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a b s t r a c t 

This paper models Robotic Mobile Fulfillment Systems and analyzes their performance. A Robotic Mobile 

Fulfillment System is an automated, parts-to-picker storage system where robots bring pods with prod- 

ucts to a workstation. It is especially suited for e-commerce distribution centers with large assortments 

of small products, and with strong demand fluctuations. Its most important feature is the ability to auto- 

matically sort inventory and to adapt the warehouse layout in a short period of time. Queueing network 

models are developed for both single-line and multi-line orders, to analytically estimate maximum order 

throughput, average order cycle time, and robot utilization. These models can be used to quickly evaluate 

different warehouse layouts, or robot zoning strategies. Two main contributions are that the models in- 

clude accurate driving behavior of robots and multi-line orders. The results show that: (1) the analytical 

models accurately estimate robot utilization, workstation utilization, and order cycle time, (2) maximum 

order throughput is quite insensitive to the length-to-width ratio of the storage area and (3) maximum 

order throughput is affected by the location of the workstations around the storage area. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

A Robotic Mobile Fulfillment System (RMFS) is a new type

of automated storage and part-to-picker order picking system,

brought to the market by companies such as Kiva Systems, Swiss-

log, Interlink, GreyOrange and Mobile Industrial Robots. It is par-

ticularly suited for e-commerce distribution centers that handle

strong demand fluctuations and large assortments of small prod-

ucts. For example, Amazon bought Kiva systems in 2012 and de-

ployed RMFSs in ten of its warehouses in November 2014 ( Business

Wire, 2015 ). Other examples, such as Staples, suggest that the pick-

ing rates can double compared to traditional picker-to-parts sys-

tems ( Wulfraat, 2012 ). However, installing an RMFS typically re-

quires a multi-million dollar investment, most of which is spent

on the robots that carry the pods (see Fig. 1 ). Therefore, under-

standing how order cycle time and robot utilization are influ-

enced by warehouse layout and operating policies is important for

practice. 

This paper develops several models for estimating performance

and robot utilization in an RMFS. These models address the most

important process in an RMFS, namely the picking process. It

is the most important, because it is responsible for picking the
∗ Corresponding author. Tel.: +31 104082403. 
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ustomer orders before their due time. One of the main benefits

f an RMFS is that pick rates can reach between 200 and 300 lines

er picker per hour ( Wulfraat, 2012; Wurman, D’Andrea, & Mountz,

008 ). The picking process works as follows. An order arrives and

aits until it can be assigned to one of the workstations where

he orders are picked (see Fig. 2 ). Once the order is assigned to a

orkstation, robots can fetch products for it. Products are stored

n inventory pods (i.e., movable shelf racks). A robot moves un-

erneath a pod, lifts it, and brings the pod to a workstation, using

he aisles and cross-aisles. The robot enters the workstation buffer

nd queues for its turn. Each workstation has one picker and once

he picker has retrieved the required products from the pod, the

obot transports the pod to a storage location and stores it there.

he robot then drives to the next pod. As it is moving without a

oad it does not need to use the aisles but can move underneath

he pods. Once all the required products of an order are collected,

hat order leaves the system and another order can be assigned to

he workstation. For a complete description of an RMFS see Enright

nd Wurman (2011) and Wurman et al. (2008) . 

A top view of a typical warehouse layout with this system is

hown in Fig. 2 . The pods are stored in blocks in the storage area

ith total width W and length L . The dark gray squares represent

he pods and the light gray squares represent unoccupied storage

ocations. The workstations are situated at three sides of the ware-

ouse in Fig. 2 . The aisles in the storage area all have a single

ravel direction to prevent deadlock and reduce aisle congestion.

http://dx.doi.org/10.1016/j.ejor.2016.06.063
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2016.06.063&domain=pdf
mailto:lamballaistessensohn@rsm.nl
http://dx.doi.org/10.1016/j.ejor.2016.06.063
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Fig. 1. Robot carrying a pod ( Enright & Wurman, 2011 ). 
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or the same reason, movement in the space between the work-

tations and storage area is also single directional. Fig. 3 gives a

lose-up view of the system. The worker picks products from the

od in front of him or her and then adds them to the order totes

n the left. 

During the day, a pod is not required to maintain a fixed po-

ition, but can continually be repositioned. By changing the lo-

ations of the pods, the system can automatically sort inventory

uring operations and adapt to varying demand in the short run.

he advantage is that the most popular products are usually lo-

ated close to the workers, even during periods of strong de-

and fluctuation. Another advantage is that the layout of the

arehouse can be rearranged relatively quickly. The number of

orkstations and their positions can easily be adapted to the

hanging numbers of workers in each shift. In addition, if storage
Fig. 2. Top view of an RMFS with 
apacity becomes insufficient, the layout can be adjusted by adding

ore pods and storage locations. In other words, the layout is not

tatic, but can be changed to suit changing circumstances relatively

uickly. 

