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Abstract

Telemetry devices are generating and transferring increasingly more data, with notable potential
for decision makers. In this paper we consider the accelerometer and speed data produced by
in-vehicle data recorders as a proxy for driver behaviour. Instead of extracting harsh events to
cope with the large volumes of data, we discretise the data into a tractable and finite risk space.
This novel methodology allows us to track both acceptable and non-acceptable driving behaviour,
and calculate a more comprehensive risk model using the envelope of the data, and not a priori
thresholds. We show how thresholds suggested in literature can characterise some driving behaviour
as good, even though our empirical evidence has not even registered such extreme driving behaviour.

We demonstrate the model using accelerometer data from 124 vehicles over a one month period.
Three rules, each a combination of accelerometer and/or speed data, are applied to the risk space
to derive person-specific scores that are comparable among the individuals. The results show that
the scoring is useful to identify specific risk groups. The proposed model is also dynamic in that
it dynamically adjusts to the observed records, instead of data having to abide by a limited model
specification.
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1. Introduction

Road accidents have a large social and financial cost to any economy. Not only the direct cost
in terms of injury and loss of economic productivity, but also the associated cost of the insured
occupants and vehicles. Unfortunately accidents are primarily attributed to driver behaviour. To
study safety, Musicant et al. [12] argue that we can use extreme driving events such as harsh
braking and acceleration, improper turning and swerving as surrogates for safety: a high frequency
of undesirable events is a direct indication of risky and unsafe driving.
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As mobile sensing platforms become more readily available and affordable, so the volume of
detailed data from the physical world also increases. Such data is useful for decision making. One
particular application is the insurance sector where telematic data is used to assess and ultimately
mitigate the insured risk [16]. If insurers want to base decision-making and risk profiling on driver
behaviour models, such models must withstand scientific scrutiny.

Rodriguez Gonzélez et al. [21] consider how driver behaviour data can be obtained, and note
three approaches: self-reporting by drivers; driving simulators and from measuring more naturalis-
tic driving conditions. The latter is advantageous as it allows behaviour to be observed and studied
while the driver behaves ‘normally’. That is, not as if for the sake of a specific and controlled ex-
periment. Following from Wu et al. [27] there are two ways to identify risky driver behaviour
in naturalistic settings. Firstly there are physiological signals of the driver vigilance that includes
fatigue, distraction and driving under toxic influence. To identify these signals intrusive sensors are
often required, or nonintrusive cameras from which driver characteristics can be inferred. In this
project we consider the second way by studying the behaviour of the vehicles. For this approach
we consider vehicles fitted with in-vehicle data recorders (IVDRs).

The benefit of using IVDRs is that it is a reliable and objective source of driving behaviour and
vehicle usage data [21, 25]. As a technology, it is inexpensive and provides continuous measurement
of on-road driving behaviour that is otherwise difficult to observe. Compared to handheld devices,
as Paefgen et al. [16] note, it provides a more accurate detection of extreme driving events as it
is pre- or auto-calibrated based on the device pose (orientation). Drivers appear to display safer
behaviour when they are (knowingly) monitored and when feedback is provided [9], although such
considered behaviour is not always sustained without reinforcement [24].

A simplistic approach to measure driver risk is to calculate the total number of extreme, or
harsh events over a specified period, with or without a weighting for each event type. The driver
with the highest number of harsh events is the most risky. Consequently, a driver’s risk is only
determined by bad behaviour. Desyllas and Sako [4] review pay-as-you-drive business models where
the level of risk is weighted by usage (for example distance driven, speed and location of use)
and traditional underwriting considerations (for example driver age, gender and marital status).
Insurers cluster the drivers using their respective risk profiles, and can then provide incentives,
through for example risk-based premiums, in an effort to curb and discourage risky driving. In this
paper we propose a more comprehensive approach to measure driver risk. Instead of only looking
at harsh events, we propose to aggregate the continuous IVDR data into a multi-dimensional risk
space. The contribution is methodologically novel as it is, to our knowledge, the first attempt to
provide a richer description of (technical) driver risk from the perspective of the insurer.

The paper is structured as follows: the next section reviews the recent literature on how harsh
driving events are used to infer driver risk. In Section 3 the proposed risk space is introduced,
and implemented in section 4 via a numerical example of 124 drivers for whom VDR data was
recorded during August 2014. The subsequent discussion explores how different risk-evaluation
rules can influence the driver scoring.

2. Literature

Musicant et al. [12] acknowledge the vast amounts of data that IVDRs generate, and use
this argument to motivate why much of the research is directed towards identifying only extreme
events from the raw data. The result is much less information to process in evaluating a particular
driver. The extreme driver behaviour events are mainly derived from the US Patent by Raz et al.
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[20], which is the technology in the Green-Box by Greenroad Driving Technologies Ltd. In these
approaches preset thresholds are considered, and whenever the accelerometer reading exceeds the
thresholds, a harsh event is recorded.

In this review we distinguish between studies that are mainly from an academic research per-
spective, and those that are industry-driven.

2.1. Research

There are studies that mainly focus on studying driving behaviour, and do so mainly from
a research perspective that will most likely not be state-of-practice. Consider for example the
massively sensorised Argos system that can measure a driver’s point of gaze, distance to lateral
road markings and can generate and record different in-car light and audio stimuli. Such systems
hold much opportunity for research as an experiment supervisor can interact directly, or schedule
specific actions to take place during an orchestrated experiment. However, such levels of vehicular
telematics is unlikely to have a large footprint in the coming years.

