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Abstract

Response surface experiments often involve only quantitative factors, and the re-
sponse is fit using a full quadratic model in these factors. The term response surface
implies that interest in these studies is more on prediction than parameter estima-
tion since the points on the fitted surface are predicted responses. When computing
optimal designs for response surface experiments, it therefore makes sense to focus
attention on the predictive capability of the designs. However, the most popular
criterion for creating optimal experimental designs is the D-optimality criterion,
which aims to minimize the variance of the factor-effect estimates in an omnibus
sense. Because I-optimal designs minimize the average variance of prediction over
the region of experimentation, their focus is clearly on prediction. Therefore, the
I-optimality criterion seems to be a more appropriate one than the D-optimality
criterion for generating response surface designs. Here, we introduce I-optimal de-
sign of split-plot response surface experiments. We show through several examples
that I-optimal split-plot designs provide substantial benefits in terms of prediction
compared to D-optimal split-plot designs, while also performing very well in terms
of the precision of the factor-effect estimates.

Keywords: coordinate-exchange algorithm, D-optimality, hard-to-change factors, I-
optimality, IV-optimality, multi-stratum design, split-plot design, V-optimality.

Introduction

Complete randomization of designs for industrial experiments may be difficult due to
cost constraints and logistic problems. The split-plot design, which involves a restricted
randomization, often provides a reasonable alternative. The main reason many experi-
menters avoid complete randomization in industrial experimentation is the presence of
factors whose levels are hard to set or hard to change, in addition to factors whose levels
are easy to set or change.



Split-plot designs were originally used for agricultural experimentation where plots of land
were subdivided in relatively large portions known as whole plots. Each of the possible
levels of the whole-plot factors were then randomly assigned to these plots. Whole plots
were further divided into smaller portions known as sub-plots, to which sub-plot factors
were applied. Thus, the levels of the whole-plot factors vary from whole plot to whole
plot, while the levels of the sub-plot factors vary from sub-plot to sub-plot within each
whole plot. In split-plot designs for industrial experiments, hard-to-change factors act as
whole-plot factors, whereas easy-to-change factors act as sub-plot factors.

The design and analysis of split-plot industrial experiments has received considerable at-
tention in the literature in recent years. Letsinger, Myers and Lentner (1996) discussed
response surface methods for split-plot designs focusing on the data analysis. They rec-
ommended the use of generalized least squares and restricted maximum likelihood for
estimating split-plot response surface models. Huang, Chen and Voelkel (1998), Bingham
and Sitter (1999) and Bingham, Schoen and Sitter (2004) described the construction of
two-level fractional factorial split-plot designs using the aberration criterion. Trinca and
Gilmour (2001) presented a general methodology for constructing multi-stratum response
surface designs, of which split-plot designs are special cases. Kulahci and Bisgaard (2005)
illustrated how split-plot designs can be constructed from Plackett-Burman designs. Goos
and Vandebroek (2001, 2003, 2004) and Jones and Goos (2007) propose point-exchange
and coordinate-exchange algorithms for constructing D-optimal split-plot designs. Vining,
Kowalski and Montgomery (2005) and Parker, Kowalski and Vining (2006, 2007a,b) pre-
sented various classes of equivalent-estimation split-plot designs for which ordinary least
squares and generalized least squares estimation leads to the same point estimates. Anbari
and Lucas (2008) discuss the use of full factorial two-level designs for split-plot experimen-
tation. Follow-up split-plot designs are discussed by Almimi, Kulahci and Montgomery
(2008) and McLeod and Brewster (2008). Macharia and Goos (2010) identify a range of
equivalent-estimation split-plot designs that are either D-optimal or close to D-optimal.
Schoen, Jones and Goos (2011) present a case study of a split-plot design for which a
coordinate-exchange algorithm yields designs that are superior to those produced by a
point-exchange algorithm. Reviews of the literature on the design of split-plot experi-
ments can be found in Goos (2002, 2006) and Jones and Nachtsheim (2009).

Perhaps the most flexible approach to designing split-plot experiments is the optimal de-
sign approach of Goos and Vandebroek (2001, 2003, 2004) and Jones and Goos (2007),
because that approach can handle any combination of number of runs and number of
whole plots. Also, the optimal design approach can cope with various model types and
different types of experimental factors (continuous factors, categorical factors and mixture
factors). The emphasis in the published work on the optimal design of split-plot exper-
iments is on the construction of D-optimal designs, which maximize the determinant of
the information matrix. In this article, we demonstrate that D-optimal split-plot response
surface designs perform poorly when it comes to making predictions and recommend the
use of I-optimal split-plot designs, which minimize the average prediction variance. Re-
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markably, the performance of the D-optimal split-plot designs in terms of the I-optimality
criterion is substantially worse than the performance of the I-optimal designs in terms
of the D-optimality criterion. Also, on average, the prediction-oriented I-optimal split-
plot designs provide more precise factor-effect estimates than their estimation-oriented
D-optimal counterparts.

