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Spectra of “real-world” graphs: Beyond the semicircle law
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Many natural and social systems develop complex networks that are usually modeled as random graphs. The
eigenvalue spectrum of these graphs provides information about their structural properties. While the semi-
circle law is known to describe the spectral densities of uncorrelated random graphs, much less is known about
the spectra of real-world graphs, describing such complex systems as the Internet, metabolic pathways, net-
works of power stations, scientific collaborations, or movie actors, which are inherently correlated and usually
very sparse. An important limitation in addressing the spectra of these systems is that the numerical determi-
nation of the spectra for systems with more than a few thousand nodes is prohibitively time and memory
consuming. Making use of recent advances in algorithms for spectral characterization, here we develop meth-
ods to determine the eigenvalues of networks comparable in size to real systems, obtaining several surprising
results on the spectra of adjacency matrices corresponding to models of real-world graphs. We find that when
the number of links grows as the number of nodes, the spectral density of uncorrelated random matrices does
not converge to the semicircle law. Furthermore, the spectra of real-world graphs have specific features,
depending on the details of the corresponding models. In particular, scale-free graphs develop a trianglelike
spectral density with a power-law tail, while small-world graphs have a complex spectral density consisting of
several sharp peaks. These and further results indicate that the spectra of correlated graphs represent a practical
tool for graph classification and can provide useful insight into the relevant structural properties of real
networks.

DOI: 10.1103/PhysReVvE.64.026704 PACS nuni)er02.60—x, 68.55—a, 68.65-k, 05.45-a

[. INTRODUCTION These are the systems that we will ca#al-world” net-
worksor graphs Several converging reasons explain the en-
Random graphg§1,2] have long been used for modeling hanced current interest in such real graphs. First, the amount
the evolution and topology of systems made up of large asef topological data available on such large structures has
semblies of similar units. The uncorrelated random graptincreased dramatically during the past few years thanks to

model—which assumes each pair of the graph's vertices tgwe computerization of data collection in various fields, from
be connected with equal and independent probabilities—SOCIOIOgly to biology. Second, the hitherto unseen speed of
rowth of some of these complex networks—e.g., the

tr;%&:jtzl ?n?r%t(\j’\llj%r: dabs ?hne ﬁ;ﬁ:gggtgaﬁgu;\gIe"gtrdl:ng'tii_Th'gnternet—and their pervasiveness in affecting many aspects
P y . ) . .of our lives has created the need to understand the topology,
fred Renyi [1], has been much investigated in the mathemati

i he i X ilabil ¢ ‘origin, and evolution of such structures. Finally, the in-
cal literature[2]. However, the increasing availability of reaseq computational power available on almost every

large maps of real-life networks has indicated that real netyeskiop has allowed us to study such systems in unpre-
works are fundamentally correlated systems, and in manyedented detail.
respects their topology deviates from the uncorrelated ran- The proliferation of data has lead to a flurry of activity
dom graph model. Consequently, the attention has shiftegbwards understanding the general properties of real net-
towards more advanced graph models which are designed {@orks. These efforts have resulted in the introduction of two
generate topologies in line with the existing empirical resultsclasses of models, commonly callesnall-world graphs
[3—-14]. Examples of real networks, that serve as a benchf4,5] and thescale-free networkf10,11]. The first aims to
mark for the current modeling efforts, include the Internetcapture the clustering observed in real graphs, while the sec-
[6,15—-17, the World-Wide Wel}8,18], networks of collabo-  ond reproduces the power-law degree distribution present in
rating movie actors and those of collaborating scientistsnany real networks. However, until now, most analyses of
[13,14], the power grid4,5], and the metabolic network of these models and data sets have been confined to real-space
numerous living organism$®,19|. characteristics, which capture their static structural properties
e.g., degree sequences, shortest connecting paths, and clus-
tering coefficients. In contrast, there is extensive literature

*Email address: fij@elte.hu demonstrating that the properties of graphs and the associ-
"Email address: derenyi@angel.elte.hu ated adjacency matrices are well characterized by spectral
*Email address: alb@nd.edu methods, that provide global measures of the network prop-
$Email address: vicsek@angel.elte.hu erties[20,21]. In this paper we offer a detailed analysis of the
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most studied network models using algebraic tools intrinsic 12

to large random graphs. 1-F

The paper is organized as follows. Section Il introduces 0.1
the main random graph models used for the topological de- 09 | 0.01
scription of large assemblies of connected units. Section llI lp" 0.001 3

lists the—analytical and numerical—tools that we used andl=
developed to convert the topological features of graphs int é‘ 06 [
algebraic invariants. Section IV contains our results concern- g
ing the spectra and special eigenvalues of the three mait
types of random graph models: sparse uncorrelated randor 03 |
graphs in Sec. IV A, small-world graphs in Sec. IV B, and
scale-free networks in Sec. IV C. Section IV D gives simple
algorithms for testing the graph’s structure, and Sec. IV E 0 ; : . -
investigates the variance of structure within single random 2 0 4 6 8

2
graph models. A/v/Np(1-p)

FIG. 1. If N—~ andp=const, the average spectral density of
Il. MODELS OF RANDOM GRAPHS an uncorrelated random graph converges to a semicircle, the first
eigenvalue grows all, and the second is proportional {N (see
Sec. Il A. Main panel: The spectral density is shown fpr=0.05
and three different system sizé¥=100 (—), N=300 (- -), and
1. Definitions N=1000(- - -). In all three cases, the complete spectrum of 1000
graphs was computed and averagedet: At the edge of the semi-

set of pointgvertices connected by undirected linésdges; circle, i.e., in thex~*2Np(1—p) regions, the spectral density

: : . tially, and withl—«, the decay rate diverges
no multiple edges and no loops connecting a vertex to |tseIE1ecays exponen _ X ; 2
are aIIovsed. V\glle will call two F\)/ertices of th% grapméigh- 20,29. Here,F(A)=N lE”i“l Is the cumulative spectral distri-
bors” if they are connected by an edge. Based on REf butign function, and +F is shown for a graph witiN=3000

we shall use the term Uncorrelated random graphfor a vertices and 15000 edges.

