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Commonly used dependence measures, such as linear correlation, cross-correlogram, or Kendall’s �, cannot
capture the complete dependence structure in data unless the structure is restricted to linear, periodic, or
monotonic. Mutual information �MI� has been frequently utilized for capturing the complete dependence
structure including nonlinear dependence. Recently, several methods have been proposed for the MI estima-
tion, such as kernel density estimators �KDEs�, k-nearest neighbors �KNNs�, Edgeworth approximation of
differential entropy, and adaptive partitioning of the XY plane. However, outstanding gaps in the current
literature have precluded the ability to effectively automate these methods, which, in turn, have caused limited
adoptions by the application communities. This study attempts to address a key gap in the literature—
specifically, the evaluation of the above methods to choose the best method, particularly in terms of their
robustness for short and noisy data, based on comparisons with the theoretical MI estimates, which can be
computed analytically, as well with linear correlation and Kendall’s �. Here we consider smaller data sizes,
such as 50, 100, and 1000, and within this study we characterize 50 and 100 data points as very short and 1000
as short. We consider a broader class of functions, specifically linear, quadratic, periodic, and chaotic, con-
taminated with artificial noise with varying noise-to-signal ratios. Our results indicate KDEs as the best choice
for very short data at relatively high noise-to-signal levels whereas the performance of KNNs is the best for
very short data at relatively low noise levels as well as for short data consistently across noise levels. In
addition, the optimal smoothing parameter of a Gaussian kernel appears to be the best choice for KDEs while
three nearest neighbors appear optimal for KNNs. Thus, in situations where the approximate data sizes are
known in advance and exploratory data analysis and/or domain knowledge can be used to provide a priori
insights into the noise-to-signal ratios, the results in the paper point to a way forward for automating the
process of MI estimation.

DOI: 10.1103/PhysRevE.76.026209 PACS number�s�: 05.45.�a

I. INTRODUCTION

In nonlinear systems, the understanding of underlying
nonlinear processes and their interactions is very important
for predictive modeling as well as for generating bounds on
predictability. However, data analysis methods based on non-
linear dynamical approaches are typically not robust when
applied to short and noisy data �1�. The definition of what
constitutes short and noisy, in terms of data sizes and noise-
to-signal ratios, may be application and context specific. A
consideration of data availability scenarios in a couple of
domains, specifically the earth sciences and biomedical en-
gineering, in conjunction with the literature on mutual infor-
mation �MI� estimation methods, suggest that a critical gap
continues to exist in our understanding of situations where
the length of data sets is short, particularly of the order of
100 or 1000 data points.

Physically based definitions for what constitutes long ver-
sus short data sizes need to follow from a comparison of
sampling coverage time-span in relation to the characteristic
time of the dynamical system under consideration. The char-

acteristic time can be, for example, one full seasonal cycle
for purely seasonal observations or a complete span of the
attractor for a chaotic system. If the sample size is large, but
the sampling coverage is restricted to a small portion of the
cycle or the attractor, then observations are still not represen-
tative of the population. In this sense, the data size must still
be considered short in a physical sense because it does not
have the coverage necessary to make the relevant inferences
from the data. While samples with greater coverage are more
representative of the population, the trade-off, especially for
a limited number of samples, is that the sampling frequency
needs to be adequate to capture the features of the dynamical
system and make appropriate inferences from the observa-
tions. In this sense, even if the sampling coverage is large but
the frequency is inadequate, the data size must still be con-
sidered short from a physical perspective. Thus, the Nyquist
frequency on the one hand and the characteristic period of
the dynamical system under consideration on the other pro-
vide guidelines for the definitions of long versus short data
sizes and indeed provide a physical basis for such defini-
tions. However, in real-world situations, knowledge of the
characteristic period of the dynamical system or the signal
bandwidth may not necessarily be known a priori and, in
some cases, may be difficult to estimate if the data are con-*Corresponding author. gangulyar@ornl.gov
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taminated with nonrepeatable patterns, measurement errors,
or other forms of noise. Thus, for such systems, there is a
need for caution before making a claim that a set of obser-
vations is short or, perhaps more important, long enough.
This paper is concerned with simulated data, where we have
knowledge of the system, and generates noise sequences
from independent and identically distributed processes. Here
we implicitly define the characteristic time �basic period� of
the system as equal to unity; thus, the number of data points
is a natural measure for our examples. In this study, a data
size of 50–100 is referred to as very short whereas a data size
of 1000 is considered short.

We use the term noise in a generic sense to include vari-
ability in measurement errors as well as any inherent, but
nonrepeatable, randomness that may be present in complex
systems. Indeed, noise levels encountered in real-world data
may vary considerably depending on the domain, data col-
lection methods, measurement accuracy, and inherent ran-
domness in the observables, as well as other factors. Here we
consider noise-to-signal ratios that range all the way from
zero, which implies no noise, to unity, which implies that the
noise is as important as the underlying signal itself. For this
study, we call a noise-to-signal ratio of zero to about one-half
as low noise and higher ratios as high noise.

In general, linear correlation may not be an adequate mea-
sure of dependence even for simple nonlinear functional
forms. This can be simply shown in the case of two variables
�X ,Y� where �Y =X2� and X is uniformly distributed in the
interval �−1,1�. The theoretical covariance and hence the
linear correlation reduce to zero even though the variable Y
is completely specified once X is known. The situation gets
even more problematic when the nonlinear interactions get
more complex. One key question is whether nonlinear de-
pendence measures and corresponding estimation procedures
can be developed to capture complete dependence, including
the linear and nonlinear components thereof. However, the
application of nonlinear dynamical and/or information theo-
retic measures of dependence can be a challenge, especially
when short and noisy data are available. Thus, the second
key question is whether nonlinear dependence estimation
techniques can be made robust to noisy and limited data. For
example, the identification of the underlying nonlinear dy-
namical component via the correlation dimension is known
to be a difficult problem for geophysical �2� or electroen-
cephalographic �EEG� �3,4� signals. Similarly, the detection
of the underlying interactions among variables characterizing
a complex system becomes a difficult task �5�. The inherent
difficulty of numerical estimation as well as perceived prob-
lems with model parsimony or overfitting have resulted in a
relatively limited use of nonlinear approaches, even when the
underlying processes are known to be nonlinear. The prob-
lem exists in certain biomedical applications �6–8�, but
grows more acute in domains like geophysics �2,9� where the
data collection and generation processes are often not repeat-
able. Our definition of what constitutes short and noisy data
is motivated by problems in these domains. The references
cited earlier show that very short and short data sets, as well
as low-noise and high-noise conditions, do exist for real-
world problems. Thus, there is a clear need to investigate
methods, which are robust to short and noisy data, for the

determination of nonlinear multivariate interactions. How-
ever, the methodologies need to be rigorously tested such
that well-known problems in nonlinear statistics like overfit-
ting do not yield misleading correlations.