In general, in the literature on the optimal design of experiments, there has been a strong
focus on the generation of D-optimal designs. In recent years, however, the usefulness of
prediction-oriented optimal design criteria such as the I-optimality criterion (also called V-
optimality, IV-optimality or Q-optimality) and the G-optimality criterion have received
increasing attention. This is because, in response surface experimentation, the goal is
usually to make predictions. The generation of I-optimal completely randomized designs
(which minimize the average prediction variance) is discussed in Haines (1987), Meyer
and Nachtsheim (1988; 1995) and Hardin and Sloane (1993), while the generation and the
performance of G-optimal completely randomized designs (which minimize the maximum
prediction variance) is treated in Rodriguez, Jones, Borror and Montgomery (2010). A
key finding of the latter authors is that, to minimize the maximum variance of prediction,
it is often necessary to accept larger prediction variances over most of the region of in-
terest. Hardin and Sloane (1993) demonstrated that D-optimal response surface designs
perform poorly in terms of the I-optimality criterion while I-optimal designs perform rea-
sonably well with respect to the D-optimality criterion, when the experimental region is
cuboidal. When the design region is spherical, the differences between D- and I-optimal
designs are less pronounced, but generally still in favor of the I-optimal designs. Goos and
Jones (2011) report an example of a completely randomized response surface experiment
involving a three-level categorical factor, where the performance of the I-optimal design in
terms of the D-optimality criterion is much better than the performance of the D-optimal
design in terms of the I-optimality criterion. These are the reasons why we prefer mini-
mizing the average variance of prediction, and focus on I-optimal split-plot designs. This
is unlike Anbari and Lucas (2008) and Goos and Lucas (2009), who use the G-optimality
criterion for selecting two-level factorial and fractional factorial split-plot designs.

In this article, we first describe the model used for data from split-plot experiments and
discuss the model estimation. Next, we define the D-optimality criterion as well as the I-
optimality criterion, and we show how to quantify the relative performance of two designs
using D- or I-efficiency. Finally, we demonstrate the benefits of using I-optimal designs
using three small examples, and using a real-life protein extraction experiment. All the
illustrations in this article involve a cuboidal experimental region. A discussion of our
results concludes the paper.



Statistical model and analysis

The model we use for analyzing data from a split-plot experiment with b whole plots of
k runs is
Vi =1(xij)B + i + €, (1)

where Yj; is the response measured at the jth run in the ith whole plot, x;; is a vector
that contains the levels of all the experimental factors at the jth run in the ith whole
plot, f'(x;;) is its model expansion, and B contains the intercept and all the factor effects
that are in the model. The term ~; represents the random effect of the ith whole plot
and g;; is the random error associated with the jth run in whole plot 7. Each whole
plot corresponds to an independent setting of the hard-to-change factors, and each run or
sub-plot corresponds to an independent setting of the easy-to-change factors. We denote
the dimension of f'(x;;) and 3 by p.

We like to stress the fact that there are two types of factors in a split-plot experiment
by using two different symbols. For the N, hard-to-change factors, we use the symbols
wy,...,wy, or w. For the N; easy-to-change factors, we use the symbols sq,..., sy, or s.
The split-plot model then is

Yij = ' (wi,s5)B + i + €ij, (2)

where w; gives the settings of the hard-to-change factors in the ith whole plot and s;;
gives the settings of the easy-to-change factors at the jth run within the ith whole plot.
This way of writing the model is instructive as it emphasizes the fact that the levels of
the hard-to-change factors do not change within a whole plot. We call the hard-to-change
factors whole-plot factors because their levels are applied to whole plots, and we use the
term sub-plot factors for all the easy-to-change factors because their levels are applied to
sub-plots.

For a split-plot experiment with sample size n and b whole plots, the model can be written
in matrix notation as

Y = X3+ Zv + &, (3)

where Y is the vector of responses, X represents the n x p model matrix containing
the settings of both the whole-plot factors w and the sub-plot factors s and their model
expansions, 3 is again the p-dimensional vector containing the p fixed effects in the model,
Z is an n x b matrix of zeroes and ones assigning the n runs to the b whole plots, = is
the b-dimensional vector containing the random effects of the b whole plots, and € is the
n-dimensional vector containing the random errors. It is commonly assumed that

E(e) = 0,, and cov(e) = 071, (4)
E(y) = 0, and cov(y) = 021, (5)
cov (7, €) = Opxn. (6)



Under these assumptions, the covariance matrix of the responses, var(Y'), is

V =02l + 0 727 (7)
When the entries of Y are arranged per whole plot, then
V =diag(V*,..., V"), (8)
where
V* =0T, + Uglklﬁﬁ, = o2(I; +nl;1}), (9)

k is the number of runs in each whole plot, and the variance ratio n = O',QY /o? is a measure
for the extent to which responses from runs within the same whole plot are correlated.
The larger n, the more the responses within one whole plot are correlated.

When the random error terms as well as the whole-plot effects are normally distributed,
the maximum likelihood estimator of the unknown model parameter vector 3 is the gen-
eralized least squares (GLS) estimator

B=XV'X)'X'V'y, (10)
with covariance matrix R
var(B) = (X'VIX) ™. (11)
The information matrix for the parameter vector 3 is given by
M=XV'X. (12)

Criteria for selecting designs

D-optimality criterion

The most commonly used criterion to select experimental designs is the D-optimality

criterion which seeks designs that maximize the determinant of the information matrix,
M| = | X'V 'X|.

We use the D-efficiency to compare the quality of two designs with information matrices

M; and M,. The D-efficiency of a design with information matrix M, relative to a design
with information matrix M, is defined as

)
D-efficiency = <\1\/I1|> .
2

A D-efficiency larger than one indicates that Design 1 is better than Design 2 in terms
of the D-optimality criterion. The D-optimality criterion has been used for constructing
split-plot designs by Goos and Vandebroek (2001, 2003, 2004), Jones and Goos (2007),
Macharia and Goos (2010) and Schoen, Jones and Goos (2011). In general, the D-optimal
design depends on the variance ratio 1 through the covariance matrix V of the responses,
as does the D-efficiency of one design relative to another.
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I-optimality criterion
An I-optimal split-plot design minimizes the average prediction variance

f'(x)(X'VIX) " (x)dx
Average variance = fX Sl ) flx) (13)

fx dx

over the experimental region y. It is not difficult to calculate this expression for an
arbitrary model. If there are N = N, + N, quantitative experimental variables and
the experimental region is [—1,+1]", then the volume of the experimental region in the
denominator is 2V. To simplify the calculation of the numerator, we first observe that
the variance of prediction, f'(x)(X'V~1X)~'f(x), is a scalar, so that

f'(x)(X'VIX) ' (x) = tr [f/(x)(X'VIX)'f(x)].

