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Abstract—Deep neural networks (DNNs) have become the
technology of choice for realizing a variety of complex tasks.
However, as highlighted by many recent studies, even an im-
perceptible perturbation to a correctly classified input can lead
to misclassification by a DNN. This renders DNNs vulnerable
to strategic input manipulations by attackers, and also over-
sensitive to environmental noise. To mitigate this phenomenon,
practitioners apply joint classification by an ensemble of DNNs.
By aggregating the classification outputs of different individual
DNNs for the same input, ensemble-based classification reduces
the risk of misclassifications due to the specific realization of
the stochastic training process of any single DNN. However,
the effectiveness of a DNN ensemble is highly dependent on its
members not simultaneously erring on many different inputs. In
this case study, we harness recent advances in DNN verification
to devise a methodology for identifying ensemble compositions
that are less prone to simultaneous errors, even when the input
is adversarially perturbed — resulting in more robustly-accurate
ensemble-based classification. Our proposed framework uses a
DNN verifier as a backend, and includes heuristics that help
reduce the high complexity of directly verifying ensembles. More
broadly, our work puts forth a novel universal objective for
formal verification that can potentially improve the robustness
of real-world, deep-learning-based systems across a variety of
application domains.

I. INTRODUCTION

In recent years, deep learning [33] has emerged as the
state-of-the-art solution for a myriad of tasks. Through the
automated training of deep neural networks (DNNs), engineers
can create systems capable of correctly handling previously
unencountered inputs. DNNs excel at tasks ranging from
image recognition and natural language processing to game
playing and protein folding [2], [21], [38], [48], [74], [75],
and are expected to play a key role in various complex
systems [15], [44].

Despite their immense success, DNNs suffer from severe
vulnerabilities and weaknesses. A prominent example is the
sensitivity of DNNSs to adversarial inputs [34], [49], [80], i.e.,
slight perturbations of correctly-classified inputs that result
in misclassifications. The susceptibility of DNNs to input
perturbations involves two risks that limit the applicability
of deep learning to mission-critical tasks: (1) falling victim
to strategic input manipulations by atfackers, and (2) failing
to generalize well in the presence of environmental noise. In
light of the above, recent work has focused on enhancing the
robustness of DNN-based classification to adversarial inputs
while preserving accuracy [13], [29], [62], [82], [97]. Infor-
mally, a classifier is robustly accurate (aka astute [86]) with
respect to a given distribution over inputs, if it continues to
correctly classify inputs drawn from this distribution, with high
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probability, even when these inputs are arbitrarily perturbed
(up to some maximally allowed perturbation).

We focus here on a classic technique for improving clas-
sification quality [9], [52]: combining the outputs of an
ensemble [28], [37], [81] of DNN-based classifiers on an
input to derive a joint classification decision for that input.
By incorporating the outputs of independently-trained DNNss,
ensembles mitigate the risk of misclassification of a single
DNN due to a specific realization of its stochastic training
process and the specifics of its training data traversal. For a
DNN ensemble to provide a meaningful improvement over
utilizing a single DNN, its members should not frequently
misclassify the same input. Consider, for instance, an extreme
example, where an ensemble with & = 10 members is
used, but for some part of the input space, the 10 DNNs
effectively behave identically, making mistakes on the exact
same inputs. In this scenario, the ensemble as a whole is no
more robust on this input subspace than each of its individual
members. Our objective is to demonstrate how recent advances
in DNN verification [40], [45] can be harnessed to provide
system designers and engineers with the means to avoid such
scenarios, by constructing adequately diverse ensembles.

Significant progress has recently been made on formal
verification techniques for DNNs [1], [8], [11], [12], [26],
[56], [67], [76], [90]. The basic DNN verification query is to
determine, given a DNN N, a precondition P, and a postcon-
dition @, whether there exists an input = such that P(z) and
Q(N(x)) both hold. Recent verification work has focused on
identifying adversarial inputs to DNN-based classification, or
formally proving that no such inputs exist [30], [35], [58]. We
demonstrate the applicability of DNN verification to solving
a new kind of queries, pertaining to DNN ensembles, which
could significantly boost the robustness of these ensembles
(as opposed to just measuring the robustness of individual
DNNS5). We note that despite great strides in recent years [47],
[58], [76], even state-of-the-art DNN verification tools face
severe scalability limitations. This renders solving verification
queries pertaining to ensembles extremely challenging, since
the complexity of this task grows exponentially with the
number of ensemble members (see Section III).

