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Abstract One of the big challenges in machining is replac-
ing the cutting tool at the right time. Carrying on the process
with a dull tool may degrade the product quality. However,
it may be unnecessary to change the cutting tool if it is still
capable of continuing the cutting operation. Both of these
cases could increase the production cost. Therefore, an effec-
tive tool condition monitoring system may reduce production
cost and increase productivity. This paper presents a neural
network based sensor fusion model for a tool wear moni-
toring system in turning operations. A wavelet packet tree
approach was used for the analysis of the acquired signals,
namely cutting strains in tool holder and motor current, and
the extraction of wear-sensitive features. Once a list of pos-
sible features had been extracted, the dimension of the input
feature space was reduced using principal component anal-
ysis. Novel strategies, such as the robustness of the devel-
oped ANN models against uncertainty in the input data, and
the integration of the monitoring information to an optimi-
zation system in order to utilize the progressive tool wear
information for selecting the optimum cutting conditions,
are proposed and validated in manual turning operations. The
approach is simple and flexible enough for online implemen-
tation.
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Introduction

There has been significant interest in tool condition monitor-
ing in the recent past (Byrne et al. 1995; Chao and Hwang
1997; Jemielniak et al. 1998; Sick 2002; Rehorn et al. 2005;
Audy 2006; Wang et al. 2008; Purushothaman 2009). Various
indirect methods for tool condition monitoring (TCM), which
use a pattern in sensor data to detect a failure mode (Byrne
et al. 1995; Scheffer and Heyns 2004; Heyns 2007), have
been tried and tested by modeling the correlation between
tool wear and sensory signals, namely the cutting force,
torque, current, power, vibration, acoustic emission and air-
borne sound pressure acquired in machining processes. In
fact, hundreds of research articles have been published on
the subject of indirect TCM over the past decade, describing
numerous methods of collecting process signals, the analy-
sis and extraction of wear-sensitive features and modeling
those features to correlate with tool wear. Reviews of current
indirect TCM in turning can be found in Ref. (Byrne et al.
1995; Sick 2002; Rehorn et al. 2005; Heyns 2007). In general,
cutting force is considered one of the most significant vari-
ables in the turning process (Sick 2002; Scheffer and Heyns
2004). Worn tools generally cause an increase in the static
as well as dynamic components of the three orthogonal cut-
ting force components, because of increased friction. Each of
the three cutting force components, however, responds dif-
ferently to varying machining parameters and different wear
modes. Tool dynamometers are commonly used for record-
ing these cutting forces (Rehorn et al. 2005). However,
dynamometers are not suitable instruments for shop floor use
due to their high cost, negative impact on machining system
rigidity, the requirement for a wiring harness and the extra
space for installation (Lee et al. 1995). Audy (2006) presents
an overview of techniques and equipment used for measur-
ing these cutting forces, using a strain gauge-based system
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and Scheffer and Heyns (2004) reported the successful use
of a simple sensor integrated tool holder using strain gauges.
It was demonstrated that the system is robust, cost-effective
and fit for use in an industrial TCM system.

The signal features extracted from only one sensor might
not be sufficient to represent the complex relationship with
tool wear (Dornfeld 1990). Therefore, it is preferable to
employ multiple sensors instead of a single sensor to observe
the same process. The most advantageous aspect of the multi-
sensor system is perhaps the richness of information used in
the decision making methodology. A current sensor is also
considered one of the effective means of monitoring tool wear
and adaptive control of machining processes (Mannan and
Broms 1989), which does not hinder the machining process
and is cost-effective (Byrne et al. 1995). This sensor signal
individually or in combination with other sensors’ signals
can be used in a TCM system (Dornfeld 1990).

One difficulty with collecting wear-sensitive features from
acquired signals is that these signals are typically affected
by the process defects, process working conditions, process
noise and sampling noise (Wu and Du 1996). This prob-
lem can be overcome by using advanced methods of signal
processing. Recently, wavelet analysis has found important
applications in signal analysis and processing in various sci-
ence and engineering fields. It has also been successfully
applied to TCM systems (Franco-Gasca et al. 2006). As an
extension to the conventional wavelet transform, the wave-
let packet transform decomposes both the approximate and
detailed parts of a signal in order to extract more information
from the signal. Wu and Du (1996) used the wavelet packet
transform to extract the features for tool condition monitor-
ing in turning and drilling processes. Berger et al. (1998), as
well as Velayudham et al. (2005) used the wavelet transform
as a tool to study the signal characteristics of cutting pro-
cesses. However, these studies lack a detailed investigation
of the selection of wavelet basis functions and decomposition
levels. Furthermore, no information is given about the influ-
ence of the different wavelet basis functions on the signal
features.

For proper classification, features that are sensitive to
tool wear but insensitive to changing machining parameters
are ideally required. In some cases, however, the machining
parameters can be included in the wear model, then the sen-
sitivity of the features to process parameters will become less
important. Various techniques exist to select the most wear-
sensitive features and to reduce the input feature matrix to
a lower dimension. This is important, especially in multi-
sensor based TCM systems, because of the computational
expense of dealing with large input spaces and the fact that
some of the data in the input space may be totally unre-
lated to the wear state. Including redundant data may reduce
the accuracy of classification. Among the various techniques
of feature selection and reduction, principal component
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analysis (PCA) is considered one of the most popular (JolliHe
1986).