We can now exploit the property that, when calculating the trace of a matrix product,
we can cyclically permute the matrices. Therefore,

tr [f/(x)(X'VIX)'f(x)] = tr [(X'VIX) (%) (x)],
and

/f’(X)(X/V_1X)_1f(X)dX: /tr [(X'VIX) ' (x)f (x)] dx,

X

= tr [/X(X'V_IX)_lf(x)f'(x)dx].

Now, note that, since the factor level settings are fixed, the matrix X, and hence (X'V~1X)~1,
is constant as far as this integration is concerned. Therefore,

/f’(x)(X'V‘lX)_lf(x)dx = tr [(X'V_lX)_l/f(x)f’(x)dx},
X X
so that we can rewrite the formula for the average prediction variance as
Average variance = 27" tr [(X'V'X)™! /f(x)f’(x)dx].
X

The integral in this expression is applied to a matrix of one-term polynomials (monomials).
This notation is to be interpreted as the matrix of integrals of these monomials. If the

experimental region is x = [—1,+1]", then these integrals are quite simple. Let
B :/ f(x)f' (x)dx, (14)
xe[—1,+1]NV
then,
Average variance = 27" tr [(X'V'X)"'B]. (15)
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The matrix B is called the moments matrix. As pointed out by Hardin and Sloane
(1991Db), B has a very specific structure for a full quadratic model:

Lo o i

Oy I Onxne Onxn
B =2V 3 , 16
Oy« Onexn  gIne Onexn (16)

S1n Onen Onwne 2= (4Iy +5Ty)

where N = N, + Ny is the number of factors and N* = N(N — 1)/2 is the number of
two-factor interaction effects.

If P, is the average variance of prediction of one design and P, is the average variance of
prediction of a second design, then the I-efficiency of the former design compared to the
latter is computed as

[-efficiency = P»/P;.

An I-efficiency larger than one indicates that Design 1 is better than Design 2 in terms
of the average prediction variance. The use of the [-optimality criterion for constructing
split-plot designs is new to the literature. Note that the I[-optimal design and the I-
efficiency of one design relative to another depend on the variance ratio n through the
covariance matrix V.

Dependence on the variance components

A technical problem with finding a D- or I-optimal split-plot design is that the matrix V,
and therefore also the D- and I-optimality criteria, depends on the unknown variances 03
and ¢2. Fortunately, the optimal split-plot designs do not depend on the absolute magni-
tude of these two variances, but only on their relative magnitude. Therefore, generating
optimal split-plot designs requires input only on the relative magnitude of 0?/ and o2. For
the purpose of generating an optimal design, an educated guess of the variance ratio is
good enough because a design that is optimal for one variance ratio is also optimal for
a broad range of variance ratios around the specified one. Moreover, whenever different
variance ratios lead to different designs, the quality of these designs is almost identical.
Goos (2002) recommends using a variance ratio of one for finding optimal split-plot de-
signs in the absence of detailed a prior: information about it.

In this article, we used three different 1 values to generate D- and I-optimal designs to
study the sensitivity of the results. We report detailed results for the first three examples
in the paper. These results show that the relative D- and I-efficiencies of competing de-
signs are not very sensitive to the value of n. Therefore, for practical purposes, knowledge
of the value of 7 is unimportant.

We computed I-optimal designs using the coordinate-exchange algorithm described in
Jones and Goos (2007), where we modified the objective function to minimize the average
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prediction variance in Equation (15), incorporating the update formulas in Arnouts and
Goos (2010).

Theoretical examples

Two factors
Completely randomized designs

We first compare the D-optimal and I-optimal completely randomized designs for a full
quadratic model in two factors x; and x5, and restrict each design to place points on the
3 x 3 factorial grid. The D-optimal design places three runs at each vertex and two runs
in the center. The remaining six points are allocated to the four edge midpoints. Two
adjacent midpoints are duplicated, while the other two are not. The I-optimal design
places two runs at each vertex, two runs at each edge midpoint, and four runs in the
center of the design region. These D- and I[-optimal designs are shown in Figure 1.

3 1 3 2 2 2
® ® ® ® ® ®
1 2 2 2 4 2
X, ® ° ° X, ® ° °
2 2
o ® ® o ® ®
3 3 2 2
X X
(a) D-optimal design (b) I-optimal design

Figure 1: D- and I-optimal 20-run completely randomized designs for estimating a full
quadratic model in two factors x; and x».

The D-optimal design has an average relative variance of prediction of 0.233, while the
corresponding diagnostic for the [-optimal design is 0.183. Here, our use of the word
relative is with respect to o2, which is generally unknown prior to experimentation. So,
the D-optimal design has an I-efficiency of 0.183/0.233 = 78.5%. In most of the design re-
gion, the I-optimal design gives lower relative variances of prediction than the D-optimal
design. This is clearly shown in Figure 2, where the light-shaded area represents the
factor-level combinations for which the [-optimal design gives the better predictions and
the dark-shaded area represents the factor-level combinations for which the D-optimal
design results in more precise predictions.



X1

Figure 2: Plot showing the factor-level combinations for which the I-optimal (light-shaded)
and D-optimal (dark-shaded) completely randomized designs from Figure 1 result in the
most precise predictions.

Table 1: Relative variances of factor-effect estimates obtained from the D- and I-optimal
completely randomized designs in Figure 1.

