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Abstract

This paper deals with a boundary-value problem for the Stokes equations with a
general direction-dependent Navier type slip boundary condition. This problem
models the steady laminar flow of an incompressible linearly viscous liquid in
a bounded domain with an impermeable rough boundary with variable and
anisotropic roughness. It is proved that the problem has a unique weak solution.
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1. Introduction

During the past twenty years significant progress was made in the analysis
of laminar flows of Newtonian liquids (e.g. water) over complex surfaces. The
numerical simulation of such flows is greatly simplified if the complex boundary
surface and microscopic boundary conditions are approximated by a smooth
boundary and an effective boundary condition. Lee et al. [1] review physical
experiments and computational studies conducted to deduce effective boundary
conditions for flows over rough or structured surfaces, surfaces with chemical
patterns, nano-bubbles or polymer layers, and superhydrophobic surfaces. In
many of these situations, the proposed effective boundary condition is a partial
slip boundary condition of the form introduced by Navier [2]. Lee et al. [1]
discuss the progress and difficulties in deriving the effective Navier slip length
in these situations.

During the same period several mathematical studies of flows over rough
surfaces, involving various assumptions and techniques, yielded Navier type slip
conditions as effective boundary conditions. These works deal with flows over
one-dimensional boundaries with periodic irregularities, e.g. [3, 4, 5, 6], flows
over two-dimensional boundaries with periodic irregularities, e.g. [7, 8, 9, 10,
11, 12], and flows over one-dimensional boundaries with random irregularities,
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e.g. [13, 14, 15]. These are only a few examples; many other studies are reviewed
in [8, 11, 12, 16].

When a rough or structured boundary surface is anisotropic, e.g. when it
has rows of riblets, pillars or periodic patterns, the effective slip condition is
anisotropic, i.e., direction-dependent. Examples of flows over such surfaces have
been studied by analytical and numerical methods [16, 17, 18, 19]. However,
these studies only consider flows in the directions perpendicular to and par-
allel to the rows of riblets. Moreover, to our knowledge, none of the works
discussed by Lee et al. [1] or the mathematical studies mentioned above at-
tempt to deduce a general anisotropic slip law. This is not surprising in view of
the experimental difficulties and intricate mathematical analysis involved. (In
Remark 1 an approach to derive such a slip law is suggested.) In addition,
when the surface is heterogeneous, the effective slip is also heterogeneous, i.e.,
position-dependent. This can occur, for example, when the boundary has a
varying degree of roughness or when the boundary is a smooth surface with a
varying hydrophobic/hydrophilic composition.

The well-posedness of boundary-value problems for flows with position- and
direction-dependent slip boundary conditions has apparently not been studied.
The aim of the present work is to consider a boundary-value problem for the
Stokes equations with a slip boundary condition that is in essence of the form

(Tn)τ = −F
(
|v|−1v

)
v on ∂Ω. (1)

Here ∂Ω is the impermeable boundary of the flow domain Ω ⊂ R3, T is the
Cauchy stress tensor, n is the outward unit normal vector, (Tn)τ is the tangen-
tial component of the traction, v is the velocity, and the “friction coefficient” F
is a given function defined on

S(∂Ω) = {(x,u) ∈ ∂Ω× R3 : n(x) · u = 0, |u| = 1}.

Formally, condition (1) reduces to the condition of perfect (or free or frictionless)
slip if F ≡ 0, and to the no-slip condition in the limit F −→ ∞. This is
excluded here; it is assumed that F takes values in some interval [FL, FU ] with
0 < FL < FU . This includes the case where F is a positive constant, i.e.,
Navier’s slip condition [2], and its generalization with F = F (x) > 0. In the
boundary-value problem considered here, F is regularized to allow |v| = 0. This
is done in Section 3. Then, in Section 4, we prove that the problem has a unique
weak solution if the external body force is sufficiently small in comparison to
the viscosity and the friction coefficient.

Remark 1. (a) We only consider the Stokes problem, but standard methods
should suffice to extend the result to the corresponding Navier-Stokes problem.

(b) In our analysis it is not necessary to assume that F (−u) = F (u). It is
conceivable that F (−u) 6= F (u) for some u if condition (1) is used to approx-
imate the apparent slip over a very rough surface with rows of unsymmetrical
ridges.