The problem of detecting excessive spurious dependence
or missing existing dependence structures among nonlinear
signals is exacerbated for short and noisy data. The degree to
which even a small amount of noise can obscure the under-
lying dependence structure is evident from Fig. 1 which
shows two cases, such as quadratic and Henon, based on
simulations with 100 points each. In both cases, the simu-
lated data are contaminated with Gaussian noise with zero
mean and standard deviation given by �� /�s, which denotes
the noise-to-signal ratio. The variables �� and �s are the
standard deviations of the noise and signal, respectively. Vi-
sual inspection reveals that the dependence structure departs
significantly from the underlying true dependence structure
as the noise-to-signal ratio increases. Robust measures for
nonlinear dependence would need to capture the dependence
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FIG. 1. �Color Online� Plot of 100 points with different noise-
to-signal ratios �shown by plus� and with zero noise level �shown
by dots�. Noise-to-signal ratios on the left and right figures are 0.1
and 0.5, respectively. �a� X�N�0,1�, Y :yi=xi

2+�i, where �
�N�0,��� is the Gaussian noise with zero mean and �� standard
deviation. �b� X :xi=Hxi

+�xi, Y :yi=Hyi
+�yi, where HX and HY are

the X and Y components of the Henon map, respectively. �x
�N�0,�HX

� and �y�N�0,�HY
�, where �HX

and �HY
are the stan-

dard deviations of HX and HY, respectively.
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structure even when the latter is obscured by noise. Previous
studies designed to compare existing or newly proposed
methods for nonlinear dependence with each other, as well as
with a standard method, have been limited in scope. The
classic algorithm was proposed by Fraser and Swinney �10�,
which was compared with the kernel density estimation
�KDE� method given by Moon et al. �11�. The comparison
utilized the following combination of data sizes and simula-
tions: 400 for a sinusoidal curve, 500 for an autoregressive
process, 4096 for data sets generated from the Lorenz sys-
tem, and 2048 for Rössler, where the last two are chaotic.
Later, KDE was refined and validated on real-world geo-
physical data sets �12�. Kraskov et al. �13� compared two
k-nearest-neighbor �KNN� estimators with simulations from
correlated Gaussians for data sizes of 125, 250, 500, 1000,
2000, 4000, 10 000, and 20 000, as well as with simulations
from the exponential distribution. In addition, they tested
their methods on gene expression data. The Edgeworth ap-
proximation of differential entropy proposed by Hulle �14�
was compared against the KNN method and Parzen density
estimator. For the comparisons, data sets of size 1000 and 10
000 were generated from the Gaussian and exponential dis-
tributions. Cellucci et al. �15� focused on statistical evalua-
tion of mutual information estimation by comparing the MI
estimates with linear correlations and the rank-based corre-
lations from Kendall’s �. In addition, they proposed a new
algorithm �henceforth referred to as Cellucci� based on adap-
tive partitioning and compared it with the Fraser-Swinney
method given in �10�. Their comparisons utilized simulations
from the Gaussian distribution and linear and quadratic func-
tions contaminated with artificial noise, as well as the chaotic
systems, such as Lorenz and Rössler. The data sizes utilized
for the comparison were 4096, 8192, 10 000, 65 536, and
100 000. Cellucci et al. �15� mentioned that when they ini-
tiated their research, the KNN method by Kraskov et al. �13�
had not been published yet. Indeed, they also suggested the
need of an expanded future research effort to compare and
contrast their adaptive partitioning method with the KNN
and KDE methods.

From these discussions, it is clear that a thorough com-
parison of the various methods for the estimation of MI,
specifically, KDE, KNN, Edgeworth, and adaptive partition-
ing, do not exist in the literature. Furthermore, detailed com-
parisons have not been attempted across a wide class of
simulated functional forms. In addition, the MI estimation
methods have not been compared with base-line approaches
like linear correlation and Kendall’s �, other than the specific
comparisons presented in the study by Cellucci et al. �15�.
Finally, a clear gap exists in terms of detailed comparisons of
the various MI estimation methods for short and noisy data.

Methods for the estimation of MI proposed in recent years
include KDE �11�, adaptive partitioning of the observation
space �16�, Parzen window density estimator �17�, KNN
�13�, Edgeworth approximation of differential entropy
�Edgeworth� �14�, mutual information carried by the rank
sequences �18�, and adaptive partitioning of the XY plane
�15�. The goal of this study is to investigate and compare
recently developed MI estimation methods, specifically
KDE, KNN, Edgeworth, and Cellucci, based on simulated
data generated from linear, quadratic, periodic, and chaotic

data contaminated artificially with various levels of Gaussian
noise. We generate 50, 100, and 1000 points for our analysis.
As mentioned earlier, the motivation for the data sizes comes
from a specific geophysical application �the relationship of
the interannual climate index known as ENSO with the vari-
ability of tropical riverflows �9�� and a specific biomedical
application �dependence among EEG signals �6,8��. The
simulated data allow us to compare the relative performance
of the MI estimation methods across an order of magnitude
in terms of data sizes and noise-to-signal ratios ranging from
0 to 1 in increments of 0.1. Uncertainties on the MI estimates
are obtained through bootstrapping and provided as 90%
confidence bounds. The total number of bootstraps used for
50, 100, and 1000 points are 200, 100, and 10, respectively,
reflecting a pragmatic trade-off between the need for accu-
racy and computational tractability. However, such trade-offs
may not be required in more efficient or higher-performance
computational implementations. The performances of the MI
estimation methods are compared against each other and
against base lines comprising a linear correlation coefficient
�CC� obtained from linear regression �LR� and rank-based
CCs from Kendall’s �. We have also used theoretical MI
values from linear, quadratic, and periodic functions, which
can be computed analytically, for comparing the performance
of different MI estimation methods. The purpose of the
above comparisons is to identify the one MI estimation
method or combination of MI estimation methods in terms of
robustness to short and noisy data, at least for the illustra-
tions considered here, whose estimation values are closest to
the theoretical MI values and significantly different from lin-
ear estimates in that their confidence bounds do not intersect.

The rest of the paper is organized as follows. In Sec. II,
the MI and its estimation methods are described. The MI is
defined in Sec. II A while we outline the four MI estimation
methods—namely, KDE, KNN, Edgeworth, and
Cellucci—in Sec. II B. In Sec. III, the description of simu-
lated data sets to be analyzed is provided. We present and
discuss the results obtained using four MI estimation meth-
ods, LR, and Kendall’s � in Sec. IV. In Sec. V, the conclusion
and discussion are presented.

