support 8 

vector regression multiscale ensemble forecasting model for carbon price forecasting. Firstly, each carbon price is 9 

disassembled into several simple modes with high stability and high regularity via empirical mode decomposition. 10 

Secondly, particle swarm optimization-based evolutionary least squares support vector regression is used to forecast 11 

each mode. Thirdly, the forecasted values of all the modes are composed into the ones of the original carbon price. 12 

Finally, using four different-matured carbon futures prices under the European Union Emissions Trading Scheme as 13 

samples, the empirical results show that the proposed model is more robust than the other popular forecasting methods 14 

in terms of statistical measures and trading performances. 15 
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1. Introduction 18 

Global climate change, as a grand challenge faced by the human society, is attracting more and more attention 19 

around the world in the recent few decades. To address this challenge, the Kyoto Protocol, signed in 1997, came into 20 

effect on February 16, 2005. The protocol established the quantitative greenhouse gas emission reduction targets for the 21 

developed and industrialized countries. To achieve these targets effectively, the European Union Emissions Trading 22 

System (EU ETS) was initiated in January 2005. The EU ETS has been the biggest carbon trading market so far. It also 23 

provides an important demonstration of carbon market construction for other countries or regions, as well as a new 24 

investment choice for investors [1]. In light of this, it is important to improve the accuracy of carbon price forecasting. 25 

On the one hand, accurately forecasting carbon prices can contribute to a deep understanding on the characteristics of 26 

carbon prices so as to establish an effective and stable carbon pricing mechanism. On the other hand, it can provide a 27 

practical guidance for production operations and investment decisions, helping to avoid carbon price risks and 28 

maximize carbon assets. Therefore, carbon price prediction has become one of the most popular topics in energy 29 

research. 30 

As we know, prediction technology generally can be classified into two categories: (i) time series forecasting, and 31 

(ii) multi-factor forecasting. Although multi-factor forecasting can consider the influences of exogenous variables, it is 32 

used to forecast the carbon price in the premise of forecasting the exogenous variables, which will inevitably lead to the 33 

problem of error accumulation so as to make the failure of carbon price prediction. Time series prediction can predict 34 

the future trend of carbon price by establishing a mathematical model to extend the trend of its own historical 35 

changeable law without the influences of exogenous variables, which can obtain a good prediction accuracy. Many 36 

studies have proven that time series prediction is applicable for energy and carbon price forecasting. Thereby, 37 

multi-factor forecasting is excluded, and time series forecasting is utilized to predict carbon price in this study. Recently, 38 

carbon price forecasting has attracted more and more research attentions [2-11]. The time series forecasting approaches 39 
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used so far can be roughly divided into two broad categories: statistical and econometric models, and artificial 1 

intelligence (AI) models. The former includes the multiple linear regression [2], GARCH [3], MS-AR-GARCH [4], 2 

FIAPGARCH [5], HAR-RV [6], and nonparametric models [7]. The latter includes artificial neural networks (ANNs) 3 

[8,9] and least squares support vector regression (LSSVR) [10,11]. Although the existing methods can obtain good 4 

results when they are applied for stationary time series forecasting, they are not robust for forecasting accurately carbon 5 

price due to its highly non-stationary and nonlinear characteristics [12]. 6 

Empirical mode decomposition (EMD), proposed by Huang and his co-authors in 1998, is an effective approach 7 

for handling the nonlinear and non-stationary time series [13,14,15]. EMD can disassemble any carbon price into 8 

several intrinsic mode functions (IMFs) plus a residue with high stability and high regularity. When the IMFs and 9 

residue are used as the inputs of ANN or LSSVR, it can improve learning efficiency and forecasting accuracy by 10 

providing better understanding and feature-capturing [11,16]. Thereby, the accuracy of carbon price forecasting can be 11 

enhanced through EMD. During the past few years, the EMD-based ANN and/or LSSVR models have been applied for 12 

time series forecasting [17-26], including carbon price forecasting [11,16]. However, the traditional back-propagation 13 

ANNs, used as the predictors, can lead to the overfitting problems. Although LSSVR, built on the structural risk 14 

minimization, can effectively solve the overfitting problem [27], the performance of a LSSVR predictor is sensitive to 15 

its own model selection. Yet the hybrid EMD and LSSVR models have rarely been employed for carbon price 16 

forecasting. Thus, this study seeks to address this gap in carbon price forecasting methodology. 17 

The aim of this study is to develop an EMD-based evolutionary LSSVR model to forecast carbon prices with high 18 

accuracy. The contributions of the study are two-fold. On the one hand, an EMD-based evolutionary LSSVR model 19 