The field of driver behaviour modelling is new, and still evolving. Much of the literature relates
to driving event recognition. The study by Johnson and Trivedi [9] combines the data from multiple
sensors like accelerometers, geospatial positions system (GPS) and gyroscopes, often referred to as
sensor fusion, and are shown to identify specific manoeuvres very accurately.

Regarding devices of choice, there seems to be two schools of thought: (fixed) in-vehicle data
recorders, and smart phone-based technologies. Diaz Alvarez et al. [5] claim that IVDR is not
that freely available and hence argue for the use of mobile devices, while others like Paefgen et al.
[17] argue that a variety of affordable commercial offerings are indeed available, and also, that
smartphones seem to overestimate the number and severity of harsh events.

Driver behaviour and errors are known to be a major cause of vehicle crashes, especially for
fleet vehicles [25]. But evidence regarding whether event data recorders (EDRs) influence crash
occurrences is mixed.

According to Paefgen et al. [16] consumers do not favour so-called pay-as-you-drive and pay-
per-risk policies. Added to consumer resistance, the telemetry incurs additional costs to insurers
and, ultimately, customers. They argue that smartphones are a viable alternative as they are
operated at the users’ discretion. However, following a controlled field study they note that the
smartphone devices tend to overestimate critical driving events when compared to fixed devices
that were calibrated based on the initial device pose.

The most common approach for profiling driver behaviour is to extract critical driving events,
for example harsh braking, swerving, etc. Such events are then considered violations of thresholds
imposed on vehicle acceleration. In studying the use of smartphones, Paefgen et al. [16], only
concern themselves with event counts, that is, the number of occurrences that the preset thresholds
were violated. Different contributions in literature uses different thresholds. In this paper we will
express acceleration using the non-standard International System of Units (SI) measure of standard
gravity, g, = 9.81m/s%, that is the mean acceleration due to to gravity at the Earth’s surface.
In the remainder of this paper we will denote standard gravity with ¢, and ‘milli-g’ with mg.
Paefgen et al. [16] use longitudinal thresholds a, < —0.1g for harsh braking, a, > 0.1¢g for harsh
acceleration, and lateral acceleration of |a,| > 0.2 for swerving, while Baldwin et al. [2] use 0.15¢
in all directions. Johnson and Trivedi [9] use both longitudinal and lateral acceleration, but only
report the lateral thresholds. For aggressive driving, they distinguished between left and right
turns (0.73g), swerving (0.74g), and U-turns (0.91g). Their results show that 97% of events can
be accurately identified. Bergasa et al. [3] use accelerometer thresholds of 0.4¢g in all directions
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to indicate aggressive driver behaviour, and calculate a driver score using the count and intensity
(three levels) of these events.

A number of contributions have studied what underlying factors and contextual variables are
good predictors of whether a person will register harsh driving events. Age is a determining factor.
More precisely, novice (young) drivers are over-represented in vehicle crashes and injuries, especially
during their first year of unsupervised driving [18]. They also note that males are more likely to
take driving risks.

Musicant et al. [12] note that temporal factors influence the number of harsh driving events.
They identified both the time of day, and day of week as playing a significant role in predicting
the number of harsh driving events. They indicate that time of day could be reduced to daytime,
06:00-24:00, and nighttime, 00:00-06:00. According to their research, gender too plays a significant
role with men being more prone to perform harsh driving events.

In the United States, the 100-car naturalistic driving study is an ongoing instrumented-vehicle
study undertaken with the primary purpose of collecting large-scale (100 vehicles), naturalistic
driving data. Neale et al. [14] introduced the proposed study design early in the project while
Dingus et al. [6] report in detail on the subsequent field study. From the telematics data they
created an event database that includes crashes, near-crashes, and other incidents. The study
did not (to our knowledge) consider the occurrence of non-events. That is, the effect of drivers
behaving well, and the proportion of driver time that is considered non-risky.

One approach is to identify & number of driving classes, and then use the classical k-means
clustering approach to group the event data into k classes, and score the individuals accordingly [28].
Wu et al. [27] use a hidden Markov model (HMM), a statistical Markov model in which the states
are not directly known, but the output variables (driving events) that are dependent on the states
(driver’s risk attributes) are visible. They used seven behavioural events, and also applied low,
medium and high intensities for those events. Their experimental results show that they have a
detection ratio of harsh events of between 98.2% and 100%.

Much of the recent work, like Rodriguez Gonzélez et al. [21], aim to provide real time feed-
back to drivers to warn them, and hopefully influence their behaviour positively. Farah et al. [7]
demonstrate how family feedback can improve driving behaviour beyond the target group of young
novice drivers. Although some literature [13, 24, 25] state that initial positive impact of feedback
unfortunately diminishes over time if not reinforced, we are not aware of longitudinal studies of
driver feedback. Such feedback systems often do create even more distractions for the driver to
deal with. The research effort, though, still moves us closer to future intelligent transport systems
in which advanced driver assistance systems will play an increasing role.

Musicant et al. [13] recognise the heterogeneity among individuals, but note that it is often
dealt with by considering subgroups. The downside is that each subgroup is still characterised
by its average driver. In their contribution, they do have an interesting and novel approach to
fit a distribution to the counts of undesirable events at the individual level. They studied the
relationship between event counts and trip duration, the magnitude of changes in driver behaviour
over time and how rapidly drivers change their behaviour. They confirmed earlier observations
reported in Musicant et al. [12] that there is an inflation of event counts at the beginning and
at the end of the trips, regardless of the trip lengths. Possible explanations stated in their paper
include that trip ends are often near home or other familiar places where non-defensive driving
occurs more frequently. Also, trip ends are more likely to occur in urban areas where there is more
potential for harsh driving events like sharp turning and harsh braking at traffic signals.



