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Many real networks in nature and society share two generic properties: they are scale-free and they display
a high degree of clustering. We show that these two features are the consequence of a hierarchical organization,
implying that small groups of nodes organize in a hierarchical manner into increasingly large groups, while
maintaining a scale-free topology. In hierarchical networks, the degree of clustering characterizing the different
groups follows a strict scaling law, which can be used to identify the presence of a hierarchical organization in
real networks. We find that several real networks, such as the Worldwideweb, actor network, the Internet at the
domain level, and the semantic web obey this scaling law, indicating that hierarchy is a fundamental charac-
teristic of many complex systems.
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I. INTRODUCTION

In the past few years, an array of discoveries have rede-
fined our understanding of complex networks~for reviews,
see Refs.@1,2#!. The availability of detailed maps, capturing
the topology of such diverse systems as the cell@3–6#, the
Worldwideweb@7#, or the sexual network@8# have offered
scientists for the first time the chance to address in quantita-
tive terms the generic features of real networks. As a result,
we learned that networks are far from being random, but are
governed by strict organizing principles that generate sys-
tematic and measurable deviations from the topology pre-
dicted by the random graph theory of Erdo˝s and Re´nyi
@9,10#, the basic model used to describe complex webs in the
past four decades.

Two properties of real networks have generated consider-
able attention. First, measurements indicate that most
networks display a high degree of clustering. Defining
the clustering coefficient for nodei with ki links as
Ci52ni /ki(ki21), whereni is the number of links between
the ki neighbors ofi, empirical results indicate thatCi aver-
aged over all nodes is significantly higher for most real net-
works than for a random network of similar size@1,2,11#.
Furthermore, the clustering coefficient of real networks is to
a high degree independent of the number of nodes in the
network ~see Fig. 9 in Ref.@1#!. At the same time, many
networks of scientific or technological interest, ranging from
the Worldwideweb@7# to biological networks@3–6# have
been found to be scale-free@12,13#, which means that the
probability that a randomly selected node hask links ~i.e.,
degreek) follows P(k);k2g, whereg is the degree expo-
nent.

The scale-free property and clustering are not exclusive:
for a large number of real networks, including metabolic
networks @3,4#, the protein interaction network@5,6#, the
World Wide Web@7#, and even some social networks@14–
16#, the scale-free topology and high clustering coexist. Yet,
most models that proposed to describe the topology of com-
plex networks have difficulty capturing simultaneously these
two features. For example, the random network model@9,10#
can account neither for the scale-free nor for the clustered
nature of real networks, as it predicts an exponential degree

distribution, and the average clustering coefficientC(N) de-
creases asN21 with the number of nodes in the network.
Scale-free networks, capturing the power-law degree distri-
bution, predict a much larger clustering coefficient than a
random network. Indeed, numerical simulations indicate that
for one of the simplest models@12,13#, the average clustering
coefficient depends on the system size asC(N);N20.75

@1,2#, significantly larger for largeN than the random net-
work predictionC(N);N21. Yet, this prediction still dis-
agrees with the finding that for several real systems,C is
independent ofN @1#.

Here, we show that the fundamental discrepancy between
models and empirical measurements is rooted in a previously
disregarded, yet generic feature of many real networks: their
hierarchical topology. Indeed, many networks are fundamen-
tally modular: one can easily identify groups of nodes that
are highly interconnected with each other, but have only a
few or no links to nodes outside of the group to which they
belong to. In society, such modules represent groups of
friends or co-workers@17#; in the WWW, they denote com-
munities with shared interests@18,19#; in the actor network,
they characterize specific genres or simply individual mov-
ies. Some groups are small and tightly linked, others are
larger and somewhat less interconnected. This clearly iden-
tifiable modular organization is at the origin of the high clus-
tering coefficient seen in many real networks. Yet, models
reproducing the scale-free property of real networks@1,2#
distinguish nodes based only on their degree, and are blind to
node characteristics that could lead to a modular topology.

