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This paper models Robotic Mobile Fulfillment Systems and analyzes their performance. A Robotic Mobile
Fulfillment System is an automated, parts-to-picker storage system where robots bring pods with prod-
ucts to a workstation. It is especially suited for e-commerce distribution centers with large assortments
of small products, and with strong demand fluctuations. Its most important feature is the ability to auto-

Keywords: matically sort inventory and to adapt the warehouse layout in a short period of time. Queueing network
Facilities planning and design models are developed for both single-line and multi-line orders, to analytically estimate maximum order
Queueing throughput, average order cycle time, and robot utilization. These models can be used to quickly evaluate
Robots different warehouse layouts, or robot zoning strategies. Two main contributions are that the models in-

Mobile fulfillment

clude accurate driving behavior of robots and multi-line orders. The results show that: (1) the analytical
Material handling

models accurately estimate robot utilization, workstation utilization, and order cycle time, (2) maximum
order throughput is quite insensitive to the length-to-width ratio of the storage area and (3) maximum

order throughput is affected by the location of the workstations around the storage area.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A Robotic Mobile Fulfillment System (RMFS) is a new type
of automated storage and part-to-picker order picking system,
brought to the market by companies such as Kiva Systems, Swiss-
log, Interlink, GreyOrange and Mobile Industrial Robots. It is par-
ticularly suited for e-commerce distribution centers that handle
strong demand fluctuations and large assortments of small prod-
ucts. For example, Amazon bought Kiva systems in 2012 and de-
ployed RMFSs in ten of its warehouses in November 2014 (Business
Wire, 2015). Other examples, such as Staples, suggest that the pick-
ing rates can double compared to traditional picker-to-parts sys-
tems (Wulfraat, 2012). However, installing an RMFS typically re-
quires a multi-million dollar investment, most of which is spent
on the robots that carry the pods (see Fig. 1). Therefore, under-
standing how order cycle time and robot utilization are influ-
enced by warehouse layout and operating policies is important for
practice.

This paper develops several models for estimating performance
and robot utilization in an RMFS. These models address the most
important process in an RMFS, namely the picking process. It
is the most important, because it is responsible for picking the
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customer orders before their due time. One of the main benefits
of an RMFS is that pick rates can reach between 200 and 300 lines
per picker per hour (Wulfraat, 2012; Wurman, D’Andrea, & Mountz,
2008). The picking process works as follows. An order arrives and
waits until it can be assigned to one of the workstations where
the orders are picked (see Fig. 2). Once the order is assigned to a
workstation, robots can fetch products for it. Products are stored
on inventory pods (i.e., movable shelf racks). A robot moves un-
derneath a pod, lifts it, and brings the pod to a workstation, using
the aisles and cross-aisles. The robot enters the workstation buffer
and queues for its turn. Each workstation has one picker and once
the picker has retrieved the required products from the pod, the
robot transports the pod to a storage location and stores it there.
The robot then drives to the next pod. As it is moving without a
load it does not need to use the aisles but can move underneath
the pods. Once all the required products of an order are collected,
that order leaves the system and another order can be assigned to
the workstation. For a complete description of an RMFS see Enright
and Wurman (2011) and Wurman et al. (2008).

A top view of a typical warehouse layout with this system is
shown in Fig. 2. The pods are stored in blocks in the storage area
with total width W and length L. The dark gray squares represent
the pods and the light gray squares represent unoccupied storage
locations. The workstations are situated at three sides of the ware-
house in Fig. 2. The aisles in the storage area all have a single
travel direction to prevent deadlock and reduce aisle congestion.
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Fig. 1. Robot carrying a pod (Enright & Wurman, 2011).

For the same reason, movement in the space between the work-
stations and storage area is also single directional. Fig. 3 gives a
close-up view of the system. The worker picks products from the
pod in front of him or her and then adds them to the order totes
on the left.

During the day, a pod is not required to maintain a fixed po-
sition, but can continually be repositioned. By changing the lo-
cations of the pods, the system can automatically sort inventory
during operations and adapt to varying demand in the short run.
The advantage is that the most popular products are usually lo-
cated close to the workers, even during periods of strong de-
mand fluctuation. Another advantage is that the layout of the
warehouse can be rearranged relatively quickly. The number of
workstations and their positions can easily be adapted to the
changing numbers of workers in each shift. In addition, if storage
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capacity becomes insufficient, the layout can be adjusted by adding
more pods and storage locations. In other words, the layout is not
static, but can be changed to suit changing circumstances relatively
quickly.

Typically, the storage area is quite compact, because it only
contains products needed within the next few days. With enough
robots, workers can be kept busy continuously. So far, few ana-
lytical models have been developed to estimate the performance
or robot utilization of an RMEFS. This paper develops four queue-
ing network models to estimate performance and robot utilization
under different system parameters, warehouse layouts, and control
policies. All models focus on the performance of a workstation in
isolation, but they differ in whether they allow only single-line or-
ders or also multi-line orders, and in whether they divide the stor-
age areas into zones or not. These analytical models require very
little computation time and can therefore be used to rapidly opti-
mize the warehouse design, which is not easily possible using sim-
ulation models. In addition, the development time needed to adapt
these models to analyze a specific warehouse setting will be less
than what is needed for a simulation. The queueing models can
incorporate the stochasticity in the travel times of the robots and
the time that orders have to wait before they can be released to
the system, so that the robot utilization and performance metrics
such as order throughput and order cycle time can be estimated.
By measuring order throughput, order cycle time, and robot uti-
lization, these models enable warehouse managers and system de-
velopers to predict performance and optimize warehouse design.
These models also enable researchers to rapidly compare the per-
formance of the RMFS to other automation systems.

This paper will answer the following design-related research
questions. How many orders can be completed per hour given a
certain number of robots and workstations? How does the length-
to-width ratio of the storage area affect maximum order through-
put performance? How does the location of the workstations in the
storage area affect maximum order throughput performance? How
many robots are needed to achieve a certain desired throughput
level and order cycle time?

The remainder of this paper is as follows: Section 2 reviews the
literature, Section 3 explains the models, Section 4 describes the
data and results, and Section 5 draws conclusions and provides di-
rections for future research.
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Fig. 2. Top view of an RMFS with

workstation —> I l

workstations on three sides.