(c) The effective slip conditions derived in the mathematical studies men-
tioned above are not always expressed as the familiar Navier condition. For
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example, in [8, 11] the tangential traction is formulated in terms of a matrix
(called Navier’s matrix) that is defined by boundary layer functions. More-
over, all these studies involve significant technical difficulties that require other
techniques than those in this article.

(d) In a practical situation, an approximate slip condition of the type (1)
could possibly be obtained as follows. Suppose for simplicity that the boundary
surface is flat and covered by rows of pillars of varying heights. Then first
consider the simpler situation where all the pillars have the same height. Use
a suitable method (the computational method of [19], say) to derive effective
Navier slip conditions in the form

(Tn)τ = −N(h,u)v,

where h is the height of the pillars and u is the flow direction, for a sufficient
number of values of h and directions u to approximate the function N . Then,
for the original problem, replace h by a local average, h(x), of pillar heights.

2. Notation

Ω is a bounded domain in R3 with boundary ∂Ω of class C1,1. For 1 ≤ q ≤ ∞,
Lq(Ω) and Lq(∂Ω) are the standard Lebesgue spaces, with norms ‖ · ‖q and
‖ · ‖q,∂Ω, respectively. When q = 2, the inner products of these spaces are
denoted by (·, ·) and (·, ·)∂Ω, respectively, and the norms are denoted by ‖ · ‖
and ‖·‖∂Ω, respectively. The norms (and inner products, when q = 2) in Lq(Ω)3

and Lq(∂Ω)3 are denoted by the same symbols as in the scalar case.
For m = 1, 2, Hm(Ω) = Wm,2(Ω) is the standard Sobolev space, with inner

product (·, ·)m,2 and norm ‖ · ‖m,2, and Hm−1/2(∂Ω) is the corresponding space
of traces, with norm ‖ · ‖m−1/2,2,∂Ω (see, e.g., [20]). The inner products and

norms in Hm(Ω)3 and Hm−1/2(∂Ω)3 are denoted by the same symbols as in the
scalar case. Furthermore, n is the outward unit normal vector on ∂Ω and

U = {v ∈ H1(Ω)3 : v · n = 0 on ∂Ω},
V = {v ∈ U : div v = 0 in Ω},

where the boundary condition in the definition of U is defined in the sense of
traces.

3. Problem formulation

Let F : S(∂Ω)→ R be a function with the following properties:

(a) For all (x,u) ∈ S(∂Ω), F (·,u) is continuous at x in the sense that there is
an open ball B(x, r(x)) = {y ∈ R3 : |y−x| < r(x)} such that the function
E(·,u) defined by

E(y,u) = F
(
y, |(n(y)× u)× n(y)|−1(n(y)× u)× n(y)

)
(2)

is continuous on ∂Ω ∩B(x, r(x)).
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(b) F (x, ·) is uniformly Lipschitz continuous, i.e., there exists M0 > 0 such
that for all (x,u), (x,v) ∈ S(∂Ω),

|F (x,u)− F (x,v)| ≤M0|u− v|. (3)

(c) There exist constants 0 < FL < FU such that for all (x,u) ∈ S(∂Ω),

FL ≤ F (x,u) ≤ FU . (4)

For every x ∈ ∂Ω, let τ (x) be a unit tangential vector at x and define the
average of F at x by

Fa(x) =
1

2π

∫ 2π

0

F (x, τ (x) cos θ + n(x)× τ (x) sin θ) dθ.

Let T (∂Ω) = {(x,v) ∈ ∂Ω× R3 : n(x) · v = 0} and define G : T (∂Ω)→ R by

G(x,0) = Fa(x), x ∈ ∂Ω; (5)

G(x,v) = F (x, |v|−1v), (x,v) ∈ T (∂Ω),v 6= 0. (6)

Fix 0 < r0 < r1 ≤ 1 and let ϕ : [0,∞)→ R be a smooth (at least C1) monotone
function such that ϕ(r) = 0 for all r ∈ [0, r0] and ϕ(r) = 1 for all r ≥ r1.