Typically, the storage area is quite compact, because it only

ontains products needed within the next few days. With enough

obots, workers can be kept busy continuously. So far, few ana-

ytical models have been developed to estimate the performance

r robot utilization of an RMFS. This paper develops four queue-

ng network models to estimate performance and robot utilization

nder different system parameters, warehouse layouts, and control

olicies. All models focus on the performance of a workstation in

solation, but they differ in whether they allow only single-line or-

ers or also multi-line orders, and in whether they divide the stor-

ge areas into zones or not. These analytical models require very

ittle computation time and can therefore be used to rapidly opti-

ize the warehouse design, which is not easily possible using sim-

lation models. In addition, the development time needed to adapt

hese models to analyze a specific warehouse setting will be less

han what is needed for a simulation. The queueing models can

ncorporate the stochasticity in the travel times of the robots and

he time that orders have to wait before they can be released to

he system, so that the robot utilization and performance metrics

uch as order throughput and order cycle time can be estimated.

y measuring order throughput, order cycle time, and robot uti-

ization, these models enable warehouse managers and system de-

elopers to predict performance and optimize warehouse design.

hese models also enable researchers to rapidly compare the per-

ormance of the RMFS to other automation systems. 

This paper will answer the following design-related research

uestions. How many orders can be completed per hour given a

ertain number of robots and workstations? How does the length-

o-width ratio of the storage area affect maximum order through-

ut performance? How does the location of the workstations in the

torage area affect maximum order throughput performance? How

any robots are needed to achieve a certain desired throughput

evel and order cycle time? 

The remainder of this paper is as follows: Section 2 reviews the

iterature, Section 3 explains the models, Section 4 describes the

ata and results, and Section 5 draws conclusions and provides di-

ections for future research. 
workstations on three sides. 
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Fig. 3. Close-ups of parts of the RMFS. 
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2. Literature 

Lu, McFarlane, Giannikas, and Zhang (2016) proposed dynamic

order-picking strategies that allow for changes of pick-lists dur-

ing a pick cycle, which have attracted attention with increase

in e-commerce orders. Several modeling and performance analy-

sis studies were also carried out on unit-load vehicle-based stor-

age and retrieval systems. However, these studies consider strict

rectilinear travel for storage and retrieval with one load/unload

point only (see Marchet, Melacini, Perotti, & Tappia, 2013; Roy,

Krishnamurthy, Heragu, & Malmborg, 2015a, b, 2016; Tappia, Roy,

De Koster, & Melacini, 2016 ). Queueing models are popular for an-

alyzing automated warehouse systems, because they can incorpo-

rate the stochasticity in the travel times of vehicles and in the

speed of the workers, and can establish the effect on performance.

Queueing networks have been developed for warehouse automa-

tion systems such as autonomous vehicle storage and retrieval

systems (AVS/RS) and automated storage and retrieval systems

(AS/RS). Kuo, Krishnamurthy, and Malmborg (2007) use queueing

models to focus on five key design variables in AVS/RS systems for

predicting vehicle utilization and service, waiting and cycle times.

These five key design variables are the number of aisles, the num-

ber of storage columns per aisle, the number of storage tiers in

the system, the number of vehicles in the system, and the number

of lifts in the system. Their main conclusion is that these mod-

els are computationally effective for exploring the effect of these

key variables. Fukunari and Malmborg (2009) develop a queue-

ing model that can estimate the expected utilization of resources

in an AVS/RS machine and that can incorporate both single and

dual command cycles. Schleyer and Gue (2012) develop a queue-

ing model to estimate the distribution of the order throughput

time. This queueing model can handle both single-line and multi-

line orders, and the model is based on discrete time to better cap-

ture arrival rates from empirical data. Heragu, Cai, Krishnamurthy,

and Malmborg (2011) model variants of both AVS/RS and AS/RS

as Open Queueing Networks (OQN) and analyze the OQNs using a

tool called the manufacturing system performance analyzer. Their

conclusion is that this approach works better than simulation for

rapidly evaluating different designs. 

Besides OQNs, a number of papers use semi-open queueing net-

works (SOQN) for modeling a system because they can include

the time an order has to wait before being processed. Roy, Krish-

namurthy, Heragu, and Malmborg (2012) conduct a performance

analysis for AVS/RS using a multi-class semi-open queueing net-

work. This work explores the impact of system parameters, for ex-

ample, the number of zones, the depth-to-width ratio, the number

of vehicles and lifts, and the impact of operational decisions such
s vehicle assignment rules on performance measures such as cycle

imes and vehicle utilization. As SOQNs do not have closed form

xpressions, they develop a decomposition approach to evaluate

ystem performance. Roy, Krishnamurthy, Heragu, and Malmborg

2013) study blocking in AVS/RS and the effect on transaction cy-

le times and system throughput. They use a semi-open queueing

odel and vary system parameters to study the effect of block-

ng delays within the AVS/RS. Ekren, Heragu, Krishnamurthy, and

almborg (2014) use a SOQN to analyze an AVS/RS and apply the

atrix-geometric method to solve the model, and obtain quite ac-

urate performance measures. 

To the best of our knowledge, Roy, Nigam, Adan, de Koster, and

esing (2014) is the only paper which develops queueing networks

or an RMFS. However, they estimate order throughput time only

or single-line orders and do not include zoning. This paper builds

n this work by developing a queueing model that includes storage

oning and multi-line orders. In addition, it models robot travel

nderneath the pods and assumes a layout that is more realistic

ith multiple cross-aisles. 