2.2. Commercial applications

Quantifying the risk associated with driver behaviour is not merely an academic exercise to
study and better understand behaviour. Much of the research finds its way to, and is applied by
insurers who aim to mitigate their risk of insuring drivers and their vehicles. In this section we
review a number of these commercial applications.

Paefgen et al. [17] provide apt justification for the use of IVDR in industry. Referring to
the naturalistic driving study of Neale et al. [14] and Dingus et al. [6], they note that the per-
vehicle cost of data acquisition can easily exceed USD 20,000. As a viable (transitional) alternative
to dedicated research solutions they recommend collaborating with vehicle fleets equipped with
IVDR for commercial purposes. The market penetration of commercial IVDRs, across various
sectors, are high enough to reward researchers with rich data and large sample sizes at a low cost.
Malm and Fagerberg [10] estimate that the original equipment manufacturers alone have shipped
11-million units by 2014 with an estimated 20.5-million subscribers using embedded telematics.

In 2004 Progressive Corporation piloted their TripSense® usage-based insurance program in
Minnesota to research driving habits [19]. In 2008 they introduced MyRate®M | a pricing scheme
providing a driver-based insurance rate based on driving performance (the programme is optional).
Using Progressive as a case study, Desyllas and Sako [4] bring the business model and intellectual
property protection perspective, arguing that pay-as-you drive placed Progressive in front of their
competitors and the market as a whole.

Although literature mentions the SAGA system developed in Iceland, a reproducible citation
could not be found. The SAGA system uses event data recorders to monitor and report location
and usage of vehicles, speed (compared to the speed limit) and driving behaviour according to
predefined criteria. The system was mainly aimed at vehicle fleets and was used on 70 company
fleets. In the Global Road Safety Partnership [8] speed manual, the Iceland case study is said to
have achieved a 56% reduction in crash cost; 43% reduction in the total number of crashes, and
51% reduction in the number of crashes in which the employees were responsible.

Toledo et al. [25] calculate risk indices as indicators for the likelihood of crash involvement,
and these correlate well with past crash observations. Also, they observe a significant reduction in
crash rates after IVDRs were installed. They measured acceleration (40 Hz), speed and position
and using these to detect a range of 20 vehicle manoeuvres that are considered risky events. The
manoeuvres were further classified by direction (left or right), as well as three levels of severity.
An individual driver risk index is calculated as a linear function of the numbers and severity of
the various types of manoeuvres that the driver has performed. The risk index is then normalised
using the drive time of the individual. Their experiment is based on 191 fleet vehicles: compact
pickup trucks/light delivery vehicles from a single company.

The Awviva Drive app measures a (voluntary) user’s acceleration, braking, and cornering char-
acteristics over 300 kilometres (200 miles) to evaluate the driving behaviour. This is done using
smart phone technology and allows the user to choose which journey(s) to evaluate. The inputs
are then used to provide a personalised score for the driver on a 0-10 scale, allowing for as much
as 20% discount on premiums [1].

In the United Kingdom, the Co-operative Insurance Group has a Young Driver Insurance
product that uses a Smartbox to collect safer driving parameters: average speeds on different
types of road; harsh acceleration and braking; time of day; and harsh cornering. Each parameter
is scored on a 1-5 scale to compute an overall score. Although they indicate how the overall
score will influence your premium, they do not divulge what thresholds they use for the different



parameters [23].

The Italian company Octo Telematics uses their Octo Clearbox, an onboard device that varies
from smart phones, self install solutions, to semi and full professional onboard devices [15]. The
company indicates that they monitor journey types, distance travelled, and driving style, but do
not provide additional information.

Other commercial applications include the recent DriveSafe app [3] and the In-Drive program,
introduced by StateFarm [22], that offer savings based on driver behaviour. They specifically
mention harsh braking and acceleration, turning, time of day and level of speeding (exceeding 80
miles per hour).

Should we invest so much in detecting extreme events? We infer from literature that a dis-
proportionate amount of attention is given to the study and use of harsh driving events. McGwin
and Brown [11] report that in nearly 50% of the studied cases an accident was preceded by some
particular driving event, yet in only 6% of the cases was it the primary cause of the crash. Harsh
braking will quite plausibly precede a crash as a driver attempts an avoidance manoeuvre. The last
thing the driver should hear is some driver assistance system saying in a soothing voice: “please
don’t break so hard, Joe, that’s risky, and may influence your premium...” Drivers with frequent
harsh braking events may in fact be more inattentive, which in turn may make them more accident
prone if given untimely feedback. It would appear that as researchers we forgot that correlation
do not necessarily imply causation.

3. Methodology

The majority of research contributions identify behaviour at the individual level. In this project
we want to use the full data set to find an overall view of a pool of drivers, and rate each individual
relative to all the others. As a result, we avoid imposing a priori thresholds of what constitutes
good and bad behaviour, but rather use the envelope of all the available data to determine relative
performance. This is in line with the field of Data Envelopment Analysis, a non-parametric method
in operations research and decision science where one can empirically measure the productive
efficiency (driver risk) of decision-making units (drivers).