T. Lamballais et al./European Journal of Operational Research 256 (2017) 976-990

978

|— | IIEEE| TIE | EEE
&

BN | EEEEE  EEEEE | EEE
— | HEEEE | BE E =

- — 1 HEE I o
—| HE BJEEE B EEE
——THE NN | NS NS
«—  HEE B BE | BEEE
——T [N | T
—| [l EEE . EEEE C

N B o I o o o N e e

Travel directions in the warehouse

order totes

pod being picked

worker c

pods waiting in line

buffer

pod entering buffer

Top view of a workstation

Fig. 3. Close-ups of parts of the RMFS.

2. Literature

Lu, McFarlane, Giannikas, and Zhang (2016) proposed dynamic
order-picking strategies that allow for changes of pick-lists dur-
ing a pick cycle, which have attracted attention with increase
in e-commerce orders. Several modeling and performance analy-
sis studies were also carried out on unit-load vehicle-based stor-
age and retrieval systems. However, these studies consider strict
rectilinear travel for storage and retrieval with one load/unload
point only (see Marchet, Melacini, Perotti, & Tappia, 2013; Roy,
Krishnamurthy, Heragu, & Malmborg, 2015a, b, 2016; Tappia, Roy,
De Koster, & Melacini, 2016). Queueing models are popular for an-
alyzing automated warehouse systems, because they can incorpo-
rate the stochasticity in the travel times of vehicles and in the
speed of the workers, and can establish the effect on performance.
Queueing networks have been developed for warehouse automa-
tion systems such as autonomous vehicle storage and retrieval
systems (AVS/RS) and automated storage and retrieval systems
(AS/RS). Kuo, Krishnamurthy, and Malmborg (2007) use queueing
models to focus on five key design variables in AVS/RS systems for
predicting vehicle utilization and service, waiting and cycle times.
These five key design variables are the number of aisles, the num-
ber of storage columns per aisle, the number of storage tiers in
the system, the number of vehicles in the system, and the number
of lifts in the system. Their main conclusion is that these mod-
els are computationally effective for exploring the effect of these
key variables. Fukunari and Malmborg (2009) develop a queue-
ing model that can estimate the expected utilization of resources
in an AVS/RS machine and that can incorporate both single and
dual command cycles. Schleyer and Gue (2012) develop a queue-
ing model to estimate the distribution of the order throughput
time. This queueing model can handle both single-line and multi-
line orders, and the model is based on discrete time to better cap-
ture arrival rates from empirical data. Heragu, Cai, Krishnamurthy,
and Malmborg (2011) model variants of both AVS/RS and AS/RS
as Open Queueing Networks (OQN) and analyze the OQNs using a
tool called the manufacturing system performance analyzer. Their
conclusion is that this approach works better than simulation for
rapidly evaluating different designs.

Besides OQNs, a number of papers use semi-open queueing net-
works (SOQN) for modeling a system because they can include
the time an order has to wait before being processed. Roy, Krish-
namurthy, Heragu, and Malmborg (2012) conduct a performance
analysis for AVS/RS using a multi-class semi-open queueing net-
work. This work explores the impact of system parameters, for ex-
ample, the number of zones, the depth-to-width ratio, the number
of vehicles and lifts, and the impact of operational decisions such

as vehicle assignment rules on performance measures such as cycle
times and vehicle utilization. As SOQNs do not have closed form
expressions, they develop a decomposition approach to evaluate
system performance. Roy, Krishnamurthy, Heragu, and Malmborg
(2013) study blocking in AVS/RS and the effect on transaction cy-
cle times and system throughput. They use a semi-open queueing
model and vary system parameters to study the effect of block-
ing delays within the AVS/RS. Ekren, Heragu, Krishnamurthy, and
Malmborg (2014) use a SOQN to analyze an AVS/RS and apply the
matrix-geometric method to solve the model, and obtain quite ac-
curate performance measures.

To the best of our knowledge, Roy, Nigam, Adan, de Koster, and
Resing (2014) is the only paper which develops queueing networks
for an RMFS. However, they estimate order throughput time only
for single-line orders and do not include zoning. This paper builds
on this work by developing a queueing model that includes storage
zoning and multi-line orders. In addition, it models robot travel
underneath the pods and assumes a layout that is more realistic
with multiple cross-aisles.

3. Models
3.1. Approach

The aim of this paper is to construct an analytical model to
study system performance. Performance is measured using three
metrics, namely order throughput, average order cycle time, and
robot utilization. Order throughput is the rate of orders leaving
the system, the average order cycle time is the average time
between order arrival at and departure from the warehouse, and
robot utilization is the percentage of time that a robot is assigned
to an order, averaged over all robots. This network should accu-
rately estimate the three metrics, given system parameters such
as the number of pods, robots and workers, and given different
warehouse designs and different workstation locations. The net-
work analyzes the performance of one workstation in isolation.
The first, basic network assumes that all orders are single-line
orders. The first extension to this model is to include storage
zones. This means that the storage area is divided into multiple,
non-overlapping regions called storage zones, where products are
assigned to a storage zone depending on their demand frequency.
Other forms of zoning are absent, so robots can work at any loca-
tion and are not restricted to certain zones. The second extension
can also handle multi-line orders.

This results in the following four models:

e Model M;: single-line without storage zones.
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Fig. 4. Robot movements.

o Model M,: single-line with storage zones.
o Model M3: multi-line without storage zones.
o Model M,: multi-line with storage zones.

The main assumptions are the following: (1) Storage and re-
trieval occurs at a random location. If storage zones are present,
this location is random within the appropriate zone and other-
wise it is a random location within the entire storage area. (2)
Robots are dedicated to a workstation and are not used by an-
other workstation if they are idle. (3) Aisles have single directional
travel everywhere. (4) Delays at aisle intersections do not occur
and neither do battery recharges or robot downtime. (5) Robot ve-
locity is constant. (6) Robot congestion or blocking in aisles does
not occur. This assumption is close to reality, since aisles are sin-
gle directional and hence deadlock rarely occurs. (7) The storage
area always contains a pod with sufficient units of a product to
satisfy any incoming order line. (8) The Point Of Service Comple-
tion (POSC) is the dwell point policy for robots, which means that
robots do not have to travel to a predetermined dwell point af-
ter a service completion. (9) Picking time is stochastic rather than
deterministic, because the number of units needed to satisfy an
order line vary. (10) The picking time follows a general distribu-
tion with mean % (11) The order lines of an order are picked
sequentially. (12) The order arrival process follows an exponential
distribution.