Let M1 = max{ϕ′(r) : r ∈ [r0, r1]}. Define a regularization, G̃, of G: for
(x,v) ∈ T (∂Ω),

G̃(x,v) = Fa(x) + ϕ(|v|)(G(x,v)− Fa(x)). (7)

Then define H : U → L∞(∂Ω) by

H(v)(x) = G̃(x, (γv)(x)), x ∈ ∂Ω, (8)

where γ denotes the trace operator. Now consider the following Stokes problem:

Problem 1. Find (v, p) such that

−µ4v +∇p = f in Ω, (9)

div v = 0 in Ω, (10)

v · n = 0 on ∂Ω, (11)

(Tn)τ +H(v)v = g on ∂Ω. (12)

Here v is the velocity, p is the pressure, µ is the viscosity, f is the external
body force per unit volume, T = −pI+ 2µD(v) is the Cauchy stress tensor with
D(v) = 1

2 (∇v + (∇v)T ), and (Tn)τ = Tn − (n · Tn)n. In condition (12), g is
an applied tangential surface traction. However, it is not clear how this can be
realized physically and one may assume that g ≡ 0 in the slip model considered
here. A nonzero g is allowed for the sake of generality and because it does not
create any additional mathematical difficulty.
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Let f ∈ L2(Ω)3 and g ∈ H1/2(∂Ω)3 with g ·n = 0 on ∂Ω, and suppose that
(v, p) ∈ H2(Ω)3 × H1(Ω) is a solution of Problem 1. Then, by equations (9)
and (10), −divT = f in Ω. Thus (−divT,ψ) = (f ,ψ) for all ψ ∈ V . By apply-
ing Green’s formula, the properties of ψ, the symmetry of D(v), and boundary
conditions (11)–(12), one deduces that for all ψ ∈ V ,

a(v,ψ) + (H(v)v,ψ)∂Ω = (f ,ψ) + (g,ψ)∂Ω, (13)

where a(·, ·) is the bilinear form defined by

a(v,w) = 2µ(D(v),D(w)), v,w ∈ H1(Ω)3.

The right-hand side of equation (13) defines a bounded linear functional on V ,
which is a closed subspace of H1(Ω)3 and thus a Hilbert space with the inner
product (·, ·)1,2. Hence, by the Riesz representation theorem, there exists a
unique h ∈ V such that (f ,w) + (g,w)∂Ω = (h,w)1,2 for all w ∈ V . Hence, for
a given h ∈ H1(Ω)3, one has the following weak form of Problem 1:

Problem 2. Find v ∈ V such that for all ψ ∈ V ,

a(v,ψ) + (H(v)v,ψ)∂Ω = (h,ψ)1,2. (14)

4. Existence and uniqueness of a solution

Theorem 1. There exist positive constants C = C(Ω), K = K(Ω, µ, FL) and
M2 = M2(FU − FL,M0, ϕ) such that if

‖h‖1,2 <
K2

C(Ω)M2
(15)

then Problem 2 has a unique solution, v ∈ V . Moreover,

‖v‖1,2 ≤ K−1‖h‖1,2. (16)

The proof relies on the following two results. Their proofs are given after the
proof of Theorem 1.

Lemma 1. Let Ω be a bounded domain in R3 with Lipschitz continuous bound-
ary ∂Ω and let Γ ⊂ ∂Ω with |Γ| > 0. Then there exist positive constants K1

and K2, which depend at most on Ω and Γ, such that for all A,B > 0 and all
v ∈ H1(Ω)3,

A‖D(v)‖2 +B‖v‖2Γ ≥ K1 min{K2A,B}‖v‖21,2. (17)

Lemma 2. For all (x,v) ∈ T (∂Ω),

FL ≤ G̃(x,v) ≤ FU . (18)

Furthermore, there exists a constant M2 = M2(FU − FL,M0, ϕ) such that for
all (x,v) and (x,w) in T (∂Ω),

|G̃(x,v)− G̃(x,w)| ≤M2|v −w|. (19)
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Proof of Theorem 1 Suppose that v ∈ V is a solution of Problem 2. Set
ψ = v in equation (14). Then, by inequalities (17) and (18)1,