In this case-study paper, we propose and evaluate an effi-
cient and scalable approach for verifying that different ensem-
ble members do not tend to err simultaneously. Specifically,
our scheme considers small subsets of ensemble members,'

'While our technique is applicable to subsets of any size, we focused on
pairs in our evaluation, as we later elaborate.
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and dispatches verification queries to seek perturbations of
inputs for which all members in the subset err simultaneously.
By identifying such inputs, we can assign a mutual error
score to each subset. Using these mutual error scores, we
compute, for each individual ensemble member, a uniqueness
score that signifies how often it errs simultaneously with other
ensemble members. This score can be used to detect the
“weakest” ensemble members, i.e. those most prone to erring
in parallel to others, and replace them with fresh DNNs —
thus enhancing the diversity among the ensemble members,
and improving the overall robust accuracy of the ensemble.

To evaluate our scheme, we implemented it as a proof-
of-concept tool, and used this tool to conduct extensive ex-
perimentation on DNN ensembles for classifying digits and
clothing items. Our results demonstrate that by identifying the
weakest ensemble members (using verification) and replac-
ing them, the robust accuracy of the ensemble as a whole
may be significantly improved. Additional experiments that
we conducted also demonstrate that our verification-driven
approach affords significant advantages when compared to
competing, non-verification-based, methods. Together, these
results showcase the potential of our approach. Our code and
benchmarks are publicly available online [6].

The rest of the paper is organized as follows. Section II con-
tains background on DNN ensembles and DNN verification.
In Section III we present our verification-based methodology
for ensemble selection, and then present our case study in
Section IV. Next, in Section V we compare our verification-
based approach to state-of-the-art, gradient-based, methods.
Related work is covered in Section VI, and we conclude and
discuss future work in Section VII.

II. BACKGROUND

Deep Neural Networks. A deep neural network (DNN) [33]
is a directed graph, comprised of layers of nodes (also known
as neurons). In feed-forward DNNs, data flows sequentially
from the first (input) layer, through a sequence of intermediate
(hidden) layers, and finally into an output layer. The network’s
output is evaluated by assigning values to the input layer’s
neurons and computing the value assignment for neurons in
each of the following layers, in order, until reaching the
output layer and returning its neuron values to the user. In
classification networks, which are our subject matter here, each
output neuron corresponds to an output class; and the output
neuron with the highest value represents the class, or label,
which the particular input is being classified as.

Fig. 1 depicts a toy DNN. It has an input layer with two
neurons, followed by a weighted sum layer, which computes
an affine transformation of values from its preceding layer. For
example, for input V; = [1, —5]7, the second layer’s computed
values are Vo = [—8, 1]7. Next is a ReLU layer, which applies
the ReLU function ReLU(x) = max(0, x) to each individual
neuron, resulting in V3 = [0, 1]7". Finally, the network’s output
layer again computes an affine transformation, resulting in
the output V; = [6,3]T. Thus, input [1,—5]T is classified as
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Fig. 1: A toy DNN.

the label corresponding to neuron vj. For additional details,
see [33].

Accuracy, Robustness, and Deep Ensembles. The weights
of a DNN are determined through its training process. In
supervised learning, we are provided a set of pairs (x;,l;)
drawn according to some (unknown) distribution D, where z;
is an input point and /; is a ground-truth label for that input.
The goal is to select weights for the DNN N that maximize
its accuracy, which is defined as: Pr y.p(N(z) = 1) (we
slightly abuse notation, and use N(z) to denote both the
network’s output vector, as well as the label it assigns x).

We restrict our attention to the classification setting, in
which labels are discrete. The training of a DNN-based classi-
fier is typically a stochastic process. This process is affected,
for example, by the initial assignment of weights to the DNN,
the order in which training data is traversed, and more. A
prominent method for avoiding misclassifications originating
from the stochastic training of a single DNN is employing
deep ensembles. A deep ensemble is a set £ = {Ny,..., Ny}
of k independently-trained DNNs. The ensemble classifies an
input by aggregating the individual classification outputs of
its members (see Fig. 2). The collective decision is typically
achieved by averaging over all members’ outputs. Ensembles
have been shown to often achieve better accuracy than their
individual members [9], [52], [57], [92].

A critical condition for the success of ensemble-based
classifiers is that the ensemble members’ misclassifications
are not strongly correlated [53], [63], [79]. This key property
is crucial in order to avoid a scenario where many different
members of the ensemble frequently make mistakes on the
same input, causing the ensemble as a whole to also err on
that input. Heuristics for achieving diversity across ensemble
members include, e.g., training the members simultaneously
with diversity-aware loss [43], [52], randomly initializing
different weights for the ensemble members [50], and other
methods [63], [73].

Since the discovery of adversarial inputs, practitioners have
become interested in DNNs that are not only accurate but
also robustly accurate. We say that a network NV is e-robust
around the point z if every input point that is at most € away
from z receives the same classification as z: |2’ — x| <
e = N(z) = N(z'), where N(x) is the label assigned to
x; and the definition of accuracy is generalized to e-robust
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Fig. 2: An ensemble comprising three DNNs. Each input
vector is independently classified by all three networks, and
the results are aggregated into a final classification.

accuracy as follows: Pre, n.p([|z’ —z| < e = N(2') =1).
While improvements in accuracy afforded by ensembles are
straightforward to measure, this is typically not the case for
robust accuracy, as we discuss in Section III.