II. MUTUAL INFORMATION AND ITS ESTIMATION
METHODS

Several dependence measures, such as linear correlation,
cross-correlogram, Kendall’s �, and MI, have been utilized to
capture the dependence structure between a pair of variables
�X ,Y�. However, while the first three measures can only cap-
ture linear, periodic, or monotonic dependence, MI can de-
scribe the full dependence structure including nonlinear de-
pendence if any �19�. In addition, MI reduces to the linear
dependence when the data are indeed linearly related. In an
information-theoretic sense, MI quantifies the information
stored in one variable about another variable. MI has several
satisfying theoretical properties and analogous relations with
the linear correlation. While the linear CC can be used to
calculate the prediction mean squared errors �MSEs� from
linear regression, MI can be used to compute a bound on the
achievable prediction MSEs based on the information con-

RELATIVE PERFORMANCE OF MUTUAL INFORMATION… PHYSICAL REVIEW E 76, 026209 �2007�

026209-3



tent in the independent variables about the dependent vari-
ables. MI has been shown to have traditional analysis-of
variance- �ANOVA-� like interpretations �20�. For time serial
data, MI can be computed as a function of temporal lags to
obtain nonlinear versions of the auto- or cross-correlation
functions �ACF or CCF�. The information-theoretic proper-
ties of MI, which make it a reliable measure of the statistical
dependence, have been described by Cover and Thomas �21�.
The applicability of MI for feature, parameter, and model
selection problems has been described by Brillinger �20�.
Besides the direct use of MI in the computation of nonlinear
dependence �20,22�, MI has indicated a value in areas rang-
ing from optimal time delay embeddings during phase-space
reconstructions �10� to extracting causal relationships among
variables �23,24,15�.

A. Definitions of mutual information

For the bivariate random variables �X ,Y�, the MI is de-
fined as

I�X;Y� = �
Y
�

X

pXY�x,y�ln
pXY�x,y�

pX�x�pY�y�
dxdy , �1�

where pXY�x ,y� is the joint probability density function
�PDF� between X and Y and pX�x� and pY�y� are the marginal
PDFs �13�. The unit of MI is defined corresponding to the
base of the logarithm in Eq. �1�: i.e., nats for log, bits for
log2, and Hartleys for log10. MI is positive and
symmetrical—i.e., I�X ;Y�= I�Y ;X�. It is also invariant under
one-to-one transformations—i.e., I�X ;Y�= I�U ;V�, where u
= f�x�, v= f�y�, and f is invertible. If X and Y are indepen-
dent, the joint PDF is equal to the product of marginal PDFs
leading to I�X ;Y�=0. If there exists perfect dependence be-
tween X and Y, MI approaches infinity �21�.

MI between random variables X and Y can also be defined
in terms of information entropies as

I�X;Y� = H�Y� − H�Y�X� = H�X� + H�Y� − H�X,Y� , �2�

where H�X� and H�Y� are called the marginal information
entropies which measure the information content in X and Y,
respectively, H�Y �X� is the entropy of Y conditional on X
which measures the information content remaining in Y if the
information content in X is known completely, and H�X ,Y� is
the joint information entropy which measures the informa-
tion content in a pair of random variables X and Y �21�. The
bivariate case is considered here for simplicity.

The linear CC between two variables X and Y denoted by
��X ,Y� is a measure of the strength of the linear dependence
between the variables and varies from 0 to 1. The estimation
of the most likely value and the corresponding uncertainties
is relatively straightforward. However, the estimation of the
mean and uncertainty bounds, for a MI-based dependence
measure that is normalized to scale between 0 to 1, is an area
of ongoing research.

If �X ,Y� is bivariate normal, the MI and linear CC are
related as I�X ;Y�=−0.5 ln�1−��X ,Y�2� �25�. Joe �26� pro-
posed a linear CC-like measure for MI, which scales from 0
to 1, given as

�̂�X,Y� = �1 − exp�− 2Î�X;Y�� , �3�

where �̂�X ,Y� and Î�X ;Y� are the estimated nonlinear CC
and MI, respectively. Later Granger and Lin �27� used the
same measure to estimate nonlinear CC from the MI. While
this study utilizes nonlinear CC based solely on MI, other
bases for nonlinear CC suggested in the literature include
mutual nonlinear prediction �28� and nonlinear association
analysis �29�. A detailed comparison of the various defini-
tions of nonlinear CC and their relative performances is left
as areas for future research. In order to estimate the predict-
ability of Y given X, once the MI is known, Brillinger �20�
proposed an equation which provides a lower bound on the
prediction MSE. This equation, which is analogous to the
MSE for linear regression obtained from the linear correla-
tion coefficient, is given as

��Y� 	
1

2
e
exp�2	Ĥ�Y� − Î�X;Y�
� ,

where Ĥ�Y� is the estimated information entropy of Y and
��Y� gives a lower bound on MSEs from the MI and mea-
sures the predictability of Y based on the information content
in X.

B. Mutual information estimators

1. Kernel density estimators

The MI in Eq. �1� for any bivariate data set �X ,Y� of size
n can be estimated as

Î�X;Y� =
1

n
�
i=1

n

ln
p̂XY�xi,yi�

p̂X�xi�p̂Y�yi�
, �4�

where p̂XY�xi ,yi� is the estimated joint PDF and p̂X�xi� and
p̂Y�yi� are the estimated marginal PDFs at �xi ,yi�.

For the multivariate data set �x1 , . . . ,xn�, where each x is
in a d-dimensional space, the multivariate kernel density es-
timator with kernel K is defined by

p̂�x� =
1

nhd�
i=1

n

K�x − xi

h
 , �5�

where h is the smoothing parameter �30�. We choose the
standard multivariate normal kernel defined by

K�x� = �2
�−d/2 exp�−
1

2
xTx . �6�

Using Eqs. �5� and �6�, the probability density function is
defined as

p̂�x� =
1

nhd�
i=1

n
1

��2
�d�S�
exp�−

�x − xi�TS−1�x − xi�
2h2  ,

�7�

where S is the covariance matrix and �S� is the determinant of
S. For a normal kernel, Silverman �30� suggested an optimal
smoothing parameter or Gaussian bandwidth given as
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ho = � 4

d + 2
1/�d+4�

n−1/�d+4�. �8�

Moon et al. �11� presented the same procedure and utilized
Eq. �7� for estimating marginal probability densities—i.e., p̂X
and p̂Y—and the joint probability density—i.e., p̂XY—and
substituted these densities into Eq. �4� to estimate MI.