Very often, artificial neural networks (ANNs) are used for
classifying the tool condition, in which monitoring signal
features are used to predict a tool condition. Various kinds
of ANNS, such as Multilayer Perceptron (MLP), Recurrent
Neural Network, Learning Vector Quantization, Time Delay
Neural Network, Adaptive Resonance Theory, Self-Organiz-
ing Map, Radial Basis Function (RBF) network (Sick 2002)
etc., have been tested in tool wear prediction problems. One
of these, MLP, generally trained with a back-propagation
error algorithm, is the most popular (Sick 2002). Dornfeld
1990, who pioneered the application of ANN to TCM, used a
multilayer feed-forward neural network to integrate the fea-
tures from multiple sensors (acoustic emission and force) in
order to predict the tool wear in a turning operation. Scheffer
and Heyns (2004) presented another approach to tool wear
monitoring in turning operations, using a combination of sta-
tic and dynamic ANNs. Much research has been done on
TCM in turning operations using ANNs. The effectiveness
and shortcomings of these studies have been reviewed by
Sick (2002) and Rehorn et al. (2005).

The importance of TCM is implied by its potential eco-
nomic advantages. It is possible to avoid the waste of prod-
uct by exchanging worn tools in time, and tool costs can
be reduced noticeably with precise exploitation of a tool’s
lifetime. Monitored information can be utilized for select-
ing the optimum cutting conditions, which further increases
the economic advantages. However, most past research on
optimizing the cutting conditions has been based on the
critical assumption of machining with fresh cutting tools
(Da et al. 1997). However, the machining performance may
vary significantly with the progression of tool wear. Some
works have been reported on including the effect of tool wear
in the optimization process (Obikawa et al. 1996; Wang and
Jawahir 2001). They used the Taylor tool life equation or an
empirical relation to predict tool life, which is true only for
small operating zone. Therefore, the use of this approach to
the optimization problem may lead to suboptimal results.

TCM systems are not yet commonly used in industry, due
at least partially to the lack of robustness of these systems
regarding uncertainty in the input data. It has consequently
been one of the goals of this research to test the robustness
of the developed TCM systems against uncertainty in the
input data, in this case exacerbated by the manual opera-
tion of the lathe. Monitoring information can be utilized for
selecting the optimal cutting condition, which increases the
economic advantages. Therefore, the integration of moni-
toring information into an optimization system, in order to
utilize the progressive tool wear information for selecting
the optimum cutting conditions, is also considered one of
the goals. This proposed method is tested in manual turning
operations.
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Experimental study
Experimental set-up

A dedicated experimental study was conducted to provide the
data required for this work. Turning operations on a manually
operated lathe were considered and EN19 steel was chosen as
the work piece material. A schematic diagram of the experi-
mental set-up is shown in Fig. 1 with the equipment used for
this work listed in Table 1. A tool holder instrumented with
strain gauges was employed for the pick-up of cutting strain
signals while pre-filtering for anti-aliasing and sampling was
done by means of a data-acquisition system. The tool holder
was instrumented so that it could sense bending caused by the
elastic part of the force tangential to the work piece, bending
caused by the elastic part of the force in the feed direction as
well as longitudinal deformation caused by the elastic part
of the thrust force in a radial direction to the work piece. The
convention further is to use the terms tangential strain, feed
strain and radial strain to describe the strain signals each of
which is a linear combination of the force components act-
ing at the tool tip. A 6667 Hz linear phase anti-aliasing filter
was used as part of the data-acquisition system. Besides the
cutting strain measurements, one phase of the lathe motor
current was also acquired through a current transducer. All
four signals were continuously acquired during turning oper-
ations at a sampling frequency of 20kHz. Data storage and
post-processing of the signals were then done on PCs.

Experimental procedure

The experiment was designed so that measurements were
taken and monitoring done for different machining condi-
tions, consisting of all possible combinations of the cutting
parameter settings considered, namely cutting speed (Cs),
depth of cut (a), and feed rate (f). A three-level, three-
factor full factorial design was utilized. This design matrix
required 33 i.e. 27 experimental runs. Cutting parameters
with their notations, units and values at different levels are
listed in Table 2. To increase the validation dataset, one more

Chuck Work piece  Strain gauged

tool holder

b
Motor current
probe

/
Measurement
processor

1

Data storage

Fig. 1 Experimental set-up

Table 1 Experimental equipment

Machine, tools and work piece

Lathe Colchester student 1800
(manually operated)

