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Abstract: In this paper, we study long-term coastal flood risk of Lingang New City, Shanghai, considering 100- and 1000-year coastal 15 

flood return periods, local seal-level rise projections, and long-term ground subsidence projections. TanDEM-X satellite data acquired 16 

in 2012 were used to generate a high-resolution topography map, and multi-sensor InSAR displacement time-series were used to obtain 17 

ground deformation rates between 2007-2017. Both data sets were then used to project ground deformation rates for the 2030s and 2050s. 18 

A 2-D flood inundation model (FloodMap-Inertial) was employed to predict coastal flood inundation for both scenarios. The results 19 

suggest that the sea-level rise, along with land subsidence, could result in minor but non-linear impacts on coastal inundation over time. 20 

The flood risk will primarily be determined by future exposure and vulnerability of population and property in the floodplain. Although 21 

the flood risk estimates show some uncertainties, particularly for long-term predictions, the methodology presented here could be applied 22 
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to other coastal areas where sea level rise and land subsidence are evolving in the context of climate change and urbanization. 23 

Keywords: Coastal flooding; Sea level rise; Land subsidence; InSAR; FloodMap 24 

 25 

1. Introduction 26 

 27 

The global mean sea-level has risen at an average rate of 1.6–1.9 mm/year during the 20th century (Hay et al. 2015), and 28 

the rate is projected to accelerate, with a total sea-level rise (SLR) of up to 2 m over the 21st century (Oppenheimer and 29 

Alley, 2016). However, the projections remain quite uncertain due to difficulties in estimating the rate of melting of glaciers 30 

and the melting of the Greenland and Antarctic ice sheets. The fifth Assessment Report (AR5) of the Intergovernmental 31 

Panel on Climate Change (IPCC) suggests higher SLR rates throughout this century based on recent ice-sheet observations 32 

(IPCC 2014), hence increased flooding risks for low-lying coastal zones. Coastal inundation risks under sea-level rise have 33 

been assessed and mapped extensively for many coastal regions, including, e.g., in Charlestown, RI, USA (Grilli et al. 34 

2017), in the Italian coastal plains (Antonioli et al. 2017), in the coastal zones of Poland (Paprotny et al. 2017), in southeast 35 

Queensland, USA (Mills et al. 2016), in New York, USA (Orton et al. 2015, Lin and Shullman 2017), and in Shanghai in 36 

China (Wang et al. 2012). 37 

 38 

Moreover, non-climate-related anthropogenic processes, such as ground subsidence due to groundwater extraction, 39 

extensive coastal settlements in lands reclaimed from the sea, and complex subsidence phenomena related to artificial sea 40 

walls, will exacerbate the flooding risk of coastal zones. There is a global consensus that land subsidence is a major problem 41 

in low-lying coastal zones around the world (Jelgersma 1996; Ericson et al. 2006; Syvitski et al. 2009; Teatini et al. 2011). 42 

Local sinking of land resulting from anthropogenic and natural processes, in combination with sea level rise caused by 43 

climate change, makes the situation worse for coastal settlements. A large number of studies has already stressed the 44 
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significance of relative SLR in increasing coastal flood frequency and intensity (Karegar et al. 2017; Little et al. 2015; Shi 45 

et al. 2012; Cayan et al. 2008; Carminati et al. 2002). For example, with a relative SLR from 0.5 m to 1 m predicted by the 46 

2080s, a 100-year flood is projected to occur 2 to 4 times more often for New York City (Horton et al. 2015). 47 

 48 

Recent advances in InSAR techniques (Higgins, 2016; Mason et al., 2016; Massonnet and Feigl, 1998) and the advent of 49 

simplified hydraulic models have enabled high resolution scenario-based flood modeling in the context of SLR and land 50 

subsidence. Remotely sensed digital elevation models (DEMs) with varying resolutions have been widely applied for flood 51 

modeling (Hinkel et al. 2014; Sampson et al. 2015; Domeneghetti, 2016). Although LiDAR DEMs have optimal resolution 52 

and accuracy, they do not have global coverage and are not available over broad areas, particularly in developing countries. 53 

Open source DEMs with global coverage, such as Shuttle Radar Topography Mision (SRTM) and Advanced Spaceborne 54 

Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM), have demonstrated 55 

remarkable usability for large-scale flood modeling (e.g. Syvitski et al. 2009; Sampson et al. 2015). However, the 90-m 56 

SRTM and 30-m ASTER DEMs have significant limitations due to their coarse vertical accuracy (around 12-18 m) (Meyer 57 

et al. 2011; Tachikawa et al. 2011; Yang et al. 2011). In recent years, data from the bistatic TanDEM-X satellite mission 58 

have enabled the generation of DEMs with a horizontal resolution of 12 m and a vertical accuracy of 2-4 m with global 59 

coverage (Krieger et al. 2007). Moreover, time-series Differential Synthetic Aperture Radar Interferometry (DInSAR) have 60 

been developed to measure Earth’s surface ground displacement over large areas with high spatial resolution, on the order 61 

of meters, and with a temporal repetition time of 35 days (ERS and ENVISAT/ASAR sensors) and 6 days (Sentinel-1 62 

sensors) (Berardino et al. 2002; Crosetto et al. 2016). Currently, with a growing number of SAR images collected by 63 

different satellite missions with peculiar looking angles and operating wavelengths, a long-term (over ten years) 64 