The subsections below explain the four queueing networks. This
is followed by an explanation of calculating the travel times and
thereafter by the analysis of the queueing networks.

3.2. Model M;: single-line without storage zones

The first queueing network describes a single workstation. It is
based on three basic robot movements as depicted in Fig. 4. Sup-
pose that the picker has completed picking products from a pod.

This means that an order line was filled using a product stored on
that pod. The robot moves the pod from the workstation to a stor-
age location and stores it. This is move 1. When it is matched with
a request to retrieve a product for another order line, the robot will
move from the storage location and move to a pod that contains
that product. It then lifts this pod and takes it to the workstation.
This is move 2. Upon arrival, it lifts the new pod and brings it to
the workstation. This is move 3. Fig. 5 shows the queueing model
that corresponds to this process.

At the workstation, robots queue until it is their turn, and the
worker picks first-come first-serve with an average rate of A lines
per time unit. Each workstation has exactly one worker, there-
fore workstations are modeled as single server stations. After the
picker has finished with the pod, the order line leaves the sys-
tem. The robot with pod then enters a station that models move
1, namely traveling to a storage location and storing the pod. Once
the pod is stored, the robot is unloaded and must be matched
with a new order line at the synchronization station. The dwell
policy is POSC, so the robot waits under the pod. Order lines ar-
rive at the synchronization station and are synchronized with idle
robots. After the synchronization station, two Infinite Server (IS)
stations model the time it takes to execute move 2 and move 3,
respectively.

Move 1 models travel from the workstation to the storage lo-
cation where the pod needs to be stored. The storage policy is
random storage, so the robot goes to any of the storage locations
with equal probability. It is possible to obtain a distribution for the
time a robot needs for move 1 by calculating the travel times be-
tween the workstation and each storage location (see Section 3.6)
and weighing those travel times with these probabilities. The ser-
vice rate is (1, as depicted in Fig. 5. Service time distributions for
move 2 and move 3 can be constructed in a similar way, where o
and w3 are the service rates of the IS stations for move 2 and 3,
respectively.
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Fig. 5. Model M;: single-line without storage zones.

All the queues modeling travel are IS stations, because robots
do not need to queue to begin traveling. The network is modeled
as a Semi-Open Queueing Network (SOQN) to capture the time that
the order lines have to wait before being matched with a robot.
Without the time needed for synchronization, the model would
estimate the maximum order throughput possible rather than the
actual throughput for a given order line arrival rate.

3.3. Model M,: single-line with storage zones

In an RMFS, pods with popular products tend to be stored
near workstations and those with less popular products tend to be
stored further away from workstations. The main purpose is to re-
duce travel time. The idea of storage zones incorporates this aspect
into the model. In a zoned storage system, each storage zone cor-
responds to a particular part of the storage area and products are
assigned to storage zones based on their demand frequency. The
probability that an order line needs products on a pod belonging to
a zone z is denoted by p;. Robots are dedicated to workstations but
not to storage zones; each robot can visit each storage zone. Stor-
age zones do not overlap, so all storage zones together cover the
entire storage area and multiple robots can be in the same storage
zone simultaneously.

The model contains a total of Z zones. This means that the
model contains Z stations modeling move 1, one station for each
of the zones. Move 3 is modeled in a similar way, using Z stations.
Move 2 is modeled using Z x Z stations, because the robot can be
in any of the Z zones after storing a pod and may need to go to
any of the Z zones to retrieve the next pod.

This model is shown in Fig. 6. Storage and retrieval within the
zones are random. Here u,;]l is the average travel time from the
workstation to a random storage location in zone z, with subscript
1 referring to move 1. In other words, i, is the service rate of
the IS station for zone z and move 1. Ma; is the average travel
time from a random storage location in zone i to a random storage
location in zone j, with subscript 2 referring to move 2. ;,L;; denote
the average travel time from a random storage in zone z to the
workstation, with subscript 3 referring to move 3.

The routing probabilities shown in Fig. 6 are based on the prob-
abilities p,. For example, consider a scenario for move 2, where the

robot stores a pod in zone 1 and needs to retrieve a pod in zone Z.
The probability of this scenario occurring is p; x pz, because the
probability that the pod that was stored belongs to zone 1 is p;
and the probability that the pod that needs to be retrieved belongs
to zone Z is py.

The division of the storage area into zones is workstation de-
pendent, see the examples in Fig. 7. In the these examples, the
number of storage zones Z equals three, and zone 1 covers about
20 percent of the storage area, zone 2 about 30 percent, and zone
3 about 50 percent. For workstations that are located west or south
of the storage area, the division is as indicated in Fig. 7. The zoning
is assumed to be workstation dependent. This implies that when
the layout has one workstation located west of the storage area
and another one east, then a storage location close to the one lo-
cated west would be in zone A in the analysis of that workstation,
but when analyzing the workstation located east, it would be a
zone C location. The zones indicate the likelihood that a pod is re-
trieved from that area to the workstation (see Fig. 7). This concurs
with practice, since copies of fast movers can be stored on multi-
ple pods and the system continues to reconfigure to keep the most
popular products near the workstations (Wurman et al., 2008).

3.4. Models M3 and My: multi-line without and with storage zones

This section extends both models 1 and 2 to multi-line orders.
It assumes that the number of lines in an order follows a geometric
distribution with parameter p. The average number of order lines is
therefore %. Model 3 extends model 1 with multi-line orders and
is shown in Fig. 8.

During move 1, the robot transports the pod to a storage loca-
tion and stores it. With probability 1 — p, the order that was as-
signed to the robot needs more order lines and the robot goes to
the IS station, modeling move 2. With probability p, the order that
was assigned to the robot needs no more order lines, the order
leaves the system and the robot goes to the synchronization sta-
tion to wait for a new order. Model 2 can be extended in a similar
way to arrive at model 4, a model with multi-line orders and stor-
age zones.
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3.5. Analysis

The queueing networks of models 1-4 are analyzed as sin-
gle class Semi-Open Queueing Networks (SOQN) and solved using
the solution procedure from Section 2.2 of Buitenhek, Van Hou-
tum, and Zijm (2000). This procedure to solve a SOQN follows 3
steps. Step 1: A Closed Queueing Network (CQN) is created by re-
moving the synchronization station from the SOQN. This CQN is
analyzed with an Approximate Mean Value Analysis (AMVA) (see
Appendix A). The AMVA yields Tcqn1, the throughput of the CQN.