DNN Verification. Given a DNN N, a verification query on
N specifies a precondition P on N’s input vector x, and a
postcondition @ on N’s output vector N(x). A DNN verifier
needs to determine whether there exists a concrete input x
that satisfies P(xg) A Q(N(zp)) (the SAT case), or not (the
UNSAT case). Typically, P and @) are expressed in the logic
of linear real arithmetic. For instance, the e-robustness of a
DNN around a point = can be phrased as a DNN verification
query, and then dispatched using existing technology [30],
[45], [85]. The DNN verification problem is known to be NP-
complete [46].

III. IMPROVING ROBUST ACCURACY USING VERIFICATION
A. Directly Quantifying Robust Accuracy is Hard

In order to construct a robustly-accurate ensemble £ with
k members, we train a set of n > k£ DNNSs and then seek to
select a subset of & DNNs that provides high robust accuracy.
This method of training multiple models and then discarding a
subset thereof is known as ensemble pruning, and is a common
practice in deep-ensemble training [14], [98]. In our case, a
straightforward approach to do so would be to quantify the
robust accuracy for all possible k-sized DNN-subsets, and then
pick the best one. This, however, is computationally expensive,
and requires an accurate estimate of the robust accuracy of an
ensemble.

A natural approach for estimating the e-robust accuracy of
a DNN is to verify, for many points in the test data, that the
DNN yields an accurate label not only on each data point
itself, but also on each and every input derived from that data
point via an e-perturbation [30]. The fraction of tested points
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for which this is indeed the case can be used to estimate the
accuracy of the classifier on the underlying distribution from
which the data is generated.

A similar process can be performed for an ensemble £ =
{Ny,..., Ny}, by first constructing a single, large DNN N¢
that aggregates £’s joint classification, and then verifying its
robustness on a set of points from the test data (see the
extended version of this paper [7]). However, this approach
faces a significant scalability barrier: the DNN ensemble,
Ng, comprised of all £ member-DNNSs is (roughly) & times
larger than any of the IN;’s, and since DNN verification
becomes exponentially harder as the DNN size increases,
N¢’s size might render efficient verification infeasible. As we
demonstrate later, this is the case even when the constituent
networks themselves are fairly small. Our proposed method-
ology circumvents this difficulty by only solving verification
queries pertaining to very small sets of DNNs.

B. Mutual Error Scores and Uniqueness Scores

In general, the less likely it is that members of an ensemble
err simultaneously with other members, the more accurate the
ensemble is. This motivates our definition of mutual error
scores below.

Definition 1 (Agreement Points): Given an ensemble £ =
{N1,N3,..., N}, we say that an input point zo is an
agreement point for £ if there is some label yy such that
N;(x0) = yo for all i € [k]. We let £(xg) denote the label yj.

As we later discuss, the e-neighborhoods of agreement
points are natural locations for detecting hidden tendencies
of ensemble members to err together.

Definition 2 (Mutual Errors): Let £ be an ensemble, and
let o be an agreement point for £. Let By, . be the e-ball
around zg, By, . = {2 | |x —20|lcc < €}. We say that N7 and

Ny have a mutual error in B if there exists a point x € By, .
such that Ny (z) # E(xo) and No(x) # & (o).

Intuitively, if N; and Ny have many mutual errors, incorpo-
rating both into an ensemble is a poor choice. This naturally
gives rise to the following definition:

Definition 3 (Mutual Error Scores): Let A be a finite set
of m agreement points in an ensemble £’s input space, and let
Bi, B, ..., B, denote the e-balls surrounding the points in
A. Let N1, Ny denote two members of £. The mutual error
score of N1 and Ny with respect to £ and A is denoted by
MEg 4(N1, N3), and defined as:

MEg a(N1, N2) =
|[{¢ | N1 and N5 have a mutual error in B;}|

m
Observe that MEg 4(N7, No) is always in the range [0, 1].
The closer it is to 1, the more mutual errors N; and N5 have,
making it unwise to place them in the same ensemble.



Definition 4 (Uniqueness Scores): Given an ensemble & =
{N1,Na,...,N,} and a set A of agreement points for £, we
define, for each ensemble member N;, the uniqueness score
for N; with respect to £ and A, USg 4(NN;), as:

>z MEe a(Ni, N;)
n—1

USe a(N;) =1—

The uniqueness score (US) of N; is the complement of its
average mutual error score with the other ensemble members.
When this score is close to 0, /V; tends to err simultaneously
with other members of the ensemble on points in A. In
contrast, the closer the uniqueness score is to 1, the rarer it
is for N; to misclassify the same inputs as other members of
the ensemble. Hence, ensemble members with low uniqueness
scores are, intuitively, good candidates for replacement.