2. k-nearest neighbors

If X= �x1 , . . . ,xn�, where each x is in d-dimensional space,
is a continuous random variable, the Shannon entropy of X,
which is restricted to random variable taking discrete values,
defined as

H�X� = −� p�x�ln p�x�dx ,

can be estimated by

Ĥ�X� = −
1

n
�
i=1

n

ln p̂�xi� , �9�

where p̂�xi� is the estimated marginal PDF at xi. Kraskov et
al. �13� expanded Eq. �9� as

Ĥ�X� = −
1

n
�
i=1

n

�„nx�i�… −
1

k
+ ��n� + ln cdX

+
dX

n
�
i=1

n

ln ��i� ,

�10�

where n and k are the number of data points and nearest
neighbors, respectively, dX is the dimension of x, and cdX

is
the volume of the dX-dimensional unit ball. For two random
variables X and Y, let ��i� /2 be the distance between �xi ,yi�
and its kth neighbor denoted by �kxi ,kyi�. Let �x�i� /2 and
�y�i� /2 be defined as �xi−kxi� and �yi−kyi�, respectively.
nx�i� is the number of points xj such that �xi−xj���x�i� /2.
��x� is the digamma function, ��x�=�x�−1d�x� /dx, where
��x+1�=��x�+1/x and �x� is the ordinary gamma func-
tion. The function ��y� satisfies the relation ��1�=−C, where
C=0.577 215 664 9 is the Euler-Mascheroni constant. Simi-

larly, Ĥ�Y� can be derived by replacing x with y in Eq. �10�.
In the similar way, the estimated joint entropy between X and
Y can be given as

Ĥ�X,Y� = − ��k� −
1

k
+ ��n� + ln�cdX

cdY
� +

dX + dY

n
�
i=1

n

ln ��i� ,

where dY is the dimension of y, and cdY
is the volume of the

dY-dimensional unit ball. Substituting Ĥ�X�, Ĥ�Y�, and

Ĥ�X ,Y� in Eq. �2�, the MI can be estimated as

Î�X;Y� = ��k� −
1

k
−

1

n
�
i=1

n

��„nx�i�… + �„ny�i�…� + ��n� ,

where ny�i� is the number of points yj such that �yi−yj�
��y�i� /2 �13�.

3. Edgeworth approximation of differential entropy

If X= �x1 , . . . ,xn�, where each x is in a d-dimensional
space, the Edgeworth expansion of the density p�x� after
ignoring higher-order terms is given by

p�x� � �p�x��1 +
1

3! �i,j,k �i,j,khi,j,k�x� , �11�

where �p�x� is the normal distribution with the same mean
and covariance matrix as p, �i , j ,k� is the input dimension
where �i , j ,k�� �1, . . . ,d�, �i,j,k is the standardized
cumulant—i.e., �i,j,k= �ijk

�i� j�k
, where �ijk is the cumulant for

input dimensions �i , j ,k� and � is the standard deviation—for
a large number of points, and hi,j,k is the ijkth Hermite poly-
nomial �14�.

Let p�x� be defined in a set X. The differential entropy of
X which is analogous to the Shannon entropy and could be
thought of as its extension to the domain of real numbers is
defined as

H�X� = − �
X

p�x�ln p�x�dx .

In terms of the density—i.e., p�x�, defined in Eq. �11�—the
differential entropy of X can also be defined as

H�p� = H��p� − J�p� = H��p� − �
X

p�x�ln
p�x�

�p�x�
dx ,

�12�

where H��p�=0.5 ln�S�+ d
2 ln 2
+ d

2 is the d-dimensional en-
tropy of normal estimate �p, where �S� is the determinant of
a covariance matrix S, and J�p� is called negentropy, which
measures the distance to normal distribution �14�. From Eq.
�11�, p�x�=�p�x��1+Z�x��, where Z�x�= 1

3!�i,j,k�
i,j,khi,j,k�x�.

Substituting p�x� in Eq. �12� leads to

H�p� � H��p� − �
X

�p�x��Z�x� + 0.5Z�x�2�dx .

Using �X�p�x�Z�x�dx=0 and the orthogonal properties of
Hermite polynomials—i.e., �−�

� �p�x�hn�x�hm�x�dx=n!�nm,
where �nm is the Kronecker delta—Hulle �14� obtained an
approximate expression for H�p�:

H�p� � H��p� −
1

12�
i=1

d

��i,i,i�2 −
1

4 �
i,j=1,i�j

d

��i,i,j�2

−
1

72 �
i,j,k=1,i�j�k

d

��i,j,k�2. �13�

We utilize Eq. �13� for the estimation of Ĥ�X�, Ĥ�Y�, and

Ĥ�X ,Y� and substitute in Eq. �2� to get the MI estimates.

4. Adaptive partitioning of the XY plane

Cellucci et al. �15� developed a procedure for estimating
MI such that the null hypothesis—i.e., H0: X and Y are sta-
tistically independent—is rejected. They used an adaptive
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partitioning of the XY plane to estimate the joint probability
density: i.e., p̂XY. The XY plane is nonuniformly partitioned
in such a way that the Cochran criterion on EXY�i , j�—i.e.,
EXY�i , j�	5 for at least 80% of all elements—is satisfied,
where EXY�i , j� is the expected number of points in the
�i , j�th element of the XY partition given the assumption of X
and Y being statistically independent is valid. The whole
procedure of Cellucci et al. �15� is described below.

Let x and y axes be partitioned into equal number of ele-
ments denoted by NE which leads to

p̂X�i� = p̂Y�j� =
n/NE

n
, for i, j = 1, . . . ,n ,

where n is the total number of points and p̂X�i� and p̂Y�j� are
the marginal densities at the ith element of the x axis and jth
element of the y axis, respectively. Under the null hypothesis
that X and Y are statistically independent, the expected num-
ber of points in the �i , j�th element of the XY partition is
given as

EXY�i, j� = np̂X�i�p̂Y�j� =
n

NE
2 .

NE is computed from a more conservative criterion—i.e.,
EXY�i , j�=n /NE

2	5 for all elements—rather than the Co-
chran criterion. After computing NE, NE partitions in the x
axis and NE partitions in the y axis are used for the estima-
tion of joint probability density at the �i , j�th element of the
XY partition: i.e., p̂XY�i , j�. The MI is estimated by substitut-
ing p̂X, p̂Y, and p̂XY in the equation given as

Î�X;Y� = �
i=1

NE

�
j=1

NE

p̂XY�i, j�ln
p̂XY�i, j�

p̂X�i�p̂Y�j�
.