graph if(i) the probability for any pair of the graph’s vertices

being connected is the samg, (ii) these probabilities are Later, the semicircle law was found to have many applica-

A. The uncorrelated random graph model
and the semicircle law

Throughout this paper we will use the terngraph’ for a

independent variables. tions in statistical physics and solid-state physics as well
Any graphG can be represented by igsljacency matrix [20,21,28.
A(G), which is a real symmetric matrixA;;=A;; =1, if Note, that for the adjacency matrix of the uncorrelated

verticesi andj are connected, or 0, if these two vertices arerandom graph many of the semicircle law’s conditions do not
not connected. The main algebraic tool that we will use forhold, e.g., the expectation value of the entries is a nonzero
the analysis of graphs will be the spectrum—i.e., the set ofonstant:p+0. Nevertheless, in th&l—c limit, the re-
eigenvalues—of the graph’s adjacency matrix. The spectrurgcgled spectral density of the uncorrelated random graph
of the graph’s adjacency matrix is also called pectrum of converges to the semicircle law of EG) [27]. An illustra-

the graph tion of the convergence of the average spectral density to the
semicircular distribution can be seen on Fig. 1. It is neces-

2. Applying the semicircle law for the spectrum of the sary to make a comment concerning figures here. In order to
uncorrelated random graph keep figures simple, for the spectral density plots we have

A general form of the semicircle law for real symmetric chosen to show the spectral density of the original malrix
matrices is the followindg20,22,23. If Ais a real symmetric and to rescale the horizonték) and vertical (p) axes by
NXN uncorrelated random matrixA;)=0 and(A7)=c? ¢ 'N"Y?=[Np(1-p)] "2 andoN"?=[Np(1-p)]*2
for everyi#j, and with increasindN each moment of each Some further results on the behavior of the uncorrelated
|Ajj| remains finite, then in thé\—o limit the spectral random graph's eigenvalues, relevant for the analysis of real-
density—i.e., the density of eigenvalues—af\N con-  world graphs as well, include the following: The principal

verges to the semicircular distribution eigenvalue(the largest eigenvalug;) grows much faster
than the second eigenvalue: Jim..(A1/N)=p with prob-

2702) WAl —N2 if IN|<2 ability 1, whereas for every>1/2, limy_..(A,/N€)=0 (see

p(\)= (2ma7) _ 7 =20 (1) Refs.[27,28 and Fig. 2. A similar relation holds for the
0 otherwise. smallest eigenvalua,: for every e>1/2, limy_...(\n/N€)

=0. In other words, if(k;) denotes the average number of
This theorem is also known a¥igner’s law[22], and its ~ connections of a vertex in the graph, thep scales apN
extensions to further matrix ensembles have long been used(k;), and the width of the “bulk” part of the spectrum, the
for the stochastic treatment of complex quantum-mechanicalet of the eigenvalugs\,, ... Ay}, scales asr/N. Lastly,
systems lying far beyond the reach of exact methi@ds25.  the semicircular distribution’s edges are known to decay
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exponentially, and the number of eigenvalues in the edges connectthe new vertex andlifferent vertices chosen
>0(4/N) tail has been shown to be of the order d20,29.  from the N old vertices. Theth old vertex is chosen with
probability ki /=, nKj, wherek; is the degree of vertex
[The density of edges in a scale-free graptpis(k;)/(N
—1)~2m/N.] In contrast to the small-world model, the dis-
The two main models proposed to describe real-worldribution of degrees in a scale-free graph converges to a
graphs are themall-world modeknd thescale-free model  power law wherN— oo, which has been shown to be a com-
bined effect of growth and the preferential attachniéri.
1. Small-world graphs Thus, in the infinite time or size limit, the scale-free model

The small-world grapH4,5,30 is created by randomly has no characteristic scale in the degree ElZg32-31.
rewiring some of the edges of a regufad] ring graph. The
regular ring graph is created as follows. First draw the ver- 3. Related models

tices 1,2...,N on a circle in ascending order. Then, for | ately, numerous other models have been suggested for a
everyi, connect vertex to the vertices lying closest to it on ynified descriptionof real-world graphg14,32—35,37—4p
the circle: vertices —k/2, ... i—1i+1,...i+k/2, where Models of growing networks with aging vertices were found
every number should be understood modNI¢k is an even o display both heavy tailed and exponentially decaying de-
numbe). Figure 9 will show later that this algorithm creates gree sequence{§4_3q as a function of the Speed of aging_
a regular graph indeed, because the defB&gof any vertex  Generalized preferential attachment rules have helped us bet-
is the same numbed Next, starting from vertex 1 and pro- ter understand the origin of the exponents and correlations
ceeding towardd, perform therewiring step For vertex 1,  emerging in these systeni82,33. Also, investigations of
consider the first “forward connection,” i.e., the connection more complex network models—using aging or an additional
to vertex 2. With probabilityp,, reconnect vertex 1 to an- fixed cost of edge§12] or preferential growth and random
other vertex chosen uniformly at random and without allow-rewiring [37]—have shown, that in the “frequent rewiring,
ing multiple edges. Proceed toward the remaining forwardast aging, high cost” limiting case, one obtains a graph with
connections of vertex 1, and then perform this step for thean exponentially decaying degree sequence, whereas in the
remainingN—1 vertices also. For the rewiring, use equal“no rewiring, no aging, zero cost” limiting case the degree
and independent probabilities. Note that in the Sma||-WOI’|dsequence will decay as a power law. According to studies of
model the density of edges ip=(k)/(N—1)~k/N.  scientific collaboration networkkl3,14 and further social
Throughout this paper, we will use onkg>2. and biological structuregl2,19,41, a significant proportion