(EMD–LSSVR–ADD) is constructed to forecast carbon prices: (1) each carbon price is decomposed into several IMFs 20 

plus a residue with high stability and high regularity via EMD; (2) all the IMFs and residues are respectively predicted 21 

via LSSVR trained by particle swarm optimization (PSO); (3) the forecasted values of all the IMFs and residues are 22 

aggregated into the ones of the original carbon price. On the other hand, using the empirical data from four 23 

different-matured carbon futures under the EU ETS, the study compares the forecasted results of the proposed model 24 

with the single ARIMA and LSSVR models, the hybrid ARIMA+LSSVR model, and a variation of the forecasting 25 

model (EMD-ARIMA-ADD) to demonstrate its robustness. Guo et al. (2012)[28] argued that it may be more suitable to 26 

integrate all IMFs without IMF1 when forecasting wind speed. Thus the study adds two models by removing the IMF1 27 

from EMD–ARIMA–ADD and EMD–LSSVR–ADD to test whether this approach is feasible in the prediction of 28 

carbon prices, denoted as EMD–ARIMA–IMF1–ADD and EMD–LSSVM–IMF1–ADD models respectively. The study 29 

adopts the well-established evaluation criteria, including level forecasting, directional prediction, the Diebold–Mariano 30 

(DM) test, the Rate test, and trading performances including the Annualized return, Annualized volatility and 31 

Information ratio, to assess the robustness of the proposed EMD–LSSVR–ADD model.  32 

The paper is organized as follows. Section 2 describes the EMD, LSSVR, and the proposed models. Section 3 33 

reports the empirical analysis, and Section 4 concludes the study. 34 

2. Methodology 35 

2.1 EMD 36 

EMD can decompose a carbon price into several IMFs and one residue by its local feature scales, as follows: 37 

Step 1: Find out the local extreme points of carbon price )(tx ; 38 

Step 2: Shape the upper and lower envelopes, )(
max

te  and )(
min

te , respectively;  39 

Step 3: Obtain the mean of )(
max

te  and )(
min

te : 40 

2/)]()([)(
minmax

teteta   41 
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Step 4: Get the difference between )(tx and )(ta : 1 

)()()( tatxtd   2 

Step 5:  Check )(td . When )(td  cannot meet the two conditions of IMF, let )()( tdtx  , return to the step 1, 3 

and cannot repeat unless )(td  meets the two conditions. Otherwise, )(td  is defined as an IMF, and let the residue4 

)()()( tdtxtr  ;  5 

Step 6: Perform the steps 1-5 only when the termination criterion is met. EMD cannot stop unless 
1

)(  t  6 

for a prescribed fraction  1   and 
2

)(  t  for the remaining fraction, where 
1
 and

2
  are two thresholds 7 

aimed to ensure mean globally small changes while locally big excursions.  8 

In this study, we use the termination criterion by Rilling et al. [29], in which 05.0 , 05.0
1
 , and 5.02 

. 
9 

Finally, we can obtain: )()()(
1

tRtIMFtx m

m

i
i  



,where m is the number of IMFs, and )(tRm  is the final residue. 10 

2.2 LSSVR 11 

For data niyx ii ,,2,1},,{  , LSSVR is defined as [27]: 12 

2 2
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1 1
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2 2
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s.t. nieb)(xy iii ,,2,1,    14 

in which  : the weight vector, C: the penalty parameter, i : the error,  : mapping function, and b :the bias.  15 

The Lagrange function is used to find out the solutions for   and i : 16 
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in which  nii ,,2,1,  are a set of Lagrange multipliers. The optimal solutions are obtained from: 18 
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Using the least squares method to resolve the linear equations, LSSVR can be obtained as: bxxKxy i

n

i
i 



),()(
1

 , 20 

in which the kernel function, )()(),( ii xxxxK   , fulfills the Mercer’s principle. 21 

2.3 Hybriding LSSVR and PSO for carbon price forecasting 22 

The model selection of LSSVR is concerned with two key issues [29,30]: how to select an appropriate kernel 23 

function, and how to determine the optimal parameters of LSSVR. For the former, radial basis function (RBF),24 

 22
2/exp),( yxyxK  , is selected to build the LSSVR model, because RBF can yield good results in general 25 

[31]. For the latter, we use the PSO algorithm [32] to seek the optimal parameters ( C  and ) of LSSVR. 26 