In order to bring modularity, the high degree of clustering,
and the scale-free topology under a single roof, we need to
assume that modules combine into each other in a hierarchi-
cal manner, generating what we call ahierarchical network.
The presence of a hierarchy and the scale-free property im-
pose strict restrictions on the number and the degree of co-
hesiveness of the different groups present in a network,
which can be captured in a quantitative manner using a scal-
ing law, describing the dependence of the clustering coeffi-
cient on the node degree. We use this scaling law to identify
the presence of a hierarchical architecture in several real net-
works, and the absence of such hierarchy in geographically
organized webs.
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II. HIERARCHICAL NETWORK MODEL

We start by constructing a hierarchical network model
that combines the scale-free property with a high degree of
clustering. Our starting point is a small cluster of five
densely linked nodes@Fig. 1~a!#. Next, we generate four rep-
licas of this hypothetical module and connect the four exter-
nal nodes of the replicated clusters to the central node of the
old cluster, obtaining a large 25-node module@Fig. 1~b!#.
Subsequently, we again generate four replicas of this 25-
node module, and connect the 16 peripheral nodes to the

central node of the old module@Fig. 1~c!#, obtaining a new
module of 125 nodes. These replication and connection steps
can be repeated indefinitely, in each step, increasing the
number of nodes in the system by a factor 5.

Precursors to the model described in Fig. 1 have been
proposed in Ref.@20# and extended and discussed in Ref.
@21,22# as a method of generating deterministic scale-free
networks. Yet, it was believed that aside from their determin-
istic structure, their statistical properties are equivalent with
the stochastic models that are often used to generate scale-
free networks. In the following, we argue that such hierar-
chical construction generates an architecture that is signifi-
cantly different from the networks generated by traditional
scale-free models. Most important, we show that this new
feature of the model, its hierarchical character, are shared by
a significant number of real networks.

First, we note that the hierarchical network model seam-
lessly integrates a scale-free topology with an inherent
modular structure. Indeed, the generated network has a
power-law degree distribution with degree exponentg51
1 ln 5/ln 452.161 @Fig. 2~a!#. Furthermore, numerical simu-
lations indicate that the clustering coefficientC.0.743 is
independent of the size of the network@Fig. 2~c!#. Therefore,
the high degree of clustering and the scale-free property are
simultaneously present in this network.

The most important feature of the network model of Fig.
1, not shared by either the scale-free@12,13# or random net-
work models@9,10#, is its hierarchical architecture. The net-
work is made of numerous small, highly integrated five-node
modules@Fig. 1~a!#, which are assembled into larger 25-node
modules@Fig. 1~b!#. These 25-node modules are less inte-
grated but each of them is clearly separated from the other
25-node modules when we combine them into the even
larger 125-node modules@Fig. 1~c!#. These 125-node mod-
ules are even less cohesive, but again will appear separable
from their replicas if the network expands further.

This intrinsic hierarchy can be characterized in a quanti-
tative manner using the recent finding of Dorogovtsev, Golt-
sev, and Mendes@21# that in the deterministic scale-free net-

FIG. 1. The iterative construction leading to a hierarchical net-
work. Starting from a fully connected cluster of five nodes shown in
~a! ~note that the diagonal nodes are also connected — links not
visible!, we create four identical replicas, connecting the peripheral
nodes of each cluster to the central node of the original cluster,
obtaining a network ofN525 nodes~b!. In the next step, we create
four replicas of the obtained cluster, and connect the peripheral
nodes again, as shown in~c!, to the central node of the original
module, obtaining aN5125-node network. This process can be
continued indefinitely.

FIG. 2. Scaling properties of the hierarchical model shown in Fig. 1 (N557). ~a! The numerically determined degree distribution. The
asymptotic scaling, with slopeg511 ln 5/ln 4, is shown as a dashed line.~b! The C(k) curve for the model, demonstrating that it follows
Eq. ~1!. The open circles showC(k) for a scale-free model@12# of the same size, illustrating that it does not have a hierarchical architecture.
~c! The dependence of the clustering coefficientC on the size of the networkN. While for the hierarchical modelC is independent ofN (l),
for the scale-free modelC(N) decreases rapidly (s).
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works, the clustering coefficient of a node withk links
follows the scaling law

C~k!;k21. ~1!