If we usep,=0 in the small-world model, the original of large networks lies between the two extremes. In such
regular graph is preserved, and far=1, one obtains a ran- cases, the characterization of the system using a small num-
dom graph that differs from the uncorrelated random graptber of algebraic constants could facilitate the classification of
only slightly: every vertex has a minimum degree lg2. real-world networks.
Next, we will need two definitions. Theeparationbetween
verticesi andj, denoted by j; , is the number of edges in the
shortest path connecting them. Thlistering coefficienat
vertex i, denoted byC;, is the number of existing edges
among the neighbors of vertéxlivided by the number of all
possible connections between them. In the small-world 1. The spectrum of the graph
model, bothL;; and C; are functions of the rewiring prob-
ability p,. Based on the above definitions bfj(p,) and
Ci(p,), the characteristics of the small-world phenomenon
which occurs for intermediate values pf, can be given as
follows [4,5]: (i) the average separation between tWO,,Verti'vectorﬁ on the corresponding vertex of the graph: on
ces,L(p,), drops dramatically below(p,=0), whereasii)  \grexi Next, on every vertex write the sum of the numbers
the average clustering coefficieB(p,) remains high, close ¢,,nq on the neighbors of vertéxif the resulting vector is a
to C(p,=0). Note that the rewiring procedure is carried out ., iinje of 7, theng is an eigenvector, and the multiplier is
independently for every edge; therefore, the degree sequenge, corresponding eigenvalue of the graph.
and also o_ther distributions in _the system, e.g., path length 114 spectral density of a graph is the density of the eigen-
and loop size, decay exponentially. values of its adjacency matrix. For a finite system, this can

be written as a sum of functions

B. Real-world graphs

Ill. TOOLS

A. Analytical

The spectrum of a graph is the set of eigenvalues of the
graph’s adjacency matrix. The physical meaning of a graph’s
eigenpair(an eigenvector and its eigenvaluean be illus-
trated by the following example. Write each component of a

2. The scale-free model

The scale-free model assumes a random graph to be a 1 N
growing set of vertices and edges, where the location of new p(N\) =N E S(N—=N\j), 2
edges is determined by @referential attachment rule =1
[10,11]. Starting from an initial set of, isolated vertices,
one adds one new vertex amdnew edges at every time step which converges to a continuous function with-co (\; is
t. (Throughout this paper, we will usa=m,.) Themnew the jth largest eigenvalue of the graph’s adjacency matrix
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The spectral density of a graph can be directly related tspace and the execution of approximatelN36 1.2x 10'°
the graph’s topological features: tkth momentM, of p(\) (3x 10 floating point operation$44]. Consequently, we

can be written as need to develop more efficient algorithms to investigate the
N properties of graphs with sizes comparable to real-world net-
1 1 works.
M=y 121 (A =g Tr(AY
1 2. lterative eigenvalue solver based on the thick-restart
_ - 2 A AL LA 3) Lanczos algorithm
Nigig =iy 12 72 K The spectrum of a real-world graph is the spectrum of a

. . . . sparse real symmetric matrix; therefore, the most efficient
From the topological point of viewD = NM, is the num- . :
; : algorithms that can give a handful of the topy
ber of directed paths(loops of the underlying— . | d th di . ¢
undirected—graph, that return to their starting vertex atter < oo vaues—an the corresponding eigenvectors—of a
steps. On a tree tr,1e lenath of anv such path can be an eVlanrge graph are iterative methof##s]. These methods allow
PS. ’ 9 y P e matrix to be stored in any compact format, as long as
number only, because these paths contain any edge an even, . S . -
matrix-vector multiplication can be carried out at a high

number of times: once such a path has left its starting pOIngpeed.lterative methods use little memoignly the nonzero

by choosing a starting edge, no alternative route for returnin%mries of the matrix and a few vectors of siaeed to be

:gi:;eégargngf p:&gt ;Zna\;ﬂ”atgf I—;?r\:v Tgﬁr’ﬂf g;en gggpgncggétored. The price for computational speed lies in the number
number gs well gin, P 9 of the obtained eigenvalues: iterative methods compute only

a handful of the largesbr smallesk eigenvalues of a matrix.
To compute the eigenvalues of graphs above the kize
=5000, we have developed algorithms using a specially
In an uncorrelated random graph the principal eigenvaluenodified version of the thick-restart Lanczos algorithm
A1 shows the density of edges and can be related to the [46,47. The modifications and some of the main technical
conductance of the graph as a network of resistafd2s  parameters of our software are explained in the following
An important property of all graphs is the following: the paragraphs.
principal eigenvectog; of the adjacency matrix is a non- ~ Even though iterative eigenvalue methods are mostly used
negative vectofall components are non-negativand if the  to obtain the top eigenvalues of a matrix, after minor modi-
graph has no isolated vertices, is a positive vectof43].  fications the internal eigenvalues in the vicinity of a fixed
All other eigenvectors are orthogonaldg, therefore they all A=\, point can be computed as well. For this, extremely

2. Extremal eigenvalues

have entries with mixed signs. sparse matrices are usually “shift-inverted,” i.e., to find
) L . . those eigenvalues @ that are closest ta, the highest and
3. The inverse participation ratios of eigenvectors lowest eigenvalues ofX\—\ol)~* are searched for. How-
The inverse participation ratio of the normalizgith ei-  ever, because of the extremely high cost of matrix inversion
genvectorg; is defined a$26] in our case, for the computation of internal eigenvalues we

suggest using théshift-square” methodwith the matrix

N
— 4
' kgl L(&)id™ “ B=[A*/2—(A—\gl)2]2"* L, (5
If the components of an eigenvector are identica},);( . _ . _

=1/JN for everyi, thenl;=1/N. For an eigenvector with Herex™ is the largest eigenvalue oR¢-Xol)” 1 is the iden-
one single nonzero componeng;); =&, , the inverse par- tity matrix, andn is a positive integer. Trgnsformmg the
ticipation ratio is 1. The comparison of these two extremalMatrix A into B transforms the spectrum @fin the follow-
cases illustrates that with the help of the inverse participatiod?d manner. First, the spectrum is shifted to the left\gy
ratio, one can tell whether onl@(1) or as many a®)(N) Then, the spectrum is “foI(_jed’(and square)dat the origin
components of an eigenvector differ significantly from 0, Such that all eigenvalues will be negative. Next, the spectrum

i.e., whether an eigenvector is localized or nonlocalized. 1S linearly rescaled and shifted to the right, with the follow-
ing effect: (i) the whole spectrum will lie in the symmetric

interval [-\*/2\*/2] and (ii) those eigenvalues that were
closest to\ in the spectrum ofA will be the largest now,
1. General real symmetric eigenvalue solver i.e., they will be the eigenvalues closest\t/2. Now, rais-
ing all eigenvalues to the {2+ 1)st power increases the
elative difference, £ \;/\;, between the top eigenvalues