displacement time-series can be retrieved using DInSAR techniques (Samsonov 2012; Pepe et al. 2016 a, b). In addition, 65 

simplified hydrodynamic models (e.g. LISFLOOD-FP, JFLOW, FloodMap) have been increasingly used for flood 66 
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modeling at different scales as they can capture the dominant physics of overland flood processes and take input topography 67 

in the format of a regular grid. They have been proven to perform as well as full 2-D models for the treatment of coastal 68 

flooding (utilizing an unstructured mesh to represent topography), but at a substantially reduced computational cost (Bates 69 

et al. 2005; Yin et al. 2016). 70 

 71 

In this study, we used the Small Baseline Subset (SBAS) DInSAR technique to jointly analyze SAR data from different 72 

sensors together with a simplified hydrodynamic model (FloodMap, Yu and Lane 2006a, b; Yu and Coulthard, 2015) to 73 

investigate the evolving flood risk in a changing climate of Lingang New City in Shanghai, a recently-reclaimed coastal 74 

environment. The scenarios used in this paper can be defined as series of events including different flood return periods, 75 

sea level and subsidence projections, and future land use in Lingang New City. The main goals of this study are to (i) 76 

provide a full characterization of surface changes over time in the coastal delta environment, (ii) derive coastal submerged 77 

areas under combined SLR and land subsidence scenarios, and (iii) assess potential coastal flood impacts on a fast growing 78 

waterfront urban area. The remainder of this paper is organized as follows. Section 2 describes the study area, whereas 79 

Section 3 introduces materials and methods, including the DEM generation, land subsidence measurement, SLR projections, 80 

and coastal flood modeling. Section 4 presents the results and discussions. Conclusions and future research directions are 81 

provided in Section 5. 82 

 83 

2. Study area 84 

 85 

Lingang New City, a township at the east end of Shanghai, has been chosen as the study area, because it is highly vulnerable 86 

to coastal flooding and is affected by a significant land subidence over the past decade (Wang et al. 2012). The study site 87 

is surrounded by the Yangtze River estuary, East China Sea and Hangzhou Bay (Fig. 1). It covers about 315 km2 of the 88 
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southeast part of Pudong New Area with a flat and low-lying topography (on average about 4 m above the Wusong Datum). 89 

According to China Sea Level Bulletin (2008, 2017), mean sea level in the area has been rising with an average rate of 3.8 90 

mm/a during the past 30 years, and has been empirically estimated as up to 150 mm in the next 30 years. Lingang has been 91 

historically experiencing variations in landscape due to changes in natural forcing and intensive human activities, such as 92 

sediment deposition, erosion, sand excavation, dam construction and land reclamation (Yang et al. 2011). Human activities 93 

have also greatly modified the coastal topography over the past decades. Since 2002, this area has been rapidly developed 94 

to be a new sub-center for several functional zones (e.g., a Bonded Logistics Park). A large part of the region (133 km2), 95 

representing approximately 42% of the total area, is sea-reclaimed land (Tian et al. 2016). The subsidence in reclamation 96 

areas is dominated by soil compaction mechanisms, which are primarily responsible for vertical movements (Cai et al. 97 

2008; Pepe et al. 2016a; Yu et al. 2017). Natural compaction of loose sediments and self-weight consolidation of dredger 98 

fill, under intense urbanization, has caused significant land subsidence in this area. 99 

 100 

In history, the area has been frequently affected by cyclonic storms, particularly during the flood season (June to 101 

September). For example, during typhoon Winnie (1997), the storm surge peak coincided with an astronomical high tide 102 

and resulted in the highest water level in record (5.66 m above Wusong Datum) at Luchaogang gauge station (Fig. 1), and 103 

extensive flooding occurred in the coastal floodplain due to levee breach (Liu 2008). To protect against evolving coastal 104 

floods, flood defense system in Lingang were constructed and reinforced several times over the past decades (Fan et al. 105 

2017). In the 1970s, ‘85’ (i.e., 8 m height and 5 m width levee crest) seawall has been built in response to an extreme 106 

coastal flood event that occurred in August 1974. Since the end of the 20th century, higher standard seawall (i.e., around 107 

10 m height) has been constructed to withstand a 200-year storm tide plus wave induced by 12-force winds. 108 

      109 
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    110 

Figure 1. Location of the study area 111 

 112 

3. Materials and methodology 113 

 114 

3.1 DEM generation 115 

 116 

The TanDEM-X mission has the innovative capability to simultaneously acquire two SAR satellite images (bistatic 117 

acquisition mode) with short along-track baselines, which enables us to derive high-resolution DEMs of the study area. 118 

With a pair of TanDEM-X images acquired on 04 November 2012, an up-to-date DEM of our study area, Lingang New 119 

City, has been generated using bistatic interferometry. The bistatic acquisition mode is characterized by illumination of an 120 

area on the ground by one transmitter and the simultaneous acquisition of the backscattered signals with two receivers. 121 

Compared to the monostatic acquisition mode, where only one image is acquired during every overflight of the satellite, 122 

temporal decorrelation and atmospheric disturbances, which severely affect the interferometric coherence, are significantly 123 

reduced in the TanDEM-X bistatic mode (Gruber et al. 2012). Moreover, since the SAR data pair is simultaneously imaged, 124 

the phase contribution due to ground deformation can be neglected. The interferometric phase is simplified in the bistatic 125 
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interferometry case as follows (Kubanek et al. 2015): 126 