Step 2: A second CQN is created by replacing the synchroniza-
tion station in the SOQN with a load-dependent exponential sta-
tion. This station is denoted as station S+ 1, with S the number
of stations in the first CQN. Station S+ 1 has service rate v(r) = a
for r > 1, when r robots are at the station. Here a denotes the ar-
rival rate of the orders. The network is only stable if a < Tcqng.
For r =1 the service rate is v(1) :(]—ﬁ)a. The same AMVA al-
gorithm can then be used to analyze this second CQN, yielding the
throughput 7cqn,. This AMVA algorithm also calculates Ls(r) the

queue length at station s when r robots are present. Step 3: the
solution procedure analyzes station S+ 1 in isolation to calculate
Lo, the mean length of the external queue of orders.

The other measures of interest are p,, the utilization of the
robots, t,., the order cycle time, and pus, the utilization of the
workstation. Let L, be the expected length of the robot queue at
station S + 1, as found by the AMVA algorithm for the second CQN.
Then pr=1-— %, where R denotes the total number of robots in
the system. Let L; be the sum of the expected queue lengths at the
other stations, so L; = Y Ls(R). Then the average order cycle time
is as depicted in Eq. (1),

Lo + Li
foc = = — (1)

The workstation utilization is pws = Tcon 2VwsESws, With vys the
visit ratio of the workstation and ES,s the mean service time at
the workstation, see also Appendix A. This method allows each sta-
tion in the network to have cs parallel servers. The Infinite Server
stations are modeled by setting cs equals to the number of robots
R. The AMVA is an approximation as it uses the first and second
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moments of the service time distributions as input, allowing the
service times to follow a general distribution.

3.6. Travel times

The service time of an IS station in model 1 depends on the
travel times that this IS station models. This section explains how
to calculate the travel times for each move. During move 1 and
3, the robot is carrying a pod (loaded travel) but in move 2, the
robot is not carrying a pod (unloaded travel). The travel distance
for unloaded travel is simply the Manhattan distance, but calcu-
lating the travel distance for loaded travel is more complicated.
Therefore, this section will mostly focus on calculating travel dis-
tance for loaded travel.

Once the travel distances are known, they must be divided by
the speed of the robot. For move 1, the time needed to store the
pod is added and for move 3, the time needed for lifting is added.
Storing time, lifting time, and robot speed are assumed to be con-
stants and the robot does not need to accelerate or decelerate. The
resulting travel times fully describe the service times of the IS sta-
tions in each of the models.

3.6.1. Move 1 and 3: loaded travel

Loaded travel is rectilinear and each aisle has only one travel
direction. This means that the travel time to obtain queue length
distributions in model 1 can be calculated using closed form ex-
pressions. The location entrance of a storage location is the point
located in the aisle in front of that storage location. The robot uses
the location entrance to enter the storage location. The worksta-
tion entrance is the point in the hall from where the robot can
enter the buffer of a workstation. The start intersection is a more
complicated concept. Suppose that a robot travels from a storage

location that has a location entrance in an aisle with easterly travel
direction and travels to a workstation that is located west of the
storage area. It then first has to move in easterly direction before
it can move west to the workstation, so initially the distance be-
tween the robot and its destination will increase. The start inter-
section is the first point on the robot’s route where the distance
decreases. This point is always at an intersection of an aisle and a
cross-aisle. More formally: on the shortest route between a storage
location SL and a workstation WS, the start intersection is the first
intersection with an outgoing arc that points towards the hall in
which WS is located. For example, if SL is situated at an aisle with
easterly travel direction while WS is located west of the storage
area, the start intersection is the first intersection with direction
west on the shortest route between SL and WS. Let the length of a
block be denoted by I, the width by w, the unit distance by u, let
the location entrance (abbreviated as le) of storage location SL be
given by (xj, yi), the entrance of the buffer of workstation WS by
(xws, Yws), and the start intersection by (X, ¥,;). The unit distance
is the width of one storage location and in the standard layout (see
Fig. 2) I = 2u and w = 5u. The aisles are u wide. The distance dg,
is the distance between (x, y;.) and the first cross-aisle while fol-
lowing the direction of the aisle in which the location entrance is
situated. The distance dj, g is the distance between the location
entrance and the start intersection. Aisles and cross-aisles can only
have one direction, see also Figs. 9 and 10. In Fig. 10, the start in-
tersection is depicted as a big dot.

A shortest route from a storage location SL to a workstation WS
can be divided into four parts. The first is the distance between SL
and its location entrance, which is equal to u, since both storage
locations and aisles are u wide. The second part is the distance
between the location entrance and the start intersection. The third
part is the Manhattan distance between the start intersection and
the buffer entrance of WS, which equals |xg; — Xws| + |Vsi — Yws|. The
fourth part is a detour A, that may be necessary because of
travel directions in the hall between WS and the storage area. This
detour Ay, is either 2u or 0, depending on the location of the
buffer entrance of WS. The conditions under which A, s =2 are
straightforward and simple, but too numerous to list here.

The distance of the shortest route for all storage locations and
workstations can be derived from four fundamental cases:

e Case 1: the workstation is located west (east) of the storage
area and the location entrance is situated in an aisle with travel
direction west (east).

e Case 2: the workstation is located west (east) of the storage
area and the location entrance is situated in an aisle with travel
direction east (west).

e Case 3: the workstation is located north (south) of the storage
area and the first cross-aisle encountered has travel direction
north (south).

o Case 4: the workstation is located north (south) of the storage
area and the first cross-aisle encountered has travel direction
south (north).