B. Numerical

To compute the eigenpairs of graphs beltve size N
=5000, we used the general real symmetric eigenvalu . : X
solver of Ref[44]. This algorithm requires the allocation of i ‘?r?d d)\tj bfy (zjitfhacttor of_2h+ 1.I Thlzfallows thekllterguve
memory space to all entries of the matrix, thus to comput ethod 1o Tind the top eigenvalues Bimore guickly. Yne
the spectrum of a graph of si2é=20000 (N=1 000 000) can compute the corresponding ageﬁnvglt@é@seﬁ being
using this general method with double precision floatingClosest tavo) of the original matrixA: if by,b,, ... b, are
point arithmetic, one would need 3.2 GB TB) memory the normalized eigenvectors of thg largest eigenvalues of
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B, then for A the ny eigenvalues closest toy will be, not 12 e
necessarily in ascending orderAb; ,b,Ab;, ... by Aby, . o1 v
The thick-restart Lanczos method uses memory space fa 09 | 001 o,
the nonzero entries of the X N large adjacency matrix, and = o001 v v
ng+ 1 vectors of lengttN, whereng (ng>ny) is usually be- ] ' . .
tween 10 and 100. Besides the relatively small size of re{3 g6 | o000 ° j
= 2 1 0 1 2

quired memory, we could also exploit the fact that the non-=
zero entries of a graph’s adjacency matrix are all 1's: during &
matrix-vector multiplication—which is usually the most 03
time-consuming step of an iterative method—only additions
had to be carried out instead of multiplications.

The numerical spectral density functions of large graphs [ : e .
(N=5000) of this paper were obtained using the following - N : :
steps. To compute the spectral density of the adjacency me 2 4 6
trix A at an internal =\ location, first theny eigenvalues )\/\/ Np(1 - p)
closest ton, were searched for. Next, the distance between
the smallest and the largest of the obtained eigenvalues was FIG. 2. If N—o and pN=const, the spectral density of the
computed. Finally, to obtaip(\) this distance was multi- uncorrelated random graph does not converge to a semidifeiie.
plied by N/(ng—1), and was averaged usimg, different ~ panel: Symbols show the spectrum of an uncorrelated random
graphs. We used double precision floating point arithmeticgraph(20 000 vertices and 100 000 edgeseasured with the itera-
and the iterations were stoppediif at least; iterations had ~ tive method usingn,=1, ng=101, andny=250. A solid line
been carried out andi) the lengths of the residual vectors shows the semicircular distribution for comparis@Note that the

belonging to then, selected eigenpairs were all belaw principal eigenvalue\, is not shown here because here at agy
—10-12 [46] point the average first-neighbor distance amagg 101 eigenval-

ues was used to measure the spectral depsitget: Strength ofs

functions inp(\) “caused” by isolated clusters of sizes 1, 2, and 3
IV. RESULTS in uncorrelated random graplisee Ref[50] for a detailed expla-

nation). Symbols are for graphs with 20 000 vertices and 20 000
A. Sparse uncorrelated random graphs: edges(V), 50 000 edge$®), and 100 000 edgd®). Results were
The semicircle law is not universal averaged for three different graphs everywhere.

In the uncorrelated random graph model of &rdand
Renyi, the total number of edges grows quadratically withnumber of large isolated clusters is low. The eigenvalues of a
the number of verticesNggye= N(kj)=Np(N—1)~pN2.  graph withs vertices are bounded by ys—1 ands—1.
However, in many real-world graphs edges are “expensive, For these two reasons, the amplitudessdinctions decay
and the growth rate of the number of connections remaingxponentially, as the absolute value of their locatighs,
well below this rate. For this reason, we also investigated thécreases.
spectra of such uncorrelated networks, for which the prob- The principal eigenvalue of this graph converges to a con-
ability of any two vertices being connected changes with thestant: limy_...(A;) =pN=c, and p(\) will be symmetric in
size of the system usingN®*=c=const. Two special cases the N—oo limit. Therefore, in the limit, all odd moments
are =0 (the Erd®-Reyi mode) and a=1. In the second (M. 1), and thus the number of all loops with odd length
case,pN—const adN—, i.e., the average degree remains (D 1), disappear. This is a salient feature of graphs with

constant. tree structurébecause on a tree every edge must be used an
For a<1 and N—o, there exists an infinite cluster of even number of times in order to return to the initial vejtex
connected verticegin fact, it exists for everya<1 [2]).  indicating that the structure of a sparse uncorrelated random

Moreover, the expectation value of aky converges to in- graph becomes more and more treelike. This can also be
finity, thus any vertex is almost surely connected to the infi-understood by considering that the typical distafieegth of
nite cluster. The spectral density function converges to théhe shortest pajrbetween two vertices on both a sparse un-
semicircular distribution of Eq(1) because the total weight correlated random graph and a regular tree with the same
of isolated subgraphs decreases exponentially with growingumber of edges scales asNi)( So except for a few short-
system size(A detailed analysis of this issue is available in cuts a sparse uncorrelated random graph looks like a tree.
Ref.[48].)

For a=1 and N—x (see Fig. 2 the probability for a B. The small-world graph
vertex to belong to a cluster of any finite size remains also
finite [49]. Therefore, the limiting spectral density contains
the weighted sum of the spectral densities of all finite graphs For p,=0 the small-world graph isegular and also pe-
[50]. The most striking deviation from the semicircle law in riodical. Because of the highly ordered structup€\) con-
this case is the elevated central part of the spectral densityains numerous singularities, which are listed in Sec. VI A
The probability for a vertex to belong to an isolated cluster(see also Fig. 3 Note thatp(\) has a high third moment.
of size s decreases exponentially with[49]; therefore, the (Remember, that we use onky>2.)