Effect D-optimal I-optimal
Intercept 0.302 0.179
T 0.068 0.083
T 0.068 0.083
x? 0.282 0.214
3 0.282 0.214

While the I-efficiency of the D-optimal design is only 78.5%, the D-efficiency of the I-
optimal design is 94.9%.

Table 1 shows the relative variances of the factor-effect estimates for the full quadratic
model for each design. Note that the I-optimal design estimates the quadratic effects and
the intercept more precisely than the D-optimal design. The D-optimal design provides
less variable estimates of the main effects and the two-factor interaction effect. This is
the usual pattern whether the experiment is conducted using a completely randomized
design or a split-plot design.

Split-plot designs

Suppose that logistic considerations make changing the level of the first factor very diffi-
cult, so that it is desirable to divide the 20 runs into four whole plots of five runs where,
within each group of runs, the first factor’s level remains constant. This restriction results
in a split-plot structure for the design. Table 2 shows the four whole plots of five runs of
the D-optimal split-plot design in the middle two columns, and the I-optimal split-plot
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Table 2: D- and I-optimal 20-run split-plot designs in four whole plots of size five for
estimating a full quadratic model in one whole-plot factor w and one sub-plot factor s.

D-Optimal | I-Optimal

Whole Plot | w s| w 5
1 —1 -1-1 -1
1 —1 -1-1 -1
1 -1 0—-1 0
1 -1 1] -1 1
1 —1 1] -1 1
2 0 -1 0o -1
2 0 -1 0 0
2 0 0] 0 0
2 0 0 0 0
2 0 1 0 1
3 1 -1 0o -1
3 1 -1 0 0
3 1 0 0 0
3 1 1 0 0
3 1 1 0 1
4 1 -1 1 -1
4 1 -1 1 -1
4 1 0 1 0
4 1 1 1 1
4 1 1 1 1

design in the final two columns. Note that, in the table, we label the first factor w to
emphasize it is a whole-plot factor and that we label the sub-plot factor s to stress it
is a sub-plot factor. The D-optimal design has two whole plots at the high level of the
first factor, while the I-optimal design repeats the middle level of the first factor. The
[-optimal design thus has a symmetric whole-plot design. In addition, within each whole
plot, the sub-plot factors’ design is also symmetric. The D- and the I-optimal design are
optimal for 7 values of 0.1, 1 and 10. Note that the I-optimal design involves six center
runs, while the D-optimal design has only two runs at the center of the design region.

Here, the I-optimal design is 93.4% D-efficient, independent of the n value. The average
relative variance of prediction for the D-optimal design is 0.973 when 7 takes the value
1, compared to 0.717 for the I-optimal design. This makes the D-optimal design 73.8%
I-efficient for 7 = 1. The I-efficiency of the D-optimal design is 75.9% when 7 equals 0.1
and 72.9% when 7 is 10. Hence, as with the completely randomized design, the I-optimal
split-plot design does better with respect to the D-optimality criterion than the D-optimal
design fares with the I-optimality criterion.

10



Figure 3: Plot showing the factor-level combinations for which the I-optimal (light-shaded
and white areas) and D-optimal (dark-shaded area) split-plot designs from Table 2 result
in the most precise predictions.

Figure 3 compares the performance of the D- and I-optimal designs in terms of prediction
variance over the entire design region. The dark-shaded area, which covers about 17% of
the design region, indicates the factor-level combinations for which the D-optimal design
results in more precise predictions than the I-optimal design. In the remaining 83% of the
design region, the I-optimal design outperforms the D-optimal one in terms of the relative
variance of prediction. In 7% of the design region, indicated in white in the plot, the
[-optimal design has a prediction variance that is less than half the prediction variance
given by the D-optimal design. The reason why the I-optimal design predicts so well in
the center of the design region is that it involves six center runs, versus two only for the
D-optimal design.

Table 3 shows the relative variances of the factor-effect estimates for the full quadratic
model for each design for 7 values of 0.1, 1 and 10. Again, note that the D-optimal design
provides more precise estimates of the main effects and the two-factor interaction effects,
while the [-optimal design gives more precise estimates of the quadratic effects.

Assuming an 7 value of 1, the average relative variance of the estimates of the main
effects, the interaction effects and the quadratic effects for the D-optimal design is 0.51,
compared to 0.46 for the I-optimal design. So, in that case, the I-optimal design also
scores 10.2% better than the D-optimal design in terms of the average precision of the
factor-effect estimates. For n values of 0.1 and 10, the I-optimal design is, respectively,
3.7% and 13.7% better than the D-optimal design in terms of the average precision of
the factor-effect estimates. This is despite the fact that the D-optimality criterion is an
estimation-oriented optimality criterion, while the I-optimality criterion is a prediction-
oriented criterion. Note that, if we take into account the relative variance of the intercept
estimate, the difference in favor of the I-optimal design is even larger.
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Table 3: Relative variances of factor-effect estimates obtained from the D- and I-optimal
split-plot designs in Table 2.

n=20.1 n=1 n =10

Effect D-Opt I-Opt | D-Opt I-Opt | D-Opt  I-Opt
Intercept 0401 0.190 | 1.301 0.640 | 10.301 5.140
w 0.113  0.150 | 0.450 0.600 | 3.825 5.100
s 0.075 0.083 | 0.075 0.083 | 0.075 0.083
ws 0.092  0.125 | 0.092 0.125 | 0.092 0.125
w? 0427  0.340 | 1.665 1.240 | 14.040 10.240
52 0.279  0.250 | 0.279  0.250 | 0.279  0.250
Average 0.231  0.190 | 0.643 0.490 | 4.768  3.490
(incl. intercept)

Average 0.197 0.190 | 0.512 0.460 | 3.662 3.160
(excl. intercept)

Three factors
Seven whole plots of four runs

In this example, we consider a three-factor design with one whole-plot factor w and two
sub-plot factors s; and s,. Suppose that the investigator wishes to group the runs into
seven whole plots of four runs each, so that the total number of runs is 28.