In the modeling of PSO, ),,,( 21 iMiii xxxx   and ),,,( 21 iMiii vvvv  are respectively defined as the position 27 

and velocity of particle mii ,,2,1,  . ),,,( 21 iMiibest pppp   and ),,,( 21 gMggbest pppg   are respectively 28 
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defined as the optimum positions of particle i and m particles at the current iteration. 
i

x and 
i

v of each particle are 1 

updated as: 2 
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where mi 1 , Md 1 , )(tx
id  

and )(tv
id

 are respectively the position and velocity of particle i at iteration t, 5 

id
p  is the optimal position of particle i at iteration t, 

gd
p  is the global optimal position, and w  is the inertia weight, 6 

defined as: 7 

 t
t

ww
wtw 




max

minmax

max
)(  (3) 8 

where, maxw  and minw  are respectively the maximal and minimal inertia weights. 9 

The study introduces the PSO algorithm to seek the optimal parameters ( C  and  ) of LSSVR, in order to 10 

improve searching efficiency and prediction accuracy [10], as presented in Fig. 1. 11 

 12 

Insert Figure 1 13 
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Step 1: set up the training and test sets. The carbon price data is divided into a training set and a test set. The 15 

former is used for establishing the model, and the latter is used to test the forecasting performance of the proposed 16 

model. 17 

Step 2: initialization. Randomly generating m  particles with coding C  and   by real values, and setting the 18 

parameters of PSO: maximal iterations 
max

t , maximal position 
max

p , maximal velocity 
max

v , ],[
maxmin

www  , 19 

acceleration coefficients 
1

c  and 
2

c , ],[
maxmin

CCC  , ],[
maxmin

  . Let t = 0, and training begins.  20 

Step 3: selecting the root mean square error (RMSE) as the fitness function: 21 

  


n

i
ii xx

n
RMSE

1

2)ˆ(
1

 (4) 22 

in which n  is the number of training sample, ix and ix̂  are the real and predicted values.  23 

Step 4: evaluating the fitness. Calculating the fitness value of each particle by Eq. (4), and obtain 
best

p  and 
best

g  24 

at the current generation. 25 

Step 5: updating the position and velocity of each particle by Eqs. (1)–(3). 26 

Step 6: Checking the end condition. When the end condition, the maximum iterations here, is satisfied, the 27 

optimization process ends, and the optimal parameters are obtained to build the LSSVR. If not, move to step 7. 28 

Step 7: Let 1 tt , and return to the step 4. 29 

2.4 The proposed EMD-based LSSVR model for carbon price forecasting 30 

For the carbon price 
tx  ( 1,2, , )t T , a h-step forecasting in advance, 

ht
x


ˆ , can be expressed as 31 

),,,(ˆ
11   mtttht xxxfx   32 
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where tx , tx̂  and m are the real, predicted values, and lag order respectively. 1 

As shown in Fig. 2, we propose an EMD-based LSSVR model (EMD-LSSVR-ADD) for carbon price forecasting, 2 

generally comprised of the subsequent three key steps:  3 

Step 1: Each carbon price is decomposed into a batch of IMFs and one residue with high stability and regularity 4 

via EMD. 5 

Step2: LSSVR is employed in forecasting the IMFs and residue respectively, so as to obtain their forecasted 6 

values. 7 

Step 3: The forecasted values of all the IMFs and residues are aggregated into the final predicted values of the 8 

original carbon price. 9 

In short, the proposed EMD-LSSVR-ADD is in essence an EMD (multiscale decomposition)–LSSVR (component 10 

forecast)–ADD (multiscale ensemble forecast) model, which is a utilization of “decomposition and ensemble” tactics 11 

[11,34]. In the next section, four carbon futures prices are used for testing the robustness of the proposed multiscale 12 

prediction approach. 13 

Insert Figure 2 14 

 15 

 16 

3. Empirical analysis 17 

3.1 Data 18 

As the biggest carbon trading market in the EU ETS, the European Climate Exchange (ECX) is an indicator of the 19 

global carbon markets. Four futures prices matured in Decembers of 2013, 2014, 2015 and 2016 (denoted as DEC13, 20 

DEC14, DEC15 and DEC16 respectively) are selected as empirical samples. The daily data has been collected in 21 

Euros/ton (excluding public holidays from April 2008 to October 2016). For the convenience of modeling, the samples 22 

are divided into two subsets: the training set and the testing set. The training set is used to establish prediction models, 23 

and the testing set is employed to test the robustness of the established models. The divided samples of carbon prices 24 

are reported in Table 1. The data used are obtained from the website of ECX (http://www.theice.com).  25 