Tool holder SECO PTINR-2020-16A

Insert Mitsubishi TNGG 160408R

Work piece material ENI19 oil-quenched, tempered

to T-condition, same batch

@ 100 to 89 mmx Length
500 mm

Work piece dimensions

Instrumentation

Strain sensing in feed direction HBM strain gauges,

3/120ALY41, half-bridge

HBM strain gauges,
3/120ALY41, half-bridge

HBM 90° rosette strain
gauges, 1-XY31-6/120,
full-bridge

Tektronix A622 AC/DC
current probe with
100mV/A setting

Kyowa microscope,
magnification: 40, 26 um
accuracy

e-DAQ-lite by SoMat

e-DAQ built-in 6667 Hz
linear phase LP filter

PC, Pentium 4, with SoMat
test control environment
(TCE) and InField software

Strain sensing in tangential direction

Strain sensing in radial direction

Motor current sensing

Flank wear measurement

Measurement processor

Anti-aliasing

Data storage

Table 2 Cutting parameters and their different levels

Parameter Notation ~ Unit Level 1 Level2 Level 3
Cutting speed  Cg m/ mm 128.8 119.8 114.6
Depth of cut a mm 1.2 1.4 1.6
Feed rate f mm/rev 0.1 0.16 0.2

experiment was randomly performed. All other controlla-
ble parameters remained the same except for the abovemen-
tioned three cutting parameters.

The flank wear was measured from a photoas Vp = A/L,
where Vp is the flank wear in mm, L is the length of the
worn area along the upper edge on the side of the major flank
and A is the area of the major flank inclusive of the area of
the primary groove (see Fig. 2). At each experimental/cut-
ting condition a fresh edge of an insert was used. Tool wear
was measured after every two passes for Exp. No. 1-9, three
passes for Exp. No. 10-27, and eight passes for Exp. No. 28
and 500 mm length of cut was used for each pass. Turning
operations were halted when flank wear had reached close
to the wear limit of 0.3 mm. Therefore, six measurements of
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Fig. 2 Flank wear measurement
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Fig. 3 Flank wear of tool insert with time (Cs is 128.8 m/min and f
is 0.1 mm)

tool wear were taken for each cutting condition for the first 27
experiments, and five measurements of tool wear were taken
for the last experiment. A comparison of flank wear with
different machining parameter setting is shown in Fig. 3.

Signal processing and feature selection

The signals measured during the monitoring of the tool wear
process contain complex information and noise. To ensure the
accuracy and reliability of the monitoring system, it is very
important to extract characteristic features which capture this
complexity sufficiently, without the noise. The force and cur-
rent signals measured during a turning process are typically
non-stationary (Sick 2002). Therefore, time-domain analysis
of these signals may not be ideal for developing a TCM sys-
tem for a turning process. More advanced signal processing
must be used to remove unnecessary features from the signal
and to extract the features that are more sensitive to tool wear.
The wavelet packet transform is used here for this purpose.
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Wavelet packet analysis

Wavelet analysis has been demonstrated to be a flexible and
powerful tool for the processing of non-stationary signals,
because wavelet basis functions are usually irregular, asym-
metric and of limited duration. The main feature that makes
wavelets attractive is that the Wavelet Transform (WT) of
a signal is a function of two parameters, namely time and
scale, the latter being the key point of the WT. Unlike the
windowed Fourier Transform (WFT), where the signal is fil-
tered through a time window and then a Fourier transform is
performed which works with a fixed window, the WT works
with a scaled window, allowing the visibility of the entire
frequency content.

In wavelet packet analysis, a signal is split into a low-fre-
quency component, known as approximate, and a high-fre-
quency component, known as detail. The approximate and
detail parts are then both split into a next level of approxima-
tion and detail, and this process is repeated. Wavelet packets
are particular linear combinations of wavelets. They form the
bases that retain the orthogonality, smoothness and locational
properties of their parent wavelets (Keinert 2004).

Selection of optimal decomposition level

In this research, wavelet packet analysis was performed by
using MATLAB 7.0 (Mathworks 2007) built-in functions for
1-D wavelet packet analysis. This is illustrated in Fig. 4 which
shows the third level of the wavelet packet split tree of the
current signal, acquired in this work at a 20 kHz sampling rate
(i.e. 10kHz useful bandwidth). Wy represents the measured
current signal, and W3 through W37 are the eight wavelet
packets (eight frequency bands) at the third level of decom-
position. The decomposition may be continued down to the
final level where there is only one element in each basis vec-
tor. In this case, the maximum resolution to which the binary
wavelet transform can be performed is:

j=log, N (1

i.e. j > 14 where N is the sampling frequency and j is the
decomposition level (Mathworks 2007). As this number is
very large, the number of wavelet packets becomes very high
and computational time will also be high, which is unsuit-
able for any monitoring system. There are some possible
ways for determining the best wavelet packet decomposi-
tion levels, like, best on desired frequency band(s), viewing
the decomposition signals at different levels, and minimum
entropy energy criterion (Mathworks 2007). Among them the
first two methods are not robust. Therefore, in this research
the minimum entropy energy criterion was used to select the
best wavelet packet decomposition level. According to the
entropy criterion, a splitting is interesting if the entropy of
a parent packet is more than that of the total entropy of the
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Fig. 4 Third level of wavelet
packet decomposition tree of the

Level of decomposition

Measured current signal
(sampling frequency 20 kHz)
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child packets (Mathworks 2007). The Shannon entropy of a
signal S can be computed by the following equation:

N
ES)=- Stlog (S,f) 2
k=1

where E (S) is the Shannon entropy of the signal S and Sk is
the kth value of the signal. The entropy of all wavelet pack-
ets at a given level and the next level were computed using
the abovementioned equation. Then the child entropies were
compared with their corresponding parent entropy, using the
following equation:

_ E21+1

2i
—E j+l

El = E} - B}, G)
where E1 is the entropy increase and E'. is the entropy of the
ith packet at the jth level. If more than 50% of packets at a
level become unsuitable for next-level decomposition, i.e. if
in 50% of cases E I became less than zero, the present level
was considered as the optimal level. The optimal levels for
strain in feed direction, strain in tangential direction, strain
in radial direction and current signals were found at the 4th,
Sth, 4th and 3rd levels, respectively.