Unlike in the two-factor scenario we discussed in the previous section, the D-optimal de-
sign as well as the I-optimal design now depends on the value of the variance ratio 7. In
its left panel, Table 4 shows the factor-level combinations of the two D-optimal designs
that we obtained. The first design, Design I, is D-optimal for n values smaller than 3.10,
while the second design, Design 11, is D-optimal for n values larger than 3.10. In its right
panel, Table 4 shows the factor-level combinations of the two I-optimal designs that we
obtained. The first of these designs, Design III, is I-optimal for n values smaller than
2.05, while the second design, Design IV, is I-optimal for n values larger than 2.05.

Each of the D-optimal designs has three whole plots each at the low and high levels of
the whole-plot factor and one whole plot at the middle level. The I-optimal designs have
three whole plots at the middle level and two whole plots each at the low and high levels
of the whole-plot factor. The I-optimal design for small 1 values has six center runs in
total, while the I-optimal design for large n values has four center runs. In contrast, the
D-optimal designs have only one such run. This greater emphasis at the center of the
design region is typical of I-optimal designs, whether they are completely randomized or
split-plot designs.

The two D-optimal designs exhibit very similar behavior in terms of I-efficiency. Likewise,
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Table 4: D- and I-optimal 28-run split-plot designs in seven whole plots of size four for

estimating a full quadratic model in one whole-plot factor w and two sub-plot factors s;

and s,.

[-Optimal Designs

DESIGN IV

n > 2.05

w

52

S1

DESIGN III

n < 2.05

w

-1

59

S1
-1

-1

-1

D-Optimal Designs

DESIGN 1

DESIGN II

n > 3.10

w

-1

59

S1
-1

0

-1 -1

-1

-1 -1

-1

n < 3.10

w

—1

52
-1

S1

1

0 -1

—1

0 1

—1

Whole Plot
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Table 5: D- and I-efficiencies of the D- and I-optimal designs in Table 4 for three values
of the variance ratio 7.

D-efficiency [-efficiency
n=01 n=1 n=10|n=01 n=1 n=10
?S_Séil;inal for y < 3.10) | L0000 L0000 0.9997 | 0.5426 05156 05022
]()Deiiligal for y > 3.10) | 09963 0.0992 10000 | 0.5805 0.5363 05053
89’55&{5 for 5 < 2.05) | 08966 08507 08869 | 10000 10000 09999
](Dlejii?ng for > 2.05) | 0-8900 0.8006 08905 | 0.9906 0.9993 1.0000

the two I-optimal designs perform very similarly in terms of the D-optimality criterion.
This can be seen from Table 5, where we display the D- and I-efficiencies of the D- and
[-optimal designs for 7 values of 0.1, 1 and 10. The table shows that the I-efficiencies of
the D-optimal designs I and II lie between 50.22% and 58.95% for the n values consid-
ered, whereas the D-efficiencies of the I-optimal designs III and IV lie between 88.69%
and 89.66%. As a result, independent of the exact n value, both I-optimal designs do
much better with respect to the D-optimality criterion than the two D-optimal designs
perform in terms of the I-optimality criterion.

Note also that the D-efficiency of design I, which is D-optimal for small values of 7, is
99.97% when 7 is large, and that the D-efficiency of design II, which is D-optimal for
large values of 7, is 99.63% when 7 is small. The I-efficiency of design III, which is I-
optimal for small values of 7, is 99.99% when 7 is large, and the I-efficiency of design IV,
which is T-optimal for large values of 7, is 99.06% when 7 is small. This shows that the
dependence of the D- and I-optimal designs on the exact value of 7 is of little practical rel-
evance: a design that is optimal for one value of 7 also performs well for another value of 7.

Table 6 provides a comparison of the relative variances of the factor-effect estimates of
the four designs for n values of 0.1, 1 and 10. For any given 7 value, the D-optimal designs
I and IT estimate the main effects and the two-factor interaction effects more precisely
than the I-optimal designs III and IV. The I-optimal designs estimate the quadratic ef-
fects more precisely, as well as the intercept. This is due to the I-optimal designs’ greater
emphasis on the center of the design region. Finally, whether or not ignoring the variance
of the intercept, the average relative variance of the parameter estimates for the I-optimal
designs is smaller than that for the D-optimal designs. In the sense of having lower
average relative variance for the factor-effect estimates, therefore, the I-optimal designs
are outperforming the D-optimal designs in terms of precision of the parameter estimation.
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Table 6: Relative variances of factor-effect estimates obtained from the D- and I-optimal
designs in Table 4.

n=0.1 n=1 n =10

D-Optimal I-Optimal D-Optimal I-Optimal D-Optimal I-Optimal
Effect 1 I 111 v I 11 111 I\ I II 111 v
Intercept | 0.637 0.573 | 0.169 0.181 | 1.563 1.480 | 0.470 0.481 | 10.573 10.483 | 3.470 3.481
w 0.058 0.060 | 0.088 0.090 | 0.208 0.210 | 0.313 0.315 1.708 1.710 | 2.563  2.565
s1 0.045 0.048 | 0.061 0.064 | 0.046 0.049 | 0.063 0.065 | 0.046 0.049 | 0.064 0.066
52 0.045 0.048 | 0.061 0.056 | 0.046 0.049 | 0.063 0.058 | 0.046 0.049 | 0.064 0.059
ws1 0.051  0.055 | 0.085 0.104 | 0.052 0.057 | 0.090 0.106 | 0.053 0.057 | 0.091 0.107
ws2 0.0561  0.055 | 0.085 0.085 | 0.052 0.057 | 0.090 0.089 | 0.053 0.057 | 0.091 0.091
5152 0.054 0.058 | 0.086 0.086 | 0.054 0.058 | 0.093 0.093 | 0.054 0.058 | 0.095 0.095
w? 0.423 0.421 | 0.238 0.215 | 1.473 1471 | 0.764 0.740 | 11.973 11.971 | 6.015 5.990
s2 0.251  0.221 | 0.175 0.163 | 0.263 0.225 | 0.178 0.163 | 0.268 0.226 | 0.178 0.163
s5 0.251  0.221 | 0.175 0.177 | 0.263 0.225 | 0.178 0.177 | 0.268 0.226 | 0.178 0.177
Avg 0.187 0.176 | 0.122 0.122 | 0.402 0.388 | 0.230 0.229 | 2.504 2.489 1.281  1.279
(incl int)
Avg 0.137 0.132 | 0.117 0.116 | 0.273 0.267 | 0.203  0.201 1.608 1.600 1.038 1.035
(excl int)