. Models 

.1. Approach 

The aim of this paper is to construct an analytical model to

tudy system performance. Performance is measured using three

etrics, namely order throughput, average order cycle time, and

obot utilization. Order throughput is the rate of orders leaving

he system, the average order cycle time is the average time

etween order arrival at and departure from the warehouse, and

obot utilization is the percentage of time that a robot is assigned

o an order, averaged over all robots. This network should accu-

ately estimate the three metrics, given system parameters such

s the number of pods, robots and workers, and given different

arehouse designs and different workstation locations. The net-

ork analyzes the performance of one workstation in isolation.

he first, basic network assumes that all orders are single-line

rders. The first extension to this model is to include storage

ones. This means that the storage area is divided into multiple,

on-overlapping regions called storage zones, where products are

ssigned to a storage zone depending on their demand frequency.

ther forms of zoning are absent, so robots can work at any loca-

ion and are not restricted to certain zones. The second extension

an also handle multi-line orders. 

This results in the following four models: 

• Model M : single-line without storage zones. 
1 
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Fig. 4. Robot movements. 
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• Model M 2 : single-line with storage zones. 
• Model M 3 : multi-line without storage zones. 
• Model M 4 : multi-line with storage zones. 

The main assumptions are the following: (1) Storage and re-

rieval occurs at a random location. If storage zones are present,

his location is random within the appropriate zone and other-

ise it is a random location within the entire storage area. (2)

obots are dedicated to a workstation and are not used by an-

ther workstation if they are idle. (3) Aisles have single directional

ravel everywhere. (4) Delays at aisle intersections do not occur

nd neither do battery recharges or robot downtime. (5) Robot ve-

ocity is constant. (6) Robot congestion or blocking in aisles does

ot occur. This assumption is close to reality, since aisles are sin-

le directional and hence deadlock rarely occurs. (7) The storage

rea always contains a pod with sufficient units of a product to

atisfy any incoming order line. (8) The Point Of Service Comple-

ion (POSC) is the dwell point policy for robots, which means that

obots do not have to travel to a predetermined dwell point af-

er a service completion. (9) Picking time is stochastic rather than

eterministic, because the number of units needed to satisfy an

rder line vary. (10) The picking time follows a general distribu-

ion with mean 

1 
λ

. (11) The order lines of an order are picked

equentially. (12) The order arrival process follows an exponential

istribution. 

The subsections below explain the four queueing networks. This

s followed by an explanation of calculating the travel times and

hereafter by the analysis of the queueing networks. 

.2. Model M 1 : single-line without storage zones 

The first queueing network describes a single workstation. It is

ased on three basic robot movements as depicted in Fig. 4 . Sup-

ose that the picker has completed picking products from a pod.
his means that an order line was filled using a product stored on

hat pod. The robot moves the pod from the workstation to a stor-

ge location and stores it. This is move 1. When it is matched with

 request to retrieve a product for another order line, the robot will

ove from the storage location and move to a pod that contains

hat product. It then lifts this pod and takes it to the workstation.

his is move 2. Upon arrival, it lifts the new pod and brings it to

he workstation. This is move 3. Fig. 5 shows the queueing model

hat corresponds to this process. 

At the workstation, robots queue until it is their turn, and the

orker picks first-come first-serve with an average rate of λ lines

er time unit. Each workstation has exactly one worker, there-

ore workstations are modeled as single server stations. After the

icker has finished with the pod, the order line leaves the sys-

em. The robot with pod then enters a station that models move

, namely traveling to a storage location and storing the pod. Once

he pod is stored, the robot is unloaded and must be matched

ith a new order line at the synchronization station. The dwell

olicy is POSC, so the robot waits under the pod. Order lines ar-

ive at the synchronization station and are synchronized with idle

obots. After the synchronization station, two Infinite Server (IS)

tations model the time it takes to execute move 2 and move 3,

espectively. 

Move 1 models travel from the workstation to the storage lo-

ation where the pod needs to be stored. The storage policy is

andom storage, so the robot goes to any of the storage locations

ith equal probability. It is possible to obtain a distribution for the

ime a robot needs for move 1 by calculating the travel times be-

ween the workstation and each storage location (see Section 3.6 )

nd weighing those travel times with these probabilities. The ser-

ice rate is μ1 , as depicted in Fig. 5 . Service time distributions for

ove 2 and move 3 can be constructed in a similar way, where μ2 

nd μ3 are the service rates of the IS stations for move 2 and 3,

espectively. 
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Fig. 5. Model M 1 : single-line without storage zones. 
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All the queues modeling travel are IS stations, because robots

do not need to queue to begin traveling. The network is modeled

as a Semi-Open Queueing Network (SOQN) to capture the time that

the order lines have to wait before being matched with a robot.

Without the time needed for synchronization, the model would

estimate the maximum order throughput possible rather than the

actual throughput for a given order line arrival rate. 

3.3. Model M 2 : single-line with storage zones 

In an RMFS, pods with popular products tend to be stored

near workstations and those with less popular products tend to be

stored further away from workstations. The main purpose is to re-

duce travel time. The idea of storage zones incorporates this aspect

into the model. In a zoned storage system, each storage zone cor-

responds to a particular part of the storage area and products are

assigned to storage zones based on their demand frequency. The

probability that an order line needs products on a pod belonging to

a zone z is denoted by p z . Robots are dedicated to workstations but

not to storage zones; each robot can visit each storage zone. Stor-

age zones do not overlap, so all storage zones together cover the

entire storage area and multiple robots can be in the same storage

zone simultaneously. 