K1 min{2K2µ, FL}‖v‖21,2 ≤ a(v,v) + FL‖v‖2∂Ω

≤ a(v,v) + (H(v)v,v)∂Ω = (h,v)1,2

≤ ‖h‖1,2‖v‖1,2 (20)

and thus
‖v‖1,2 ≤ R := K−1‖h‖1,2, (21)

where K := K1 min{2K2µ, FL}.
If h ≡ 0 then v ≡ 0 is a solution of Problem 2. Moreover, by estimate (21),

it is the only solution.
If R > 0, let u ∈ B(V,R) := {v ∈ V : ‖v‖1,2 ≤ R} and consider the

following auxiliary problem: Find v ∈ V such that

b(u;v,ψ) = (h,ψ)1,2 for all ψ ∈ V, (22)

where b(u; ·, ·) is the bilinear form defined by

b(u;v,w) = a(v,w) + (H(u)v,w)∂Ω, v,w ∈ H1(Ω)3.

By the Cauchy-Schwarz inequality, inequality (18)2 and the trace theorem,

|b(u;v,w)| ≤ 2µ‖∇v‖ · ‖∇w‖+ C(Ω)FU‖v‖1,2‖w‖1,2
for all v,w ∈ H1(Ω)3, i.e. the bilinear form b(u; ·, ·) is continuous on H1(Ω)3 ×
H1(Ω)3 and thus on V × V . Furthermore, by inequalities (18)1 and (17),

b(u;v,v) ≥ K‖v‖21,2 for all v ∈ H1(Ω)3,

i.e. b(u; ·, ·) is H1(Ω)3-elliptic and thus V -elliptic. Hence, by the Lax-Milgram
theorem [21, Theorem 2.1], equation (22) has a unique solution v ∈ V . More-
over, by the same argument as in (20)–(21), ‖v‖1,2 ≤ R. Thus one can define a
mapping Φ : B(V,R) → B(V,R) by Φ(u) = v. Then, by estimate (21), v is a
solution of Problem 2 if and only if it is a fixed point of Φ.

Let u, û ∈ B(V,R) and let v = Φ(u), v̂ = Φ(û). Subtract equation (22)
with û and v̂ from equation (22) with u and v and set ψ = v − v̂. This gives

a(v − v̂,v − v̂) + (H(u)v −H(û)v̂,v − v̂)∂Ω = 0.

Thus, by inequalities (17) and (18)1, Hölder’s inequality, inequality (19) and the
continuity of the trace operator γ : H1(Ω) → L4(∂Ω) (see, e.g., [22, Theorem
II.4.1]),

K‖v − v̂‖21,2 ≤ a(v − v̂,v − v̂) + FL‖v − v̂‖2∂Ω

≤ a(v − v̂,v − v̂) + (H(u)(v − v̂),v − v̂)∂Ω

= ((H(û)−H(u))v̂,v − v̂)∂Ω

≤ ‖H(û)−H(u)‖∂Ω‖v̂‖4,∂Ω‖v − v̂‖4,∂Ω

≤M2‖û− u‖∂Ω‖v̂‖4,∂Ω‖v − v̂‖4,∂Ω

≤ C(Ω)M2R‖û− u‖1,2‖v − v̂‖1,2
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and thus
‖v − v̂‖1,2 ≤ C(Ω)M2K

−2‖h‖1,2‖û− u‖1,2.
Hence, if ‖h‖1,2 < K2/(C(Ω)M2) then Φ is a contraction on B(V,R), which is
closed in H1(Ω)3 and thus a complete metric space. Thus, by Banach’s fixed
point theorem, Φ has a unique fixed point, v ∈ B(V,R). 2

Remark 2. The restrictions on F can be relaxed. It is sufficient to assume that
F (·,u) is measurable (in stead of continuous) and that inequalities (3) and (4)
hold for almost every x ∈ ∂Ω. Then Lemma 2 and its proof must be adapted
accordingly. However, this has no obvious advantage for modelling purposes. If
condition (12) is the effective slip condition derived by an averaging procedure,
one expects that F will be at least continuous.