Triangles are abundant in the graph
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FIG. 3. Spectral densities of small-world graphs using the com- FIG. 4. Main panel: The average spectral densities of scale-free
plete spectra. The solid line shows the semicircular distribution forgraphs withm=my=5 andN=100 (—), N=1000(- -), andN
comparison.(a) Spectral density of the regular ring graph created =7000(- - -) vertices.(In all three cases, the complete spectrum of
from the small-world model witlp,=0, k=10, andN=1000. (b) 1000 graphs was use@dinother continuous line shows the semicir-
For p,=0.01, the average spectral density of small-world graphscular distribution for comparison. Observe tfiatthe central part of
contains sharp maxima, which are the “blurred” remnants of thethe scale-free graph’s spectral density is trianglelike, not semicircu-
singularities of thep,=0 case. Topologically, this means that the lar and(ii) the edges show a power-law decay, whereas the semi-
graph is still almost regular, but it contains a small number of im-circular distribution’s edges decay exponentially, i.e., it decays ex-
purities. In other words, after a small perturbation, the system is ngonentially at the edgg0]. Inset: The upper edge of the spectral
longer degeneratdc) The average spectral density computed for density for scale-free graphs witii=40 000 vertices, the average
the p,=0.3 case shows that the third momentpdk) is preserved degree of a vertex bein¢k;)=2m=10 as before. Note that both
even for very high values gf,, where there is already no sign of axes are logarithmic, indicating thaf\) has a power-law tail. Here
any blurred singularityi.e., regular structuje This means that even we used the iterative eigenvalue solver of Sec. Il B 2 with
though all remaining regular islands have been destroyed already; 21, n,,=3, andngy=60. The line with the slope-5 in this figure
triangles are still dominant(d) If p,=1, then the spectral density is a guide to the eye.
of the small-world graph converges to a semicircle(dj (c), and
(d), 1000 different graphs witthN=1000 andk=10 were used for
averaging.

ANp(1 - p)) 71/ A[Np(1 —p)~1/2

level of randomnessg, is increased. This is in good agree-
ment with the results of Ref19] where the high number of
small cycles is found to be a fundamental property of small-
world networks. As an application, the high number of small

If we increasep, such that the small-world region is , 3 -atlt
cycles results in special diffusion on small-world graphs

reached, i.e., the periodical structure of the graph is pe a1
turbed, then singularities become blurred and are trans{— .
formed into high local maxima, but(\) retains a strong C.Th le-f h
skewnesgqsee Fig. 3 This is in good agreement with the - [ne scale-lree grap ) o
results of Refs[30,51, where it has been shown that the ~FOrm=my=1, the scale-free graph is a tree by definition
local structure of the small-world graph is ordered: however@d its spectrum is symmetrj@3]. In them>1 casep(\)

already a very small number of shortcuts can drasticallFONSists of several well distinguishable paftee Fig. 4.
change the graph’s global structure. he “bulk” part of the spectral density—the set of the eigen-

In the p,=1 case the small-world model becomes Veryvalues{)\z, ... ,An}—Converges to a symmetric continuous

similar to the uncorrelated random graph: the only differenc function which has a trianglelike shape for the normalixed

is that h the mini q f tex i i Salues up to 1.5 and has power-law tails.
IS that nere, the minimum degree of any VErtex1s a posiive e centra) part of the spectral density lies well above the
constantk/2, whereas in an uncorrelated random graph th

) %emicircle. Since the scale-free graph is fully connected by
degree of a vertex can be any non-negative number. Accoryefinition, the increased number of eigenvalues with small

ingly, p(\) becomes a semicircle f@,=1 (Fig. 3. Never-  magnitudes cannot be accounted to isolated clusters, as be-
theless, it should be noted that psconverges to 1, a high fore in the case of the sparse uncorrelated random graph. As
value of M3 is preserved even fop, close to 1, where all an explanation, we suggest, that the eigenvectors of these
local maxima have already vanished. The third moment okigenvalues are localized on a small subset of the graph’'s
p(\) gives the number of triangles in the grafdee Sec. vertices.(This idea is supported by the high inverse partici-
[l A 1); the lack of high local maxima, i.e., the remnants of pation ratios of these eigenvectors, see Fig. 7.

singularities, shows the absence of an ordered structure.
From the above we conclude, that—from the spectrum'’s
point of view—the high number of triangles is one of the as a power law

most basic properties of the small-world model, and it is The inset of Fig. 4 shows the tail of the bulk part of the
preserved much longer than regularity or periodicity if thespectral density for a graph withl=40000 vertices and

1. The spectral density of the scale-free graph decays

026704-6



SPECTRA OF “REAL-WORLD” GRAPHS: BEYOND.. .. PHYSICAL REVIEW B4 026704

several decade®) A\ is larger thar‘r\/k—l and(b) the growth
rate of\, is well below the expected rate df**. In them

=1 case, and for large system{g) the difference between
\; andk; vanishes andb) the growth rate of the principal
eigenvalue will be maximal, too. This crossover in the be-
havior of the scale-free graph’s principal eigenvalue is a spe-
cific property of sparse growing correlated graphs, and it is a
result of the changing level of correlations between the long-
0.5 | 1 est row vectorgsee Sec. VI B

3. Comparing the role of the principal eigenvalue
in the scale-free graph and thee=1 uncorrelated random

100 1000 10000 100000 1e+06 graph: A comparison of structures
Now we will compare the role of the principal eigenvalue

in them>1 scale-free graph and the=1 uncorrelated ran-
dom graph through its effect on the moments of the spectral