The model contains a total of Z zones. This means that the

model contains Z stations modeling move 1, one station for each

of the zones. Move 3 is modeled in a similar way, using Z stations.

Move 2 is modeled using Z × Z stations, because the robot can be

in any of the Z zones after storing a pod and may need to go to

any of the Z zones to retrieve the next pod. 

This model is shown in Fig. 6 . Storage and retrieval within the

zones are random. Here μ−1 
z1 

is the average travel time from the

workstation to a random storage location in zone z , with subscript

1 referring to move 1. In other words, μz 1 is the service rate of

the IS station for zone z and move 1. μ−1 
i j2 

is the average travel

time from a random storage location in zone i to a random storage

location in zone j , with subscript 2 referring to move 2. μ−1 
z3 

denote

the average travel time from a random storage in zone z to the

workstation, with subscript 3 referring to move 3. 

The routing probabilities shown in Fig. 6 are based on the prob-

abilities p z . For example, consider a scenario for move 2, where the
obot stores a pod in zone 1 and needs to retrieve a pod in zone Z .

he probability of this scenario occurring is p 1 × p Z , because the

robability that the pod that was stored belongs to zone 1 is p 1 
nd the probability that the pod that needs to be retrieved belongs

o zone Z is p Z . 

The division of the storage area into zones is workstation de-

endent, see the examples in Fig. 7 . In the these examples, the

umber of storage zones Z equals three, and zone 1 covers about

0 percent of the storage area, zone 2 about 30 percent, and zone

 about 50 percent. For workstations that are located west or south

f the storage area, the division is as indicated in Fig. 7 . The zoning

s assumed to be workstation dependent. This implies that when

he layout has one workstation located west of the storage area

nd another one east, then a storage location close to the one lo-

ated west would be in zone A in the analysis of that workstation,

ut when analyzing the workstation located east, it would be a

one C location. The zones indicate the likelihood that a pod is re-

rieved from that area to the workstation (see Fig. 7 ). This concurs

ith practice, since copies of fast movers can be stored on multi-

le pods and the system continues to reconfigure to keep the most

opular products near the workstations ( Wurman et al., 2008 ). 

.4. Models M 3 and M 4 : multi-line without and with storage zones 

This section extends both models 1 and 2 to multi-line orders.

t assumes that the number of lines in an order follows a geometric

istribution with parameter p . The average number of order lines is

herefore 1 
p . Model 3 extends model 1 with multi-line orders and

s shown in Fig. 8 . 

During move 1, the robot transports the pod to a storage loca-

ion and stores it. With probability 1 − p, the order that was as-

igned to the robot needs more order lines and the robot goes to

he IS station, modeling move 2. With probability p , the order that

as assigned to the robot needs no more order lines, the order

eaves the system and the robot goes to the synchronization sta-

ion to wait for a new order. Model 2 can be extended in a similar

ay to arrive at model 4, a model with multi-line orders and stor-

ge zones. 



T. Lamballais et al. / European Journal of Operational Research 256 (2017) 976–990 981 

Fig. 6. Model M 2 : single-line with storage zones. 
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Fig. 7. Division of the storage area in three storage zones. 

Fig. 8. Model M 3 : multi-line without storage zones. 
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3.5. Analysis 

The queueing networks of models 1–4 are analyzed as sin-

gle class Semi-Open Queueing Networks (SOQN) and solved using

the solution procedure from Section 2.2 of Buitenhek, Van Hou-

tum, and Zijm (20 0 0) . This procedure to solve a SOQN follows 3

steps. Step 1: A Closed Queueing Network (CQN) is created by re-

moving the synchronization station from the SOQN. This CQN is

analyzed with an Approximate Mean Value Analysis (AMVA) (see

Appendix A ). The AMVA yields τ CQN 1 , the throughput of the CQN. 

Step 2: A second CQN is created by replacing the synchroniza-

tion station in the SOQN with a load-dependent exponential sta-

tion. This station is denoted as station S + 1 , with S the number

of stations in the first CQN. Station S + 1 has service rate ν(r) = a

for r > 1, when r robots are at the station. Here a denotes the ar-

rival rate of the orders. The network is only stable if a < τ CQN 1 .

For r = 1 the service rate is ν(1) = (1 − a 
τCQN 1 

) a . The same AMVA al-

gorithm can then be used to analyze this second CQN, yielding the

throughput τ CQN 2 . This AMVA algorithm also calculates L s ( r ) the
ueue length at station s when r robots are present. Step 3: the

olution procedure analyzes station S + 1 in isolation to calculate

 o , the mean length of the external queue of orders. 

The other measures of interest are ρr , the utilization of the

obots, t oc , the order cycle time, and ρws , the utilization of the

orkstation. Let L r be the expected length of the robot queue at

tation S + 1 , as found by the AMVA algorithm for the second CQN.

hen ρr = 1 − L r 
R , where R denotes the total number of robots in

he system. Let L i be the sum of the expected queue lengths at the

ther stations, so L i = 

∑ 

s L s (R ) . Then the average order cycle time

s as depicted in Eq. (1) , 

 oc = 

L o + L i 
a 

. (1)

The workstation utilization is ρws = τCQN 2 v ws ES ws , with v ws the

isit ratio of the workstation and ES ws the mean service time at

he workstation, see also Appendix A . This method allows each sta-

ion in the network to have c s parallel servers. The Infinite Server

tations are modeled by setting c s equals to the number of robots

 . The AMVA is an approximation as it uses the first and second
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Fig. 9. Notation explained graphically. 