In the first case, (X, ¥j.) is located in an aisle whose direction
is towards WS. For example, (X, yj) is located in an aisle with
a westerly travel direction and WS is located west of the storage
area. The distance D is as expressed in Eq. (2),

D =u+ |xe — Xws| + [Vie — Yws| + Aje.ws- (2)

In the second case, (xj, ¥o) is located in an aisle whose di-
rection is not towards WS. For example (x;, y) is located in an
aisle with a westerly travel direction and WS is located east of the
storage area. In this example, the start intersection is the first in-
tersection with travel direction east on the shortest route. If the
first cross-aisle west of (xj,, ¥,.) has travel direction north, then
the start intersection is the intersection to the northwest and if
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Table 1
Parameters used in the experiments.
Parameter Value
Number of aisles 12
Number of cross-aisles 14
Number of storage locations 1800
Number of zones 3: A B, C zone
Number of storage location per zone A: 20 percent, B: 30 percent, C: 50
percent
Probability pod comes from A: 70 percent, B: 25 percent, C: 5
percent
Robot speed 1.3 (meters per second)
R, number of robots 2,8, 14

Time for pod lifting and storing
Distribution picker time

1 (seconds)
Cy, mean A is 15 (seconds), cv? is
1.0

the cross-aisle has travel direction south, then the start intersec-
tion is the intersection to the southwest. In both cases dj, ;=
deq e + 1+ 2u + w. The distance D is as expressed in Eq. (3),

D =u+dje i+ X5 — Xws| + [Vsi — Yws| + Agews- (3)

In the third case, WS lies to the north or south and the first
cross-aisle has a direction towards WS. For example, suppose that
WS lies north of SL and that (x, y) is located in an aisle with
travel direction west, then the first cross-aisle west of SL has travel
direction north and the start intersection is the intersection di-
rectly west of (X, ). For this case in general, dj, s = dcq je. The
distance D is as expressed in Eq. (4),

D =u+dpesi+ X — Xws| + [Vsi — Yws| + Ae.ws- (4)

In the fourth case, WS lies to the north or south and the first
cross-aisle does not have a direction towards WS. For example, WS
lies north of SL and (xy,, ¥}.) is located in an aisle with travel direc-
tion west, then the first cross-aisle west of SL has travel direction
south. In general, one can choose between two possible start in-
tersections, the first cross-aisle to the west with direction towards
WS and the first to the east. Following the example, for the first
option, the distance Dy is as expressed in Eq. (5),

Dy =u+ dca,le +W+u+ |(Xle - dca.le -—w-— U) _XWS| + |.VIe —yws|
+ Aews- (5)
For the second option, the distance D, is as expressed in
Eq. (6),
Dy=u-+dege+2l+W—+3u+ |[(Xje — deg e + W+ U) — Xups|
+ |yle _yWS| + Ale,w& (6)

The distance of the shortest route is simply D = min(Dq, D;).
The first option is not available if the location entrance is situated
in one of the westernmost blocks; the second option is not possi-
ble if it is situated in one of the easternmost blocks. The northern-
most and southernmost blocks have only half the normal length
and therefore, in the second and the fourth case, the term [ be-
comes %l if the path from location entrance to start intersection
goes past these blocks.

Table 2
Results experiment 1: 2 robots and high arrival rate.
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All of the preceding formulas have been validated by comparing
the results with the shortest routes found by the Dijkstra algorithm
for a standard layout. These formulas are for routes from a storage
location SL to a workstation WS, but are similar for routes from WS
to SL. The formulas above therefore capture the routes for move 1
and 3.

4. Results

The results in this section come from three experiments. The
first experiment shows the results for all four models and serves
as validation. This experiment uses the standard layout as shown
in Fig. 2. The number of robots R, and the average number of or-
der lines per order p are varied to understand the effect on the or-
der cycle time, robot utilization, and workstation utilization. In the
second experiment, the effect of the storage area’s length-to-width
ratio on maximum order throughput is explored by changing the
number of aisles and cross-aisles while keeping the number of
storage locations within 4 percent of 1800. In the third experiment,
the effect that the locations of workstations along the sides of the
storage area has on maximum order throughput is studied.

The traditional ABC categorization is used for zoning. This
means that the storage area is divided into an A, B, and a C
zone. According to Waulfraat (2012), robot speed is about three
miles per hour, which is about 1.3 meters per second, and the
average time for picking an order line is six seconds. This ex-
cludes the time needed to move the pod in front of the picker, for
which no average length is mentioned. Additional experiments in
Appendix B show how to calculate the average robot speed given
a maximum speed and an acceleration. These experiments indicate
that 1.3 meters per second corresponds to a maximum robot speed
of 1.5 meters per second and an acceleration of 0.75 meters per
second square. According to Wulfraat (2012) and Wurman et al.
(2008), pick rates are above 200 lines per hour, therefore the aver-
age time for picking is set at 15 seconds in total or 240 lines maxi-
mum per hour. The distribution of the picker time is a Cj, distribu-
tion, which is a Cox-k distribution as described in Bolch, Greiner,
de Meer, and Trivedi (2006). The parameters are shown in Table 1,
where cv? denotes the squared coefficient of variation.

4.1. Experiment 1: a single workstation

In each of the four models a single workstation is analyzed.
Since the robots are dedicated per workstation, the results can be
calculated by analyzing each of the workstations separately and
then taking the average across the workstations. In the tables be-
low, R denotes the number of robots dedicated to the worksta-
tion, a denotes the order arrival rate in orders per hour, p, de-
notes the robot utilization, L, is the mean length of the external
order queue, t,c denotes the average order cycle time in seconds,
and pys denotes the utilization of the workstation. For the mod-
els with multi-line orders, models M3 and My, the number of or-
der lines in an order is geometrically distributed, ~ Geom(p = k),
where p refers to the parameter of the Geometric distribution and

R=2 Analytical model Simulation model

Model a(h~1) pr(percent) Lo toc(seconds) Pws (percent) pr(percent) Lo toc (seconds) Pws (percent)
M, 31.68 64.6 0.95 255.2 13.2 64.7 0.52 206.1 13.2

M, 31.68 49.1 0.34 150.5 13.2 49.1 0.20 133.7 13.2
Ms3(p=05) 15.84 64.6 0.95 510.4 13.2 64.7 0.74 460.5 13.2
M4(p=05) 15.84 49.1 0.34 300.9 13.2 49.1 0.27 283.8 13.2
M3(p=0.2) 6.34 64.6 095 12761 13.2 65.0 0.89 12320 133
My(p=0.2) 6.34 49.1 0.34 752.3 13.2 49.2 0.31 734.8 13.2
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Table 3
Results experiment 1: 2 robots and low arrival rate.