III. DETAILS OF THE DATA

We analyze simple examples of linear, quadratic, and pe-
riodic functions, as well as a chaotic system, specifically the
Henon map, contaminated with different levels of artificial
Gaussian noise.

Linear. A simple linear function with Gaussian noise can
be generated as

X � N�0,1�, Y:yi = xi + �i,

where i=1, . . . ,n and X is independent and identically dis-
tributed �iid�. ��N�0,��� is the Gaussian noise with zero
mean and standard deviation ��. In this case, �� gives the
noise level. � is iid and independent of X.

Quadratic. We generate a simple quadratic, with artificial
Gaussian noise, in the following manner:

X � N�0,1�, Y:yi = xi
2 + �i,

where i=1, . . . ,n; X is iid and ��N�0,��� is the Gaussian
noise with zero mean and standard deviation ��. � is iid and
independent of X.

Periodic. We consider a simple periodic function, specifi-
cally the sine function, contaminated with Gaussian noise in
the following way:

X � uniform�− 
,
�, Y:yi = sin�xi� + �i,

where i=1, . . . ,n and X is uniformly distributed between −

and 
. ��N�0,��� is the Gaussian noise with zero mean and
standard deviation ��. � is iid and independent of X.

Chaotic. We consider the Henon map given as

HX:Hxi+1
= 1 − �Hxi

2 + Hyi
,

HY:Hyi+1
= �Hxi

,

where i=1, . . . ,n, �=1.4, �=0.3, and �Hx1
,Hy1

�= �0.0,0.0�.
The Henon map contaminated with Gaussian noise is gener-
ated as

X:xi = Hxi
+ �xi

, Y:yi = Hyi
+ �yi

,

where �x�N�0,�HX
� and �y �N�0,�HY

� are iid and indepen-
dent of HX and HY, respectively. �HX

and �HY
are the stan-

dard deviations of HX and HY, respectively.
Theoretical MI can be computed analytically for the lin-

ear, quadratic, and periodic cases as shown in Appendix A.

IV. RESULTS

We first estimate MI from KDE, KNN, Edgeworth, and
Cellucci and then substitute in Eq. �3� to get the nonlinear
CC estimates. Linear CCs are obtained from LR whereas
rank-based CCs are estimated from Kendall’s �. The mean of
CCs and its 90% confidence bounds are evaluated using
bootstrapping. The total number of bootstrap samples used
for 50, 100, and 1000 data points are 200, 100, and 10,
respectively. The correlation coefficient presented here is the
mean of bootstrap samples. The lower and upper bounds of
90% confidence bounds are given as 5% and 95% quantiles
of bootstrap samples, respectively.

A. Performance of linear and nonlinear dependence measures

Numerical recipes for the estimation of nonlinear depen-
dence can be evaluated based on how well the estimators
capture the complete dependence structure, including nonlin-
ear dependence if any, how well they can refrain from cap-
turing spurious nonlinear dependence when the dependence
structure is known to be linear. In order to compare the per-
formance of different methods, we compare nonlinear CCs
from KDE, KNN, Edgeworth, and Cellucci with linear CCs
obtained from LR. If the confidence bounds of nonlinear
CCs overlap with the bounds of linear CCs, it means here
that nonlinear correlations are not different from linear cor-
relations at 90% confidence level. Nonlinear CCs obtained
from the MI estimation methods are compared with theoret-
ical CCs derived from the theoretical MI values which can be
computed analytically for three out of four test cases consid-
ered here: namely, linear, quadratic, and periodic. The per-
formance of the MI estimation methods is also compared
with a rank-based correlation measure, specifically the Ken-
dall’s �. Plots of normal and kernel density estimates for
linear, quadratic, periodic, and chaotic cases are shown in
Figs. 7–10 of Appendix B.
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1. Linear

Linear and nonlinear CCs with 90% confidence bounds
are shown in Fig. 2. The theoretical CC, which is computed
analytically, is expected to be identical to the linear CC. As
noise levels increase, linear and nonlinear CCs decrease and
their corresponding variances increase for both very short

and short data. The complete description of results obtained
from KDE, KNN, Edgeworth, Cellucci, and Kendall’s � for
very short and short data at low and high noise is given in
Table I. For very short data, KNN appears to be a better
choice at low noise because it has no bias, overlaps with
theoretical CCs, and has narrow confidence bounds �Figs.
2�a� and 2�b��. At high noise, KDE is positively biased but it
appears to be a better choice given that the others have wider
confidence bounds. Thus, for very short data, KNN may be
utilized at low noise but at high noise, KDE seems to be the
best choice. For short data, Kendall’s � is the worst whereas
Edgeworth is better than KDE because it overlaps exactly
with theoretical CCs �Fig. 2�c��. LR and KNN stand out
among the rest since they have very small bias, overlap ex-
actly with theoretical CCs, and have narrow bounds at all
noise levels. Thus, for short data, either KNN or LR may be
utilized at all noise levels.

2. Quadratic

LR and Kendall’s � fail to capture the nonlinear depen-
dence as shown by near zero CC in Fig. 3. The variance
increases for KDE, KNN, Edgeworth, and Cellucci as the
noise level increases at all noise levels. Table II gives the
complete description of results obtained from LR, KDE,
KNN, Edgeworth, Cellucci, and Kendall’s � for very short
and short data at low and high noise. For very short data, as
the noise level increases, the bias increases for KNN and
Cellucci and decreases for KDE and Edgeworth �Figs. 3�a�
and 3�b��. At low noise, only KNN and Edgeworth overlap
with theoretical CCs but KNN is more closer to theoretical
than Edgeworth. At high noise, the performance of KDE is
the best because it is closer to theoretical CCs, does not
intersect with linear CCs, and has narrow confidence bounds
as compared to that from KNN, Edgeworth, and Cellucci.
Thus, for very short data, KNN and KDE may be utilized at
low and high noise, respectively. For short data, KNN is the
best because it overlaps exactly with theoretical CCs and has
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FIG. 2. �Color online� Linear: comparisons between linear CCs
from LR and nonlinear CCs from KDE, KNN, Edgeworth, Cellucci,
and Kendall’s �, at different noise-to-signal ratios ��� /�s� for �a� 50
points, �b� 100 points, and �c� 1000 points.