We point out that our definitions above can naturally be
generalized to larger subsets of the ensemble members — thus
measuring robust accuracy more precisely, but rendering these
measurements more complex to perform in practice.

Computing Mutual Errors. The only computationally com-
plex step in determining the uniqueness scores of individual
ensemble members is computing the pairwise mutual errors
for the ensemble. To this end, we leverage DNN verification
technology. Specifically, given two ensemble members Ng
and N, an agreement point a for the ensemble with label
l, and € > 0, an appropriate DNN verification query can
be formulated as follows. First, we construct from N; and
Ny a single, larger DNN N, which captures N; and N,
simultaneously processing a shared input vector, side-by-side.
This network N is then passed to a DNN verifier, with
the precondition that the input be restricted to B, an e-ball
around a, and the postcondition that (1) among N’s output
neurons that correspond to the outputs of Nj, the neuron
representing [ not be maximal, and (2) among N’s output
neurons that correspond to the outputs of N», the neuron
representing [ not be maximal. Such queries are supported
by most available DNN verification engines. We note that this
encoding (depicted in Figure 3), where two networks and their
output constraints are combined into a single query, is crucial
for finding inputs on which both DNNss err simultaneously. For
additional details, see the extended version of this paper [7].

C. Ensemble Selection using Uniqueness Scores

An Iterative Scheme. Building on our verification-based
method for computing mutual error scores, we propose an
iterative scheme for constructing an ensemble. Our scheme
consists of the following steps:

1) independently train a set A/ of n DNNs, and identify a
set A of m agreement points that are correctly classified
by all n DNNs.? This is done by sequentially checking
points from the validation dataset;

2) arbitrarily choose an initial candidate ensemble £ of size
k < mn;

2In our experiments, we arbitrarily chose & = 5, n = 10 and m = 200.

3) compute (using a verification engine backend) all mutual
error scores for the DNN members comprising &£, with
respect to A;

4) compute the uniqueness score for each ensemble member,
and identify a DNN member N; with a low score;

5) identify a fresh DNN Ny, not currently in &, that has a
higher uniqueness score than V;, if one exists, and replace
N; with Ny. Specifically, identify a DNN Ny € N\
&, such that the uniqueness score of Ny with respect
to the ensemble £ \ {N;} U {Ny} and the point set A,
namely USg\ (n,ju{n,},4(Ny), is maximal. If this score
is greater than USg 4(IV;), replace N; with Ny, i.e. set
E=E\{N,}U{N;}; and

6) repeat Steps (3) through (5), until no Ny is found or until
the user-provided timeout or maximal iteration count are
exceeded.

Intuitively, after starting with an arbitrary ensemble, we run
multiple iterations, each time trying to improve the ensemble.
Specifically, we identify the “weakest” member of the current
ensemble, and replace it with a fresh DNN that obtains a
higher uniqueness score relevant to the remaining members
— thus ensuring that each change that we make improves the
overall robust accuracy on the fixed set of agreement points.

The greedy search procedure is repeated for the new can-

didate ensemble, and so on. The process terminates after a
predefined number of iterations is reached, when the process
converges (no further improvement is achievable on the fixed
set of agreement points), or when a predefined timeout value
is exceeded.
On the Importance of Agreement Points. Our iterative
scheme for constructing an ensemble starts with an arbi-
trary selection of k candidate members, and then computes
the uniqueness score for each member. As mentioned, the
uniqueness scores are computed with respect to a fixed set of
agreement points, pre-selected from the validation data (which
is labeled data, not used for training the DNNG).

We point out that agreement points are data points on which
there is overwhelming consensus among ensemble members,
despite the specific realization of the training process of each
member. As such, agreement points correspond to data points
that are “easy” to label correctly. Consequently, data points
in close proximity of an agreement point are rarely classified
differently than the agreement point by an individual ensemble
member, let alone by multiple members simultaneously. As
our objective is to expose implicit tendencies of ensemble
members to err together, the close neighborhood of agreement
points is a natural area for seeking joint deviations from
the consensual label (which are expected to be extremely
rare). In our evaluation, we computed uniqueness scores based
solely on correctly-classified agreement points and ignored any
incorrectly-classified agreement points.>

As we later demonstrate, a small set of correctly-classified
agreement points from the validation set can be used, in

3For example, in our MNIST experiments 99.7% of the agreement points
were correctly classified by all individual DNNs, and by the ensemble as a
whole.



practice, to identify ensemble members that tend to err simul-
taneously on other data points. We note that this is also the
case even when the chosen agreement points are all identically
labeled.