R=2 Analytical model Simulation model
Model a(h™) pr(percent) Lo toc(seconds) Pws (percent) pr(percent) Lo toc (seconds) Pws (percent)
M, 14.40 29.3 006 160.4 6.0 29.3 0.03 1544 6.0
M, 14.40 222 0.02 117.1 6.0 222 0.02 114.6 6.0
Ms(p =0.5) 7.20 29.3 0.06  320.7 6.0 29.4 0.04 3142 6.0
My4(p =0.5) 7.20 222 0.02 2342 6.0 22.3 0.02 2320 6.0
Ms;(p=0.2) 2.88 29.3 0.06  801.8 6.0 29.6 0.05 7994 6.1
My(p=0.2) 2.88 222 0.02 5854 6.0 22.4 0.02 5824 6.1
Table 4
Results experiment 1: 8 robots and high arrival rate.
R=8 Analytical model Simulation model
Model ath™1) pr(percent) L, toc(seconds) Pws (percent) pr(percent) L, toc (seconds) Pws (percent)
M, 126.72 700 0.80 1818 52.8 69.9 0.51 1733 52.8
M, 126.72 549 0.22 1309 52.8 54.8 0.16 129.1 52.8
Ms(p=0.5) 6336  70.0 080 3637 52.8 70.0 0.64 3541 52.8
M4(p =0.5) 63.36 549 022 2619 52.8 54.9 0.19 260.0 52.8
M;3(p=0.2) 2534  70.0 0.80  909.2 52.8 70.0 073 8982 52.8
M4(p=0.2) 2534 549 022  654.6 52.8 54.8 0.21 652.4 52.7
Table 5
Results experiment 1: 8 robots and low arrival rate.
R=38 Analytical model Simulation model
Model a(h™1) pr(percent) Lo toc(seconds) Pws (percent) pr(percent) Lo toc(seconds) Pws (percent)
M; 57.60 30.1 0.00 150.5 24.0 30.1 0.00 1504 24.0
M, 57.60 23.0 0.00 114.9 24.0 23.0 0.00 114.9 24.0
M;(p=0.5) 28.80 30.1 0.00 301.0 24.0 30.1 0.00 301.0 24.0
M4(p=05) 28.80 23.0 0.00 2299 24.0 23.0 0.00 2299 241
Ms3(p=0.2) 11.52 30.1 0.00 7526 24.0 30.1 0.00 7537 24.0
My(p=0.2) 11.52 23.0 0.00 5747 24.0 23.0 0.00 575.1 24.0
Table 6
Results experiment 1: 14 robots and high arrival rate.
R=14 Analytical model Simulation model
Model ath™) pr(percent) Lo toc (seconds) Pws (percent) pr(percent) Lo toc (seconds) Pws (percent)
M, 22176 915 14.80 4481 92.4 91.3 12.63 412.7 924
M, 22176  82.6 7.25 305.4 92.4 82.7 719 304.5 924
Ms(p =0.5) 11088 915 14.80 896.2 92.4 91.4 13.49 852.2 924
M4(p=0.5) 11088  82.6 7.25 610.9 92.4 82.7 7.35 614.1 924
Ms3(p=0.2) 4435 915 14.80 22406 92.4 91.5 13.88  2159.8 924
M4(p=0.2) 4435  82.6 7.25 1527.2 92.4 82.5 7.21 1520.7 923
Table 7
Results experiment 1: 14 robots and low arrival rate.
R=14 Analytical model Simulation model
Model a(h™1) pr(percent) Lo toc (seconds) Pws (percent) pr(percent) L, toc (seconds) Pws (percent)
M 100.80 313 0.00 156.5 42.0 314 0.00 156.6 421
M, 100.80 242 0.00 121.0 42.0 24.2 0.00 1211 42.0
Ms(p=0.5) 50.40 313 0.00 3131 42.0 31.3 0.00 3129 42.0
My4(p =0.5) 50.40 24.2 0.00 2421 42.0 24.2 0.00 2420 42.0
M3(p=0.2) 20.16 313 0.00 782.6 42.0 313 0.00 7825 42.0
M4(p=0.2) 20.16 24.2 0.00 605.2 42.0 24.2 0.00 6044 42.0

k is some number between zero and one. The parameter used is
indicated by changing the notation to Ms(p =k) and M4(p = k).
Results are shown for R equal to 2, 8 and 14 and for a high and
a low arrival rate, leading to six tables in total (Tables 2-7). The
arrival rates for 8 robots are 4 times the arrival rates for 2 robots
and the arrival rates for 14 robots are 7 times the arrival rates for
2 robots. A discrete event simulation model was built to validate
the results. It was built from scratch in Java and simulates the

queueing models. The numbers in the tables are averaged over
a hundred runs, where each run simulated the network for 168
hours, a full week. The width of the 95 percent-confidence inter-
vals is usually less than 1 per cent of the number itself and at most
a few per cent. For p = 0.5, the multi-line orders have an average
of two order lines and they have an average of five order lines for
p = 0.2. The order arrival rate was divided by 2 and 5 respectively
to ease the comparison with the single-line models. The utilization



986

Table 8
Results experiment 1: 14 robots, high arrival rate and cv? = 0.6.

T. Lamballais et al./European Journal of Operational Research 256 (2017) 976-990

R=14 Analytical model Simulation model
Model a(h™1) pr(percent) L, toc (seconds) Pws (percent) pr(percent) L, toc (seconds) Pws (percent)
M, 221.76  90.7 1311 418.9 92.4 88.5 7.11 316.5 924
M, 221.76  82.0 6.95 299.1 924 80.1 4.80 259.8 92.5
Ms;(p=0.5) 110.88  90.7 1311 837.8 924 88.7 8.50 678.7 923
M4(p=0.5) 110.88  82.0 6.95 598.2 924 80.6 5.56 546.4 924
Ms(p=0.2) 4435  90.7 13.11 2094.6 924 88.7 9.14 1750.0 92.3
My(p=0.2) 4435 820 6.95 1495.5 924 80.7 580  1386.2 924
Table 9
Experiment 2, maximum throughput per hour.
R=2 R=8 R=14
Variant # locations No zones Zones No zones Zones No zones Zones
2 by 88 aisles 1780 73.5 105.3 291.6 412.5 504.3 693.8
4 by 44 aisles 1800 130.6 181.4 508.2 676.7 840.4 1014.6
6 by 30aisles 1860 170.9 233.0 649.3 827.0 1011.2 1127.3
8by 22 aisles 1840 204.2 2744 755.9 928.3 1103.5 1172.4
12 by 14 aisles 1800 2451 3253 871.6 1029.0 1165.2 1193.9
14 by 12 aisles 1820 253.5 336.2 893.2 1048.9 1172.5 1196.3
16 by 10 aisles 1760 262.8 348.5 915.4 1068.1 1178.6 1197.7
20by 8 aisles 1800 262.5 350.5 914.4 1072.5 1177.9 1198.1
26 by 6 aisles 1820 253.7 3453 891.8 1066.4 1170.3 1197.9
36by4aisles 1800 229.5 3215 826.7 1029.9 1141.2 1195.4
60 by 2 aisles 1800 174.6 257.3 659.3 898.0 1013.0 1169.0
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Fig. 11. Variants with different length-to-width ratios.