The data used in this paper was obtained from three-axes accelerometers installed in the vehicles
of 124 randomly drawn individuals who subscribe to Digicore’s existing Ctrack service offering.
Like Rodriguez Gonzalez et al. [21] we choose sensors that are already available in vehicles. Our
objective is to make our model results transferable to the insurance market and real applications.
Raw accelerometer data is sampled at 4mg resolution at frequencies of at least 50 Hz. The data
stream is then passed through an orientation matrix, transforming the raw data stream to the
vehicle orientation before being pushed through Kalman filters. The result is a 5 Hz sampled data
set with an expected data accuracy and repeatability between vehicles of 25mg.

We postulate that we can represent complex driving behaviour with a simple model based on
the statistics of external driving signals. In effect, what we want to do is provide a measure of
exposure to high risk resulting from driver behaviour. Paefgen et al. [17] noted that, in the context
of transportation research, exposure is often interpreted as the accumulated mileage of a vehicle or
the vehicle’s duration of driving. Effectively we want to see how many accelerometer observation
points do we observe for different drivers in different areas of the risk space. In this section we
introduce an aggregation scheme that addresses both the extent and the degree of exposure as this
has indeed been identified as a dominant research area to pursue.



3.1. Discretising the acceleration space for risk

Our approach in this paper is different from that followed in previous work. Instead of extracting
only harsh events, we aggregate all the accelerometer records by discretising the three-dimensional
accelerometer space. The three dimensions represent longitudinal (z), lateral (y) and vertical
(z) acceleration. To do this we bin our data to a space filling, face-centred close packed (FCC)
three-dimensional arrangement providing a more efficient space filling geometry than a simple cubic
arrangement. Grid points in this arrangement are delimited by rhombic dodecahedra (the primitive
cell of an FCC lattice). The scale of each cell, w, is a user input into the tessellation and denotes
the distance from the centroid of the cell to the furthest corner point (of which there are six).

From each accelerometer record we use the unique anonymised identification number for the
customer vehicle; the time stamp of the record; the three-axis acceleration namely longitudinal (),
lateral (y) and vertical (z); and the derived speed. The speed estimation is done on-board using
the embedded Geographical Positioning System (GPS) unit. The three-dimensional tessellation is
populated by associating each record with the polyhedral cell that encloses the record’s (z,y, z)
coordinate. After processing all the records there is a set of C cells, denoted by C = {1,...,C},
that has one or more records associated with it. The number of records associated with cell ¢ € C
is denoted by r;. This results in a significant computational saving as we only have to keep record
of r;, hence |C| values. So, like extracting harsh events are trying to reduce the computational
burden, discretising the risk space achieves a similar outcome. However, our discretisation provides
a richness of the records over a time period longer than just observing harsh events. This is because
we account for good driving as well as bad driving.

Consider the month of August 2014 for which there was a total of 51.43-million records. Table 1
shows summary statistics for the r; counts when using different cell scales. In the three-dimensional
risk space the result of the discretisation is determining how many records fall within each cell.
Consider the first row, for example. If the accelerometer space is discretised with cells that measure

Table 1: Summary statistics for aggregating accelerometer records as a function of the cell scale.

Cell scale Number of Percentile of record counts (r;)
(mg) cells (|C|) 0.25 0.50 0.75 0.90 0.95 0.99 maxr;
2€
10 44117 2 7 59 463 1541 19216 1114196
20 8833 2 11 136 1602 6146 83915 4928796
30 3420 2 15 219 3002 13985 227919 5740776
40 1730 3 19 344 6419 27248 342454 9107871
50 1035 3 21 535 9316 41014 515031 21212745
75 409 4 42 1001 29294 191977 3252093 15344942
100 224 6 44 1583 50899 152715 2018825 38040692

10myg from its centroid to the sharp point edge, the risk space contains 44,117 cells with one or
more records associated with it. Of all the cells, 50% will have 7 or fewer records associated with
it, and 90% will have 463 or fewer records associated with it. The cell with the highest r; value
has more than 1.1-million records associated with it.



3.2. Profiling the risk space

To classify the risk space, an a priori set of quantiles, @, is required that denotes the upper
limits of the various risk classes. For the purpose of illustration in this paper, we used an arbitrary
four-stage risk classification with |@| = 4 such that @ = {qnone, qlov, gmed, qhigh} with ¢Meh = 1.0.

In populating the risk space we aim to calculate r; for each cell i and denote the total number
of records with R = chzl r;. The cells are sorted in decreasing order based on r; so that r; > re >
... > rc, where ties are broken arbitrarily. Next find the value a so that the cumulative number

of records [2?21 n] /R < @™, and [Z‘Hll rl} /R > ¢"°"¢. The interpretation of this step is as

i=
follows: cells i € C™"® = {1...a},C""® C C accounts for a fraction of just less or equal to ¢"°"°
of all records and are considered no risk cells. All record within these cells are considered risk free.
Are they truly without risk in an absolute sense? That we do not know, but they do represent the
cells with the most common accelerometer characteristics.

For the next risk class we find b such that [Zgzl 7“2} /R < ¢°%, and [Zfill rz} /R > ¢V and
identify cells i € C°V = {a + 1,a +2,...,b},C"" C C as having low risk.
Similarly, we find ¢ such that [25:1 rl} /R < g™, and [Zfill ri] /R > ¢™¢ and identify

cells i € C™d = b+ 1,b+2,...,c},C™4 C C as having medium risk. The remaining cells
icCheh = e 1,¢c4+2,...,0},CMeh C C are considered high risk cells.