 26 

Insert Table 1 27 

 28 

3.2 Evaluation criteria 29 

Forecasting performance is measured by two main criteria: level forecasting and directional prediction. Level 30 

forecasting is measured via the root mean squared error (RMSE): 31 

 


n

t

txtx
n

RMSE
1

2)]()(ˆ[
1

 32 

On the other hand, directional prediction is measured with the directional prediction statistic (
stat

D ) [10, 36]: 33 

%100
1

1
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n
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 35 

where )(ˆ tx  and )(tx are the real and predicted values respectively, and n  is the number of test samples. 36 

The DM test is further used to statistically contrast the predicted performances of various predictive models [37]. 37 

http://www.theice.com/
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In this study, mean square prediction error (MSPE) is chosen as the loss function. Thus, the DM statistic is defined as 1 

~ (0,1),
ˆ /
d

d
DM N T

V T
   2 

where , ,
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,

ˆ
te tx  and 

,
ˆ

re tx  denote the forecasted values of tx  calculated using the test 4 

model (te) and reference model (re) at time t, respectively. A one-tailed test is generally employed in evaluating the DM 5 

statistic. In the DM test, the null hypothesis, i.e. the tested model is not worse than the reference model, is tested. 6 

Therefore, only if p is lower than a frequently-used level of significance 0.05, we should reject it; otherwise, we should 7 

accept it. 8 

The statistics of RT test is expressed as 9 








 nN

n

pp

n

pp

pp
z

BBAA

BA
RT ),1,0(~

)1()1(  10 

where Ap and Bp are respectively the accuracies of directional prediction of models A and B. The null hypothesis 11 

of RT test is that the accuracies of directional prediction of models A and B are the same. Using the two-sided test, 12 

when the absolute value of RTz exceeds1.96, the null hypothesis is rejected at the significance level of 5%. 13 

A good statistical accuracy does not always mean a good trading performance. For investors, they usually 14 

care more about a model’s practicability in trading. In this section, inspired by Sermpinis et al.(2016) [37], we 15 

design a pseudo trading strategy to test the trading performance as an investor chooses to buy or sell (or stay 16 

watching) carbon assets when the forecasted return is above or below (or equal) zero at the current carbon price 17 

respectively in real market. This can illustrate our model’s application value of making production and investment 18 

more profit.  We use the Annualized return, Annualized volatility and Information ratio to evaluate the trading 19 

performance. They defined as:  20 

Daily return:𝑅𝑡 =
𝑃𝑡−𝑃𝑡−1

𝑃𝑡−1
 21 

Annualized return: 𝑅𝐴 = 252 ∗
1

𝑘
∗ ∑ 𝑅𝑡

𝑛
𝑡=1  22 

Annualized volatility: 𝜎𝐴 = √252 ∗ √
1

𝑘−1
∗ ∑ (𝑅𝑡𝑘

𝑡 − 𝑅𝑚) 23 

Information ratio: IR =
𝑅𝐴

𝜎𝐴
 24 

where, 𝑃𝑡 is daily price of carbon future;  𝑘 is the number of test set and 𝑅𝑚  is mean value of 𝑅𝑡. 25 

In order to evaluate  the predictive performance of proposed EMD–LSSVR–ADD model with other popular 26 

forecasting models, the study compares its outputs with the outputs of the single ARIMA and LSSVR models, a hybrid 27 

ARIMA+LSSVR model, variants of the EMD–ARIMA–ADD model, EMD–ARIMA–IMF1–ADD and EMD–LSSVM–28 

IMF1–ADD models. In the variant of the EMD–ARIMA–ADD model, all the IMFs and residues extracted by EMD are 29 

independently forecasted by the ARIMA model, and the predicted values are summed into the final predicted ones of 30 

the original carbon price.  31 

3.3 Results and discussions 32 
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Forecasting experiments are carried out in terms of the steps outlined in the previous section. We set the thresholds 1 

and tolerance as ]05.0,5.0,05.0[],,[ 21  [29], and the decomposition results via EMD are reported in Fig.3. It is 2 

evident that DEC13, DEC14, DEC15 and DEC16 tend to be non-stationary and nonlinear due to the fact that their 3 

means change over time. DEC13, DEC14 and DEC15 are respectively disassembled into seven IMFs and one residue, 4 

while DEC16 is disassembled into six IMFs and one residue. At the same time, all the IMFs and residues have a higher 5 

stability and stronger regularity compared with the original series.  6 

 7 

Insert Figure 3 8 

 9 

We apply the one shot testing method [38], in which one single model applies over all test period. Thus, we apply 10 

the fixed time window to train the models by the training set, and forecast the testing set by the trained models. 11 

Meantime, we perform the one-step-ahead forecasting for DEC13 to DEC16. - EViews developed by Quantitative 12 