of the robots and the workstation from the analytical method is
nearly the same as for the simulation. The mean length of the ex-
ternal order queue does differ between the analytical method and
the simulation and this affects the estimates of the order cycle
time. The average order cycle time depends on the mean length
of the external order queue and therefore also differs between the

analytical method and the simulation. However, the differences are
relatively small for the average order cycle time. The estimates of
the analytical method typically stay below 10 percent of the esti-
mates of the simulation, except for high arrival rate when R = 2. As
is evident from the tables, using zones lowers the robot utilization
and order cycle time.
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Table 10
Experiment 3, maximum throughput per hour.
R=2 R=8 n=14
Variant No zones Zones No zones Zones No zones Zones
Configuration0, 0, 3, 2 252.0 296.3 889.2 986.1 1171.2 11911
ConfigurationO0, 0, 4, 1 254.2 299.5 893.8 990.6 1171.6 1191.0
Configuration0, 0, 5, 0 251.1 295.3 886.6 983.0 1169.6 1190.2
Configuration 1, 0, 2, 2 249.8 3125 884.0 1011.7 1169.8 1193.4
Configuration 1, 0, 3, 1 251.7 315.2 887.9 1015.3 1170.1 1193.3
Configuration 1, 0, 4, 0 247.6 309.6 877.6 1004.3 1166.7 1191.7
Configuration 1, 1, 2, 1 249.5 3314 882.7 1040.9 1168.7 1195.6
Configuration 1, 1, 3, 0 245.1 3253 871.6 1029.0 1165.2 1193.9
Configuration2, 0, 2, 1 247.7 326.9 877.8 1035.9 1166.7 1195.4
Configuration2, 0, 3, 0 243.3 3209 866.6 1023.9 1163.1 1193.8
Configuration2, 1, 1, 1 247.2 345.5 875.9 1064.5 1165.4 1197.5
Configuration2, 1, 2, 0 241.1 337.0 861.5 1049.5 1161.8 1196.1
Configuration2, 2, 1, 0 238.8 351.2 854.7 10731 1158.4 1198.0
Configuration3, 0, 1, 1 2454 341.4 871.0 1059.3 1163.2 1197.3
Configuration3, 0, 2, 0 239.3 3328 856.6 1044.3 1159.5 1195.9
Configuration3, 1, 1, 0 238.8 351.5 854.8 1072.9 1158.3 1198.0
Configuration3, 2, 0, 0 2304 357.1 833.6 1081.5 1151.3 1198.5
Configuration4, 0, 1, 0 237.6 348.6 851.5 1069.5 1156.8 1197.9
Configuration4, 1, 0, 0 231.1 358.7 835.3 1083.1 1151.9 1198.5
Configuration5, 0, 0, 0 229.9 355.9 832.0 1079.7 1150.5 1198.4
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Fig. 12. Workstation configurations.

For the picker time, the model can also handle Cox-k distribu-
tions with cv? lower than 1, but then discrepancies arise between
the analytical and the simulation results, even for robot utilization.
Table 8 shows the results for 14 robots with a high arrival rate,
where cv? = 0.6. In other words, choosing a cv? different from 1
is possible, but the analytical results will no longer be fully reli-
able. The models M5 and M, assume that processing of multi-line
orders happens sequentially, whereas in practice this may hap-
pen simultaneously. In Appendix C simulations are shown where
sequential and simultaneous processing of multi-line orders are
compared.

4.2. Experiment 2: varying the length-to-width ratio of the storage
area

Table 9 shows the maximum throughput in orders per hour of
all the workstations together. In a system that achieves the max-
imum throughput, robots do not have to wait for an order and
hence a synchronization queue is not needed. For the situation
without zones, a CQN is created by removing the synchronization
queue from model M; and similarly for the situation with zones,
a CQN was created based on model M,. The throughput per work-
station was calculated by applying the single class AMVA method



988 T. Lamballais et al./European Journal of Operational Research 256 (2017) 976-990

in Appendix A to these CQNs. The number of aisles and of cross-
aisles has to be even in each of the variants, because each (cross-
)aisle has a single travel direction. For each aisle going west there
must also be one going east and for each cross-aisle going north
there must be one going south. The variants were chosen such
that the number of storage locations was never more than 4 per-
cent from 1800. As can be seen from Table 9, the result is rela-
tively insensitive for the length-to-width ratio unless the ratio be-
comes unbalanced by a factor of more than 3 or 4 (Fig. 11). Using
zones increases the maximum throughput by almost 50 percent.
The length-to-width ratio can be measured in aisles or in meters.
Since a block of storage locations measures 2 storage locations by
5 storage locations, a layout that has x aisles by y cross aisles has
a storage area of 3x by 6y + 5 meters.

4.3. Experiment 3: varying the location of workstations

Table 10 shows the maximum throughput in orders per hour of
all the workstations together. The throughput per workstation was
calculated by applying the single class AMVA method described
in Appendix A to the same CQNs as in experiment 2. The con-
figurations are named as “Configuration X, X, X3, X4” where x;
denotes the number of workstations located west of the storage
area, X the number of workstations located east of the storage
area, x3 the number of workstations located south of the storage
area and x4 the number of workstations located north of the stor-
age area, see also Fig. 12 for some examples. As can be seen from
Table 10, the maximum throughput is sensitive to the location of
the workstations. Interestingly, the results with zones are very dif-
ferent from the results without zones. Without zones, the max-
imum throughput tends to be higher if the workstations are lo-
cated north and south of the storage area but if zones are present
the maximum throughput tends to be higher if workstation are lo-
cated west and east of the storage area. The difference between the
best and worst workstation configuration is also higher if zones are
present. The explanation is that without zones the average travel
distance is shorter for workstations north and south of the storage
area, whereas with zones the average travel distance is shorter for
zones west and east of the storage area.