It is therefore up to the decision-maker, for example the insurer, to determine the a priori
quantile set Q. In the next section we apply the risk profile and evaluate its sensitivity to different
risk assumptions, and demonstrate how different quantile sets influence the risk profiles.

4. Results and discussion

The proposed discretisation of the risk space is much more flexible in that it can be tailored
to different risk appetites, and accommodate a variety of contextual variables. We start the result
section by showing the effect that different user parameters have on the risk space. We then report
the driver risk profiles for three sets of rules.

4.1. Varying risk quantiles

The effect that different risk quantiles, @, have on the profiling of the risk space is illustrated in
Figure 1. All records were considered in the risk space based on their accelerometer characteristics
as described in the previous section.

The overwhelming majority of accelerometer records fall within the no risk area (coloured
green), close to the centroid of the risk space. The model is quite sensitive to the chosen quantiles,
as is seen in the varying thicknesses of the four shading bands as one moves out from the core to
the periphery.

In this paper we opt for the risk profile illustrated in Figure 1b where @ = {0.960,0.994, 0.999, 1.000}.
Our choice is empirically based simply on a visual balance between the four risk categories. In the
rest of the paper we consistently use these risk quantiles unless otherwise specified.

The choice of quantiles is left to the insurer to tailor to its risk profile requirements, and is
beyond the scope of this manuscript. Later in the paper we describe how the risk categories
are translated into person-specific scores, and it is only at that point where the insurer needs to
carefully consider the score thresholds that may influence pricing dynamics.
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Figure 2: The influence of cell width, w, on the granularity of the risk space. All figures were populated with the
same records and shows a horizontal slice through the polyhedral body at height z = 1009mg. The white indicates
cells with no risk, while the increasing darker shades represent low, medium and high risk cells.

4.2. Granularity

The results reported in Table 1 are clarified visually in Figure 2 to illustrate how the cell
scale influence the discretisation of the risk space. With fined granularity, a clover-shape for risk
categories emerges. The elongation along the axes is quite plausible: hard breaking (z<0) and
acceleration (z>>0) typically happens when the vehicle is moving in a fairly straight line, that
is, with little lateral acceleration (y =~ 0). Similarly, lateral acceleration is more common, and
arguably also safer at constant speed (x ~ 0), and usually occur after any harsh braking has been
completed.

Compare this with the fixed, rectangular accelerometer thresholds that are reported in litera-
ture. Figure 3 shows the suggested thresholds proposed by a number of authors.

Recall from the earlier review that Baldwin et al. [2] suggested 0.15¢g thresholds in all directions.
This is indicated in Figure 3 by the dotted square. Compared to this study, their suggested
thresholds mainly cover the no-risk area. Paefgen et al. [16] also take a conservative approach in
suggesting their thresholds: 0.10g and 0.2¢g in the longitudinal and lateral directions respectively.
This is denoted by the inner solid rectangle in Figure 3. We agree with their higher thresholds in
the lateral direction as we have observed similar phenomena in this study.

The thresholds of 0.4g in all directions suggested by Bergasa et al. [3] is indicated by the
outer solid square in Figure 3. It is especially the corner points that we challenge. Using fixed
thresholds implies that a manoeuvre in which, for example, a driver simultaneously breaks hard
(y = —350mg) and swerves to the left (z = —350mg) is considered acceptable and within limits.
Yet, such a manoeuvre is so extreme that we do not observe it in our study, and is arguably very
dangerous.

Changing the cell scale to allow for fined granularity therefore provide more realistic risk as-
sessment. The four corners at the extremities of the traditional fixed-thresholds risk squares are
consequently categorised more realistically as high risk.

4.8. Contextual variables
The accelerometer records used in this paper include contextual variables. Of interest in this
manuscript is the speed of the vehicle for each record, a unique (anonymised) person identifier, and
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Figure 3: Comparing the multi-level, clover-shaped risk profile with fixed thresholds suggested in literature. The
inner solid rectangle was proposed by Paefgen et al. [16]; the dotted rectangle by Baldwin et al. [2]; and the outer
rectangle by Bergasa et al. [3].

the road type. One can generate different risk spaces for each available contextual variable, or for
different levels of a variable. To illustrate this, consider the examples given in Figure 4. As a base
for comparison, Figure 4a shows the risk profile when considering all records.

If one builds the risk space from records associated with freeway driving, one expects higher
speeds, and less erratic manoeuvring. This expectation is indeed in line with the observations
captured in Figure 4b. In a similar manner, as shown in Figure 4c, one can build the risk space for
all road types, but focusing on only those records with speeds exceeding 90 km/h (56mph). Why
would this be of interest to, for example, an insurer? It allows them to have a richer description
and quantification of risk for different road types.

Since each record is associated with a specific individual, it is also possible to generate a
unique risk space for each individual. In the examples shown in Figures 4d—4f each risk profile only
contains the records of a particular individual, and the risk quantiles are applied to each individual,
independent of their performance relative to other drivers. This allows the insured individual to
measure him /herself over a period of time.

Much of the current research provides person-specific or vehicle-specific scores based only on an
individual’s own driving behaviour. These scores may have been influenced by the parameterisation
following the calibration based on a cohort of drivers, yet is still based on risk thresholds set a
priori. We argue that from an insurer’s point of view there is much benefit to compare an entire
pool of drivers relative to one another, and as a result base the thresholds on the envelope of
empirical driver data the insurer have on their books.