Fig. 10. Shortest route from SL to WS . 
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oments of the service time distributions as input, allowing the

ervice times to follow a general distribution. 

.6. Travel times 

The service time of an IS station in model 1 depends on the

ravel times that this IS station models. This section explains how

o calculate the travel times for each move. During move 1 and

, the robot is carrying a pod (loaded travel) but in move 2, the

obot is not carrying a pod (unloaded travel). The travel distance

or unloaded travel is simply the Manhattan distance, but calcu-

ating the travel distance for loaded travel is more complicated.

herefore, this section will mostly focus on calculating travel dis-

ance for loaded travel. 

Once the travel distances are known, they must be divided by

he speed of the robot. For move 1, the time needed to store the

od is added and for move 3, the time needed for lifting is added.

toring time, lifting time, and robot speed are assumed to be con-

tants and the robot does not need to accelerate or decelerate. The

esulting travel times fully describe the service times of the IS sta-

ions in each of the models. 

.6.1. Move 1 and 3: loaded travel 

Loaded travel is rectilinear and each aisle has only one travel

irection. This means that the travel time to obtain queue length

istributions in model 1 can be calculated using closed form ex-

ressions. The location entrance of a storage location is the point

ocated in the aisle in front of that storage location. The robot uses

he location entrance to enter the storage location. The worksta-

ion entrance is the point in the hall from where the robot can

nter the buffer of a workstation. The start intersection is a more

omplicated concept. Suppose that a robot travels from a storage
ocation that has a location entrance in an aisle with easterly travel

irection and travels to a workstation that is located west of the

torage area. It then first has to move in easterly direction before

t can move west to the workstation, so initially the distance be-

ween the robot and its destination will increase. The start inter-

ection is the first point on the robot’s route where the distance

ecreases. This point is always at an intersection of an aisle and a

ross-aisle. More formally: on the shortest route between a storage

ocation SL and a workstation WS , the start intersection is the first

ntersection with an outgoing arc that points towards the hall in

hich WS is located. For example, if SL is situated at an aisle with

asterly travel direction while WS is located west of the storage

rea, the start intersection is the first intersection with direction

est on the shortest route between SL and WS . Let the length of a

lock be denoted by l , the width by w, the unit distance by u , let

he location entrance (abbreviated as le ) of storage location SL be

iven by ( x le , y le ), the entrance of the buffer of workstation WS by

(x ws , y ws ) , and the start intersection by ( x si , y si ). The unit distance

s the width of one storage location and in the standard layout (see

ig. 2 ) l = 2 u and w = 5 u . The aisles are u wide. The distance d ca , le 

s the distance between ( x le , y le ) and the first cross-aisle while fol-

owing the direction of the aisle in which the location entrance is

ituated. The distance d le , si is the distance between the location

ntrance and the start intersection. Aisles and cross-aisles can only

ave one direction, see also Figs. 9 and 10 . In Fig. 10 , the start in-

ersection is depicted as a big dot. 

A shortest route from a storage location SL to a workstation WS

an be divided into four parts. The first is the distance between SL

nd its location entrance, which is equal to u , since both storage

ocations and aisles are u wide. The second part is the distance

etween the location entrance and the start intersection. The third

art is the Manhattan distance between the start intersection and

he buffer entrance of WS , which equals | x si − x ws | + | y si − y ws | . The

ourth part is a detour �le,ws that may be necessary because of

ravel directions in the hall between WS and the storage area. This

etour �le,ws is either 2 u or 0, depending on the location of the

uffer entrance of WS . The conditions under which �le,ws = 2 are

traightforward and simple, but too numerous to list here. 

The distance of the shortest route for all storage locations and

orkstations can be derived from four fundamental cases: 

• Case 1: the workstation is located west (east) of the storage

area and the location entrance is situated in an aisle with travel

direction west (east). 
• Case 2: the workstation is located west (east) of the storage

area and the location entrance is situated in an aisle with travel

direction east (west). 
• Case 3: the workstation is located north (south) of the storage

area and the first cross-aisle encountered has travel direction

north (south). 
• Case 4: the workstation is located north (south) of the storage

area and the first cross-aisle encountered has travel direction

south (north). 

In the first case, ( x le , y le ) is located in an aisle whose direction

s towards WS . For example, ( x le , y le ) is located in an aisle with

 westerly travel direction and WS is located west of the storage

rea. The distance D is as expressed in Eq. (2) , 

 = u + | x le − x ws | + | y le − y ws | + �le,ws . (2)

In the second case, ( x le , y le ) is located in an aisle whose di-

ection is not towards WS . For example ( x le , y le ) is located in an

isle with a westerly travel direction and WS is located east of the

torage area. In this example, the start intersection is the first in-

ersection with travel direction east on the shortest route. If the

rst cross-aisle west of ( x le , y le ) has travel direction north, then

he start intersection is the intersection to the northwest and if
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Table 1 

Parameters used in the experiments. 