Micro Software is used for ARIMA modeling. The optimum model is found via the Akaike information criterion. By 13 

trial and error, both the best models derived from DEC14 to DEC16 are ARIMA (2,1,0) models, while the best models 14 

for DEC13 is ARIMA (1,1,1) model. Moreover, as previously mentioned, ARIMA is also used to model each IMF and 15 

residue decomposed by EMD. The predicted values of all IMFs and residues are then aggregated into the predicted 16 

values of EMD–ARIMA–ADD model. 17 

All the LSSVR models are built by the LSSVMlab by Suykens and his colleagues on the platform of MATLAB 18 

2016b. The input of each LSSVR model is determined using a partial autocorrelation function method [16]. The optimal 19 

parameters are searched with 100 particles and 5 generations. ]1000,1[C , ]50,0( , 2
21
 cc , 9.0max w , 20 

1.0min w , 05.0
max

p , and 50
max

v . Moreover, as mentioned above, LSSVR is also used to forecast each IMF 21 

and residue decomposed via EMD, and the predicted values of all IMFs and residues are aggregated into the forecasted 22 

values of EMD–LSSVR–ADD model. 23 

The hybrid ARIMA+LSSVR model is built as discussed above, the predicted values of the original carbon price by 24 

ARIMA and LSSVR models are equally weighted sum of the final predicted ones of carbon prices. Consequently, 25 

Inspired by Tang et al. (2012)[18], Guo et al. (2012)[28], Zhu and Wei,(2013)[10] and Yu et al. (2015)[39], two single 26 

models (LSSVR and ARIMA), a hybrid ARIMA+LSSVR model, and four multiscale forecasting models (EMD–27 

ARIMA–IMF1–ADD, EMD–ARIMA–ADD, EMD–LSSVR–IMF1–ADD and EMD–LSSVR–ADD) are applied to 28 

forecast carbon prices. The results of RMSE and Dstat for the different models are shown in Table 2. The DM and RT 29 

test results are listed in Tables 3 and 4. Furthermore, the comparison of the trading performances is concluded in Table 30 

5. The out-of-sample forecasted results for DEC13, DEC14, DEC15 and DEC16 by the proposed 31 

EMD-LSSVR-ADD are presented in Fig.4. 32 

Insert Table 2 33 

Insert Table 3 34 

Insert Table4 35 

Insert Table 5 36 

 37 

From the perspective of level forecasting measured by RMSE, it can be found that, firstly, the prediction accuracy 38 
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of LSSVR model is superior to that of ARIMA model for its strong nonlinear approximation ability and excellent 1 

self-learning ability. Meanwhile, the optimization of PSO improves the learning and prediction abilities of LSSVM. The 2 

hybrid process of ARIMA and LSSVR models only improves the predication accuracy slightly here. Secondly, all the 3 

multiscale ensemble prediction models including EMD–ARIMA–IMF1–ADD, EMD–ARIMA–ADD, EMD–LSSVR–4 

IMF1–ADD and EMD–LSSVR–ADD obviously outperform each single prediction models such as ARIMA, LSSVR 5 

and their hybrid model. The main reason is that after EMD decomposition, both LSSVR and ARIMA can effectively 6 

forecast the simple and stable components so as to significantly improve the prediction accuracy. Thirdly, among the 7 

multiscale ensemble prediction models, the EMD–LSSVR–ADD and EMD–ARIMA–ADD show better results than 8 

EMD–LSSVR–IMF1–ADD and EMD–ARIMA–IMF1–ADD, which differs from the conclusion of Guo et al.(2012) and 9 

shows the necessity to take all the IMFs into consideration when forecasting carbon prices. Last but not least, the result 10 

of EMD–LSSVR–ADD is superior to that of EMD–ARIMA–ADD, which shows the strong predictive power of the 11 

proposed EMD-LSSVR-ADD model. Comparing all models here, the highest level of accuracy achieved by the 12 

proposed EMD–LSSVR–ADD model implies the advantage of “decomposition and ensemble” principle.  13 

In terms of the level of directional prediction, the results of Dstat are similar in terms of RMSE. The models 14 

established via EMD decomposition and LSSVR show higher accuracy in directional prediction. Therefore, the 15 

proposed EMD–LSSVR–ADD model achieves the highest value of Dstat (or at least as high as) compared with other 16 

models in the contracts from DEC13, DEC14, DEC15 and DEC16. Concerning the improvement level of directional 17 

prediction, EMD makes the largest contribution. Due to the significant advantages of EMD, LSSVR just produces a less 18 

progress than ARIMA here. 19 

Two findings are derived from the DM test results. Firstly, all the multiscale ensemble prediction models 20 

remarkably outperform than single scale models at the significance level of 5%. There is no obvious difference between 21 