4.4. Driver scoring

To calculate the individual score of person ¢ based on the performance of the population of
drivers, P = {1,..., P} where P = |P| = 124 in this paper, we explore three rules. The objective
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Figure 4: Different risk spaces conditional to contextual variables provided. Each figure’s risk space was populated
with the subset of records that contained the specific contextual variable and shows a horizontal slice through the
polyhedral body at height z = 1009mg. The green indicates cells with no risk, while the yellow, orange and red
represent low, medium and high risk cells, respectively. As a reference, the overall risk boundaries from (a) are

provided.
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Figure 5: Individual scores when combining all risk categories and considering only accelerometer measurements.

is to show that the discretisation of the risk space is again flexible enough so that an insurer can
calibrate it to a set of rules that best describe its risk appetite.

4.4.1. Rule 1: Acceleration only

The first rule serves as the basis and is described in Section 3. Under this rule, all records are
evaluated based only on the measured vehicle acceleration. Once the entire risk space is discretised
and all records for all individuals are accounted for in one of the cells, we cumulatively apply the
risk quantiles until each cell is assigned a risk category.

FEach individual’s records are subsequently evaluated against the populated risk space and we
calculate the proportion of records each individual has in each of the four risk categories. We
denote these proportions by p"ore, plow. pmed and phish respectively.

To combine the risk categories into a single score per person, each risk category is weighted.
For the purpose of illustration we choose a simplistic weighting scheme where w"°"¢ = 0 denotes

the weight for the no risk category, and similarly w!°¥ = 1, w™*d = 2 and w"&? = 3. The score for
each person ¢, denoted by s;, is then calculated using
8 =3 — pnonewnone _|_plowwlow + pmedwmed +phighwhigh} Viec P (1)

We rank the individuals based on the combined score, and normalise the scores to the range
[0,1]. That is, the worst performing individual’s score is rescaled to 0, while the highest performing
individual’s score is rescaled to 1. Figure 5 shows the resulting graph.

Each bar represents an individual and shows the risk spread on the left y-axis, namely the
proportion of the total number of observed records in each of the risk classes. The thick black line
represents the combined score, and its units are shown on the right-hand side y-axis. For later
reference, individuals were identified by numbers 1 through 124.

For example, individual 1 has close to 100% of all its observed accelerometer records in cells in
the risk space that were considered no risk (green). On the other extreme we see individual 124
who had only 89% of its records in no risk cells, 9% in low risk cells (yellow), 1.5% in medium risk
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cells (orange), 0.5% in high risk cells (red). The score for individual 124 is calculated as
s124 = 3 —[0.89(0) + 0.9(1) + 0.015(2) + 0.005(3)] = 2.055 (2)
Since this is the lowest combined score achieved in the population, it is normalised to 0.0.

4.4.2. Rule 2: Speeding preempted

So far we have not considered speed, or more specifically speeding, in any of the results. One
of the contextual variables available to us was the vehicle’s speed at the time of the record, as well
as the speed limit for the road segment associated with the record.

In this second rule we preempt populating the risk space by first considering the level of
speeding. If the driver’s speed for the record was within the speed limit, then we assumed no
speeding risk. An arbitrary threshold of 10% above the ruling speed limit is set to represent a low
speeding risk, and speeds up to 20% above the ruling speed limit are considered medium risk. All
records exceeding the speed limit by 20% or more are considered high risk. The choice of 10% is
based on the tolerance used by law enforcement in South Africa. Of the observed records, 88.1%
reflected no speeding risk; 6.6% low risk; 2.6% medium risk; and the balance of 2.7% reflected high
risk. Consequently, approximately 95% of records were within the tolerated speed limit. We do
note that some road segments did not have speed limits set, and visual inspection of a random
sample of these instances revealed that such road segment are often not classified and not part of
the official road network. Examples include large open parking areas and on-site roads at industrial
facilities. In such cases we conservatively consider all these records as having no speeding risk.

After the records are filtered based on speed, only no-risk records are used to populate the risk
space. The populated risk space is subsequently categorised in the same cumulative way using the
risk quantiles.

Similar to the acceleration-only rule, we next evaluate each of the individuals’ records. If a
record’s speed was above the ruling speed limit, the record is categorised according to the speeding
thresholds. Alternatively, the record’s risk is associated with the risk category of the cell in the
populated risk space. The result is again an indication of the proportion of records that each
individual had in each of the four risk classes.

Using (1) we calculated a combined score for each individual; scaled the scores to the range
[0,1]; and ranked the individuals from best to worst. The results are shown in Figure 6.

There is a noticeably higher proportion of records, across the board, that are considered higher
risk than when only looking at the accelerometer data. The ranking of individuals have also
changed. Person ‘2’ has dropped significantly, approximately three quarters of the way down.

4.4.8. Rule 8: Combined speed and acceleration

To find a balance between the first two rules, we combine the accelerometer and speed risk
dimensions in this third rule, and we do this by associating each record with both an accelerometer
and a speed risk category. We use the same weighting scheme, w"™® = 0, w'°% med — 9
and wheP = 3 to assign a numeric value to each record for both accelerometer and speed risk
dimensions.

A single risk value is then calculated for each record by weighing the two risk dimensions.
Figure 7 illustrates how different weights for the two risk dimensions impact the final score for a
record.

We see that when speed weighs 10%, actually anything strictly less than 25%, it does not affect
the scoring and acceleration alone determines the final score. The result is therefore the same
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Figure 6: Individual scores when combining all risk categories and first considering the level of speeding before
considering the accelerometer measurements.

as applying rule 1. Conversely, if speed weighs more than 75%, as is the case in Figure 7f, then
speed alone determines the final risk category of the record. This is different from rule 2 in which
preempting speed implies that no-risk speed records can still be assigned a low, medium or high
risk category based on the acceleration characteristics.