FIG. 5. Comparison of the length of the longest row veafly

and the principal eigenvalue, in scale-free graphs. Open symbols ; . .
show, /(VmN¥9). closed symbols showk,/(ymNY4). The pa- density. On Figs. 4 and 5 one can observe thathe prin-

rameter values aren=1 (O), m=2 (A). m=4 (V), andm=8 cipal eigenvalue of the s.cale-free graph is detachﬁg from the
(©). Each data point is an average for nine graphs. For the reader €St of the spectrum, and) asN—w, it grows asN (_See
convenience, data points are connectedn#1 and the network is 8150 Secs. IV.C 2 and VIB It can be also seen that in the
small, the principal eigenvaluk, of a scale-free graph is deter- lIMit, the bulk part will be symmetric, and its width will be
mined by the largest row vectors jointly: the largest eigenvalue isconstant(Fig. 4 rescales this constant width merely by an-
aboveJk; and the growth rate ok, stays below the maximum Other constant, namef\N p(1-p)]~ 2 Because of the sym-
possible growth rate, which is;<NY. If m=1, or the network is metry of the bulk part, in thél— o limit, the third moment
large, the effect of row vectors other than the longestgrvan-  Of p(\) is determined exclusively by the contribution of the
ishes: the principal eigenvalue converges to the length of the longprincipal eigenvalue, which it~ *(x,)3<N~Y4 For each
est row vector, and it grows as, <N Our results show a cross- moment above the thirde.g., for thelth moment, with
over in the growth rate of the scale-free model's principal growing N, the contribution of the bulk part to this moment
eigenvalue. will scale asO(1), and thecontribution of the principal ei-
genvalue will scale adl~**"4 In summary, in theN— o
200000 edge§.e., pN=10). Comparing this to the inset of limit, the scale-free graph’s first eigenvalue has a significant
Fig. 1, where the number of vertices and edges is the same &§ntribution to the fourth moment; the fifth and all higher
here, one can observe tpewer-|aw decaﬁt the edge of the moments are determined exclusively by the Ith moment
bulk part of p(\). As shown later, in Sec. IV D, the power- Will scale asN~**!".
law decay in this region is caused by localized eigenvectors; In contrast to the above, the principal eigenvalue of the
these eigenvectors are localized on vertices with the highest=1 uncorrelated random graph converges to the constant
degrees. The power-law decay of the degree sequence, i.@N=c in theN—c limit, and the width of the bulk part also
the existence of very high degrees, is, in turn, due to théemains constantsee Fig. 2 Given a fixed numbet the
preferential attachment rule of the scale-free model. contribution of the principal eigenvalue to thih moment of
the spectral density will change &s *c' in the N— oo limit.
The contribution of the bulk part will scale &(1), there-
fore all even moments of the spectral density will scale as
O(1) in theN— < limit, and all odd moments will converge
Since the adjacency matrix of a graph is a non-negativeg (.
symmetric matrix, the graph’s largest eigenvalueis also The difference between the growth rate of the moments of
the largest in magnitudeee, e.g., Theorem 0.2 of RB43]).  p(\) in the above two modelgscale-free graph and=1
Considering the effect of the adjacency matrix on the basgncorrdated random graph mogelan be interpreted as a
vectors ©;);=46;; (i=1,2,... N), it can be shown that a sjgn of different structurdsee Sec. IllAL In the N—o
lower bound forn; is given by the length of the longest row |imit, the average degree of a vertex converges to a constant
vector of the adjacency matrix, which is the square root ofin both models: limy_...(kj)=pN=c=2m. (Both graphs
the graph’s largest degrdg. Knowing that the largest de- il have the same number of edges per veit®a the other
gree of a scale-free graph grows @i [11], one expectd;  hand, in the limit all moments of the=1 uncorrelated ran-
to grow asN** for large enough systems. dom graph’s spectral density converge to a constant, whereas
Figure 5 shows a rescaled plot of the scale-free graph’she momentsM, (1=5,6, ...) of thescale-free graph’s(\)
largest eigenvalue for different valuesrof In this figure \;  will diverge asN~*"""4. In other words: the number of loops
is compared to the length of the longest row vecti; on  of length | in the =1 uncorrelated random graph will
the “natural scale” of these values, which{nNY4[11]. It  grow asD,=NM,;=O(N), whereas for the scale-free graph
is clear that ifm>1 and the system is small, then through for every =3, the number of these loops will grow as

2. The growth rate of the principal eigenvalue shows
a crossover in the level of correlations
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D,=NM,;=0O(N". From this we conclude that in the
limit, the role of loops is negligible in the=1 uncorrelated
random graph, whereas it is large in the scale-free graph. Ir A

fact, the growth rate of the number of loops in the scale-free. 4, L s

graph exceeds all polynomial growth rates: the longer the< A
loop size () investigated, the higher the growth rate of
the number of these loopd(®) will be. Note that the rela-
tive number of trianglesi.e., the third moment of the spec-
tral density,M,/N) will disappear in the scale-free graph, if
N— o,

In summary, the spectrum of the scale-free model .
converges to a trianglelike shape in the center, and the edge  ¢.001 | L
of the bulk part decay slowly. The first eigenvalue is . . ;
detached from the rest of the spectrum, and it shows ar 100 1000 10000 100000 le+06
anomalous growth rate. Eigenvalues with large magnitudes N
belong to eigenvectors localized on vertices with many pig 6. The ratioR=(\,—\,)/(\,—\y) for sparse uncorre-
neighbors. In the present context, the absence of trianglegyeq random graphé+), small-world graphs withp,=0.01 (@),

the high number of loops with length aboVe 3, and the and scale-free networks\). All graphs have an average degree of
buildup of correlations are the basic properties of the scalet;)=10, and at each data point, the number of graphs used for

+P>
L4
>+

0.01

(A=) /(X =

free model. averaging was 9. Observe, that for the uncorrelated random graph,
R converges to a constarisee Sec. Il A 2, whereas it decays
D. Testing the structure of a “real-world” graph rapidly for the two other types of networks, Bs-o. On the other

hand, the latter two network typésmall-world and scale-freedif-
To analyze the structure of a large sparse random grapfar significantly in their magnitudes @&,

(correlated or not here we suggest several tests that can be
performed withinO(N) CPU time, use)(N) floating point
operations, and can clearly differentiate between the three

“pure” types of random graph models treated in Sec. IV. >4 sparse uncorrelated random graph model and the scale-