Parameter Value 

Number of aisles 12 

Number of cross-aisles 14 

Number of storage locations 1800 

Number of zones 3: A, B, C zone 

Number of storage location per zone A: 20 percent, B: 30 percent, C: 50 

percent 

Probability pod comes from A: 70 percent, B: 25 percent, C: 5 

percent 

Robot speed 1.3 (meters per second) 

R , number of robots 2, 8, 14 

Time for pod lifting and storing 1 (seconds) 

Distribution picker time C k , mean λ is 15 (seconds), cv 2 is 

1.0 
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the cross-aisle has travel direction south, then the start intersec-

tion is the intersection to the southwest. In both cases d le,si =
d ca,le + l + 2 u + w . The distance D is as expressed in Eq. (3) , 

D = u + d le,si + | x si − x ws | + | y si − y ws | + �le,ws . (3)

In the third case, WS lies to the north or south and the first

cross-aisle has a direction towards WS . For example, suppose that

WS lies north of SL and that ( x le , y le ) is located in an aisle with

travel direction west, then the first cross-aisle west of SL has travel

direction north and the start intersection is the intersection di-

rectly west of ( x le , y le ). For this case in general, d le,si = d ca,le . The

distance D is as expressed in Eq. (4) , 

D = u + d le,si + | x si − x ws | + | y si − y ws | + �le,ws . (4)

In the fourth case, WS lies to the north or south and the first

cross-aisle does not have a direction towards WS . For example, WS

lies north of SL and ( x le , y le ) is located in an aisle with travel direc-

tion west, then the first cross-aisle west of SL has travel direction

south. In general, one can choose between two possible start in-

tersections, the first cross-aisle to the west with direction towards

WS and the first to the east. Following the example, for the first

option, the distance D 1 is as expressed in Eq. (5) , 

D 1 = u + d ca,le + w + u + | (x le − d ca,le − w − u ) − x ws | + | y le − y ws |
+ �le,ws . (5)

For the second option, the distance D 2 is as expressed in

Eq. (6) , 

D 2 = u + d ca,le + 2 l + w + 3 u + | (x le − d ca,le + w + u ) − x ws | 
+ | y le − y ws | + �le,ws . (6)

The distance of the shortest route is simply D = min (D 1 , D 2 ) .

The first option is not available if the location entrance is situated

in one of the westernmost blocks; the second option is not possi-

ble if it is situated in one of the easternmost blocks. The northern-

most and southernmost blocks have only half the normal length

and therefore, in the second and the fourth case, the term l be-

comes 1 
2 l if the path from location entrance to start intersection

goes past these blocks. 
Table 2 

Results experiment 1: 2 robots and high arrival rate. 

R = 2 Analytical model 

Model a (h −1 ) ρr ( percent ) L o t oc ( seconds ) ρws ( p

M 1 31 .68 64 .6 0 .95 255 .2 13 .2 

M 2 31 .68 49 .1 0 .34 150 .5 13 .2 

M 3 (p = 0 . 5) 15 .84 64 .6 0 .95 510 .4 13 .2 

M 4 (p = 0 . 5) 15 .84 49 .1 0 .34 300 .9 13 .2 

M 3 (p = 0 . 2) 6 .34 64 .6 0 .95 1276 .1 13 .2 

M 4 (p = 0 . 2) 6 .34 49 .1 0 .34 752 .3 13 .2 
All of the preceding formulas have been validated by comparing

he results with the shortest routes found by the Dijkstra algorithm

or a standard layout. These formulas are for routes from a storage

ocation SL to a workstation WS , but are similar for routes from WS

o SL . The formulas above therefore capture the routes for move 1

nd 3. 

. Results 

The results in this section come from three experiments. The

rst experiment shows the results for all four models and serves

s validation. This experiment uses the standard layout as shown

n Fig. 2 . The number of robots R , and the average number of or-

er lines per order p are varied to understand the effect on the or-

er cycle time, robot utilization, and workstation utilization. In the

econd experiment, the effect of the storage area’s length-to-width

atio on maximum order throughput is explored by changing the

umber of aisles and cross-aisles while keeping the number of

torage locations within 4 percent of 1800. In the third experiment,

he effect that the locations of workstations along the sides of the

torage area has on maximum order throughput is studied. 

The traditional ABC categorization is used for zoning. This

eans that the storage area is divided into an A, B, and a C

one. According to Wulfraat (2012) , robot speed is about three

iles per hour, which is about 1.3 meters per second, and the

verage time for picking an order line is six seconds. This ex-

ludes the time needed to move the pod in front of the picker, for

hich no average length is mentioned. Additional experiments in

ppendix B show how to calculate the average robot speed given

 maximum speed and an acceleration. These experiments indicate

hat 1.3 meters per second corresponds to a maximum robot speed

f 1.5 meters per second and an acceleration of 0.75 meters per

econd square. According to Wulfraat (2012) and Wurman et al.

2008) , pick rates are above 200 lines per hour, therefore the aver-

ge time for picking is set at 15 seconds in total or 240 lines maxi-

um per hour. The distribution of the picker time is a C k distribu-

ion, which is a Cox- k distribution as described in Bolch, Greiner,

e Meer, and Trivedi (2006) . The parameters are shown in Table 1 ,

here cv 2 denotes the squared coefficient of variation. 