Of interest in this third rule is for an insurer to consider a customisable weighting scheme that
reflects their preferred trade-off between speed and acceleration. Suggesting a reasonable weighting
scheme is beyond the scope of this paper.

For illustration purposes we conveniently choose the 25%:75% weighting for acceleration and
speed (Figure 7e). Using (1) we calculated a combined score for each individual; normalised the
scores to the range [0,1], and ranked the individuals from best to worst. The results are shown in
Figure 8 and demonstrates a trade-off between the first two rules in having more exposure to low
and medium risk than when only considering acceleration (rule 1), yet less high risk exposure than
when preempting speed (rule 2).

4.5. Discussion

So how do the different scoring rules impact the 124 individuals considered in our study?

4.5.1. Differences between rules

First we compare rules 1 and 3. Under each of these two schemes each individual is ranked
based on their combined score, which was calculated using (1). In Figure 9 we show how individual
rank positions have changed when using three different weighting schemes for rule 3.

In the left diagram each point represents an individual, with the z-value denoting the person’s
ranking under rule 1, and the y-value denoting the person’s ranking under rule 3. Points directly
on the diagonal imply individuals whose ranking has stayed constant. Points above the diagonal
represent those individuals who have gained in ranking as a result of rule 1, while points below
the line are those who have gained as a result of rule 3. The histogram on the right shows the
distribution of changes in ranking: negative values mean people have dropped in rankings as a
result of rule 3. That is, we’ve deducted the ranking under rule 3 from the ranking under rule 1.
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Figure 7: Each record is associated with two risk categories: one with speed, and another with acceleration. The
two categories are traded off one another to find a single risk category to associate with the record. Weighing the
two dimensions differently results in different trade-offs. In tables (b)—(f) each row represents the risk category of
the record when considering speed, and each column represents the risk category of the record when considering
acceleration. The cell value indicates the combined risk score using the specific weighting, and the cell colour
represents the final risk category associated with the record. The conversion from the combined risk score to a
discrete risk category is shown in (a)
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Figure 8: Individual scores when combining all risk categories and considering the level of speeding (weighing 75%)
and acceleration (weighing 25%).

As expected, the spread around the diagonal reduces as the acceleration component’s weight
increase under rule 3.

In Figure 10 we compared rules 2 and 3, and used the same three weighting schemes. What
was expected in this case is that the spread increased as the acceleration component’s weighting
was increased from 25% (Figure 10a) to 75% (Figure 10c). However, what was not expected is
that the spread actually decreases when the acceleration component’s weight increased to 50%
(Figure 10b).

Answering the question “are the distribution of winners and losers centred around zero?” al-
lows us to identify if some of our rules and rule configurations are, over the entire population of
individuals, balancing the winners and losers, or if it is skewed towards producing either more win-
ners or losers. To answer the question we did a number of ¢-tests for which we report the results
in Table 2.

In each case the null hypothesis was that the mean of the distribution of winners and losers
was centred around zero, i.e. p = 0. The alternative hypothesis is simply that it is not, i.e.
1 # 0. In all the cases we accept the null hypothesis. So even if there are many individuals who
experience large changes in their ranking positions, seen over the entire population of individuals,
the distribution of rankings is still centred around zero. This is expected. The earlier observation
that the 50:50 weight results in the smallest spread is confirmed with the 95% confidence interval
being the smallest at £3.59.

Table 3 shows the result for similar ¢-tests, but here we used changes in the combined score as
opposed to the changes in ranking. Contrary to the ranking results, the majority of null hypotheses
are rejected: the 95% confidence interval only includes the zero mean in one instance. With the
95% confidence interval mainly having negative values, the rejection of the null hypotheses indicate
that the scores under rule 3 is consistently lower than under rules 1 & 2.

4.5.2. Comparing fized thresholds
This section reports on our attempt to compare the proposed model with the three fixed-
threshold studies in literature that were highlighted in Figure 3. We start by summarising, in
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Figure 9: Comparing the change in rankings when comparing rule 1 to rule 3 with three different weight-combinations.
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Table 2: Results of t-tests checking if the distribution of winners and losers (using the ranking) are centred around
mean zero.

Rules Weights (Rule 3) Statistics
compared acceleration speed m c 95% Confidence interval Reject H

25% 5% 0.0000 47.9526 [-8.5234; 8.5235] X

1&3 50% 50% 0.0000 44.4968 [-7.9097; 7.9097] X
5% 25% 0.0000 39.4121 [-7.0059; 7.0059] X
25% 5% 0.0000 30.1379 [-5.3573; 5.3573] X

2& 3 50% 50% 0.0000 20.1938 [-3.5896; 3.5896] X
75% 25% 0.0000 45.9836 [-8.1740; 8.1740] X

Table 3: Results of t-tests checking if the distribution of winners and losers (using the combined score) are centred
around mean zero.

Rules Weights (Rule 3) Statistics
compared acceleration speed " o 95% Confidence interval Reject Hj

25% 75% -0.0498 0.2308 [-0.0909; -0.0088] v

1&3 50% 50% -0.0282  0.2103 [-0.0656; 0.0091] X
5% 25% -0.1776  0.0806 [-0.1920; -0.1633] v
25% 5% -0.0601  0.0556 [-0.0700; -0.0503] v

2&3 50% 50% -0.0385 0.0384 [-0.0454; -0.0317] v
75% 25% -0.1879 0.1611 [-0.2166; -0.1879] v

Table 4, the number of harsh events per kilometre travelled for the cohort of 124 drivers. For each

Table 4: Summary statistics of the number of harsh events per kilometre travelled when using different thresholds
taken from literature.