Furthermore, these tests allow one to quantify the relatiot’®€ Network, and the rest of the spectrum are well sepa-

between any real-world graph and the three basic types dfted, which gives similarly high values fétin small sys-
random graphs. tems. In large system® of the sparse uncorrelated random

graph converges to a constant, whiein the scale-free
1. Extremal eigenvalues model decays as a power-law functionf The reason for
In Sec. Il A2 we have already mentioned that the eX_thIS drop is the increasing denominator on the right-hand side

tremal eigenvalues contain useful information on the struc®f Ed. (6): A and Ay are the extremal elgenv_alues in the
ture of the graph. As the spectra of uncorrelated randonfPWer and upper long tails qf(\), therefore, ad\ increases,
graphs(Fig. 1) and scale-free networkdig. 4) show, the the expectation values of, and —\y grow as quickly as
principal eigenvalue of random graphs is often detachedhat of A;. On the other hand, the small-world network
from the rest of the spectrum. For these two network typesshows much lower values @ already for small systems:
the remaining bulk part of the spectrum, i.e., the sethere\; is not detached from the rest of the spectrum, which
{\2, ... A}, converges to a symmetric distribution, thusis a consequence of the almost periodical structure of the
the quantity graph.
On Fig. 6 graphs with the same number of vertices and
edges are compared. For large=10000) systems and for
(6) sparse uncorrelated random gragRgonverges to a con-
stant, whereas for scale-free graphs and small-world net-
. i . works it decays as a power law. The latter two networks
measures the dlstance. of the first elge'nvalue from .thgignificantly differ in the magnitude dR. In summary, the
main part ofp(\) normalized by the extension of the main suggested quantit® has been shown to be appropriate for
part. (R can be connected to the chromatic number of theigtinguishing between the following graph structur@spe-
graph[52].) riodical or almost periodicalsmall world, (ii) uncorrelated

Note that in theN— = limit the a=0 sparse uncorrelated nonperiodical, and(iii) strongly correlated nonperiodical
random graph's principal eigenvalue will scale &s), (scale freg

whereas both, and|—\y| will scale as 2/(k;). Therefore,

if (kjy>4, the principal eigenvalue will be detached from

the bulk part of the spectrum arfd will scale as /(k;)

—2)/4. 1If, however,(k;)<4, A, will not be detached from Figure 7 shows the inverse participation ratios of the

the bulk part, it will converge to 0. eigenvectors of an uncorrelated random graph, a small-world
The above explanation and Fig. 6 show that in ¢(kg graph withp,=0.01, and a scale-free graph. Even though all

A=A
A=Ay

R:=

2. Inverse participation ratios of extremal eigenpairs
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FIG. 7. Main panel:Inverse participation ratios of the eigenvec-  FIG. 8. Size dependence of the relative variance of the principal
tors of three graphs shown as a function of the corresponding ekigenvalue, i.e.,o(A\;)/E(\;), for sparse uncorrelated random
genvalues: uncorrelated random graph, small-world graph with  graphs(+), small-world graphs wittp,=0.01 (@), and scale-free
p,=0.01 (@), and scale-free grapf\). All three graphs haveN graphs(2). The average degree of a vertex(is)= 10, and 1000
=1000 vertices, and the average degree of a vertek;js=10. graphs were used for averaging at every point. Observe that in the
Observe that the eigenvectors of the sparse uncorrelated randommcorrelated random graph and the small-world model
graph and the small-world network are usually nonlocaliz€d ) o(N)/E(N;) decays with increasing system size; however, for
is close to IN]. On the contrary, eigenvectors belonging to the scale-free graphs with the same number of edges and vertices, it
scale-free graph’'s extremal eigenvalues are highly localized withemains constant.

I(\) approaching 0.1. Note also that for=0, the scale-free graph’s

I(N\) has a significant “spike” indicating again the localization of E. Structural variances

eigenvectorsinset: Inverse participation ratios of the first, second, . ) . . ,

andNth eigenvectors of an uncorrelated random gréph a small- Relative variance of the principal eigenvalue for d.lf'fgrept types
world graph withp,=0.01 (®), and a scale-free graph). For of networks: The scale-free graph and self-similarity

each data point, the number of vertices vs 300 000 and the Figure 8 shows the relative variance of the principal ei-

number of edges was 1 500 000. Clearly, the principal eigenvectogenvalue, i.e.,o(\;)/E(\;), for the three basic random
of the scale-free graph is localized, while the principal eigenvectogyaph types.

of the other two systemighe uncorrelated modglss not. Note also For nonsparse uncorrelated random grapNs—¢ and

that the inverse participation ratios of the second Mtideigenvec- p=consi this quantity is known to decay at a rate which is
tors clearly differ in the small-world graph—the spectrum of this faster than exponentigl28,53. Comparing sparse graphs
graph has already been shown to be strongly asymmetric—whereggy .\ tho same number of vertices and edges, one can see that

i h the i icipation rati
n the uf'correlated ra.ndom graph the inverse participation ratios %h the sparse uncorrelated random graph and the small-world
&, and &y are approximately the same. Thus, with the help of the

inverse participation ratios @, €,, and€y, one can identify the quel the_ relatlve_ variance of t_he principal eigenvalue drops
three main types of random graphs used here. quickly with growing system size. In the scale-free model,
however, the relative variance of the principal eigenvalue’s

. distribution remains constant with an increasing number of
three graphs have the same number of vertidés {000)  yertices.

and edgeg5000, one can observe rather specific features |n fractals, fluctuations do not disappear as the size of the
(see also the inset of Fig).7 system is increased, while in the scale-free graph, the relative
The uncorrelated random graph’s eigenvectors show veryariance of the principal eigenvalue is independent of system
little difference in their level of localization, except for the size. In this sense, the scale-free graph resembles self-similar
principal eigenvector, which is much less localized than thesystems.
other eigenvectors(\,) and1(\y) are almost equal. For
the small-world graph’s eigenvectoig\) has many differ-
ent plateaus and spikes; the principal eigenvector is not lo-
calized, and the second ahtih eigenvectors have high, but ~ We have performed a detailed analysis of the complete
different, I(\) values. The eigenvectors belonging to thespectra, eigenvalues, and the eigenvectors’ inverse participa-
scale-free graph’s largest and smallest eigenvalues are localen ratios in three types of sparse random graphs: the sparse
ized on the “largest” vertices. The long tails of the bulk part uncorrelated random graph, the small-world model, and the
of p(\) are due to these vertices. All three investigated eigenscale-free network. Connecting the topological features of
vectors €,, €,, andé,) of the scale-free graph are highly these graphs to algebraic quantities, we have demonstrated
localized. Consequently, the inverse participation ratios othat (i) the semi circle law is not universal, not even for the
the eigenvectorg,, €,, andé, are handy for the identifica- uncorrelated random graph modegi) the small-world graph
tion of the three basic types of random graph models usedis inherently noncorrelated and contains a high number of