We argue that this scaling law quantifies the coexistence
of a hierarchy of nodes with different degrees of clustering,
and applies to the model of Figs. 1~a!– 1~c! as well. Indeed,
the nodes at the center of the numerous five-node modules
have a clustering coefficientC51. Those at the center of a
25-node module havek520 andC53/19, while those at the
center of the 125-node modules havek584 andC53/83,
indicating that the higher a node’s degree, the smaller is its
clustering coefficient, asymptotically following the 1/k law
@Fig. 2~b!#. In contrast, for the scale-free model proposed in
Ref. @12#, the clustering coefficient is independent ofk, i.e.,
the scaling law~1! does not apply@Fig. 2~b!#. The same is
true for the random@9,10# or the various small world models
@11,23#, for which the clustering coefficient is independent of
the nodes’ degree.

Therefore, the discrete model of Fig. 1 combines within a
single framework, the two key properties of real networks:
their scale-free topology and high modularity, which results
in a system-size independent clustering coefficient. Yet, the
hierarchical modularity of the model results in the scaling
law ~1!, which is not shared by the traditional network mod-
els. The question is, could hierarchical modularity, as cap-
tured by this model, characterize real networks as well?

III. HIERARCHICAL ORGANIZATION IN
REAL NETWORKS

To investigate if such hierarchical organization is present
in real networks, we measured theC(k) function for several
networks for which large topological maps are available.
Next, we discuss each of these systems separately.

Actor Network.Starting from the www.IMDB.com data-

base, we connect any two actors in Hollywood if they acted
in the same movie, obtaining a network of 392 340 nodes and
15 345 957 links. Earlier studies indicate that this network is
scale-free with an exponential cutoff inP(k) for high k
@12,24,25#. As Fig. 3~a! indicates, we find thatC(k) scales as
k21, indicating that the network has a hierarchical topology.
Indeed, the majority of actors with a few links~small k)
appear only in one movie. Each such actori has a clustering
coefficient equal to one, as all the actorsi have links to are
part of the same cast, and are therefore connected to each
other. The high-k nodes include many actors who acted in
several movies, and thus, their neighbors are not necessarily
linked to each other, resulting in a smallerC(k). At high k,
the C(k) curve splits into two branches, one of which con-
tinues to follow Eq.~1!, while the other saturates. One ex-
planation of this split is the decreasing amount of data points
available in this region. Indeed, in the high-k region, the
number of nodes having the samek is rather small. If one of
these nodes corresponds to an actor who played only in a few
movies with hundreds in the cast, it will have both highk and
high C, considerably increasing the average value ofC(k).
The k values, for which such highC nodes are absent con-
tinue to follow thek21 curve, resulting in jumps between the
high and smallC values for largek. For small k, these
anomalies are averaged out.

Language network.Recently, a series of empirical results
have shown that the language, viewed as a network of words,
has a scale-free topology@26–29#. Here, we study the net-
work generated connecting two words to each other if they
appear as synonyms in the Merriam Webster dictionary@27#.
The obtained semantic web has 182 853 nodes and 317 658
links, and it is scale-free with degree exponentg53.25. The
C(k) curve for this language network is shown in Fig. 3~b!,
indicating that it follows Eq.~1!, suggesting that the lan-
guage has a hierarchical organization.