ARIMA, LSSVM and hybrid models in level prediction. This confirms the power of EMD for capturing different 22 

characteristics of carbon prices. Secondly, in general, the proposed EMD–LSSVR–ADD model is significantly superior 23 

to EMD–ARIMA–IMF1–ADD and EMD–LSSVR–IMF1–ADD models, but it has no obvious advantage compared with 24 

EMD–ARIMA–ADD model except for DEC15. Furthermore, the RT test reveals the similar results as the DM test, i.e. 25 

the multiscale ensemble models can obtain high accuracy of directional prediction at the confidence level of 5% for all 26 

carbon prices. Although the proposed EMD–LSSVR–ADD model has the highest accuracy from Dstat, it does not show 27 

significant differences from other multiscale ensemble models in accuracy for direction.  28 

In terms of the trading performance, the proposed EMD–LSSVR–ADD model produces the best trading 29 

performances in all the carbon prices for its highest Annualized return and smallest Annualized volatility. This implies 30 

that our proposed EMD–LSSVR–ADD model is capable of achieving good trading gains, and also suggests the 31 

advantages of EMD over single scale models. 32 

To sum up, we can draw a few conclusions from the empirical analysis results: (1) in terms of level prediction, 33 

directional forecasting, the DM test, and the RT test, compared with ARIMA, LSSVR, ARIMA+LSSVR, EMD–34 

ARIMA–IMF1–ADD, EMD–ARIMA–ADD and EMD–LSSVR–IMF1–ADD models, our proposed EMD–LSSVR–35 

ADD model can obtain better statistical and trading performances; (2), four multiscale ensemble models can achieve 36 

more precise prediction results than ARIMA, LSSVR, and ARIMA+LSSVR models, implying that “decomposition and 37 

ensemble” tactics can significantly enhance predictive capability; (3) the nonlinear approach (LSSVR) is more 38 

appropriate to forecast carbon prices than the linear model (ARIMA). Therefore, the proposed EMD-based LSSVR 39 

model is a promising approach for carbon price forecasting. 40 

 41 

Insert Figure 4 42 
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 1 

4. Conclusions and future work 2 

In this study, we propose a new empirical mode decomposition-based evolutionary least squares support vector 3 

regression for carbon price forecasting. This model use empirical mode decomposition to disassemble each carbon price 4 

into a batch of more stationary and more regular components, which can be easily forecasted by the particle swarm 5 

optimization-based evolutionary least squares support vector regression. The final forecasted values of carbon prices are 6 

obtained via aggregating the forecasted values of all the components. Finally, using four carbon futures prices from the 7 

European Union Emissions Trading Scheme as samples, the proposed empirical mode decomposition-based 8 

evolutionary least squares support vector regression has been empirically tested, and its predictive performance has been 9 

compared with the predictive performance of single, hybrid and variational multiscale forecasting models, in terms of 10 

statistical measures and trading performances. The empirical results suggest that the proposed model can yield the 11 

optimal statistical measures. Moreover, the proposed model shows great trading performance as well, which indicates 12 

its value in practice. Our main future work is (1) to improve the accuracy of empirical mode decomposition, (2) to build 13 

the best forecasting for each component in terms of their own characteristics, and (3) to explore the nonlinear ensemble 14 

of all the components. Through these efforts, the accuracy of high non-stationary and nonlinear carbon price forecasting 15 

is expected to be further improved. Furthermore, Based on the proposed model, how to develop an intelligent 16 

forecasting and trading decision support system for carbon market so as to make production and investment a maximum 17 

profit is also our another next work. 18 

 19 
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Figures 1 
 2 
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 4 

Fig. 1. The process of model selection for LSSVR using PSO. 5 
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Fig. 2. The framework for the proposed multiscale prediction methodology. 2 
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a. The decomposed results for DEC13. 2 

 3 

b. The decomposed results for DEC14. 4 
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 1 

c. The decomposed results for DEC15. 2 

 3 

d. The decomposed results for DEC16. 4 

Fig.3.The decomposed results for carbon prices via EMD. 5 
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 1 
a. Out-of-sample forecasting results for DEC13.  2 

 3 

b. Out-of-sample forecasting results for DEC14. 4 

 5 
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 1 

c. Out-of-sample forecasting results for DEC15.  2 

 3 

d. Out-of-sample forecasting results for DEC16. 4 

Fig.4. Out-of-sample forecasting results for carbon prices. 5 
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Tables 1 