Monotonicity and Convergence. Using our approach, an
ensemble member is replaced with a fresh DNN only if
this replacement leads to strictly fewer joint errors with the
remaining members on the fixed set of agreement points.
Thus, the total number of joint errors decreases with every
replacement; and, as this number is trivially lower-bounded
by 0, this (“potential-function” style) argument establishes the
process’s monotonicity and convergence.

By iteratively reducing the number of joint errors across
all pairs of chosen ensemble members, our iterative process
improves the robust accuracy of the resulting ensemble on the
fixed set of agreement points. This, however, does not guar-
antee improved robust accuracy over the entire input domain.
Nonetheless, we show in Section IV that such an improvement
does typically occur in practice, even on randomly sampled
subsets of input points (which are not necessarily agreement
points).

IV. CASE STUDY: MNIST AND FASHION-MNIST

Below, we present the evaluation of our methodology
on two datasets: the MNIST dataset for handwritten digit
recognition [51], and the Fashion-MNIST dataset for clothing
classification [91]. Our results for both datasets demonstrate
that our technique facilitates choosing ensembles that provide
high robust accuracy via relatively few, efficient verification
queries.

The considered datasets are conducive for our purposes
since they allow attaining high accuracy using fairly small
DNNSs, which enables us to directly quantify the robust accu-
racy of an entire ensemble, by dispatching verification queries
that would otherwise be intractable (see Section III-A). This
provides the ground truth required for assessing the benefits
of our approach. The scalability afforded by our approach is
crucial even for handling the relatively modest-sized DNNs
considered: on the MNIST data, for instance, mutual-error
verification queries for two ensemble members typically took
a few seconds, whereas verification queries involving the
full ensemble of five networks often timed out (35% of the
queries on the MNIST data timed out after 24 hours, versus
only roughly 1% of the pairwise mutual-error queries). As
constituent DNN sizes and ensemble sizes increase, this gap
in scalability is expected to become even more significant.

Our verification queries were dispatched using the Marabou
verification engine [47] (although other engines could also be
used). Additional details regarding the encoding of the verifi-
cation queries, as well as detailed experimental results, appear
in the extended version of this paper [7]. We have publicly
released our code, as well as all benchmarks and experimental
data, within an artifact accompanying this paper [6].

MNIST. For this part of our evaluation, we trained 10 inde-
pendent DNNs {Ny,..., Nyig} over the MNIST dataset [51],
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which includes 28x28 grayscale images of 10 handwritten
digits (from “0” to “9”). Each of these networks had the same
architecture: an input layer of 784 neurons, followed by a
fully-connected layer with 30 neurons, a ReLU layer, another
fully-connected layer with 10 neurons, and a final softmax
layer with 10 output neurons, corresponding to the 10 possible
digit labels.* All networks achieved high accuracy rates of
96.29% — 96.57% (see Table I).

After training, we arbitrarily constructed two distinct en-
sembles with five DNN members each: & = {Ny,..., N5}
and & = {Ns,...,Nio}, with an accuracy of 97.8% and
97.3%, respectively. Notice that the ensembles achieve a
higher accuracy over the test set than their individual members.

We then applied our method in an attempt to improve
the robust accuracy of £. We began by searching the val-
idation set, and identifying 200 agreement points (the set
A), all correctly labeled as “0” by all 10 networks.® Using
the 200 agreement points and 6 different perturbation sizes’
e € {0.01,0.02,0.03,0.04,0.05,0.06}, we constructed 1200
e-balls around the selected agreement points; and then, for
every ball B and for every pair IV;, N; € &£, we encoded
a verification query to check whether N; and N; have a
mutual error in B (see example in Fig. 3). This resulted in
(5) -200-6 = 12000 verification queries, which we dispatched
using the Marabou DNN verifier [47] (each query ran with a
2-hour timeout limit). Finally, we used the results to compute
the uniqueness score for each network in &;; these results,
which appear briefly in Table I (for e = 0.02) and appear in
full in [7], clearly show that two of the members, N2 and
N5, are each relatively prone to erring simultaneously with
the remaining four members of &;.

Next, we began searching among the remaining networks,
Ng, ..., Nig, for good replacements for No and Ns. Specifi-
cally, we searched for networks that obtained higher US scores
than Ny and Ns. To achieve this, we began modifying £, each
time removing either N, or N, replacing them with one of the
remaining networks, and computing the uniqueness scores for
the new members (with respect to the four remaining original
networks). We observed that for both Ny and N5, network Ng
was a good replacement, obtaining very high US values. For
additional details, see the extended version of our paper [7].