Proof of Lemma 1 By Theorem III.3.1 of Duvaut and Lions [23], there exists
κ = κ(Ω) > 0 such that for all v ∈ H1(Ω)3,

‖D(v)‖2 + ‖v‖2 ≥ κ‖v‖21,2. (23)

(In [23] it assumed that ∂Ω is Lipschitz continuous. Gobert [24] gives a different
proof, which requires only that Ω has the cone property.) Furthermore, by using
inequality (23), the compactness of the imbedding of H1(Ω) into L2(Ω), and a
characterization of the set {v ∈ H1(Ω)3 : D(v) = 0 in Ω}, one can prove by
contradiction that there exists λ = λ(Ω,Γ) > 0 such that for all v ∈ H1(Ω)3,

‖D(v)‖2 + ‖v‖2Γ ≥ λ‖v‖2. (24)

(Hlaváček and Nečas [25, 26] use this approach in a more general setting to derive
several Korn type inequalities.) Thus, for all A,B > 0 and all v ∈ H1(Ω)3,

A‖D(v)‖2 +B‖v‖2Γ

=
Aλ

λ+ 1
‖D(v)‖2 +

A

λ+ 1
‖D(v)‖2 +B‖v‖2Γ

≥ min
{

(λ+ 1)−1A,B
} (
λ‖D(v)‖2 + ‖D(v)‖2 + ‖v‖2Γ

)
≥ κλmin

{
(λ+ 1)−1A,B

}
‖v‖21,2

by inequalities (24) and (23). 2

Remark 3. (a) Inequality (17) is not in the usual form of a Korn type inequal-
ity but it is slightly stronger than

A‖D(v)‖2 +B‖v‖2Γ ≥
κλ

λ+ 1
min{A,B}‖v‖21,2,

which follows from

‖D(v)‖2 + ‖v‖2Γ ≥
κλ

λ+ 1
‖v‖21,2, v ∈ H1(Ω)3.

(b) It follows from Lemma 1 and the proof of Theorem 1 that it is sufficient
for Theorem 1 that F (x, ·) ≥ FL > 0 on some Γ ⊂ ∂Ω with |Γ| > 0. Thus one
could apply the condition of perfect slip on a part of ∂Ω\Γ.
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Proof of Lemma 2 Inequality (18) follows from inequalities (4) and the

definitions of Fa and G̃. Now consider inequality (19). Let (x,v), (x,w) ∈
T (∂Ω). Suppose that |v| ≤ r0. If |w| ≤ r0, then

|G̃(x,v)− G̃(x,w)| = |Fa(x)− Fa(x)| = 0.

If r0 < |w| < r1, then, by the mean value theorem and inequalities (4),

|G̃(x,v)− G̃(x,w)| =
∣∣(ϕ(r0)− ϕ(|w|))(G(x,w)− Fa(x))

∣∣
≤ (FU − FL)M1

∣∣r0 − |w|
∣∣

≤ (FU − FL)M1

∣∣|v| − |w|∣∣
≤ (FU − FL)M1|v −w|.

Similarly, if |w| ≥ r1, then

|G̃(x,v)− G̃(x,w)| = |(ϕ(r0)− ϕ(r1))(G(x,w)− Fa(x))|
≤ (FU − FL)M1|r0 − r1|
≤ (FU − FL)M1|v −w|.

Now suppose that r0 < |v| < r1. If r0 < |w| < r1, then

|G̃(x,v)− G̃(x,w)|
=
∣∣ϕ(|v|)(G(x,v)− Fa(x))− ϕ(|w|)(G(x,w)− Fa(x))

∣∣ ≤ A+B,

where

A = |(ϕ(|v|)− ϕ(|w|))(G(x,v)− Fa(x))| ≤ (FU − FL)M1|v −w|

and, by inequality (3),

B = |ϕ(|w|)(G(x,v)−G(x,w))|
≤M0

∣∣|v|−1v − |w|−1w
∣∣

= M0|v|−1
∣∣v −w + (1− |w|−1|v|)w

∣∣
≤ 2M0(r0)−1|v −w|.

Similarly, if |w| ≥ r1, then one proceeds as in the preceding case with ϕ(r1) in
place of ϕ(|w|) and uses | |v| − r1| ≤ | |v| − |w| | to obtain the same estimates
of A and B.

Lastly, suppose that |v| ≥ r1 and |w| ≥ r1. Then, similar to the estimate
of B above,

|G̃(x,v)− G̃(x,w)| = |G(x,v)−G(x,w)| ≤ 2M0(r1)−1|v −w|.

Hence, inequality (19) holds with M2 = 2M0(r0)−1 + (FU − FL)M1. 2
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