TABLE I. Linear: description of results where each entry con-
sists of three columns given as �1� Column 1: 0, �, or �, where
“0,” “�,” and “�” mean nonlinear CCs are zero, negatively, and
positively biased with respect to theoretical CCs, respectively. �2�
Column 2: Y or N, where “Y” and “N” mean 90% confidence
bounds of nonlinear CCs overlap and do not overlap with theoreti-
cal CCs, respectively. �3� Column 3: Y or N, where “Y” and “N”
mean 90% confidence bounds of nonlinear CCs overlap and do not
overlap with linear CCs, respectively. Bold and slanted entries in-
dicate the best and second best methods for each case specified in
the top headings of the table, respectively.

Very short data Short data

Low noise High noise Low noise High noise

KDE + Y Y + Y Y 0 Y Y + Y Y

KNN 0 Y Y −Y Y 0 Y Y 0 Y Y

Edgeworth + Y Y + Y Y 0 Y Y 0 Y Y

Cellucci −N N −Y Y −Y Y + Y Y

Kendall’s � −N N −N Y −N N −N N
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narrow confidence bounds �Fig. 3�c��. Cellucci is closer to
theoretical CCs than KDE and Edgeworth. Thus, KNN
seems to be the best choice for short data. KDE may be
further improved at low noise by choosing a smaller value of
the smoothing parameter.

3. Periodic

Correlation coefficients and their 90% confidence bounds
obtained from LR, KDE, KNN, Edgeworth, Cellucci, and
Kendall’s � are shown in Fig. 4. KNN overlaps with theoret-
ical CCs for both very short and short data at all noise levels
except for the fact that at high noise it produces wide confi-
dence bounds. The performance of Kendall’s � is the worst at
all noise levels. Edgeworth appears to capture only the linear
correlation or the linear component of the overall depen-
dence, and produces wide confidence bounds. In this case the
density of Y is bimodal, which causes Edgeworth estimates
to be incorrect. The results obtained from LR, KDE, KNN,
Edgeworth, Cellucci, and Kendall’s � are described in Table
III for very short and short data at low and high noise. For
very short data, the variances from all the methods are small
at low noise but increase as the noise level increases �Figs.
4�a� and 4�b��. KNN and KDE have the lowest variances at
low and high noise, respectively. KNN overlaps exactly with
theoretical CCs and has narrow and wide confidence bounds
at low and high noise, respectively. Thus, KNN is a better
choice at low noise. At high noise, KDE and KNN overlap
with theoretical CCs as well as with linear CCs but KDE has
the smallest confidence bounds. Thus, for very short data,
KNN and KDE may be utilized at low and high noise, re-
spectively. For short data, there is not much difference in the
variances from all methods with Cellucci having the lowest
variance �Fig. 4�c��. The performances of KNN and Cellucci
are better than the rest. Cellucci overlaps with theoretical
CCs for only few noise levels whereas KNN overlaps exactly
with theoretical CCs and has narrow bounds. Thus, KNN has
an edge over all other methods considered here for short data
across all noise levels.

4. Chaotic

For very short and short data, linear CCs between X and Y
components of the Henon map are negative for all noise
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FIG. 3. �Color online� Quadratic: comparisons between linear
CCs from LR and nonlinear CCs from KDE, KNN, Edgeworth,
Cellucci, and Kendall’s �, at different noise-to-signal ratios ��� /�s�
for �a� 50 points, �b� 100 points, and �c� 1000 points.

TABLE II. Quadratic: description of results where each entry
consists of three columns given as �1� Column 1: 0, �, or �, where
“0,” “�,” and “�” mean nonlinear CCs are zero, negatively, and
positively biased with respect to theoretical CCs, respectively. �2�
Column 2: Y or N, where “Y” and “N” mean 90% confidence
bounds of nonlinear CCs overlap and do not overlap with theoreti-
cal CCs, respectively. �3� Column 3: Y or N, where “Y” and “N”
mean 90% confidence bounds of nonlinear CCs overlap and do not
overlap with linear CCs, respectively. Bold and slanted entries in-
dicate the best and second best methods for each case specified in
the top headings of the table, respectively.

Very short data Short data

Low noise High noise Low noise High noise

KDE − N N − Y N − N N − Y N

KNN − Y N − Y Y 0 Y N 0 Y N

Edgeworth − Y N − Y N − N N − Y N

Cellucci − N N − Y Y − N N − Y N

Kendall’s � − N Y − N Y − N Y − N Y
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levels. Since nonlinear CCs from the MI estimation methods
do not have directionality, the absolute values of linear CC
are considered here. Note that theoretical CCs for the Henon
map could not be computed analytically and were not found
in the literature. However, given the dynamical relation be-
tween X and Y, it is reasonable to expect that the theoretical
nonlinear CCs will be greater than linear CCs at all noise

levels. However, the performance of the numerical recipes to
estimate the dependence need to be evaluated, especially in
terms of their ability to capture additional dependence be-
yond linear correlation. Nonlinear and linear CCs decay as
noise level increases.

For very short data, KNN estimates higher CCs than all
other methods when �� /�s is less than around 0.5 after
which KDE yields higher values compared to all other meth-
ods �Figs. 5�a� and 5�b��. The performance of Kendall’s � is
the worst since it cannot even capture the linear portion of
the dependence which is estimated by the linear correlation
for the majority of noise levels. At low noise, both Edge-
worth and Cellucci are ruled out because they are lower than
KNN and KDE and have wide confidence bounds. Thus,
KNN seems to be a better choice at low noise since KDE is
negatively biased. As the noise level increases, the confi-
dence bounds from all methods increase. At high noise, the
confidence bounds from KNN, Edgeworth, and Cellucci
overlap with linear CCs. KDE seems to have an edge over
the other methods since it has narrow confidence bounds and
does not overlap with linear CCs. Thus, KNN and KDE may
be utilized for very short data at low and high noise, respec-
tively. For short data, Cellucci differs completely from the
other estimators at high noise �Fig. 5�c��. KNN is a better
choice at low noise because it appears to be the most consis-
tent. At high noise, KNN and Edgeworth are ruled out be-
cause they overlap with linear CCs due to their wide confi-
dence bounds. KDE overlaps with KNN but it stands out due
to its ability to capture more correlation than purely linear
correlation. Thus, for short series, KNN and KDE may be
utilized at low and high noise, respectively.

B. Performance of KDE and KNN with different parameter
values

In the case of KDE, the amount of smoothing defined by
smoothing parameter, h in Eq. �5�, is very important for the
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FIG. 4. �Color online� Periodic: comparisons between linear
CCs from LR and nonlinear CCs from KDE, KNN, Edgeworth,
Cellucci, and Kendall’s �, at different noise-to-signal ratios ��� /�s�
for �a� 50 points, �b� 100 points, and �c� 1000 points. In �c�, LR
overlaps exactly with Edgeworth.