5. Conclusions

The main contribution of this paper is that it is one of the
first to model Robotic Mobile Fulfillment System, and includes ac-
curate driving behavior of robots, and multi-line orders. This pa-
per develops queueing models to analyze an RMFS with and with-
out zones and with single-line and multi-line orders, and it shows
how to derive analytical expressions for distributions of the robot
travel times. The aim was to gain insights for system design by
measuring maximum order throughput, robot utilization, and order
cycle time. The first experiment shows that the analytical method
accurately estimates robot utilization, workstation utilization, and
average order cycle time. The second experiment indicates that the
maximum throughput is insensitive to the length-to-width ratio of
the storage area, except if this ratio becomes strongly skewed. The
last experiment shows that the location of workstations around the
storage area matters. If storage zones are used, maximum through-
put tends to be higher if the workstations are located west and
east of the storage area, whereas without storage, it tends to be
higher if workstations are located north and south of the storage
area.

Two limitations of this study are that congestion and robot
switching between workstations have not been included in the
model. In practice however, congestion should only have a small
effect on the order throughput and workstation utilization, since
the system is designed with the aim that the picker is kept busy

to achieve high pick rates. Congestion may then cause a robot to
enter the queue at the workstation a little later but the bottleneck
in the system is the picker and not transportation. Also, congestion
is unlikely to happen, as the number of robots is typically small
relative to the space in which they drive and robots can travel un-
derneath the racks when they are not carrying a pod. This makes it
unlikely that the robots run into multiple other robots in the adja-
cent space around them. Robot switching could be beneficial if the
workstations have a low utilization. However, this paper focuses on
design aspects, whereas robot switching is connected with opera-
tional decisions. For example, the robot may have stored the pod at
a particular location, because it is then close to another pod that
needs to go to that same workstation. The robot may also have
stored the pod close to a workstation that needs products from it
soon. In other words, robot switching may bring operational bene-
fits and would be interesting to explore in future research on oper-
ational decisions. In addition, Enright and Wurman (2011) mention
several operational problems that have not yet been solved for an
RMES. As they show, Robotic Mobile Fulfillment Systems still pose
many challenging problems and contain interesting, unexplored
avenues.
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Appendix A. AMVA algorithm

This appendix shows the single class AMVA algorithm used for
evaluating a CQN. It is the AMVA algorithm from Appendix A.2 in
Buitenhek et al. (2000), and it has not been adapted except for step
3g where the queue lengths are calculated including the robots in
service. The Infinite Servers stations are modeled by setting the
number of servers c¢s equal to the number of robots R. The notation
is explained in Table A.11. Visit ratios are calculated as explained in
Bolch et al. (2006).

Step 1: Initialize:

ps(0]0)=1, s=1,....S (A1)
Q(0)=0, s=1,....S (A2)
L(0)=0, s=1,....S (A3)
Table A1l
Notation used in the AMVA.
Symbol Meaning
S The total number of stations
R The total number of robots
ESrems The expected time remaining until the first departure at station s
ES; The first moment of the service time of station s
ES? The second moment of the service time of station s
L(r) The expected robot queue length including robots in service at
station s when the system contains r robots
L(r) The expected queue length excluding robots in service at station
s when the system contains r robots
Qs(r) The probability that all servers are busy at station s when the
system contains r robots
ps(ilr) The probability that there are i robots at station s when the
system contains r robots
T(r) The throughput when the system contains r robots
ETy(r) The lead time at station s when the system contains r robots
Cs The number of servers at station s
Us The visit ratio of station s
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Table B1

Average robot speed for various layouts, with acceleration
0.75 meters per second square and maximum speed 1.5
meters per second.

# aisles # cross-aisles Average robot speed
2 88 1.427
4 44 1.380
6 30 1.362
8 22 1.336
12 14 1.316
14 12 1.321
16 10 1.310
20 8 1.314
26 6 1.330
36 4 1.332
60 2 1.365
L(0)=0, s=1,....S (A4)
Step 2: Preprocessing. Fors=1,...,S
¢cs — 1ES;s 2 1 ES?
ES = —— = A5
TS T e+ 1 ¢ +cs+1c52ESS (A5)
Step 3: lIteration. Forr=1,...,R
(@) Fors=1,....S
- ES;
ETs(r) = Qs(r — 1)ESrem,s + Ls (r — 1)? + ESs
S
(A.6)
(b)
(1) = —— (A7)
Y5 VET(r) '
(c) Fors=1,....,Sand for b=1,...,min(cs — 1,1)
ES.
ps(b| 1) = Tsvsf(r)ps(b -1[r-1) (A.8)

(f)

(g)

Fors=1,...,S, if r < ¢, Qs(r) =0, otherwise,

0 = Pur 00 -1 4117 1)
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Appendix B. Robot speed

Given an acceleration and maximum speed, the average robot
speed for a layout can be calculated as follows. Each route con-
sists of straight linear segments that are connected by angles of
90 degrees. Each time a robot turns it starts with a speed of zero
and increases speed until it hits the maximum speed or until it is
halfway. Then the robot decreases the speed until it is zero again
and it turns to go on the next segment. The overall average robot
speed is then calculated by averaging across all routes. For the
standard layout it was found that an average robot speed of 1.3
meters per second, as mentioned in Wulfraat (2012), corresponds
to an acceleration of 0.75 meters per second square and a max-
imum speed of 1.5 meters per second, which seems realistic. In
Table B1 the average robot speed is shown for layouts with varying
number of aisles and cross-aisles, using this acceleration and max-
imum speed. As can be seen, the average robot speed stays roughly
between 1.3 and 1.4 meters per second, even as the length-width
ratio changes.

Appendix C. Multi-line orders

Table C1 shows the results for the standard layout when multi-
line orders are processed sequentially or simultaneously. Sequen-
tial processing means that only one robot retrieves all the pods for
all the order lines of an order and is indicated in Table C1 with
“seq.”. Simultaneous, indicated with “sim.”, means an order can be
processed in parallel and that multiple robots can fetch pods for
the same order. The parameter p is the parameter for the geomet-
ric distribution of the number of order lines, i.e. p=0.2 means
that orders have on average 5 order lines. Sequential processing
can be modeled analytically by models M3 and My, but for simul-
taneous processing there is no analytical model, therefore the re-
sults were generated by simulation. The results indicate that robot
utilization is higher and order cycle time lower with simultane-
ous processing. However, the workstation utilization remains al-
most the same under both forms of processing.
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