Table 1. Samples of carbon prices 2 

Carbon price Size Date 

DEC13 

Sample set 1209 1 April 2009 - 16 December 2013 

Training set 833 1 April 2009 - 29 June 2012 

Testing set 376 2 July 2012 - 16 December 2013 

DEC14 

Sample set 1719 8 April 2008 - 18 December 2014 

Training set 1340 8 April 2008 - 28 June 2013 

Testing set 379 1 July 2013 - 18 December 2014 

DEC15 

Sample set 1035 29 November 2011 - 14 December 2015 

Training set 704 29 November 2011 - 29 August 2014 

Testing set 331 1 September 2014 - 14 December 2015 

DEC16 

Sample set 1006 27 November 2012 - 31 October 2016 

Training set 705 27 November 2012 - 31 August 2015 

Testing set 301 1 September 2015 - 31 October 2016 

 3 
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 8 
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 10 

Table 2 Out-of –sample comparisons of the RMSE and the Dstat of each prediction model 11 

Models ARIMA LSSVM Hybrid 
EMD-ARIMA- 

IMF1-ADD 

EMD-ARIMA- 

ADD 

EMD-LSSVR- 

IMF1-ADD 

EMD-LSSVR- 

ADD 

RMSE 

DEC13 0.211 0.209 0.206 0.127 0.126 0.139 0.125 

DEC14 0.142 0.141 0.141 0.080 0.073 0.081 0.072 

DEC15 0.091 0.091 0.090 0.055 0.050 0.053 0.047 

DEC16 0.142 0.142 0.141 0.082 0.079 0.085 0.077 

Dstat 

DEC13 66.22 62.50 57.71 79.52 80.05 72.87 79.79 

DEC14 55.41 61.48 59.10 83.91 86.02 83.91 87.34 

DEC15 74.62 69.49 72.21 80.36 83.69 84.29 84.89 

DEC16 68.44 60.80 69.10 83.06 87.38 83.06 86.71 
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Table 3 Out-of –sample comparisons of DM test of each prediction model 3 

Test model 

Reference model 

ARIMA LSSVM Hybrid 
EMD-ARIMA- 

IMF1-ADD 

EMD-ARIMA- 

ADD 

EMD-LSSVR- 

IMF1-ADD 

DEC13 

LSSVM 0.8276            

Hybrid 0.2558  0.2250          

EMD-ARIMA-IMF1-ADD 0.0000 * 0.0000*   0.0000 *       

EMD-ARIMA-ADD 0.0000 * 0.0000 * 0.0000 * 0.7428      

EMD-LSSVR-IMF1-ADD 0.0000 * 0.0000 * 0.0001 * 0.0069*   0.0222*     

EMD-LSSVR-ADD 0.0000 * 0.0000 * 0.0000 * 0.6718  0.8389  0.0004 * 

DEC14 

LSSVM 0.5796  
     

Hybrid 0.4803  0.7311  
    

EMD-ARIMA-IMF1-ADD 0.0000 *   0.0000*   0.0000 *   
   

EMD-ARIMA-ADD 0.0000 * 0.0000 * 0.0000 *   0.0128 * 
  

EMD-LSSVR-IMF1-ADD 0.0000 * 0.0000 * 0.0000 *   0.4789  0.0119 * 
 

EMD-LSSVR-ADD 0.0000 * 0.0000 * 0.0000 *   0.0079 * 0.4791  0.0005 * 

DEC15 

LSSVM 0.7598  
     

Hybrid 0.2193  0.1131  
    

EMD-ARIMA-IMF1-ADD 0.0000 * 0.0000 * 0.0000 * 
   

EMD-ARIMA-ADD 0.0000 * 0.0000 * 0.0000 * 0.0000 * 
  

EMD-LSSVR-IMF1-ADD 0.0000 * 0.0000 * 0.0000 * 0.0443 * 0.0164 * 
 

EMD-LSSVR-ADD 0.0000 * 0.0000 * 0.0000 * 0.0000 * 0.0137 * 0.0000 * 

DEC16 

LSSVM 0.8957  
     

Hybrid 0.2819  0.4421  
    

EMD-ARIMA-IMF1-ADD 0.0000 * 0.0000 * 0.0000 * 
   

EMD-ARIMA-ADD 0.0000 * 0.0000 * 0.0000 * 0.5032  
  

EMD-LSSVR-IMF1-ADD 0.0000 * 0.0000 * 0.0000 * 0.0225 * 0.2506  
 

EMD-LSSVR-ADD 0.0000 * 0.0000 * 0.0000 * 0.0865  0.4930  0.0175 * 

Note: This table reports the P-values of DM test. * denotes that the null hypothesis is rejected at the significant level 4 

of 5%. 5 
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Table 4 Out-of –sample comparisons of Rate test of each prediction model 2 