We generated 10,000 random points within the [—1, 1]® cube comprising the design region
and calculated the relative variance of prediction for the D-optimal and I-optimal designs
at each point. For the scenario where n is one, for example, the prediction variance
produced by the first I-optimal design, labeled I1I in Table 4, was lower than that obtained
from the first D-optimal design, labeled I in Table 4, for greater than 98% of our sample.
The median ratio of the prediction variance of the D-optimal design to the prediction
variance of the I-optimal design was 2.47. This means that, for half of the design region,
the relative variance of prediction of the D-optimal design was at least 2.47 times as large
as the relative variance of prediction for the I-optimal design. Another way of putting
this is to say that the confidence intervals for means obtained from the D-optimal design
are at least 1.57 times as wide as those obtained from the I-optimal design in 50% of the
cases.

Other whole-plot sizes and numbers of runs

In the three-factor scenario involving seven whole plots of four runs, the D- and I-
efficiencies of the different designs in Table 4 are clearly in favor of the I-optimal design
criterion. In this section, we investigate to what extent the evidence in favor of the I-
optimal designs depends on the number of whole plots and the number of runs within a
whole plot. To this end, we computed D- and [-optimal designs for the nine scenarios de-
fined by a 32 factorial design in two factors, the number of whole plots, b, and the number
of runs within a whole plot, k. We studied designs with six, seven and eight whole plots,
as well as designs with three, four and five runs per whole plot. In Table 7, we report the
computational results of this study for an 7 value of one.

The table clearly shows that the D-efficiency of the I-optimal design is substantially higher
than the I-efficiency of the D-optimal design in each of the scenarios. This is especially
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Table 7: D-efficiency of the I-optimal design and I-efficiency of the D-optimal design
for nine experimental scenarios, assuming 7 is one. The parameters b, £ and n are the
number of whole plots, the number of runs within a whole plot and the total number of
runs, respectively.

b k n | D-efficiency | I-efficiency
6 3 18 0.8348 0.6417
6 4 24 0.8008 0.6201
6 5 30 0.8228 0.6047
7 3 21 0.8484 0.5535
7 4 28 0.8898 0.5359
7 5 35 0.9125 0.5233
8 3 24 0.8306 0.7772
8 4 32 0.8608 0.7274
8 5 40 0.8621 0.7679

so for the scenarios involving six or seven whole plots.

Four factors

In this section, we consider a four-factor split-plot design with two whole-plot factors and
two sub-plot factors. We group the runs into ten whole plots of three runs each, so that
the total number of runs is 30. In this scenario, we obtained a different D-optimal design
for each of the n values 0.1, 1 and 10, an I-optimal design that is optimal for n = 0.1 and
another design that is [-optimal for n values of 1 and 10.

We limit ourselves, however, to discussing the designs that are optimal for an n value
of one for three reasons. Firstly, the differences in D-efficiency between the different D-
optimal designs were smaller than 0.53%, while the differences in I-efficiency between the
different I-optimal designs were smaller than 0.13%. These are differences in efficiency
that have no practical significance. Secondly, the different D-optimal designs have an
identical whole-plot design. Also the two I-optimal design possess an identical whole-plot
design. Finally, like in the three-factor example, our conclusions regarding the D- and I-
efficiencies are not sensitive to the exact D- and I-optimal designs used in the comparisons.

Table 8 shows the factor-level combinations for the D-optimal design on the left and for
the I-optimal design on the right, for the case where n = 1. The ten settings for the
whole-plot factors w; and ws in the D-optimal design involve the 2 x 2 factorial design
with replicates at three of the four corners. The three remaining whole plots are at the
center point of the whole-plot factors’ design region and at two adjacent edge midpoints.
By contrast, the I-optimal design in the whole plots is a 3 x 3 full factorial design, or,
equivalently, a face-centered central composite design, with a replicated center point.
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The I-optimal design is 88.6% D-efficient when 7 is one. The D-optimal design, how-
ever, is only 66.9% I-efficient. Table 9 provides a comparison of the relative variances
of the factor-effect estimates for the two designs. Again, the D-optimal design estimates
the main effects and the two-factor interaction effects more precisely than the I-optimal
design. The I-optimal design estimates the quadratic effects more precisely, as well as
the intercept. Ignoring the variance of the intercept, the average relative variance of the
factor-effect estimates obtained from the I-optimal design is 0.202, compared to 0.261 for
the D-optimal design. In the sense of having lower average relative variance for the factor-
effect estimates, therefore, the I-optimal design is outperforming the D-optimal design in
terms of parameter estimation.