TABLE III. Periodic: description of results where each entry
consists of three columns given as �1� Column 1: 0, �, or �, where
“0,” “�,” and “�” mean nonlinear CCs are zero, negatively, and
positively biased with respect to theoretical CCs, respectively. �2�
Column 2: Y or N, where “Y” and “N” mean 90% confidence
bounds of nonlinear CCs overlap and do not overlap with theoreti-
cal CCs, respectively. �3� Column 3: Y or N, where “Y” and “N”
mean 90% confidence bounds of nonlinear CCs overlap and do not
overlap with linear CCs, respectively. Bold and slanted entries in-
dicate the best and second best methods for each case specified in
the top headings of the table, respectively.

Very short data Short data

Low noise High noise Low noise High noise

KDE − N Y − Y Y − N N − N N

KNN − Y N − Y Y 0 Y N 0 Y N

Edgeworth − N Y − N Y − N Y − N Y

Cellucci − N Y − Y Y − N N + N N

Kendall’s � − N N − N Y − N N −N N
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density estimation, which, in turn, influences the MI esti-
mates. The selection of appropriate smoothing parameter
needs to be guided by the end use of the density estimates.
Here we use the optimal smoothing parameter for a Gaussian
kernel �ho� with KDE given in Eq. �8�. We investigate the
effects of h on nonlinear CC estimates from KDE by select-
ing different values of h around ho. For KNN, the number of

nearest neighbors �k� governs the overall amount of smooth-
ing in the densities which are subsequently used in entropy
estimation given in Eq. �10�. Small values of k lead to small
bias and large variance whereas large k results in large bias
and small variance. Thus, the bias-variance trade-off, which
is a common issue encountered in statistical estimation pro-
cedures, is also important here. Kraskov et al. �13� warned
against using large k since the decrease in variance is out-
weighed by the increase in bias. They proposed k ranging
from 2 to 4. Here we use k as 3 for KNN. We evaluate the
effects of k on nonlinear CC estimates from KNN by select-
ing different k values. The results presented here are obtained
for two cases: specifically, quadratic and periodic.

For very short data, the bias and variance from KDE in-
crease with the increase of h at low noise and all noise levels,
respectively �Fig. 6�a��. At low noise, KDE does not overlap
with theoretical CCs. However, KDE with h=0.75ho and h
=ho performs better at high noise since their 90% confidence
bounds overlap with theoretical CCs. The bias and variance
from KNN increase as the number of nearest neighbors in-
crease across all noise levels �Fig. 6�b��. At low noise, the
performance of KNN with k=3 is the best of all the cases
considered here since it has small bias and its confidence
bounds overlap with theoretical CCs. At high noise, KNN
has large bias and variance for all k. If KNN needs to be used
at high noise, k=3 appears to be a better choice since it is
closer to theoretical CCs as compared to the others and the
variances from all k are comparable. Thus, for very short
data, KDE with h=0.75ho or h=ho may be utilized at high
noise whereas KNN with k=3 seems to be a better choice at
low noise.

For short data, KNN with k=3 performs better at low
noise since it has small bias and variance �Fig. 6�c��. As k
increases, the bias increases and the variance decreases at
high noise. KNN with all k considered here performs better
at high noise but the selection of appropriate k needs to be
guided by the acceptable levels of bias and variance. Thus,
for short data, KNN with k=3 is the best since it overlaps
exactly with theoretical CCs and its variance does not differ
significantly from the others.

V. CONCLUSION AND DISCUSSION

Our results indicate that two MI estimation methods, spe-
cifically KDE and KNN, outperform the other methods and
estimation procedures in terms of their ability to capture the
dependence structure including nonlinear dependence where
present. We find that KNN is the best estimator for very short
data with relatively low noise while KDE works better for
very short data when the noise levels are higher. A visual
examination of the density plots may help in explaining the
relative performance of KDE and KNN �Figs. 7–10 in Ap-
pendix B�. For short data, KNN is the best choice for cap-
turing the nonlinear dependence across all noise levels ex-
cept when the data are generated from chaotic dynamics,
where KDE is a better choice at higher noise levels. We
surmise that the relative performance of KDE and KNN with
respect to various noise levels is a consequence of the bias-
variance trade-off. Previous literature suggests that KDE es-
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FIG. 5. �Color online� Chaotic: comparisons between linear CCs
from LR and nonlinear CCs from KDE, KNN, Edgeworth, Cellucci,
and Kendall’s �, at different noise-to-signal ratios ��� /�s� for �a� 50
points, �b� 100 points, and �c� 1000 points.

KHAN et al. PHYSICAL REVIEW E 76, 026209 �2007�

026209-10



timates can often be highly biased if the particular KDE
recipe used here is followed �12�, while KNN estimates can
have significant variance when the number of nearest neigh-
bors �k� is set to low values—e.g., k=3 as used in this study.
The bias in the KDE estimates dominates the variance of the
estimates for low noise-to-signal ratios. The KNN performs
relatively better for low noise levels since its bias and vari-
ance are lower than that from KDE. However, the converse
is true for high noise-to-signal ratios, and hence the KDE
performs relatively better. For high noise, the variance domi-

nates because of the noise in the data but the variance asso-
ciated with k=3 for KNN increases dramatically. One way to
address the large variance from KNN is to use a much larger
value of k, but it would also increase the bias.

In general, the above discussions and pointers appear to
suggest that the results for nonlinear dependence obtained
from KDE and KNN could reflect the lower bounds of what
may be potentially achievable through improvements or in-
telligent combinations of KNN and KDE. Specifically, both
the KDE and KNN estimates can be potentially improved by
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FIG. 6. �Color online� Performance of KDE and KNN with different values of smoothing parameter �h� and number of nearest neighbors
�k�, respectively. The results from quadratic and periodic functions are presented in the left and right, respectively. �a� KDE with 100 points,
�b� KNN with 100 points, and �c� KNN with 1000 points. In �a�, ho is the optimal smoothing parameter for a Gaussian kernel given in Eq.
�8�.
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utilizing a plug-in method for kernel, smoothing parameter
�h�, or k selection. Such plug-in procedures would cause ad-
ditional estimation variance but may reduce the overall MSE
of estimation. However, the development or utilization of
procedures for the selection of optimal kernels, smoothing
parameters, or nearest neighbors may be rather involved and
hence is an area of future research.