The RMS values of the Wavelet Packet Coefficients
(WPCs) in each frequency band were used as wear-sensi-
tive features. The RMS value of WPCs in W3; packet or fre-
quency band of i x 1250Hz to (i + 1) x 1250Hz, i € [0, 7],
is denoted as n;.

Selection of best mother wavelet function

In the common family of wavelet mother functions, there are
Morlet, Haar, Shannon, Symmlets, Coiflets and Daubechies
wavelets, etc. Among these, the most popular are the Daube-
chies, Symmlets and Coiflets wavelet. These mother wave-
lets give the best overall performance in respect of the mean
squared error between reconstruction signal and original sig-
nal, and maximizing the signal-to-noise ratio improvement
(Mittermayr et al. 1996). However, the performance of the

abovementioned wavelet mother functions in extracting the
feature sensitive to wear quality may vary according to the
mother wavelet properties (Mathworks 2007). Therefore, it is
necessary to select the best mother wavelet function for pro-
cessing the turning signals in the wavelet domain. The best
mother wavelet function was selected, using the correlation
coefficient between the average root mean square (RMS) val-
ues of WPCs and the tool wear. The correlation coefficient
(Scheffer and Heyns 2004; Mathworks 2007) between the
average RMS values of WPCs and tool wear can be repre-
sented as follows:

_ > (VBi — Vg) (Fi — F)
V0 (Vii = Vs)’ 3, (Fi = F)?

0 )

where Vp is the flank wear, F is the feature, and 1% p and F
are the average of Vp and F, respectively.

In the MATLAB library (Mathworks 2007), a maximum
of 15 mother wavelets or wavelet bases is available for
the Daubechies family (dbN, where N is the order), 7 for
the Symmlets family (symN), and 5 for the Coiflets fam-
ily (coifN) wavelets. The correlation coefficient between the
average RMS values of WPCs for different signals with var-
ious mother wavelets (available in MATLAB library) and
tool wear are shown in Figs. 5, 6, 7, 8. These figures show
that the degree of correlation of dbl, sym3, dbl and sym2
mother wavelet functions for radial strain, tangential strain,
feed strain and current signal processing, respectively, with
tool wear are higher than the other mother wavelet functions.
Therefore, to extract features from the radial strain, tangen-
tial strain, feed strain, and current signals dbl, sym3, dbl
and sym?2 mother wavelet functions, respectively, were con-
sidered the best mother wavelet functions. Since the variation
in the correlation coefficients (Figs. 5, 6, 7, 8) among the dif-
ferent mother wavelet functions is insignificant. Therefore,
any of these mother wavelet functions may be used for feature
extraction.
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Feature selection

Once a list of possible features i.e. the WPCs of different sig-
nals have been generated, the next step is to select the most
reliable features for the TCM system. The number of fea-
tures selected for radial, tangential and feed direction strain,
and current signal are 32, 64, 32 and 8, respectively. As it
is inadvisable to handle such a large number of features in
a monitoring system, principal component analysis (PCA)
was used to reduce the dimension of the signal features and
to select the most wear-sensitive uncorrelated features.

Principal component analysis

PCA is one of the most popular multivariate statistical meth-
ods. It is a simple, non-parametric method of extracting rel-
evant information from confusing datasets without much
loss of information. PCA is mathematically defined (JolliHe
1986) as an orthogonal linear transformation that transforms
a number of (possibly) correlated variables into a (smaller)
number of uncorrelated variables called principal compo-
nents. The first principal component accounts for the greatest
possible statistical variability (or entropy) in the data and the
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second-greatest variance on the second principal component,
and so on. PCA is theoretically the optimum transform for
the given data in least-square terms.

Calculation of principal components

Principal components are found by extracting the eigenvec-
tors and eigenvalues of the covariance matrix of the data,
and are calculated efficiently via singular value decomposi-
tion. These eigenvectors describe an orthonormal basis that
is effectively a rotation of the original cartesian basis. Each
principal component is a linear combination of the original
variables. All the principal components are orthogonal to
each other, so there is no redundant information. The princi-
pal components as a whole form an orthogonal basis for the
space of the data (JolliHe 1986).