Finally, to evaluate the effect of our changes to
&1, we constructed the two new ensembles, 512ﬁ9
{Nl, ]\fg7 Ng, N4, N5} and gi’;—)Q = {Nl, NQ, Ng, ]\747 Ng}
Computing the new ensembles’ robust accuracy over the entire

4Although the DNNs all have the same size and architecture, common
ensemble training processes randomly initialize their weights, and also ran-
domly pick samples from the same training set (see [50]). This is the cause
for diversity among ensemble members, which our algorithm later detects.

5In our experiments, we empirically selected 200 agreement points in order
to balance between precision (a higher number of points) and verification
speed (a smaller number of points). This selection is based on a user’s
available computing power.

©The “0” label is the label with the highest accuracy among the trained
ensemble members, and thus “0”-labeled agreement points represent areas in
the input space with extremely high consensus.

7¢ values which are too small, or too large, render the queries trivial. Thus,
we found it to be useful to use a varied selection of ¢ values.



TABLE I: Accuracy and uniqueness scores for the MNIST networks. Uniqueness scores are measured with respect to the

ensemble (either £ or &5).

51 52
N1 No N3 Ny Ns Ng N7 Ng Ny Nio
Accuracy | 96.42% 96.55% 96.40%  96.46% 96.29% 96.44%  96.48%  96.57% 96.51% 96.46%
UsS 90.75%  88.38% 90.63% 92.13%  88.63% 97.38%  96.75% 97.5%
and £3°7% = {Ng, Ny, Ng, Ng, N4}, and compared their

I 2
S

o’i"*\"’ X5

Z

Fig. 3: Checking whether two MNIST digit recognition net-
works have a mutual error around an agreement point labeled
“9”. In this case, the same perturbation causes one network to
output the incorrect label “2”, and the other network to output
the incorrect label “7”.

test set is computationally expensive, and thus we sampled 200
random points from the test set (these did not necessarily have
the same label, nor were they required to be agreement points
for the ensemble). For each sample, we created a verification
query to check the robust accuracy of the new ensembles
around the point, compared to the original ensemble. The
results are plotted in Fig. 4, and indicate that the new ensem-
bles demonstrated significantly higher robust accuracy on the
tested points. These results validate our claim that a scoring
metric based on agreement points is useful in improving the
ensemble’s robustness also on other, “harder”, input points.
Our analysis also indicates that the improved robustness results
originated not only from e-balls around inputs labeled as “0”,
but from other labels as well. In fact, the gain in robustness
was not just in quantity, but also in quality: for almost all cases,
whenever & proved robust around an input, so did £~ and
&Y. This indicates that the improved robustness originated
from inputs on which £ was prone to err.

Next, we turned our attention to &, and computed the
uniqueness scores for each of its members (see Table I). This
time we conducted a “reverse” experiment: we identified the
two best members of £, i.e. the two networks that had the
highest uniqueness scores, and were consequently the least
prone to err simultaneously. These turned out to be networks
Ny and Njp. Next, we replaced each of these networks with
each of the networks { /N1, ..., N5}, in order to identify a net-
work that, when inserted into £, achieved a lower score than
Ng and Nyg. N4 turned out to be such a network. We created

the two modified ensembles, £97* = { Ng, N7, Ng, Ny, N1o}
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robust accuracy to that of & on 200 random points from
the test set. The results, depicted in Fig. 4, indicate that
the ensemble’s robust accuracy decreased significantly, as
expected.

In both aforementioned experiments, we also computed
the accuracy (as opposed to robust accuracy) of the new
ensembles, by evaluating them over the test set. All new
ensembles had an accuracy that was on par with that of the
original ensembles — specifically, within a range of +0.2%
from the original ensembles’ accuracy.

Fashion-MNIST. For the second part of our evaluation,
we trained 10 independent DNNs {Nj1,..., Nog} over the
Fashion-MNIST dataset [91], which includes 28 x28 grayscale
images of 10 clothing categories (“Coat”, “Dress”, etc.),
and is considered more complex than the MNIST dataset.
Each DNN had the same architecture as the MNIST-trained
DNNs, and achieved an accuracy of 87.05%-87.53% (see
Table II). We arbitrarily constructed two distinct ensembles,
& = {N117 e ,N15} and & = {Nlﬁ, Ce 7]\/vg()}, with an
accuracy of 88.22% and 88.48%, respectively.

Next, we again computed the US values of each of the
networks. The results, which appear in full in [7], indicate a
high variance among the uniqueness scores of the members
of &, as compared to the relatively similar scores of &£3’s
members. We thus chose to focus on &;. Based on the
computed US values, we identified Ny as its least unique
DNN; and, by replacing Noy with each of the five networks
not currently in &4, identified that Ni5 is a good candidate
for replacing Nog. Performing our validation step over £701°
revealed that its robust accuracy has indeed increased. Running
the “reverse” experiment, in which £,’s most unique member
is replaced with a worse candidate, led us to consider the
ensemble &}8”13, which indeed demonstrated lower robust
accuracy than the original ensemble. For additional details,
see the extended version of our paper [7].