V. CONCLUSIONS
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k nearest neighbors, and the eigenvalues can be computed
using the graph’s symmetry operations. Rotational symmetry
operations can be easily recognized, if the vertices of the
graph are drawn along the perimeter of a cirdee Fig.
let P (n=0,1,... N—1) denote the symmetry operation
that rotates the graph hy vertices in the anticlockwise di-
rection. Being a symmetry operation, eaf") commutes
with the adjacency matri, and they have a common full
orthogonal system of eigenvectors.

\T Now, we will create a full orthogonal basis &f (We will

PO treat only the case wheN is an even number; odd’s can
. . be treated similarly.lt is known that the eigenvalues éfare
FIG. 9. The regular ring graph obtained from the small-world real: however, to zimplify calculations, W% will use complex

model in thep,=0 case: rotationsR™ for everyn=0,1,... N . : ()
—1) are symmetry operations of the graph. TRE operators ljumbers first. The eigenvectors of everp are

(there areN of them) can be used to create a full orthogonal basis of®1:€2, - BN,

the adjacency matriR: taking anyP(™, it commutes withA, there-

fore they have a common full orthogonal system of eigenvectors. (e|)j=exp(
(For a clear illustration of symmetries, this figure shows a graph

with only N= 15 vertices ank=4 connections per vertex.

2i %) , (A1)

where|=0,2,...N—1 andi=+\—1. The eigenvalue of
triangles;(iii) the spectral density of the scale-free graph isp(™ on g, is
made up of three, well distinguishable paftenter, tails of
bulk, first eigenvalug and asN—co, triangles become neg- nl
ligible and the level of correlations changes. s(“):ex;{ 27 W)' (A2)

We have presented practical tools for the identification of . o )
the above-mentioned basic types of random graphs and fur- BY adding these values pairwise, one can obtain fthe
ther, for the classification of real-world graphs. The robusteigenvalues of the graph
eigenvector techniques and observations outlined in this pa- W2
per combined with previous studies are likely to improve our J
understanding of large sparse correlated random structures. )\|=21_21 CO%ZWN)' (A3)
Examples for algebraic techniques already in use for large
spa[rse c]orrelated random s:{ructuraes are analysez of t%e INter-|n the previous exponential form the right-hand side is a
net[6,18] and search engind$4,62 and mapping$55,5 ; ; e
of the World-Wide Web. Besides the improvement of thesesummatlon for a geometrical series; therefore,

techniques, the present work may turn out to be useful for sinf (k+ 1)1 7/N]

analyzing the correlation structure of the transactions be- N=F—— o — (A4)

tween a very high number of economical and financial units, sin(l/N)

which has already been started in, e.g., Ré&f$-59. Lastly, o

we hope to have provided quantitative tools for the classifiln the N—=c limit, this converges to

cation of further “real-world” networks, e.g., social and bio- (k1

logical networks. A(X)= M -1, (A5)
Note added in proofRecently, we were made aware of a sin(x)

manuscript by Goh, Kahng, and Kif$3] investigating the ) o ] )
spectral properties of scale-free networks. Also, our attentioWherex is evenly distributed in the intervg0,].
has been drawn to a recent publication of Bauer and

Golinelli [64] on the spectral properties of uncorrelated ran- 2. Singularities of the spectral density
dom graphs. The spectral density is singular M=\ (x), if and only if
ACKNOWLEDGMENTS (d\/dx)(x) =0, which is equivalent to
We thank D. Petz, G. Stoyan, G. TusiyaK. Wu, and B. (k+1)tan(x)=tar] (k+1)x]. (A6)

Kahng for helpful discussions and suggestions. This research i _ )
was partially supported by a HNSF Grant No. OTKA Sincek is an even number, both this equation and Eq.

T033104 and NSF Grant No. PHY-9988674. (A5) are invariant under the transformatign>7— X, there-

fore only thexe[ 0,7/2] solutions will give different\ val-

APPENDIX A: THE SPECTRUM OF A SMALL-WORLD ues. Ifk=10 (see Fig. 3, Eq.(A6) hask/2+1=6 solutions
GRAPH FOR p,=0 REWIRING PROBABILITY in [0,7/2], which arex=0, 0.410, 0.704, 0.994, 1.28, and

7i/2. Therefore, according to EGA5), in theN—co limit the

1. Derivation of the spectral density spectral density will be singular in the following points:

If the rewiring probability of a small-world graph ig,
=0, then the graph is regular, each vertex is connected to its \i=—3.46-2.19-2,0.043,0.536, ank=10. (A7)
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APPENDIX B: CROSSOVER IN THE GROWTH RATE jth vertex will be connected to vertexwith probability P;;
OF THE SCALE-FREE GRAPH'S =m/(24/ij). Thus, we can write Eq(B1) in the following
PRINCIPAL EIGENVALUE f .
orms:
The largest eigenvalue is influenced only by the longest N N
row vector if and only if the two longest row vectors are p2
<>, P B2
almost orthogonal: 21 u ;1 u (B2
171172< |l71||172| . (Bl) or
Form>1, the left-hand sidéhs) of Eq. (B1) is the num- Ne m
ber of simultaneous 1's in the two longest row vectors, and nN- Nc> 7 (B3)

the rhs can be approximated withi,|>=k,, the largest de-
gree of the graph. It is knowf11] that for largej (j>i), the  whereN, is the critical system size.
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