𝜙𝜙 = 𝜙𝜙𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜙𝜙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛                                                         [1] 127 

where 𝜙𝜙𝑟𝑟𝑟𝑟𝑟𝑟 is the phase of the reference surface, i.e., WGS 84 (World Geodetic System 1984) ellipsoid; 𝜙𝜙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the 128 

topographic phase; and 𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  is the phase noise. 129 

We generated the interferogram with the TanDEM-X pairs using the DORIS software packages (Kampes et al. 2003). The 130 

interferometric phase can be expressed as follows (Kubanek et al. 2015): 131 

𝜙𝜙 = −2𝜋𝜋
𝜆𝜆
∆𝑟𝑟                                                                     [2] 132 

where ∆𝑟𝑟 is the path length difference between the two (bistatic) SAR acquisitions and 𝜆𝜆 is the wavelength, which is 3.1 133 

cm for TanDEM-X. Before phase unwrapping, i.e., before resolving the ambiguous phase, a Goldstein filter (Goldstein and 134 

Werner, 1998) was applied to smooth the interferometric phase. The filtered interferogram was unwrapped using the 135 

SNAPHU (Statistical-Cost Network-Flow Algorithm for Phase Unwrapping) algorithm (Chen and Zebker, 2001). 136 

Subsequently, the path length difference of Eq. 2 was converted from phase-to-height (Bamler and Hartl 1998; 137 

Franceschetti and Lanari 1999): 138 

                     [3] 139 

where is the orthogonal baseline of the InSAR pair, R is the sensor-to-target slant-range distance,  is the sensor side-140 

looking angle,  represents the unwrapped phase relevant to the interferometric phase 𝜙𝜙 (compensated by the phase of 141 

the reference plane), and h is the surface height. 142 

 143 

The obtained topographic map h is then geocoded to geographic coordinates (WGS 84) using DORIS and gridded using 144 

GMT (Wessel et al. 2013). A grid spacing of 6 m is selected for the DEM product and it is further resampled to 18 m 145 

resolution to reduce computational costs. Fig 2 shows the generated Tandem-X DEM of the study area. The theoretical 146 

accuracy and actual DEM performance of bistatic TanDEM-X InSAR were verified by Weigt et.al. (2012). Their 147 
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verification shows that for slopes less than 20%, the height error is predicted to be 1.7 m and 2.5 m for a height of ambiguity 148 

of 30 m and 45 m, respectively, for the global TanDEM-X data set. Kubanek et al. (2017) obtained a standard deviation of 149 

1.63 m for elevation differences of TanDEM-X DEMs that were generated to study the Tolbachik volcanic complex in 150 

Kamchatka, Russia, using the same methodology as used for DEM generation presented in this paper.   151 

 152 

Figure 2. The generated Tandem-X DEM of the study area 153 

 154 

3.2 Long-term ground settlement measurement 155 

Advanced time-series DInSAR algorithms can rapidly and regularly detect and measure ground deformation with a high 156 

accuracy and at different scales (Ferretti et al. 2001; Berardino et al. 2004; Hooper et al. 2012). DInSAR techniques have, 157 

among others, been applied for measuring and mapping ground deformation caused by over-pumping underground water 158 

(Gourmelen et al. 2007), tectonic movement (Fattahi et al. 2015), sediments consolidation of river deltas (Aly et al. 2012), 159 

and land reclamation (Zhao et al. 2015). Time-series DInSAR techniques have been proven being effective approaches for 160 

accurately measuring ground deformation (Casu et al. 2006; Zhao et al. 2014). 161 

 162 
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3.2.1 Multi-platform SAR displacement time-series 163 

 164 

Three independent sets of SAR images, acquired by different satellites, were used to retrieve long-term ground 165 

displacement of Lingang New City. The former consists of 35 ENVISAT ASAR (ENV) images, acquired with ascending 166 

passes from February 26, 2007 to September 13, 2010. The second SAR set is composed of 61 COSMO-SkyMed (CSK) 167 

images, which were collected with descending passes from December 7, 2013 to March 18, 2016. The third set was 168 

collected by the Sentinel-1A (S1A) satellite with ascending passes from February 26, 2015 to April 4, 2017. All available 169 

SAR images were processed through the well-known Small BAseline Subset (SBAS) multi-temporal DInSAR technique, 170 

which is outlined in the next subsection. 171 

 172 

173 

Figure 3 Distribution of the available ENVISAT ASAR, COSMO-SkyMed, and Sentinel-1A SAR data in the temporal-174 
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perpendicular baseline plane, as depicted in a), b), and c) respectively. The master images of ENVISAT ASAR, COSMO-175 

SkyMed, and Sentinel-1A SAR data are represented by red diamonds.  176 

 177 

3.2.2 Small BAseline technique 178 

 179 

Small Baseline (SB) techniques are a class of advanced time-series DInSAR methods (Mora et al. 2003; Usai 2003; 180 