We generated 10,000 random points within the four-dimensional hypercube comprising the
design region and calculated the relative variance of prediction for both the D-optimal and
I-optimal designs at each point. For 92% of our sample, the I-optimal design’s variance
was lower than the D-optimal design’s variance when 7 equals one. The median ratio of
the two variances was 1.57. This means that, for half of the design region, the relative
variance of prediction of the D-optimal design was at least 57% larger than the relative
variance of prediction for the I-optimal design.

Protein extraction experiment

Trinca and Gilmour (2001) describe an experiment covering 21 days to investigate the
effect of five factors on protein extraction. The factors were the feed position for the
inflow of a mixture, the feed flow rate, the gas flow rate, the concentration of protein
A and the concentration of protein B. Three levels were used for each factor. Setting
the feed position involved taking the equipment apart and then reassembling it. This
was time-consuming. Therefore, the feed position was changed only between days of ex-
perimentation. This meant that two runs instead of one could be performed each day,
allowing for a total of 42 experimental runs.

Trinca and Gilmour (2001) apply a general design construction method for multi-stratum
designs, of which split-plot designs are a special case, to the protein extraction experiment,
and obtain the design in the left panel of Table 10. The design combines an equireplicated
three-level design for the whole-plot factor w and a modified face-centered central compos-
ite design for the sub-plot factors si, ss, s3 and s4. The way Trinca and Gilmour modify
the central composite design is by duplicating the center point and the axial points, and
by adding a regular half fraction to the complete 2* factorial design. The whole-plot
design and the sub-plot design are combined so that the sub-plot factors’ effects and the
whole-plot-by-sub-plot interaction effects are as orthogonal as possible to the whole plots.
The criterion they used for combining the designs is a weighted A-optimality criterion.
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Table 8: D- and I-optimal 30-run designs in ten whole plots of size three for estimating a
full quadratic model in two whole-plot factors w; and w, and two sub-plot factors s; and

s9 when 1 = 1.

[-Optimal
Wa

S2

S1

wq

D-Optimal
W

52

S1

wq

-1 -1 -1

1

Whole Plot

10
10
10
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Table 9: Relative variances of factor-effect estimates obtained from the D- and I-optimal
split-plot designs in Table 8, assuming 1 = 1.

Effect D-Optimal I-Optimal
Intercept 1.129 0.526
wy 0.196 0.223
Way 0.196 0.223
51 0.044 0.058
52 0.044 0.057
W1 Wa 0.210 0.337
w181 0.054 0.084
W1 S9 0.054 0.080
WaS1 0.055 0.084
WaSo 0.055 0.080
5159 0.062 0.110
w? 1.091 0.581
w3 1.094 0.581
52 0.251 0.158
s2 0.251 0.172

Goos and Vandebroek (2003) revisit the protein extraction experiment and suggest the
D-optimal split-plot design in the middle panel of Table 10 for it. It turns out that the
D-efficiency of Trinca and Gilmour’s design is 76.8% when 71 equals one. In terms of the I-
optimality criterion, however, Trinca and Gilmour’s design performs better. The average
relative variance of prediction is 0.510 for the design of Trinca and Gilmour, whereas it
is 0.655 for the D-optimal design. Hence, the I-efficiency of the D-optimal design relative
to Trinca and Gilmour’s design is 77.9%.

We compare the predictive performance of the two designs to that of the [-optimal design,
obtained for an 7 value of one and displayed in the right panel of Table 10, in Figure 4,
using a Fraction of Design Space (FDS) plot. In the plot, the dashed line corresponds
to the D-optimal design. The dash-dotted line shows the predictive performance of the
Trinca and Gilmour design. The solid line shows the predictive performance of the I-
optimal design. Each point on the horizontal axis of the FDS plot, which is scaled from
0 to 1, corresponds to a fraction of the design space or the design region. The vertical
axis covers the range from the minimum relative prediction variance to the maximum
relative prediction variance. Suppose, for example, that the point (0.65,2.7) is on the
FDS curve. Then, the relative variance of prediction is less than or equal to 2.7 over 65%
of the experimental region. For a design to be good, its curve in the FDS plot should be
as low as possible. This means that the design results in small prediction variances in
large fractions of the design region.

19



I-Optimal

S1

S4

53

52

D-Optimal

S1

54

53

52

Trinca & Gilmour

54

83

52

51

volving 21 whole plots of size two for estimating a full quadratic model in one whole-plot

Table 10: Three alternative split-plot designs for the protein extraction experiment in-
factor w and four sub-plot factors sq, so, s3 and s4.

WP

10
10
11
11

12
12
13
13
14
14
15
15
16

16
17
17
18
18
19
19
20
20
21

21

20



1.4 '

1.2

Relative Prediction Variance

T T T T T T T T T
00 01 02 03 04 05 06 07 08 09 10

Fraction of Design Space

Figure 4: Fraction of Design Space (FDS) plot for the three designs in Table 10, con-
structed assuming = 1. The dashed, dash-dotted and solid lines represent the D-optimal
design, the Trinca and Gilmour design and the I-optimal design, respectively.

It is clear from Figure 4 that the Trinca and Gilmour design performs better than the D-
optimal design in terms of prediction variance, since the dash-dotted line is substantially
lower than the dashed line. However, the I-optimal design exhibits even better predictive
performance. The average relative variance of prediction of the I-optimal design is 0.394.
Compared to the I-optimal design, the I-efficiencies of the D-optimal design and the Trinca
and Gilmour design are 0.394/0.655 = 60.2% and 0.394/0.510 = 77.3%, respectively. The
D-efficiency of the I-optimal design, relative to the D-optimal design, is 85.3%. So, once
more, we observe that the I-optimal design performs better in terms of the D-optimality
criterion than the D-optimal design performs in terms of the I-optimality criterion.