.1. Experiment 1: a single workstation 

In each of the four models a single workstation is analyzed.

ince the robots are dedicated per workstation, the results can be

alculated by analyzing each of the workstations separately and

hen taking the average across the workstations. In the tables be-

ow, R denotes the number of robots dedicated to the worksta-

ion, a denotes the order arrival rate in orders per hour, ρr de-

otes the robot utilization, L o is the mean length of the external

rder queue, t oc denotes the average order cycle time in seconds,

nd ρws denotes the utilization of the workstation. For the mod-

ls with multi-line orders, models M 3 and M 4 , the number of or-

er lines in an order is geometrically distributed, ∼ Geom (p = k ) ,

here p refers to the parameter of the Geometric distribution and
Simulation model 

ercent ) ρr ( percent ) L o t oc ( seconds ) ρws ( percent ) 

64 .7 0 .52 206 .1 13 .2 

49 .1 0 .20 133 .7 13 .2 

64 .7 0 .74 460 .5 13 .2 

49 .1 0 .27 283 .8 13 .2 

65 .0 0 .89 1232 .0 13 .3 

49 .2 0 .31 734 .8 13 .2 
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Table 3 

Results experiment 1: 2 robots and low arrival rate. 

R = 2 Analytical model Simulation model 

Model a (h −1 ) ρr ( percent ) L o t oc ( seconds ) ρws ( percent ) ρr ( percent ) L o t oc ( seconds ) ρws ( percent ) 

M 1 14 .40 29 .3 0 .06 160 .4 6 .0 29 .3 0 .03 154 .4 6 .0 

M 2 14 .40 22 .2 0 .02 117 .1 6 .0 22 .2 0 .02 114 .6 6 .0 

M 3 (p = 0 . 5) 7 .20 29 .3 0 .06 320 .7 6 .0 29 .4 0 .04 314 .2 6 .0 

M 4 (p = 0 . 5) 7 .20 22 .2 0 .02 234 .2 6 .0 22 .3 0 .02 232 .0 6 .0 

M 3 (p = 0 . 2) 2 .88 29 .3 0 .06 801 .8 6 .0 29 .6 0 .05 799 .4 6 .1 

M 4 (p = 0 . 2) 2 .88 22 .2 0 .02 585 .4 6 .0 22 .4 0 .02 582 .4 6 .1 

Table 4 

Results experiment 1: 8 robots and high arrival rate. 

R = 8 Analytical model Simulation model 

Model a (h −1 ) ρr ( percent ) L o t oc ( seconds ) ρws ( percent ) ρr ( percent ) L o t oc ( seconds ) ρws ( percent ) 

M 1 126 .72 70 .0 0 .80 181 .8 52 .8 69 .9 0 .51 173 .3 52 .8 

M 2 126 .72 54 .9 0 .22 130 .9 52 .8 54 .8 0 .16 129 .1 52 .8 

M 3 (p = 0 . 5) 63 .36 70 .0 0 .80 363 .7 52 .8 70 .0 0 .64 354 .1 52 .8 

M 4 (p = 0 . 5) 63 .36 54 .9 0 .22 261 .9 52 .8 54 .9 0 .19 260 .0 52 .8 

M 3 (p = 0 . 2) 25 .34 70 .0 0 .80 909 .2 52 .8 70 .0 0 .73 898 .2 52 .8 

M 4 (p = 0 . 2) 25 .34 54 .9 0 .22 654 .6 52 .8 54 .8 0 .21 652 .4 52 .7 

Table 5 

Results experiment 1: 8 robots and low arrival rate. 

R = 8 Analytical model Simulation model 

Model a (h −1 ) ρr ( percent ) L o t oc ( seconds ) ρws ( percent ) ρr ( percent ) L o t oc ( seconds ) ρws ( percent ) 

M 1 57 .60 30 .1 0 .00 150 .5 24 .0 30 .1 0 .00 150 .4 24 .0 

M 2 57 .60 23 .0 0 .00 114 .9 24 .0 23 .0 0 .00 114 .9 24 .0 

M 3 (p = 0 . 5) 28 .80 30 .1 0 .00 301 .0 24 .0 30 .1 0 .00 301 .0 24 .0 

M 4 (p = 0 . 5) 28 .80 23 .0 0 .00 229 .9 24 .0 23 .0 0 .00 229 .9 24 .1 

M 3 (p = 0 . 2) 11 .52 30 .1 0 .00 752 .6 24 .0 30 .1 0 .00 753 .7 24 .0 

M 4 (p = 0 . 2) 11 .52 23 .0 0 .00 574 .7 24 .0 23 .0 0 .00 575 .1 24 .0 

Table 6 

Results experiment 1: 14 robots and high arrival rate. 

R = 14 Analytical model Simulation model 

Model a (h −1 ) ρr ( percent ) L o t oc ( seconds ) ρws ( percent ) ρr ( percent ) L o t oc ( seconds ) ρws ( percent ) 

M 1 221 .76 91 .5 14 .80 448 .1 92 .4 91 .3 12 .63 412 .7 92 .4 

M 2 221 .76 82 .6 7 .25 305 .4 92 .4 82 .7 7 .19 304 .5 92 .4 

M 3 (p = 0 . 5) 110 .88 91 .5 14 .80 896 .2 92 .4 91 .4 13 .49 852 .2 92 .4 

M 4 (p = 0 . 5) 110 .88 82 .6 7 .25 610 .9 92 .4 82 .7 7 .35 614 .1 92 .4 

M 3 (p = 0 . 2) 44 .35 91 .5 14 .80 2240 .6 92 .4 91 .5 13 .88 2159 .8 92 .4 

M 4 (p = 0 . 2) 44 .35 82 .6 7 .25 1527 .2 92 .4 82 .5 7 .21 1520 .7 92 .3 

Table 7 

Results experiment 1: 14 robots and low arrival rate. 