Berardino et al. 2002). In particular, the SBAS algorithm (Berardino et al. 2002, Lanari et al. 2007) is one of the well-181 

known and highly used SB techniques. This algorithm is based on selecting a set of small temporal and perpendicular 182 

baseline interferograms, thus mitigating decorrelation phenomena, and allows the generation of mean deformation velocity 183 

maps and relevant displacement time-series for each coherent point. Fig. 3 (a)-(c) show the distribution of the three groups 184 

of SAR images used in this study in the temporal/perpendicular baseline plane. The small baseline interferometric SAR 185 

data pairs might be arranged in a few subsets. In order to generate a unique displacement time-series, the phase ambiguities 186 

of the differential SAR interferograms are preliminarily resolved, i.e., unwrapped (Costantini and Rosen, 1999, Pepe and 187 

Lanari 2006) and subsequently combined using the singular value decomposition (SVD) method. The residual topographic 188 

and atmospheric phase artifacts are also estimated and filtered out. The DInSAR products, i.e., the mean deformation 189 

velocity maps and the relevant displacement time-series, are finally geocoded to a common spatial grid. Interested readers 190 

can find a detailed description of the SBAS approach and the processing chain in Berardino et al. (2002). 191 

 192 

3.2.3 Multi-platform time-series DInSAR 193 

 194 

After the SBAS processing of the independent SAR datasets, the unique deformation time-series spanning the acquisition 195 

times of the overall SAR datasets is, however, still unknown. Indeed, it should be noted that the deformation time-series 196 
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are relative to the first SAR acquisition time of each independent dataset. In order to combine the deformation time-series 197 

obtained by multi-platforms, we need to determine the multi-platform deformation time-series relative to one global 198 

reference time. A methodology has been developed by Pepe et al. (2016a) to combine two time-gapped deformation time-199 

series obtained by ENVISAT ASAR and COSMO-SkyMed SAR datasets. To this aim, the DInSAR-derived line-of-sight 200 

(LOS) deformation time-series was first independently projected into vertical deformation time-series by assuming the 201 

horizontal (east-west) deformation is negligible. Then, an external geotechnical centrifuge model (Yang 2008), representing 202 

a complete time-settlement curve in reclaimed areas of Shanghai, was exploited and fitted to data to jointly estimate the 203 

unique deformation time-series over the entire time period between 26 February 2007 and 18 March 2016 (Zhao et al. 2015, 204 

Pepe et al. 2016a). Note that deformation due to reclamation can be distinguished in the primary consolidation phase, which 205 

takes place immediately after the completion of the reclamation process, and in the secondary compression stage of the 206 

alluvial deposit creep of the reclamation fill (Yang 2008), which can last several years after the completion of the 207 

reclamation procedures. The used laboratory centrifuge model permits to analyze the temporal evolution of the (vertical) 208 

ground displacement due to the self-weight consolidation (including both the primary and secondary compression stages) 209 

of the ocean-reclaimed lands. The used model is expressed as follows (Zhao et al. 2015): 210 

                                                                            [4] 211 

where t represents the consolidation time, Sm is the asymptotic (cumulative) deformation assumed at infinite time (i.e., 212 

when the soil consolidation process is ended), accounts for the (variable) starting time of the reclamation process, and 213 

k and µ are model parameters that influence the shape and curvature of the time-dependent model. 214 

 215 

First, the combined ENV+CSK deformation time-series were determined, for each radar pixel, by finding the best-fit 216 

between the geotechnical model and the multi-platform deformation time-series. The nonlinear optimization problem was 217 

solved efficiently through the (iterative) Levenberg–Marquadt least squares (LS) minimization technique. Subsequently, 218 
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the Sentinel-1A displacement time-series was independently generated by applying the SBAS technique, converted into 219 

(vertical) displacement time-series and finally combined to the previously obtained ENV+CSK displacement time-series. 220 

This procedure is repeated for each coherent radar pixel of the investigated scene. Due to the time overlap between the 221 

combined ENV+CSK and S1A subsets, the time-series were linked using SVD by extending what was originally proposed 222 

in Berardino et al. (2002). Finally, the long-term deformation time-series with a time-span of approximately 10 years (from 223 

2007 to 2018) were obtained. Fig. 4 (a)-(b) show the maps of the asymptotical ground deformation, namely the term of the 224 

best-fit model between the combined ENV+CSK and ENV+CSK+S1A displacement time-series and the model, 225 

respectively. As evident, there is a good agreement between the two maps, thus indicating that the Levenberg-Marquadt 226 

LS optimization procedure is robust to data. Additional remarks and the discussion of the DInSAR results are presented in 227 

Section 4.3. 228 

 229 

 230 

Figure 4. Maps of asymptotic ground deformation from Nov 2012 to the end time of the consolidation phase derived with 231 

the best fit model constrained by ENV+CSK (left) and ENV+CSK+S1A (right)  232 

 233 

Additionally, some measurements of the displacement affecting the seawalls, as gathered from leveling measurement 234 
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campaigns in 2009 (Chen et al. 2016), were also available to us. Figure 5 (a)-(b) shows the vertical mean deformation rate 235 

of the seawalls as seen from the leveling and the SBAS measurements (Zhao et al. 2015). It should be noted that we show 236 

the distribution of high-coherent pixels seen by ENVISAT in Figure 5(b) because the available corresponding leveling 237 

measurements span approximately the same time period of the ENVISAT acquisitions. The cross comparison between 238 

leveling and SBAS data shows a good agreement. Finally, starting from the retrieved parameters and the time vector t of 239 

the best-fit model of Equation (3) (see Zhao et al., 2015 for additional information), the expected cumulative deformations 240 