Various quantiles of the relative variances of prediction obtained from the three designs
for the protein extraction experiment are given in Table 11. Perhaps the most striking
observation from that table is that the I-optimal design gives more precise predictions
over 50% of the design region than the D-optimal design does for the best possible factor-
level combination. Numerically, the median relative variance of prediction is 0.373 for
the I-optimal design, while the minimum relative variance of prediction is 0.404 for the
D-optimal design.

In Figure 5, we show a Prediction Variance Ratio plot comparing the D-optimal to the
[-optimal design. The line in the plot shows the ratio of the D-optimal prediction variance

21



Table 11: Minima, maxima and percentiles of the relative variance of prediction obtained
from the three design in Table 10 for n = 1.

Trinca & Gilmour D-Optimal I-Optimal
Minimum 0.262 0.404 0.224
1st percentile 0.301 0.461 0.236
5th percentile 0.336 0.504 0.249
1st quartile 0.418 0.579 0.304
Median 0.493 0.650 0.373
3rd quartile 0.582 0.728 0.458
95th percentile 0.729 0.817 0.622
99th percentile 0.876 0.903 0.759
Maximum 1.280 1.075 1.234

to the I-optimal prediction variance for a random sample of 10,000 factor-level combina-
tions in the design region, [—1,1]>. When this ratio exceeds one, then the I-optimal design
has lower variance. This is true for 93.2% of the design region. For half of the design
region, the D-optimal design has a prediction variance that is at least 75% larger than the
prediction variance of the I-optimal design. For some of the factor-level combinations in
our sample, the D-optimal design results in prediction variances that are more than three
times larger than those produced by the I-optimal design. The smallest ratios we ob-
tained were around 0.7, indicating that, in the worst cases, the I-optimal design results in
prediction variances that are 1/0.7 = 1.43 times as large as those for the D-optimal design.

In Figure 6, we show a Prediction Variance Ratio plot comparing the Trinca and Gilmour
design to the I-optimal design. The line in the plot shows the ratio of the prediction
variance of Trinca and Gilmour’s design to that of the I-optimal design. When this ratio
exceeds one, then the I-optimal design has lower variance. This is true for 90.3% of the
design region. For half of the design region, the Trinca and Gilmour design results in a
prediction variance that is at least 32% larger than the prediction variance of the I-optimal
design.

Discussion

D-optimal designs have been the most popular optimal designs because the first commer-
cial software tools for creating optimal completely randomized designs were limited to
D-optimal designs. D-optimal designs are also quite useful for screening experiments be-
cause of their focus on precise parameter estimation. Not surprisingly, the first computer
generated split-plot designs were also D-optimal designs.

The theoretical properties of prediction-oriented design criteria such as G-optimality and
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Figure 5: Prediction Variance Ratio plot comparing the D-optimal to the [-optimal design
for the protein extraction experiment, constructed assuming n = 1.
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Figure 6: Prediction Variance Ratio plot comparing the Trinca and Gilmour design to
the I-optimal design for the protein extraction experiment, constructed assuming n = 1.
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[-optimality were recognized well before software was available to generate designs by
any optimality criterion. One such theoretical property is the fact that G-optimality and
D-optimality are equivalent for completely randomized designs under certain restrictive
assumptions. This famous result, known as the General Equivalence Theorem, has per-
haps caused some practitioners to believe that there is really not that much difference
in designs created using different optimality criteria, since G-optimal designs focus on
prediction and D-optimal designs focus on parameter estimation. Though G-optimal and
D-optimal designs are indeed sometimes equivalent, this is far from true in general. Sim-
ilarly, I-optimal designs are usually different from D-optimal designs.

Nowadays, there is more than one commercial software application capable of generating
[-optimal completely randomized designs. In his popular text, Montgomery (2009) points
out the potential utility of G- and I-optimal designs for response surface exploration by
writing that “The G and I criteria are prediction-oriented criteria, so they would be most
likely used for second-order models, as second-order models are often used for optimiza-
tion, and good prediction properties are essential for optimization.” So, for completely
randomized designs, the use of prediction-oriented design criteria in response surface set-
tings is recognized as appropriate.

The results we report here indicate that, for split-plot response surface designs, the choice
of optimality criterion matters a great deal. Our examples show that the difference in
predictive capability between D-optimal and I-optimal designs is as pronounced in the
split-plot setting as in the completely randomized setting. While, in this paper, we fo-
cus entirely on cuboidal design regions, we obtained similar results for spherical design
regions. The construction of I-optimal designs for spherical regions only differs from the
construction for cuboidal regions in the form of the moments matrix B. The moments
matrix for spherical regions is given in Hardin and Sloane (1991a).

A recurring type of result in this paper is that the I-optimal designs outperform the D-
optimal designs in terms of the A-optimality criterion, which seeks designs that minimize
the trace of the covariance matrix of the parameter estimates in Equation (11), or, in
other words, which seeks designs that minimize the average variance of the estimates of
the model parameters. This inspired us to compute A-optimal split-plot designs for the
scenarios discussed in this paper. It turns out that, in some cases, the A-optimal design
is identical to the I-optimal design. In other cases, the A-optimal designs are very nearly
[-optimal, and vice versa.

Finally, we also performed a small simulation study to investigate whether D- and I-
optimal designs perform differently when it comes to detecting the point in the design
region that provides the optimum response. It turns out that I-optimal designs do sub-
stantially better. The extent to which [-optimal designs outperform D-optimal designs
strongly depends on the exact shape of the response surface, the number of runs and whole
plots, and the error variances. A detailed study of this issue would be an interesting topic
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for a future paper.

Because the prediction-oriented I-optimality criterion is more suitable for response surface
designs, and because I-optimal designs perform well with respect to other design optimal-
ity criteria, we recommend the use of the I-optimality criterion for generating split-plot
response surface designs instead of the D-optimality criterion.
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