For the final step of our experiment, we used our approach
to iteratively switch two members of an ensemble. Specifically,
after creating £2°715, which had higher robust accuracy than
&4, we re-computed the US scores of its members, and
identified again the least unique member — in this case, Nyg.
Per our computation, the best candidate for replacing it was
Ny. The resulting ensemble, namely 20719712 " indeed
demonstrated higher robust accuracy than both its predeces-
sors. Performing another iteration of the “reverse” experiment
yielded ensemble £;°7 377! with poorer robust accuracy.
The results appear in Fig. 5. We note that the only discrepancy,
namely the robust accuracy of 79715 being lower than that
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TABLE II: Accuracy and uniqueness scores for the Fashion-MNIST networks. Uniqueness scores are measured with respect

to the ensemble (either £3 or &4).

&3

Ni1 Ni2 Ni3 N4 Nis

Nig Ni7 Nis Nig N2o

87.14%
70.63%

87.13%
71.5%

87.53%
69.75%

Accuracy
us

87.34%
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Fig. 5: The original ensemble &£, (center), ensembles modified
to gain robust accuracy (right), and ensembles modified to
reduce robust accuracy (left).

of &4 for e = 0.04, is due to timeouts.

Similarly to the MNIST case, the new ensembles in the
Fashion-MNIST experiments obtained an accuracy that was on
par with that of the original ensembles — specifically, within
a range of +0.17% from the original ensemble’s accuracy.

V. COMPARISON TO GRADIENT-BASED ATTACKS

Current state-of-the-art approaches for assessing a network’s
robustness and robust accuracy rely on gradient-based attacks
— a popular class of algorithms that, like verification methods,
are capable of finding adversarial examples for a given neural
network. In this section we compare our verification-based
approach to these methods.

Gradient-based attacks generate adversarial examples by
optimizing (via various techniques) a loss metric over the
network’s output, relative to its input. This allows these
methods to effectively search the local surroundings of a
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87.05%
67.38%

87.32%
72.38%

87.35%
80.13%

87.34%
71.38%

87.11%
66.75%

fixed input point for local optima, which often constitute
adversarial inputs. Gradient-based methods, such as the fast-
gradient sign method (FGSM) [39], projected gradient descent
(PGD) [60], and others [49], [59], are in widespread use due
to their scalability and relative ease of use. However, as we
demonstrate here, they are often unsuitable in our setting.

In order to evaluate the effectiveness of gradient-based
methods for measuring the robust accuracy of ensembles, we
modified the common FGSM [39] and I-FGSM [49] (“Iterative
FGSM”) methods, thus extending them into three novel attacks
aimed at finding adversarial examples that can fool multiple
ensemble members simultaneously. We refer to these attacks as
Gradient Attack (G.A.) 1, 2, and 3. For a thorough explanation
of these attacks, as well as information about their design and
implementation, see the extended version of our paper [7].

Next, we used our three attacks to search for mutual errors
of DNN pairs — i.e., adversarial examples that simultaneously
affect a pair of DNNs. Specifically, we applied the attacks on
both datasets (MNSIT and Fashion-MNIST), and searched for
adversarial examples within various e-balls around the same
set of agreement points used in our previous experiments.
This allowed us to subsequently compute, via gradient attacks,
the mutual error scores of DNN pairs, and consequently,
the uniqueness scores of each constituent ensemble member.
The results of the total number of adversarial inputs found
(SAT queries) are summarized in Table III. Each gradient
attack typically took a few seconds to run. We also provide
further details regarding the uniqueness scores computed by
the three gradient-based methods in the extended version of
this paper [7], and in our accompanying artifact [6].

The results in Table III include a total of 108000 exper-
iments, on all ensemble pairs.® In these experiments, our

8The 108000 experiments consist of (120) pairs, times 200 agreement

points, times 6 perturbation sizes, times 2 datasets.



TABLE III: The number of SAT queries discovered when
searching for an adversarial attack, using the three gradient
attack methods (G.A. 1, 2 and 3), and our verification ap-
proach.

Experiment GA. 1 GA. 2 G.A.3 verification
MNIST 1,333 3,886 5,574 16,826
Fashion-MNIST 17,190 21,245 22,129 33,152
Total 18,523 25,131 27,703 49,978

verification-based approach returned 49978 SAT results, while
the strongest gradient-based method (gradient attack number
3) returned only 27703 SAT results — a 44% decrease in
the number of counterexamples found. This discrepancy is on
par with previous research [89], which indicates that gradient-
based methods may err significantly when used for adversarial
robustness analysis. This phenomenon manifests strongly in
our setting, which involves many small and medium-sized per-
turbations that gradient-based approaches struggle with [24].