World Wide Web.On the WWW, two documents are con-

FIG. 3. The scaling ofC(k) with k for four
large networks:~a! Actor network, two actors be-
ing connected if they acted in the same movie
according to the www.IMDB.com database.~b!
The semantic web, connecting two English words
if they are listed as synonyms in the Merriam
Webster dictionary@27#. ~c! The World Wide
Web, based on the data collected in Ref.@7#. ~d!
Internet at the autonomous system level, each
node representing a domain, connected if there is
a communication link between them. The dashed
line in each figure has slope21, following Eq.
~1!.
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nected to each other if there is a URL pointing from one
document to the other one. The sample we study, obtained by
mapping out the www.nd.edu domain@7#, has 325 729 nodes
and 1 497 135 links, and it is scale-free with degree expo-
nentsgout52.45 andg in52.1, characterizing the out- and
in-degree distribution, respectively. To measure theC(k)
curve, we made the network undirected. While the obtained
C(k), shown in Fig. 3~c!, does not follow as closely the
scaling law~1! as observed in the previous two examples,
there is a clear evidence thatC(k) decreases rapidly withk,
supporting the coexistence of many highly interconnected
small nodes with a few larger nodes, which have a much
lower clustering coefficient.

Indeed, the Web is full of groups of documents that all
link to each other. For example, www.nd.edu/;networks, our
network research dedicated site, has a high clustering coeffi-
cient, as the documents it links to have links to each other.
The site is one of the several network-oriented sites, some of
which point to each other. Therefore, the network research
community still forms a relatively cohesive group, albeit less
interconnected than the www.nd.edu/;networks site, thus
having a smallerC. This network community is nested into
the much larger community of documents devoted to statis-
tical mechanics that has an even smaller clustering coeffi-
cient. Therefore, thek dependentC(k) reflects the hierarchi-
cal nesting of the different interest groups present on the
Web. Note thatC(k);k21 for the WWW was observed and
briefly noted in Ref.@30#.

Internet at the AS level.The Internet is often studied at
two different levels of resolution. At the router level, we
have a network of routers connected by various physical
communication links. At the interdomain or autonomous sys-
tem ~AS! level, each administrative domain, composed of
potentially hundreds of routers, is represented by a single
node. Two domains are connected if there is at least one
router that connects them. Both the router and the domain
level topology have been found to be scale-free@31#. As Fig.
3~d! shows, we find that at the domain level, the Internet
consisting of 65 520 nodes and 24 412 links@32#, has a hier-
archical topology asC(k) is well approximated with Eq.~1!.
The scaling of the clustering coefficient withk for the Inter-
net was earlier noted by Vazquez, Pastor-Satorras, and
Vespignani ~VPSV! @33,34#, who observedC(k);k20.75.
VPSV interpreted this finding, together with the observation
that the average nearest-neighbor connectivity also follows a
power law with the node’s degree, as a natural consequence
of the stuband transit domains that partition the network in
a hierarchical fashion into international connections, national

backbones, regional networks, and local area networks.
Our measurements indicate, however, that some real net-

works lack a hierarchical architecture, and do not obey the
scaling law~1!. In particular, we find that the power grid and
the router level Internet topology have ak independentC(k).

Internet at the router level.The router level Internet has
260 657 nodes connected by 1 338 100 links@35#. Measure-
ments indicate that the network is scale-free@31,36# with
degree exponentg52.23. Yet, theC(k) curve @Fig. 4~a!#,
apart from some fluctuations, is largely independent ofk, in
strong contrast with theC(k) observed for the Internet’s do-
main level topology@Fig. 3~d!#, and in agreement with the
results of VPSV@33,34#, who also note the absence of a
hierarchy in router level maps.

Power Grid.The nodes of the power grid are generators,
transformers, and substations and the links are high voltage
transmission lines. The network studied by us represents the
map of the Western United States, and has 4 941 nodes and
13 188 links@11#. The results again indicate that apart from
fluctuations,C(k) is independent ofk.

It is quite remarkable that these two networks share a
common feature: a geographic organization. The routers of
the Internet and the nodes of the power grid have a well
defined spatial location, and the link between them represent
physical links. In contrast, for the examples discussed in Fig.
3, the physical location of the nodes was either undefined or
irrelevant, and the length of the link was not of major impor-
tance. For the router level Internet and the power grid, the
further are the two nodes from each other, the more expen-
sive it is to connect them@36#. Therefore, in both systems,
the links are driven by cost considerations, generating a dis-
tance driven structure, apparently excluding the emergence
of a hierarchical topology. In contrast, the domain level In-
ternet is less distance driven, as many domains, such as the
AT&T domain, span the whole United States.