Test model 

Reference model 

ARIMA LSSVM Hybrid 
EMD-ARIMA- 

IMF1-ADD 

EMD-ARIMA- 

ADD 

EMD-LSSVR- 

IMF1-ADD 

DEC13 

LSSVM 0.2872  
     

Hybrid 0.0163 * 0.1801  
    

EMD-ARIMA-IMF1-ADD 0.0000 * 0.0000 * 0.0000 * 
   

EMD-ARIMA-ADD 0.0000 * 0.0000 * 0.0000 * 0.8565 
  

EMD-LSSVR-IMF1-ADD 0.0477 * 0.0024 * 0.0000 * 0.0324 * 0.0204 * 
 

EMD-LSSVR-ADD 0.0000 * 0.0000 * 0.0000 * 0.9268  0.9291  0.0257 * 

DEC14 

LSSVM 0.0902  
     

Hybrid 0.3048  0.5034  
    

EMD-ARIMA-IMF1-ADD 0.0000 * 0.0000 * 0.0000 * 
   

EMD-ARIMA-ADD 0.0000 * 0.0000 * 0.0000 * 0.4167  
  

EMD-LSSVR-IMF1-ADD 0.0000 * 0.0000 * 0.0000 * 1.0000 * 0.4167  
 

EMD-LSSVR-ADD 0.0000 * 0.0000 * 0.0000 * 0.1786  0.5931  0.1786  

DEC15 

LSSVM 0.1417  
     

Hybrid 0.4831  0.4417  
    

EMD-ARIMA-IMF1-ADD 0.0773  0.0013 * 0.0138 * 
   

EMD-ARIMA-ADD 0.0041 * 0.0000 * 0.0004 * 0.2649  
  

EMD-LSSVR-IMF1-ADD 0.0021 * 0.0000 * 0.0002 * 0.1854  0.8334  
 

EMD-LSSVR-ADD 0.0010 * 0.0000 * 0.0001 * 0.1243  0.6716  0.8308  

DEC16 

LSSVM 0.0502  
     

Hybrid 0.8614  0.0330 * 
    

EMD-ARIMA-IMF1-ADD 0.0000 * 0.0000 * 0.0001 * 
   

EMD-ARIMA-ADD 0.0000 * 0.0000 * 0.0000 * 0.1357  
  

EMD-LSSVR-IMF1-ADD 0.0000 * 0.0000 * 0.0001 * 1.0000  0.1357  
 

EMD-LSSVR-ADD 0.0000 * 0.0000 * 0.0000 * 0.2116  0.8068  0.2116  

Note: This table reports the P-values of Rate test. * denotes that the null hypothesis is rejected at the significant level 3 

of 5%. 4 
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Table 5 Out-of –sample comparisons of trading performances of each prediction model 3 

Trading 

performances 
ARIMA LSSVM Hybrid 

EMD-ARIMA- 

IMF1-ADD 

EMD-ARIMA- 

ADD 

EMD-LSSVR- 

IMF1-ADD 

EMD-LSSVR- 

ADD 

DEC13 

Annualized 

return(%) 
-15.25 50.59 69.44 584.38 587.51 573.73 593.99 

Annualized 

volatility(%) 
57.11 63.99 64.7 55.04 55.16 55.87 54.9 

Information 

ratio 
-0.27 0.79 1.07 10.62 10.65 10.27 10.82 

DEC14 

Annualized 

return(%) 
4.39 21.73 10.3 385.71 402.26 385.06 417.63 

Annualized 

volatility(%) 
39.24 37.3 36.17 33.8 32.92 33.84 32.42 

Information 

ratio 
0.11 0.58 0.28 11.41 12.22 11.38 12.88 

DEC15 

Annualized 

return(%) 
56.28 40.15 51.99 194.27 206.55 203.93 211.6 

Annualized 

volatility(%) 
17.48 17.11 17.51 16.64 16.05 15.85 15.75 

Information 

ratio 
3.22 2.35 2.97 11.67 12.87 12.87 13.43 

DEC16 

Annualized 

return(%) 
71 52.14 83.35 368.31 385.38 363.39 395 

Annualized 

volatility(%) 
36.6 35.12 37.37 32.81 32.28 33.27 31.95 

Information 

ratio 
1.94 1.48 2.23 11.23 11.94 10.92 12.36 
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