The principal components are created in order of decreas-
ing variance, and each eigenvalue, Aj (k =1,2,..., Nf),
represents the relative variance contribution of each principal
component. The percentage of the total variability explained
by each principal component is calculated by using following
equation:

P} = %100 5)
2 j=1 Aj

where P,? is the percentage of total variability explained by
the kth principal component, and N is the number of fea-
tures. The percentage variability explained by the first 15
principal components is shown in Fig. 9. The first, and larg-
est, eigenvalue represents 54.53% of the overall variance,
whereas the first eight components represent some 95.58%
of the variance. The individual and total contributions of all
other components are less than 1 and 4.42%, respectively.
The largest differences occur between the first few principal
components (up to eight), after which differences become
quite small, indicating that the first few components hold the
largest fraction of the variance. Principal components ranked
higher than eight are small and probably represent the noise
of the data. Therefore, the first eight principal components
were selected to represent the data dimension.

% Contribution

| | -
1 2 3 4 5 6 7 8 9 16011 12 13
Principal components

14 15

Fig. 9 Contribution of different principal components to the overall
variance

Modeling of tool wear using an artificial
neural network

A standard back-propagation neural network (BPNN) and an
RBF network (RBFN) were used for modeling the turning
tool wear. Computer programs for these ANN models were
developed using the C programming language. In general
there is no exact way of determining the size of a train-
ing set. However, too few training samples will result in
the neural network not being able to learn the input—output
relationships, and too many training samples will result in a
neural network that overemphasizes the training, jeopardiz-
ing the generalization capabilities. Generally, for small data
sets some 15-20% data are used for testing (Wang et al. 2008;
Jemielniak et al. 1998). Because of the costs of the experi-
ments 15% data was sued as testing data in this case. To
ensure the generality of the developed models, three (train-
ing, testing, and validation) datasets were generated ran-
domly. Among the full factorial design dataset, 142 and 15
patterns were randomly selected for training and testing the
models, respectively. The remaining ten patterns (five pat-
terns from full factorial design data set and five patterns from
Exp. No. 28) were used for the validation of the developed
models. Over-fitting of the network was avoided by period-
ically checking the testing dataset in between the training
set-based learning iterations. Only if both the training error
and the test error continued to drop, was the learning process
continued. The first eight principal components and cutting
conditions such as cutting speed, depth of cut, and feed rate
were considered as inputs to the ANN model.

Prediction of tool condition using BPNN model

The performance of a BPNN model depends on the number of
hidden layers, the number of neurons in the respective hidden
layers, the learning rate, and momentum coefficient. There-
fore, several combinations should be tried out to choose
an optimal combination. Here a single hidden layer was
assumed. The number of neurons in the hidden layer was var-
ied from 2 to 30 in steps of 1. The learning rate and momen-
tum coefficient were varied between 0.05 and 1 in steps of
0.04. Initial weight values were chosen randomly between
40.9, and the bias value at the input layer was taken as 0 and
those of the hidden and output layers as 1.0. All the input
and output variables were normalized between 0.1 and 0.9.
The training objective was mean square error (MSE) minimi-
zation by updating the weights through the gradient descent
method (Haykin 2003).

N
1 2
MSE = N z (T; — 0", (6)
1
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Table 3 Prediction error statistics of the ANN model

Pattern BPNN model RBFN model
Minimum Maximum Average Standard Minimum Maximum Average Standard
deviation deviation
% Error on training 0.197 —36.87 7.53 6.67 0.001 —37.09 5.03 6.71
patterns
% Error on testing —0.088 28.20 10.01 9.18 —0.32 36.48 7.63 9.57
patterns
% Error for —1.79 34.18 10.76 10.29 0.004 60.74 22.63 23.35
validation patterns
Fig. 10 Scatter diagram of 0.57 1
BPNN model 053
+23 ® Training patterns +10% Error line
g 049 1 |m Testing patterns
E 0451 |e Validation patterns
= A
S 041 4 .
2 037 ot at i
8 033 - o &
5 LR L
o 0.29 1 om B * .
3 e
5 0.25 1 gl .
5} . 4
& 021 LRl
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0.09 1 *%* °*
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0.05 0.09 0.13 0.17 0.21 0.25 0.29 0.33 0.37 0.41 0.45 0.49 0.53 0.57

where N is the total number of training datasets, 7; is the
target output of the ith dataset i.e. experimental output of the
ith dataset, and Ol.’” is the output from the ANN model on the
mth iteration when the ith dataset is considered as the net-
work input. The best architecture was found to be 11-15-1,
with learning rate and momentum coefficient values of 0.95
and 0.6, respectively. The prediction error statistics of the
training, testing, and validation patterns of the BPNN model
are shown in Table 3. The scatter diagram of training, testing,
and validation patterns is shown in Fig. 10. This scatter dia-
gram (Fig. 10) shows that the prediction accuracy at higher
tool wear is higher than that at lower tool wear.