We have presented preliminary justifications for the rela-
tive performance of the MI estimation methods based on
considerations like the bias-variance trade-off and the nature
of the approximations underlying the estimation procedures.
Our evaluation suggests that the development of guidance
for the use of the most suitable estimation procedure may be
possible and would depend on known data or domain char-
acteristics and exploratory data analysis. If such guidance
can indeed be provided, this could lead to the development
of automated or semiautomated procedures for the choice of
the most appropriate estimation procedure and the corre-
sponding parameters. However, significant future research on
multiple test cases comprising simulated and real data may

be necessary before such procedures can be deployed in real-
world settings.
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FIG. 7. �Color online� Linear: normal �left� and kernel �right�
densities with different noise-to-signal ratios ��� /�s� with 100
points. For kernel density, a Gaussian kernel with optimal smooth-
ing parameter ho given in Eq. �8� is used. �a� �� /�s=0.2. �b�
�� /�s=0.9. The linear dependence structure can be seen clearly in
�a� but cannot be readily identified in �b� based on an eye
estimation.
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FIG. 8. �Color online� Quadratic: normal �left� and kernel �right�
densities with different noise-to-signal ratios ��� /�s� with 100
points. For kernel density, a Gaussian kernel with optimal smooth-
ing parameter ho given in Eq. �8� is used. �a� �� /�s=0.2. �b�
�� /�s=0.9. At low noise, such as in �a�, the nonlinear dependence
can be clearly seen as shown by the kernel density. However, at
high noise, such as in �b�, the dependence structure is not readily
discernible visually from the kernel density.
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APPENDIX A: COMPUTATIONS OF THEORETICAL
MUTUAL INFORMATION

In this study, we consider four different types of simula-
tions: i.e., linear, quadratic, periodic, and chaotic systems.
For the linear, quadratic, and periodic cases, the exact MIs as
defined by Eq. �2� can be computed as shown below.

1. Linear

Let X�N�0,1� ,Y :yi=xi+�i, where i=1, . . . ,n; X is iid;
and ��N�0,���, where �� is the noise level and is iid and
independent of X. Let Z=�, so Y =X+Z. Therefore, H�Y �X�
can be obtained as

H�Y�X� = H�Z� = 0.5 ln�2
e��
2� .

The PDF of Z is

pZ�z� = �2
�−1/2����−1 exp� − z2

2��
2 .

The PDF of X is given as

pX�x� = �2
�−1/2��X�−1 exp� − x2

2�X
2 ,

where �X, which is called the signal level, is the standard
deviation of X.

In order to compute H�Y�, the PDF of Y—i.e., pY�y�—is
needed. Since Y =X+Z and X and Z are independent, pY�y�
can be obtained through the convolution of the PDFs of X
and Z given as
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FIG. 9. �Color online� Periodic: normal �left� and kernel �right�
densities with different noise-to-signal ratios ��� /�s� with 100
points. For kernel density, a Gaussian kernel with optimal smooth-
ing parameter ho given in Eq. �8� is used. �a� �� /�s=0.2. �b�
�� /�s=0.9. With increasing noise levels, the nonlinear dependence
structure cannot be identified visually as shown by the kernel den-
sity plots.
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FIG. 10. �Color online� Chaotic: normal �left� and kernel �right�
densities with different noise-to-signal ratios ��� /�s� with 100
points. For kernel density, a Gaussian kernel with optimal smooth-
ing parameter ho given in Eq. �8� is used. �a� �� /�s=0.2. �b�
�� /�s=0.9. Kernel density plot shows the Henon attractor in �a�.
However, the Henon attractor cannot be readily distinguished visu-
ally in �b�.
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pY�y� = �
−�

�

pX�x�pZ�y − x�dx . �A1�

Solving Eq. �A1�, we get

pY�y� = �2
�−1/2��X
2 + ��

2�−1/2 exp� − x2

2��X
2 + ��

2�
 .

Therefore, H�Y� can be given as

H�Y� =� pY�y�ln pY�y�dy = 0.5 ln�2
e��X
2 + ��

2�� .

Substituting H�Y �X� and H�Y� in Eq. �2�, we get

I�X;Y� = 0.5 ln�1 +
�X

2

��
2 .

2. Quadratic

Let X�N�0,1� ,Y :yi=xi
2+�i, where i=1, . . . ,n; X is iid,

and ��N�0,���, where �� is the noise level and is iid and
independent of X. Let U=X2 and Z=�, so Y =U+Z. There-
fore, H�Y �X� can be obtained as

H�Y�X� = H�Z� = 0.5 ln�2
e��
2� .

The PDF of Z is given as

pZ�z� = �2
�−1/2����−1 exp� − z2

2��
2 .

The PDF of U is given as

pU�u� = ��2
�−1/2�u�−1/2 exp�− u

2
 , u � 0,

0, otherwise.
�

In order to compute H�Y�, the PDF of Y—i.e., pY�y�—is
needed. Since Y =U+Z and U and Z are independent, pY�y�
can be obtained through the convolution of the PDFs of U
and Z given as

pY�y� = �
−�

�

pU�u�pZ�y − u�du . �A2�

H�Y� is computed as H�Y�=�pY�y�ln pY�y�dy, where pY�y�
in Eq. �A2� is solved using numerical integration for differ-
ent values of ��. We obtain I�X ;Y� by substituting H�Y �X�
and H�Y� in Eq. �2�.

3. Periodic

Let X�uniform�−
 ,
� ,Y :yi=sin�xi�+�i, where i
=1, . . . ,n; X is uniformly distributed between −
 and 
; and
��N�0,���, where �� is the noise level and is iid and inde-
pendent of X. Let V=sin�X� and Z=�, so Y =V+Z. Therefore,
H�Y �X� can be obtained as

H�Y�X� = H�Z� = 0.5 ln�2
e��
2� .

The PDF of Z is given as

pZ�z� = �2
�−1/2����−1 exp� − z2

2��
2 .

The PDF of V is given as

pV�v� = �
�−1�1 − v2�−1/2 for 0 � v � 1.

In order to compute H�Y�, the PDF of Y—i.e., pY�y�—is
needed. Since Y =V+Z and V and Z are independent, pY�y�
can be obtained through the convolution of the PDFs of V
and Z given as

pY�y� = �
−�

�

pV�v�pZ�y − v�dv . �A3�

H�Y� is computed as H�Y�=�pY�y�ln pY�y�dy, where pY�y�
in Eq. �A3� is solved using numerical integration for differ-
ent values of ��. We obtain I�X ;Y� by substituting H�Y �X�
and H�Y� in Eq. �2�.

APPENDIX B: FIGURES SHOWING NORMAL AND
KERNEL DENSITY PLOTS

Figures showing normal and kernel density plots are
given in Figs. 7–10.
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