The reduced precision afforded by gradient-based ap-
proaches can, in some cases, lead to sub-optimal ensemble
selection choices when compared to our verification-based
approaches. Specifically, even if a gradient-based approach
produces a uniqueness score ranking that coincides with the
one produced using verification, the dramatic decrease in the
number of SAT queries leads to much smaller mutual error
scores, and consequently — to uniqueness score values that are
overly optimistic, and less capable of distinguishing between
poor and superior robust accuracy results.

For example, when observing the first two arbitrary ensem-
bles on the MNIST dataset, £&; and &, the three gradient
approaches (G.A. 1, 2 and 3) respectively assign average
uniqueness scores of (95.4%, 97.8%), (87.5%, 94.5%) and
(83.1%, 92.5%) to the two ensembles (when averaging the
US over all ensemble members and all perturbations). This
indicates that the robust accuracy of the two ensembles is
fairly similar (see appendices in [7]). In contrast, when using
the more sensitive, verification-based approach, we find a
substantially higher number of mutual errors (see Table III),
and consequently, detect a much larger gap between the
uniqueness scores of the two ensembles: 55% and 77%.

Another example that demonstrates the increased sensitivity
of our method, when compared to gradient-based approaches,
is obtained by observing the average uniqueness score of
&3 and &, on the Fashion-MNIST dataset. The strongest
gradient attack that we used assigned almost identical average
uniqueness scores to both ensembles (up to a difference of
0.01%), while our approach was sensitive enough to find a
2% difference between the average US of the two ensembles.

Finally, we note that, unlike verification-based approaches,
gradient attacks are incomplete, and are consequently unable
to return UNSAT. This makes them less suitable for assessing
any additional uniqueness metrics based on robust e-balls. We
thus argue that, although gradient-based methods are faster
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and more scalable than verification, our results showcase the
benefits of using verification-based approaches for assessing
uniqueness scores and for ensemble selection.

VI. RELATED WORK

Due to its pervasiveness, the phenomenon of adversarial
inputs has received a significant amount of attention [27],
[34], [61], [65], [66], [80], [99]. More specifically, the ma-
chine learning community has put a great deal of effort into
measuring and improving the robustness of networks [18]-
[20], [29], [36], [54], [60], [68], [71], [72], [87], [94]. The
formal methods community has also been looking into the
problem, by devising scalable DNN verification, optimization
and monitoring techniques [1], [5], [8], [10]-[12], [16], [26],
[41], [42], [55], [56], [64], [67], [70], [76], [90], [96]. To the
best of our knowledge, ours is the first attempt to apply DNN
verification to the setting of DNN ensembles. We note that our
approach uses a DNN verifier strictly as a black-box backend,
and so its scalability will improve as DNN verifiers become
more scalable.

Obtaining DNN specifications to be verified is a difficult
problem. While some studies have successfully applied verifi-
cation to properties formulated by domain-specific experts [3],
[4], [22], [25], [45], [78], most research has been focusing on
universal properties, which pertain to every DNN-based sys-
tem; specifically, local adversarial robustness [17], [35], [58],
[76], fairness properties [83], network simplification [31] and
modification [23], [32], [69], [77], [84], [93], and watermark
resilience [32].

VII. CONCLUSION AND FUTURE WORK

In this case-study paper, we demonstrate a novel technique
for assessing a deep ensemble’s robust accuracy through the
use of DNN verification. To mitigate the difficulty inherent
to verifying large ensembles, our approach considers pairs of
networks, and computes for each ensemble member a score
that indicates its tendency to make the same errors as other en-
semble members. These scores allow us to iteratively improve
the robust accuracy of the ensemble, by replacing weaker
networks with stronger ones. Our empiric evaluation indicates
the high practical potential of our approach; and, more broadly,
we view this work as a part of the ongoing endeavor for
demonstrating the real-world usefulness of DNN verification,
by identifying additional, universal, DNN specifications.

Moving forward, we plan to tackle the natural open ques-
tions raised by our work; specifically, how our methodology
for selecting robustly accurate ensembles can be extended
beyond the current greedy search heuristic, as well as how
ensembles should be selected in the context of other per-
formance objectives, beyond robust accuracy. We also plan
on experimenting with multiple stopping conditions for the
ensemble member replacement process; as well as explore
potential synergies between our verification-based approach
and gradient-based approaches for computing mutual error
scores. In addition, we note that we are currently extending



our approach to regression learning ensembles and deep rein-
forcement learning ensembles. Finally, we are in the process of
optimizing our approach by using lighter-weight, incomplete
verification tools (e.g., [76], [88], [95]), which afford better
scalability, and also support parallelization. This will hope-
fully allow us to handle significantly larger DNNs and more
complex datasets.
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