Prediction of tool condition using RBFN model

A special class of multi-layer feed-forward network is the
radial basis function neural network (Haykin 2003). This net-
work provides an alternative to BPNN as a tool for classi-
fication and function approximation. This technique often
proves more accurate than other network models (Pal et al.
2007). The RBFN is trained by adaptively updating the free
parameters, i.e. center and width of the basis function, and
the weight between the hidden and output neurons of the
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network. Two types of training algorithms (Pal et al. 2007)
can be used, namely half training and full training. In the case
of half training, the hidden layer parameters, i.e. center vector
and width of basis function, were updated in an unsupervised
manner whereas the connection weights between the hidden
and the output layer were adjusted in a supervised manner.
By contrast, in full training algorithms, all free parameters
(center vector, width of basis function, and weights between
the hidden and the output layer) were updated in the super-
vised manner. A detailed description of this network is avail-
able in (Pal et al. 2007). Among the various combinations of
activation function at the output layer (linear, pseudo linear,
and sigmoid) and training algorithms (half and full training),
the sigmoid activation function for the output layer with full
training algorithm, is the best (Pal et al. 2007). Therefore,
in this research the sigmoid activation function at the output
layer with full training algorithm was used for developing
the RBFN model.

To select an optimal RBFN model, the number of neu-
rons in the hidden layer was varied from 2 to 30, and the
learning rate was varied between 0.05 and 0.5. The initial
basis function centers were chosen randomly from the input
space, and the initial weight values were chosen randomly
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Fig. 11 Scatter diagram of 0.57 1
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between £0.9. The same normalized datasets as those used
in the BPNN model, were used for the training, testing, and
validation of the RBFN model. The best network was found
to be one having 26 basis functions with a learning rate of 0.9,
and 0.05 for center and weight, respectively. The prediction
error statistics of the training, testing, and validation patterns
of the RBFN model are shown in Table 3. The scatter dia-
gram of the training, testing, and validation patterns is shown
in Fig. 11. The prediction errors of the validation patterns are
larger because these patterns are outside the training space.

Evaluation of neural network robustness
against uncertainty

Neural network predictions exhibit uncertainty due to inaccu-
racies in the training data and to the limitations of the model.
The training set contains intrinsically noisy and incomplete
(not all possible input-output examples are available) pat-
terns. In reality, data noise may arise from inaccurate mea-
surements or human error. For the manually operated lathe
considered here, slight inconsistencies in the process can be
expected to be important. Data noise is not the only source of
uncertainty. The neural network introduces uncertainty due
to model misspecification and the inefficiencies of the train-
ing method (Papadopoulos and Edwards 2001). A network
trained on a given dataset forms a better representation of the
data in regions of high input data density (Papadopoulos and
Edwards 2001). Moreover, because of the nature of the train-
ing algorithm, there is no guarantee that the weight values
correspond to the global minimum of the error function. Even
if the global minimum is found, the solution will not neces-
sarily be optimal because the finite training set does not fully
describe the true data-generating mechanism (Papadopoulos
and Edwards 2001).

Experimental tool wear (mm)

Having investigated the network prediction performance
to crisp (i.e. single-valued) values, the next step was to quan-
tify the robustness of the models to variations in the input
data. Several approaches have been developed for output
confidence interval predications (Papadopoulos and Edwards
2001); they all adopt a probabilistic standpoint and therefore
suffer from the common drawback that, since the probabil-
ity distributions are usually estimated from the low-order
moments of the data (typically mean and standard
deviation), there is often no validation of the extremes of the
distributions. An alternative approach to this issue is
the application of an interval-based non-probabilistic
(Papadopoulos and Edwards 2001) technique or the Monte-
Carlo technique to evaluate the robustness of the neural
network to uncertainty in input data. The interval-based tech-
nique is posited on the theory of information-gap uncertainty
and its advantage lies in presenting both crisp data, and inter-
val (Ben-Haim 2001) data to a number of neural networks
under evaluation. We do not consider the computationally
expensive Monte-Carlo technique, which involves random-
izing the input data (within defined bounds) a large number
of times, and evaluating the change in output error for each
discrete set of inputs. This technique has a significant draw-
back, especially when applied to MLP networks, namely that
it is impossible to be sure of mapping all possible combina-
tions of variation in input space to output space, unless an
unfeasibly large number of sample points are used.

Formulation of interval-based confidence
estimation technique
In this research, an interval-based technique was used for the

evaluation of neural network robustness to uncertainty in the
input data. The main advantages of the interval approach are

@ Springer
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that it is possible to establish worst-case error predictions for
a specified degree of input uncertainty to the network and
also to remove the dependence on probabilistic-based esti-
mates of confidence bounds. This approach can be used as
an alternative to selecting a particular ANN model which is
intrinsically more robust to uncertainty on the input data than
network solutions obtained by conventional training para-
digms.

The dataset was made uncertain by applying an interval
expansion of size « in all dimensions of the datasets. Inter-
val numbers (Ben-Haim 2001; Papadopoulos and Edwards
2001) occupy a bounded range of the number line, and can be
defined as an ordered pair of real numbers [a,b] witha < b
such that

la,b] ={x]a < x < b} (N

Therefore, each input dimension of the dataset was internal-
ized by a parameter « using the following equation:

[xibx | = [ + @)« (i )] ®)

where x;; is the ith dimension of the jth pattern, and x$
and X;; are the upper and lower interval bounds of the x;;,
respectively. This interval input dataset was then forward-
propagated through the developed networks, and the interval
output values [ yt, y_] were compared with the target values
to calculate worst case (WC) and best case (BC) (Ben-Haim
2001; Papadopoulos and Edwards 2001) average percentage
errors. The WC and BC error were calculated using the fol-
lowing relations:

+_ 4
X b= it |y — | > |y =l
100
we=—3" ©)
i=1 4
—(yi,i 4) if |y —ul < [y -1l
0if y/ >t >y ’
N ] _
pe =05 b i b —al < b=l o)
i=1
bt if |y — 6] = [y =

where #; is the target values of the ith pattern, and yl.+ ,y; are
the upper and lower interval bound of the ith output pattern,
respectively. The worst-case errors corresponded to the fur-
thest output bound from the target, and the best-case errors
to the closest, with the proviso that the best case errors would
be zero if the targets were contained wholly within the output
interval.
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Fig. 12 The variation in the average prediction error under different
uncertainty levels

Forward propagation of intervals though networks

Using conventional network training and evaluation, the net-
work architectures of 11-15-1 and 11-26-1 were found to
be the best architectures for the BPNN and RBFN models,
respectively. The responses of these two networks to uncer-
tainty in the input data were investigated. Discrete values of
uncertainty 1-10% in steps of 1% were applied to the train-
ing and testing patterns, and the resulting intervalized sets
propagated through the abovementioned two networks. The
variation in the average prediction error of training and test-
ing patterns under different uncertainty levels for both the
models is shown in Fig. 12a, b. WC and BC errors were cal-
culated using Egs. (9) and (10), and these errors were plotted
as functions of interval size, as shown in Fig. 13. Such a
plot is useful, as it allows a designation of a permitted level
of input data fluctuation to guarantee a particular absolute
worst-case average error on the output. For example a desig-
nated allowed average worst-case error of 21% corresponds
to an uncertainty in input parameters of 7% and 3% for the
BPNN and RBFN models (shown in Figs. 12 and 13), respec-
tively.



J Intell Manuf

(@) 801 ® Bestcase ...
70 ++ m  Worst case . -
5 60 4/— BPNN model .
5 RBF model -
= 50+ .
S -
B .--®
2 40 u SEEE I
3 --®
g
~
=X

Interval size
(b) 80 ® Bestcase
70+ ®m  Worst case

5 04|~ BPNNmodel .
5 RBF model .-.
= A

el

5

=

&

[a W)

R

(=)
—
[\S]
[
- -
o]
el
—_
o

4 5 6
Interval size

Fig. 13 Worst-case and best-case errors at different interval size
a Training, b Testing

Selection of robust model using interval-based techniques

From the tabulated data (see Table 3) and figures (see
Figs. 10, 11) it may be argued that the prediction perfor-
mance of RBFN model is better than the BPNN model under
normal conditions. But the robustness of the BPNN model to
uncertainty in the input data is better than that of the RBFN
model. Figure 13 shows the worst-case and best-case errors
at different interval sizes of both the models. The worst-case
error of a RBFN model with 1% or more uncertainty in the
input data is more than that for the corresponding BPNN
model’s worst-case error (see Fig. 13). It can also be seen in
Fig. 13 that the average prediction performance of the RBFN
model is worse than the BPNN model when the uncertainty
level is close to more than 1%.

Optimization of cutting condition with consideration
of the progressive effect of tool wear

The optimization of cutting conditions in turning operations
plays an important role in process planning. It is gener-
ally done by assuming that the cutting tools are fresh, and
that all passes, or all passes except the finishing pass, have
equal cutting conditions (Da et al. 1997; Wang and Jawahir

2001). This usually gives suboptimal results in real machin-
ing operations. In an actual machining process, the machining
performance may vary significantly as overall tool wear pro-
gresses (Wang and Jawahir 2001). In this paper, a genetic
algorithm (GA) based optimization method is developed for
selecting the optimum cutting conditions for each pass of a
turning operation, with consideration of the effect of overall
progressive tool wear on the machining performance.

Objective function and constraints on optimization

In the constructed optimization problem, three cutting
conditions, namely cutting speed, feed, and depth of cut are
considered the decision variables. Two different mutually
conflicting objectives are optimized in this research. The first
objective is the minimization of wear in the tool used, consid-
ered as the part of the whole tool wear, described as follows:

Vi
= 11
§ Vg™ — initial tool wear (D
Vi = f (initial tool weal, C, f, a) (12)

where Vé is the amount of tool wear used at the ith pass,
and V'™ is the maximum acceptable tool wear. The second
objective is the machining time (t), measured as the time
required to carry out the process:

eV (13)
MRR
MRR = f (Cs, f, a) (14)

where V is the amount of material to be removed, and MRR
is the material removal rate. Hence, the optimization problem
becomes the minimization of

f (Cs, f, a, initial tool wear) = & + 7 (15)
subject to

Ry < RJ™ (16)
cMt < ¢ < o (17)
M f<fm (18)
a™ < g < g™ (19)

where R is the maximum allowable surface roughness,
and C™" and C™¥ are the minimum and maximum cutting
speeds, respectively, /™™ and f™# are the minimum and
maximum feed rates, and a™ and @™ are the minimum
and maximum depths of cut.