(calculated with respect to 26 February 2007) for January 1st of 2030 and 2050, respectively, were predicted. 241 

 242 

 

Figure 5 Vertical deformation rate of the seawall obtained by leveling measurements (a) and SBAS-ENVISAT (b) 
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Figure 6 Accumulated ground deformation projections for 2030s (a) and 2050s (b) in Lingang New City 

 243 

3.3 Sea level rise projections 244 

 245 

Sea level change shows significant local or regional differences due to both climate change and non-climatic factors such 246 

as land processes, ocean circulation and atmospheric pressure (Cooper et al. 2008; Hallegatte et al. 2011). Recently, Kopp 247 

et al. (2014) presented a global set of probabilistic local sea-level projections which quantified SLR contributions from 248 

global processes (e.g., the thermal expansion of ocean water) to local factors (e.g., glacial isostatic adjustment). It has been 249 

widely used for flood risk analysis (e.g., Lin and Shullman 2017). The dataset includes 17 station-based SLR projections 250 

in China’s coastal areas, among which one station (Lvsi) located at the Yangtze River Estuary. We use the SLR projection 251 

of this station in the present study. Compared to the aforementioned statistical SLR studies (e.g. Li et al. 1998), Kopp et al. 252 

(2014) show a significant higher rise in local sea level. To account for plausible extreme conditions, we adopted the high-253 

end estimates (i.e., 95th percentiles of model-based distributions) of Kopp’s SLR projection at Lvsi for the 2030s (0.31 m) 254 

and 2050s (0.61 m), the two future time frames considered in this study.  255 

 256 

3.4 Coastal flood modeling 257 

 258 

In order to derive coastal flood inundation, FloodMap-Inertial, a well-established 2D hydrodynamic model was employed 259 

in this study (Yu and Lane 2011). This model, as well as an earlier diffusion-based version of it (Yu and Lane 2006a, b), 260 

has been extensively applied in a number of different environments such as coastal regions, urban areas and basins (e.g., 261 

Casas et al. 2010; Yin et al. 2013, 2016a, 2016b). It is raster-based and solves the inertial form of the 2D shallow water 262 

equations. Flood routing takes the same form as the inertial algorithm of Bates et al. (2010), but with a slightly different 263 
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method to calculate the time steps. The details of the model are described in Yu and Lane (2011). Therefore, we only focus 264 

on the major features of the model. Neglecting the convective acceleration term in the Saint-Venant equation, the 265 

momentum equation becomes:  266 
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where q is the flow per unit width, g is the acceleration due to gravity, R is the hydraulic radius, z is the bed elevation, 268 

h is the water depth, and n is the Manning’s roughness coefficient. R can be approximated with h for wide and shallow 269 

flows. Discretizing the equation with respect to time produces:  270 
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where one of the qt in the friction term can be replaced by qt+△t, resulting in the explicit expression of the flow at the 272 

next time step:  273 
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The flow in the x and y directions are decoupled and take the same form. Discharge is evaluated at cell edges and depth at 275 

the cell center. 276 

 277 

To apply FloodMap for coastal flood simulation, time-series of water level along the land-sea boundary are used as input 278 

to drive 2D inland flow routing. The shape of the stage hydrograph at the boundary section was derived from the hourly 279 

recorded water level available at Luchaogang gauge station during Typhoon Winnie. Assuming tidal cycles remain constant, 280 

time-series of the 100- and 1000-year design flood heights above Wusong Datum were generated by scaling Typhoon 281 

Winnie’s surge heights. To balance the accuracy and computational costs, 24-hour stage hydrographs, including two rising 282 

phases and two falling limbs, were applied to simulate the coastal flood processes. To account for the effect of SLR, the 283 

projected SLRs were linearly added to the state of 2012 to create the flood scenarios for the 2030s and 2050s. Due to lack 284 
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of available verification materials (e.g., high watermarks and observed flood extent) in the study area, a empirically-based, 285 

relatively low floodplain roughness value of 0.03 which corresponds to the n Manning roughness coefficient, was used in 286 

the simulations to represent the effect of tidal-flat area and open land on coastal flood routing. 287 

 288 

Given the high design standard of seawalls built along the coastline of Shanghai, coastal flooding was not expected to 289 

affect the region significantly, assuming seawalls are intact during storm surge events. Comparison of seawall heights (both 290 

with and without land deformation) and projected peak surge values suggest that future storm surge events of up to 1000-291 

year magnitude would only affect the region marginally. However, coastal flooding did occur historically (e.g., 1997 292 

Typhon Winnie) along this part of the coastline, due to seawall breaching. Therefore, we generated breaching scenarios 293 

based on the actual conditions of the seawalls obtained from a field survey and the observed & projected deformation rates 294 

(Fig. 5 and 6). According to ‘Code for design of sea dike project (GB/T 51015-2014)’ in China, sections with subsidence 295 

rates higher than 50 mm/a, which were in particular vulnerable to burst under the combined effect of wave and storm surge, 296 

were removed from the seawall system in the simulation. 297 

 298 

3.5 Flood sensitivity analysis 299 

 300 

Due to the scenario-based nature of this study, we used a theoretically most appropriate roughness value (i.e., 0.03) in flood 301 

modeling. However, in the context of flood inundation modeling for historical events, floodplain friction was found to 302 

introduce bias into the modeling results. Therefore, model sensitivity to roughness parameterization was evaluated with 303 