In summary, we offered evidence that for four large net-
worksC(k) is well approximated byC(k);k21, in contrast
to the k independentC(k) predicted by both the scale-free
and random networks. In addition, there is evidence for simi-
lar scaling in the metabolism@37# and protein interaction
networks @38#. This indicates that these networks have an
inherently hierarchical organization. In contrast, hierarchy is
absent in networks with strong geographical constraints, as
the limitation on the link length strongly constraints the net-
work topology.

IV. STOCHASTIC MODEL AND UNIVERSALITY

The hierarchical model described in Fig. 1 predictsC(k)
;k21, which offers a rather good fit to three of the four

FIG. 4. The scaling ofC(k) for two large,
nonhierarchical networks:~a! Internet at router
level @35#. ~b! The power grid of Western United
States. The dashed line in each figure has slope
21, while the solid line corresponds to the aver-
age clustering coefficient.
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C(k) curves shown in Fig. 3. The question is, is this scaling
law ~1! universal, valid for all hierarchical networks, or
could different scaling exponents characterize the scaling of
C(k)? Defining the hierarchical exponentb as

C~k!;k2b, ~2!

where b51 is a universal exponent, or can it’s value be
changed together withg? In the following, we demonstrate
that the hierarchical exponentb can be tuned as we tune
some of the network parameters. For this, we propose a sto-
chastic version of the model described in Fig. 1.

We start again with a small core of five nodes all con-
nected to each other@Fig. 1~a!# and in step one (n51), we
make four copies of the five-node module. Next, we ran-
domly pick ap fraction of the newly added nodes and con-
nect each of them independently to the nodes belonging to
the central module. We use preferential attachment@12,13# to
decide, to which central node the selected nodes link to. That
is, we assume that the probability that a selected node will
connect to a nodei of the central module iski /( j kj , where
ki is the degree of nodei and the sum goes over all nodes of
the central module. In the second step (n52), we again
create four identical copies of the 25-node structure obtained
thus far, but we connect only ap2 fraction of the newly
added nodes to the central module. Subsequently, in each
iteration n, the central module of size 5n is replicated four
times, and in each new module, apn fraction will connect to
the current central module, requiring the addition of (5p)n

new links.
As Fig. 5 shows, changingp alters the slope of bothP(k)

andC(k) on a log-log plot. In general, we find that increas-
ing p decreases the exponentsg andb @Figs. 5~b!, 5~d!#. The
exponentb51 is recovered forp51, i.e., when all nodes of
a module gain a link. While the number of links added to the

network changes at each iteration, for anyp<1, the average
degree of the infinitely large network is finite. Indeed, the
average degree follows:

^k&n5
8

5 S 3

2
1

12pn11

12p D , ~3!

which is finite for anyp<1.
Interestingly, the scaling ofC(k) is not a unique property

of the model discussed above. A version of the model, where
we keep the fraction of selected nodes,p, constant from it-
eration to iteration, also generatesp dependentb andg ex-
ponents. Furthermore, recently, several results indicate that
the scaling ofC(k) is an intrinsic feature of several existing
growing network models. Indeed, aiming to explain the po-
tential origin of the scaling inC(k) observed for the Internet,
VSPV note that the fitness model@39,40# displays aC(k)
that appears to scale withk. While there is no analytical
evidence forC(k);k2b yet, numerical results@33,34# sug-
gest that the presence of fitness does generate a hierarchical
network architecture. In contrast, in a recent model proposed
by Klemm and Eguiluz, there is analytical evidence that the
network obeys the scaling law~1! @41#. In their model, in
each time step, a new node joins the network, connecting to
all active nodes in the system. At the same time, an active
node is deactivated with probabilityp;k21. The insights
offered by the hierarchical model can help understand the
origin of the observedC(k);k21. By deactivating the less
connected nodes, a central core emerges to which all subse-
quent nodes tend to link to. New nodes have a largeC and
small k, thus they are rapidly deactivated, freezing into a
largeC state. The older, more connected, surviving nodes are
in contact with a large number of nodes that have already
disappeared from the active list, and they have smallC @42#.