Percentile
Source n o 0.25 0.50 0.75 0.90 0.95 0.99

Baldwin et al. 2] 14.6  92.1 3.5 5.0 7.6 9.2 10.1 1044
Bergasa et al. [3] 004 014 00 00 00 01 0.1 0.8
Paefgen et al. [16] 28.2 184.8 6.2 8.7 133 158 181 190.9

driver we counted the number of records that fall outside the given threshold, considering each
instance as a harsh event, and divided the total by the estimated kilometres travelled.

As expected, the high threshold values suggested by Bergasa et al. [3] result in very few harsh
events being detected, at least in our observed data set. The South African data seems quite high
when compared with the Swiss data reported by Paefgen et al. [16]. The large deviation can be
attributed to two factors. Firstly, the Swiss data was based on a controlled study with a single,
pre-defined route. Secondly, South Africa has a much higher road traffic death rate of 25.1 per
100,000 inhabitants compared to Switzerland’s 3.3 deaths per 100,000 inhabitants [26].
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More importantly, we are interested in seeing how the rank position of the individuals change
under the different thresholds, and specifically when compared to our proposed model. We compare,
in Figure 11, the threshold ranks with our Rule 3 model using an acceleration weight of 75% and
a speeding weight of 25%. In all three cases the change in ranking histograms follow a unimodal
distribution. The deviation, however, is quite large. This can partially be attributed to the
inclusion of speeding in our proposed model. Also, with thresholds there are only two options,
risky or non-risky, while our quantile definition allows for a more progressive scaling of the risk,
albeit customisable.

4.5.8. Impact of quantile set

Earlier in the paper we noted that the model is sensitive to the choice of the quantile set. What
is the preferred quantile set? That will be application specific and will indeed be up to the insurer
to determine based on their client base. Looking at the combined score lines in Figures 5-8 one can
see a sharp downturn at around the 80" percentile of the individuals, towards the right-end of the
graphs. An insurer could consider such a turning point to identify where dynamic pricing bands
should be established. Similarly, on the upper end of the score scale (left-end of the graph), after
the first 10 customers there is a flattening out, a more linear and constantly decreasing shape to
the graph. An insurer could use this analysis to identify what proportion of high-scoring customers
should be subsidised by the lower-scoring tail.

We argue in this paper that comparing and scoring your customer base against the envelope of
performance is more useful than comparing them against some fixed threshold set a priori. With
useful we imply that it can be used rigorously to influence insurance pricing. In suggesting that,
we do acknowledge that pricing an insurance product for low-performing clients higher may indeed
push such clients away, making the envelope against which one evaluate a moving target. A driver’s
insurance premium may therefore not only be dependent on his or her own driving performance,
but also on other drivers, each of whom may be aiming to improve their own driving scores.

Yet it is in these dynamics that our proposed discretisation and an individual’s evaluation hold
much potential. A premium dependent on the dynamics and evolution of other drivers may just
be carrot (or stick) that drivers need to maintain on a trajectory of improved driving behaviour.

Vehicle dynamics and performance are constantly changing. Combined with updating your
risk space on a rolling horizon, it may indeed be quite plausible to assume that the risk space will
adjust dynamically to newly introduced vehicular technologies.

5. Conclusion

One consequence of higher frequency telemetry data is the large amount of raw data generated
by vehicles. Instead of dealing with the data by merely looking at the quantity of harsh driving
events, we propose an alternative approach that uses all accelerometer records, and we do this
for two reasons. Firstly because many accidents are shown to not be preceded by some harsh
driving manoeuvre. Secondly, and more importantly, the proposed discretisation approach allows
us to deal with not only the unwanted driving behaviour and use it as a proverbial stick, but
also with wanted, acceptable behaviour that can act as a motivational carrot. The second reason
is achieving the same as when one weighs the absolute number of unwanted events by the total
distance travelled for a particular driver.
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We specifically choose to not use harsh events in this paper. We acknowledge that such events
may indeed be communicated back to the driver, either in real time or in after-the-fact reporting.
Our proposed approach would consequently not be able to provide real-time feedback to the driver.

Measurement devices, like the accelerometer and speed sensors used in this paper, has inherent
noise associated with them, making extreme event measurements uncertain. Our approach to
aggregate the data and use the risk space statistics effectively works around this problem.

In the paper we describe the polyhedral discretisation, its risk classification, and demonstrate
three rules for defining risk that are based on combinations of accelerometer and speeding charac-
teristics of the telemetry records. The risk scores are then aggregated to an individual level, and
the ranking of customers then show quite clear distinctions between the good, average, and bad
performers within the envelope of the customer base.

Our model is able to account for changes in vehicle dynamics and technology in that the model
adapts to the pool of customer vehicles, i.e. the actual observed envelope instead of predefined
extreme events that differs per vehicle type and may prove in future to be not-so-extreme. The
objective of this paper is not to provide a calibrated model to assess the risk of driver behaviour.
Instead, we provide a discretisation that is more flexible and provide a richer description of risk
than the traditional approach using only harsh events and fixed thresholds.

To comment on the use of the results to provide driver feedback, we suspect that the initial
novelty will wear off if not reinforced with (recurring) incentives over time. A later study will
explore the time variability of the risk envelope.
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