FloodMap by varying the Manning's n values (between 0.01 and 0.1 at a 0.01 interval). 304 

 305 

In order to detect the spatio-temporal changes in flood inundation, two metrics (i.e., Fit statistic (F) and Root Mean Square 306 
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Deviation (RMSD)) were used to quantify the degree of matching and variation between model predictions respectively. 307 

In each case, the n=0.01 simulation was used as the reference and both measures are calculated against this reference. F is 308 

widely used for evaluating the goodness of agreement between predicted flood extent and the reference (Bates and De Roo, 309 

2000; Horritt and Bates, 2001; Yu and Lane, 2006). It varies between 1 for a perfect fit and 0 when no overlap exists. It can 310 

be calculated as follows: 311 

F =
𝐴𝐴𝑜𝑜

𝐴𝐴𝑟𝑟 + 𝐴𝐴𝑠𝑠 − 𝐴𝐴𝑜𝑜
 312 

where Ar is the referenced wet areas, As is the predicted wet areas, and Ao is the overlap of Ar and As.  313 

 314 

The RMSD is particularly suitable for evaluating the overall agreement/discrepancy of water depth between two paired 315 

results on a cell-by-cell basis (Yu and Lane, 2011; Yin et al. 2016). It can be defined as follows: 316 

RMSD = �∑ (𝑑𝑑𝑖𝑖𝑠𝑠 − 𝑑𝑑𝑖𝑖𝑟𝑟)2𝑛𝑛
𝑖𝑖=0

𝑛𝑛
 317 

where 𝑑𝑑𝑖𝑖𝑠𝑠 and 𝑑𝑑𝑖𝑖𝑟𝑟 are the predicted and referenced water levels (or depths) respectively, i is the index of the wet cells and 318 

n is the total number of wet cells in the prediction and observation.  319 

 320 

4. Results and discussions 321 

 322 

4.1 Coastal inundation mapping 323 

 324 

Predicted maximum inundation depths for 100-year and 1000-year coastal flood scenarios due to hypothetical levee 325 

breaches for the present (i.e., 2012), the 2030s and the 2050s are shown in Fig. 7 and the maximum flooded areas are 326 

summarized in Table 1. The mean maximum flood depth in the table represents the average value of maximum flood depths 327 

in all grids during the flood model run. Comparison of the derived inundation maps leads to two important findings. First, 328 
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similar inundation pattern are generally observed for both simulations (one in 100- and 1000-year return periods) in the 329 

study area, but with different flood depths. This can be largely attributed to the topographic confinement of the coastal 330 

floodplain. The levee-breach flow would be blocked by the previous seawall (Fan et al. 2017), and thus the water would 331 

be mostly confined within the coastal flat and low-lying areas where land was only recently reclaimed in the past decade 332 

(Zou et al. 2007). In addition, Dishui Lake which has a total area of 5.56 km2 and a storage of 16.2 million m3, also shows 333 

a significant impact on the detention and storage of the storm water, restricting further inland propagation of coastal flood 334 

waves. 335 

 336 

Table 1 The areas (km2 and percentage of computation domain) and depths subject to different levee-breach coastal flood 337 

scenarios under sea level rise and land subsidence projections for Lingang New City, Shanghai 338 

 339 

Time 
High-end sea 

level rise (m) 

Mean land 

subsidence (m) 

Maximum flood areas (km2) and percentage (%) Mean maximum flood depths (m) 

100y flood 1000y flood 100y flood 1000y flood 

2012 / / 32.79 (13.14%) 34.30 (13.74%) 1.33 1.45 

2030 0.31 0.13 34.72 (13.91%) 36.37 (14.57%) 1.44 1.59 

2050 0.61 0.28 37.76 (15.13%) 42.18 (16.90%) 1.56 1.76 

 340 

Second, our results show that rapid sea-level rise combined with extensive land subsidence generally leads to minor but 341 

non-linear impacts on coastal inundation over time in our study area. For example, when the 0.44 m and 0.89 m rise in the 342 

relative sea level (i.e. the sum of SLR and subsidence projections) for the 2030s and the 2050s are considered, a 6% and 343 

15% increase in predicted maximum inundation area can be observed for future 100-year flood events. Similarly, compared 344 

to 2012, the mean water depths are projected to rise 0.11 m (8%) by 2030 and 0.23 m (17%) by 2050, respectively. In 345 

contrast, the impact of the projected relative sea level rise appears to be more pronounced for 1000-year flood events, 346 

where the total flood area is expected to increase by 23% by 2050; the maximum water depth will rise by 21%. Although 347 

mean land subsidence only makes up around 30% of the relative sea level rise, coastal flooding response is also controlled 348 
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by a non-uniform pattern of subsidence. It was found that rapid subsidence would further accentuate inundation extent and 349 

depth in the reclamation area, making it more vulnerable to coastal flooding. 350 