Finally, Szabo´, Alava, and Kerte´sz have developed a rate
equation method to systematically calculateC(k) for evolv-

FIG. 5. The scaling properties of the stochas-
tic model. ~a! The degree distribution for differ-
ent p values, indicating thatP(k) follows a
power law with ap-dependent slope.~b! The de-
pendence of the degree exponentg on p, deter-
mined by fitting power laws to the curves shown
in ~a!. The exponentg appears to follow approxi-
mately g(p);1/p ~dashed line!. ~c! The C(k)
curve for differentp values, indicating that the
hierarchical exponentb depends onp. ~d! The
dependence ofb on the parameterp. The simu-
lations were performed forN557~78125! nodes.
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ing network models@43#. Applying the method to a model
proposed by Holme and Kim@44# to enhance the degree of
clustering coefficientC seen in the scale-free model@12#,
they have shown that the scaling ofC(k) depends on the
parameterp, which governs the rate, at which new nodes
connect to the neighbors of selected nodes, bypassing pref-
erential attachment. As forp50, the Holme-Kim model re-
duces to the scale-free model, Szabo´, Alava, and Kerte´sz find
that in this limit, the scaling ofC(k) vanishes. These models
indicate that several microscopic mechanisms could generate
a hierarchical topology, just as several models are able to
create a scale-free network@1,2#.

V. DISCUSSION AND OUTLOOK

The identified hierarchical architecture offers a different
perspective on the topology of complex networks. Indeed,
the fact that many large networks are scale-free is now well
established. It is also clear that most networks have a modu-
lar topology, quantified by the high clustering coefficient
they display. Such modules have been proposed to be a fun-
damental feature of biological systems@37,45#, but have
been discussed in the context of the WWW@18,46#, and
social networks as well@17,47#. The hierarchical topology
offers a different avenue for bringing under a single roof
these two concepts, giving a precise and quantitative mean-
ing for the network’s modularity. It indicates that we should
not think of modularity as the coexistence of relatively inde-
pendent groups of nodes. Instead, we have many small clus-
ters that are densely interconnected. These combine to form
larger, but less cohesive groups, which combine again to
form even larger and even less interconnected clusters. This
self-similar nesting of different groups or modules into each
other forces a strict fine structure on real networks.

Most interesting is, however, the fact that the hierarchical
nature of these networks is well captured by a simple quan-

tity, the C(k) curve, offering us a relatively straightforward
method to identify the presence of hierarchy in real net-
works. The law~1! indicates that the number and the size of
the groups of different cohesiveness is not random, but fol-
low rather strict scaling laws.

The presence of such a hierarchical architecture reinter-
prets the role of the hubs in complex networks. Hubs, the
highly connected nodes at the tail of the power law degree
distribution, are known to play a key role in keeping com-
plex networks together, playing a crucial role from the ro-
bustness of the network@48,49# to the spread of viruses in
scale-free networks@50#. Our measurements indicate that the
clustering coefficient characterizing the hubs decreases lin-
early with the degree. This implies that while the small nodes
are part of highly cohesive, densely interlinked clusters, the
hubs are not, as their neighbors have a small chance of link-
ing to each other. Therefore, the hubs play the important role
of bridging the many small communities of clusters into a
single, integrated network.

In many ways, our study offers only a starting point for
understanding the interplay between the scale-free, hierarchi-
cal, and modular nature of real networks. While theC(k)
curves offer a tool to unearth the presence of a hierarchy, it is
unclear that what are the minimal ingredients at the model
level for such a hierarchy to emerge. Finally, the role of the
geometrical factor, which appears to remove the hierarchy,
needs to be elucidated. Further modeling and empirical stud-
ies should allow us to address these questions.
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