Prediction of machining performance
The prediction of machining performance is prerequisite for
the optimization process. Most of the earlier works used the

extended Taylor tool life equation to predict tool life (Da et al.
1997; Wang and Jawahir 2001). But this equation is true only

@ Springer
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for a small operating zone, and an accurate estimation of the
empirical constants of this equation is very difficult. Another
important point is that tool wear is a dynamic phenomenon.
Use of this equation to solve the optimization problem gives
a suboptimal result. Therefore, an ANN-based monitoring
system was developed, as described above, for the predic-
tion of tool wear. Surface roughness was calculated using the
following empirical relationship (Wang and Jawahir 2001)

0.125 2
R, = (—f) x (14 1.6103T;,)%7315 (20)
rE

where rg is the tool nose radius. And MRR was calculated
using the following equation:

MRR = 1000C; fa 1)

Development of optimization technique
using genetic algorithm

The schematic diagram of the developed GA-based optimi-
zation method is shown in Fig. 14, and the working principle
is elaborated below. In order to use GAs to find the optimal
decision variables, one first needs to represent them in binary
strings. In this research, 7, 4 and 5 bits were used to represent
cutting speed, feed, and depth of cut, respectively. Depend-
ing on the population size, a few hundred such strings were
generated for the initial population, i.e. the initial possible
solution. However, these binary strings had to be converted
into real numbers, i.e. decoding in order to compute the fit-
ness function. The binary strings were decoded using the
following equation:

@ Springer

Table4 Range of different parameters with optimum cutting condition

Parameter Minimum Maximum Optimal cutting condition
Fresh tool 0.22mm
initial tool
wear
Cutting speed 117.41 137.38  117.41 117.41
(m/min)
Feed (mm/rev) 0.105 0.212  0.1692 0.1549
Depth of cut (mm) 1.14 1.65 1.65 1.65
X; = xmin + b—l (xmax _ xmin) (22)
L 1 (2”})1' _ 1) 1 1 4

where x; is the ith input parameter (variable), ximi“ and x;"™
are the lower and upper bounds of the ith input parameter,
respectively, np; is the string length used to code the x; param-
eter, and b; is the decoded value of the string s; (where the
complete string is the s = U}'_,s;, n is total number of vari-
ables). The ranges of the cutting conditions are shown in
Table 4.

Two ANN models were used in this optimization process.
The first one was used for predicting the amount of current
tool wear, which takes cutting condition and different signals
features as inputs. By contrast, the second one was used for
predicting the expected tool wear for the next pass, which
takes the current tool wear and cutting condition as inputs.
The tool wear of a fresh tool bit was considered zero. Con-
straints were handled by penalty function approach, which
converts a constrained problem to an unconstrained form by

modifying the search space.
Determination of optimum cutting condition

The initial set of parameter settings or the initial popula-
tion was chosen randomly inside the selected experimental
parameter space. After making the selection, the response
characteristics of individuals in the population were com-
puted using a previously trained ANN model and Eq. (13) for
tool wear and machining time, respectively, and fed into the
GAs. Then the GAs performed different genetic operations
to generate a new population. The response characteristics of
this population were again computed and fed into the GAs.
The process continued until the optimum was found, i.e. the
population is assumed to have converged when 70% of the
population has the same objective function value.

In GA, the population size, crossover rate (probability),
and mutation rate are important factors that influence the
performance of the algorithm (Deb 1996). Therefore, a large
number of combinations were tried to select a suitable value
of these parameters. The parameters of the GA computations
used in this work are shown in Table 5. After having tried out
the abovementioned parameters, a population size of 100,
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Table 5 Parameters of GA computations

Parameters/operators

Population size 50-500 in steps of 50
16 bits

Tournament selection

String length

Selection process

Crossover One-point crossover with probability of 0.8,
0.85, 0.9, 0.95

Mutation Probability of mutation was 0.001, 0.005,
0.01, and 0.05

a crossover probability of 0.9, and a mutation rate of 0.001
were chosen as the best parameters for this GA analysis.
Using these selected parameters, the GA model was run to
determine the optimal cutting conditions for each pass. The
optimum cutting condition is shown in Table 4.

Conclusion

This paper describes a neural network-based sensor fusion
model for a tool wear monitoring system in a manual turn-
ing operation. In addition, the monitoring information was
integrated to an optimization system in order to utilize the
progressive tool wear information for selecting the optimum
cutting conditions. Wavelet packet analysis has shown that
the optimal decomposition levels are not the same for all the
signals. However, as mother wavelet function has little influ-
ence on the selection of a wear-sensitive feature, any of the
considered mother wavelet functions may be used for sig-
nal analysis. PCA has been proved very effective for select-
ing a small number of uncorrelated wear-sensitive features.
Taking the conventional training and evaluation approach,
it was found that the prediction performance of the RBFN
model is better than that of the BPNN model. However, an
interval-based uncertainty technique shows that the BPNN
model is more robust to uncertainty in the input data than the
RBFN model. This approach can be used as an alternative
for selecting a particular ANN model, which is intrinsically
more robust to uncertainty in the input data than the net-
work solutions obtained by conventional training paradigms.
It was found that the proposed monitoring technique is highly
effective for the prediction of tool wear even with the consid-
eration of uncertainty in the input data; and the optimization
process showed that the cutting parameter settings were not
the same for all passes when tool wear was considered in the
process.
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