 351 

In order to detect the temporal changes of coastal flood dynamics, the time evolution of predicted inundation areas for all 352 

scenarios are presented in Fig. 8. The curves mostly coincide during the initial wetting phase (up to 7 h), suggesting that 353 

levee-breach water flow extends progressively overland before and after the first flood peak, due to the mild relief and flat 354 

topography of the coastal floodplain. After the rapid inland intrusion in each simulation, the inundated area increases only 355 

slightly with a much higher stage during the second rising phase, indicating that further widespread expansion of coastal 356 

flooding is limited due to strong resistance from surface obstruction. This finding also confirms the topographic 357 

confinement of the coastal floodplain, which we identified in Fig. 2. Moreover, as shown in Fig. 8, the general pattern of 358 

simulated time series revealed that the temporal characteristics of the inundated area is not strictly synchronous with the 359 

timing of the tidal cycle. In most cases, the flood extent continues to increase even as the stage recedes, because the 360 

floodwater level greatly overwhelmed low-lying waterfront ground. Another important finding is that the relative SLR 361 

provides an elevated base for a storm flood to build upon and SLR and land subsidence may lead to more pronounced 362 

impact on coastal inundation during the falling limbs of tidal hydrograph (Yin et al. 2013). 363 
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 364 

Figure 7 Potential levee-breach 100-year and 1000-year coastal flood inundation scenarios modeled with up-to-date and 365 

high resolution DEM and long-term DInSAR derived ground deformation time series for Lingang New City of Shanghai 366 

in 2012, the 2030s and the 2050s 367 

 368 

 369 

Figure 8 Time series of inundation extents and water levels with 100-year and 1000-year flood return periods in 2012, 370 

2030s and 2050s for Lingang New City of Shanghai 371 
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 372 

4.2 Coastal flood impacts 373 

 374 

Coastal floodings, as derived by our models, will affect areas of current and future land use, where data are officially 375 

provided by the Shanghai Institute of Surveying and Mapping (Fig. 9). An immediate finding is that although the Lingang 376 

area has experienced rapid urbanization during the last decade, wetlands and bare lands mainly dominate the floodplain 377 

and therefore flood impacts have a minor effect on the coastal communities. At present, considerable personal injury and 378 

property damage are unlikely to occur in this area. However, according to the land use planning for Lingang New City, the 379 

process of urbanization and floodplain development is expected to accelerate in the near future. According to the Lingang 380 

New City Plan, the total population is expected to rise from about 50-100 thousand today to 1-1.5 million in the next 381 

decades. Thus rapid expansion in human settlements is expected to occupy the waterfront areas around Dishui Lake. If 382 

long term subsidence combined with strong storm tide causes the emergence of levee breach, extensive coastal flood 383 

inundation would occur throughout the area in the 2030s and 2050s, leading to significant casualties and losses. In addition, 384 

future flood risk could also be significant in the northern part of the coastal floodplain, where comprehensive industrial, 385 

research & development, service, and residential areas may be constructed in the future. Compared to the direct impacts, 386 

possible indirect consequences, such as interruption of public services or negative influences on industrial production and 387 

living, would be more pronounced. The indirect impacts may last a few days to even a few months after an extreme event 388 

(Yin et al. 2016b). 389 
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 390 

Figure 9 Land uses/planning fall within the predicted inundation areas (highlight) at current and future states: a) 100y flood 391 

in 2012; b) 1000y flood in 2012; c) 100y flood in 2050s; and d) 1000y flood in 2050s 392 

 393 

4.3 Uncertainty and limitations 394 

 395 

Uncertainties are inherent in a changing environment. In our study, the long term flood-risk mappings could be highly 396 

uncertain due to the assumptions and limitations associated with data and methods used here. First, in terms of SLR 397 

projections, the response of the Greenland and the West Antarctic ice sheets to future global warming is the largest long-398 
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term source of uncertainty. Although the likelihood of the ice sheet collapse within the coming century has been described 399 

as extremely low (black swan, i.e., an event or occurrence that deviates beyond what is normally expected of a situation 400 

and is extremely difficult to predict), a partial or complete collapse of the Western Antarctic Ice Sheet will cause the global 401 

mean sea level to rise up to 4 m (Bentley, 1998; Vaughan and Spouge, 2002; Pfeffer et al. 2008; Bamber et al. 2009; Ritz 402 

et al. 2015; DeConto and Pollard, 2016). Second, coastal storminess is projected to change with climate change (Lin et al. 403 

2012, 2015). Future frequency of extreme storms is very likely to increase until 2100 (IPCC 2012). It is yet unclear how a 404 

changing storminess, in combination with SLR, will affect the frequency and intensity of coastal flooding in Shanghai. 405 

Third, the flood modeling conducted in this study is based upon an arbitrary assumption that levee breaches will occur in 406 

the locations/sections with an observed subsidence rate higher than 50 mm/a. There are certain limitations and errors 407 

associated with such hypothesis, as the mechanism of seawall failure is determined by different triggering factors, including 408 

material and structure of the seawall, geologic conditions, and hydrodynamics (e.g., waves). The impacts of land subsidence 409 

on the stability of seawall and the threshold of levee breaches should be explicitly tested and verified. 410 

 411 

Another source of uncertainty arises from the long-term (over twenty years) ground deformation projections. Although the 412 

long-term vertical deformation is predicted with best-fit models, which are obtained using the time-dependency laboratory 413 

models constrained by multi-platform DInSAR measurements (Pepe et al. 2015), uncertainties in estimating the asymptotic 414 

values of deformation might depend on the temporal length of the available, constrained DInSAR time-series. The longer 415 

the DInSAR displacement time-series the more accurate is the fit between the DInSAR data and the foreseen models. To 416 

get an idea of such uncertainties, we calculated the asymptotic ground deformation values of each high coherent point from 417 

November 2012 until the end of the consolidation phases with the best-fit models constrained by the combined ENV+CSK 418 

and ENV+CSK+S1A deformation time-series. As anticipated in Section 3.2.3, Fig. 4 shows the maps of asymptotic ground 419 

deformation, indicating that the asymptotic values of deformation agree well with the best fit models derived by ENV+CSK 420 
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and ENV+CSK+S1A in most of the study areas. Most of the points with different asymptotic values (see Equation (3)) of 421 

deformation are located along the seawall and the east of Dishui Lake. In particular, Table 2 presents the asymptotic values 422 

of deformation at four points labeled as a, b, c, d in Fig. 4. According to the quantity values of uncertainties in ground 423 

deformation prediction, the observed deviation is acceptable for the long-term flood-risk mapping. It is worth remarking 424 

that our predictions are based on the analysis of only ten years of data, and are relevant to a very dynamical coastal area 425 

that is highly affected by human activities. More lands are expected to be reclaimed along the current coastline in future 426 

decades. Accordingly, continuous DInSAR measurements are necessary for monitoring and progressively measuring the 427 

changes and for updating the projections. 428 

 429 

Table 2 Total cumulative deformation values and end time values of consolidation phases between the best-fit models 430 

retrieved by using the combined ENV-CSK time series and the ones extracted from the combined ENV-CSK-S1A time 431 

series. The end of consolidation phase has been considered, for each radar pixel, as the time in correspondence to which 432 

the expected surface displacement rate is smaller than 0.5 mm/year.  433 

  Best fit model derived with 

ENV+CSK 

Best fit model derived with 

ENV+CSK+S1A 

a 
End time of consolidation 2015 2015 

Asymptotic values of ground subsidence (mm) 2 2 

b 
End time of consolidation 2030 2031 

Asymptotic values of ground subsidence (mm) 62 60 

c 
End time of consolidation 2035 2035 

Asymptotic values of ground subsidence (mm) 93 109 

d 
End time of consolidation 2060 2057 

Asymptotic values of ground subsidence (mm) 118 109 

 434 

Flood model uncertainties have been addressed and time-series of F-statistic and RMSD for each simulation are shown in 435 

Fig. 10. The results show significant variations in the spatio-temporal pattern between individual simulations and the 436 

n=0.01 reference, suggesting the model’s strong sensitivity to floodplain roughness. Another finding is that with higher 437 
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Manning’s n values, the differences in inundation area and depth becomes less pronounced throughout the simulations, 438 

especially in terms of RMSD. The sensitivity of the RMSD is progressively magnified as the flood magnitude increases 439 

over time. On the contrary, higher magnitude flood events (e.g., 1000-year floods) appear to be less sensitive to roughness 440 

due to the lateral confinement of the floodplain. This observation reveals that coastal flood inundation is highly uncertain 441 

in the rapidly developing area, particularly for long-term predictions. 442 

 443 

 444 

Figure 10 Time series of F statistic, and depth RMSD for current 100- (left column) and 1000-year (right column) flood 445 

simulations with different Manning’s n values 446 

 447 

5. Conclusions 448 

 449 

This paper demonstrates a novel approach to evaluate evolving flood hazard in the context of sea level rise and land 450 
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subsidence for Lingang New City in Shanghai through an integration of 2D numerical flood modeling and InSAR 451 

techniques. A number of conclusions can be drawn from the results obtained in this study. First, even with rapid sea level 452 

rise and extensive land subsidence in the future, coastal flood inundation due to potential levee breach is predicted to occur 453 

mostly in the waterfront low-lying areas, because of topographic confinement in the floodplain and blockage of previous 454 

seawalls. Second, flood impacts in this area are expected to be minor due to a very low exposure of the population and 455 

property at present, but future flood risk could be significantly higher as rapid urbanization and large-scale coastal 456 

development have been planned in the floodplain. Finally, limitations, biases and even errors in local SLR projections, 457 

storm climatology projections, levee breach estimations, ground deformation predictions, and coastal flood modeling may 458 

have induced substantial uncertainties in the final estimates.  459 

 460 

The methodology proposed here could be applied to other coastal communities facing significant SLR, subsidence and 461 

flooding challenges. It may contribute to a better understanding of the long-term coastal flood hazard at local scale, and 462 

thus help to develop sustainable flood risk management in coastal communities. However, to derive more robust 463 

conclusions, further research should include: (1) analyzing the mechanisms and probabilities of seawall failure to provide 464 

a more complete picture of levee breach; (2) evaluating the impacts of extreme SLR scenarios (e.g., collapse of the West 465 

Antarctic Ice Sheet) and projected storminess due to climate change on coastal flooding; (3) coupling soil compaction 466 

mechanics with time-series InSAR measurements to generate more reliable long-term ground deformation predictions; (4) 467 

incorporating the ‘crowd sourced’ data and/or Unmanned Aerial Vehicle (UAV) remote sensing maps into flood model 468 

calibration and validation, and (5) conducting quantitative assessment of coastal flood risk as well as cost-benefit analysis 469 

of adaptation measures to support decision making with respect to financial investment. Finally, great efforts are required 470 

to improve the accuracies in the datasets, models and future scenarios applied to coastal flood risk analysis. 471 

 472 
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