R = 14 Analytical model Simulation model 

Model a (h −1 ) ρr ( percent ) L o t oc ( seconds ) ρws ( percent ) ρr ( percent ) L o t oc ( seconds ) ρws ( percent ) 

M 1 100 .80 31 .3 0 .00 156 .5 42 .0 31 .4 0 .00 156 .6 42 .1 

M 2 100 .80 24 .2 0 .00 121 .0 42 .0 24 .2 0 .00 121 .1 42 .0 

M 3 (p = 0 . 5) 50 .40 31 .3 0 .00 313 .1 42 .0 31 .3 0 .00 312 .9 42 .0 

M 4 (p = 0 . 5) 50 .40 24 .2 0 .00 242 .1 42 .0 24 .2 0 .00 242 .0 42 .0 

M 3 (p = 0 . 2) 20 .16 31 .3 0 .00 782 .6 42 .0 31 .3 0 .00 782 .5 42 .0 

M 4 (p = 0 . 2) 20 .16 24 .2 0 .00 605 .2 42 .0 24 .2 0 .00 604 .4 42 .0 

k  

i  

R  

a  

a  

a  

2  

t  

q  

a  

h  

v  

a  

o  

 

t  
 is some number between zero and one. The parameter used is

ndicated by changing the notation to M 3 (p = k ) and M 4 (p = k ) .

esults are shown for R equal to 2, 8 and 14 and for a high and

 low arrival rate, leading to six tables in total ( Tables 2 –7 ). The

rrival rates for 8 robots are 4 times the arrival rates for 2 robots

nd the arrival rates for 14 robots are 7 times the arrival rates for

 robots. A discrete event simulation model was built to validate

he results. It was built from scratch in Java and simulates the
ueueing models. The numbers in the tables are averaged over

 hundred runs, where each run simulated the network for 168

ours, a full week. The width of the 95 percent-confidence inter-

als is usually less than 1 per cent of the number itself and at most

 few per cent. For p = 0 . 5 , the multi-line orders have an average

f two order lines and they have an average of five order lines for

p = 0 . 2 . The order arrival rate was divided by 2 and 5 respectively

o ease the comparison with the single-line models. The utilization
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Table 8 

Results experiment 1: 14 robots, high arrival rate and cv 2 = 0 . 6 . 

R = 14 Analytical model Simulation model 

Model a (h −1 ) ρr ( percent ) L o t oc ( seconds ) ρws ( percent ) ρr ( percent ) L o t oc ( seconds ) ρws ( percent ) 

M 1 221 .76 90 .7 13 .11 418 .9 92 .4 88 .5 7 .11 316 .5 92 .4 

M 2 221 .76 82 .0 6 .95 299 .1 92 .4 80 .1 4 .80 259 .8 92 .5 

M 3 (p = 0 . 5) 110 .88 90 .7 13 .11 837 .8 92 .4 88 .7 8 .50 678 .7 92 .3 

M 4 (p = 0 . 5) 110 .88 82 .0 6 .95 598 .2 92 .4 80 .6 5 .56 546 .4 92 .4 

M 3 (p = 0 . 2) 44 .35 90 .7 13 .11 2094 .6 92 .4 88 .7 9 .14 1750 .0 92 .3 

M 4 (p = 0 . 2) 44 .35 82 .0 6 .95 1495 .5 92 .4 80 .7 5 .80 1386 .2 92 .4 

Table 9 

Experiment 2, maximum throughput per hour. 

R = 2 R = 8 R = 14 

Variant # locations No zones Zones No zones Zones No zones Zones 

2 by 88 aisles 1780 73 .5 105 .3 291 .6 412 .5 504 .3 693 .8 

4 by 44 aisles 1800 130 .6 181 .4 508 .2 676 .7 840 .4 1014 .6 

6 by 30 aisles 1860 170 .9 233 .0 649 .3 827 .0 1011 .2 1127 .3 

8 by 22 aisles 1840 204 .2 274 .4 755 .9 928 .3 1103 .5 1172 .4 

12 by 14 aisles 1800 245 .1 325 .3 871 .6 1029 .0 1165 .2 1193 .9 

14 by 12 aisles 1820 253 .5 336 .2 893 .2 1048 .9 1172 .5 1196 .3 

16 by 10 aisles 1760 262 .8 348 .5 915 .4 1068 .1 1178 .6 1197 .7 

20 by 8 aisles 1800 262 .5 350 .5 914 .4 1072 .5 1177 .9 1198 .1 

26 by 6 aisles 1820 253 .7 345 .3 891 .8 1066 .4 1170 .3 1197 .9 

36 by 4 aisles 1800 229 .5 321 .5 826 .7 1029 .9 1141 .2 1195 .4 

60 by 2 aisles 1800 174 .6 257 .3 659 .3 898 .0 1013 .0 1169 .0 

Fig. 11. Variants with different length-to-width ratios. 
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of the robots and the workstation from the analytical method is

nearly the same as for the simulation. The mean length of the ex-

ternal order queue does differ between the analytical method and

the simulation and this affects the estimates of the order cycle

time. The average order cycle time depends on the mean length

of the external order queue and therefore also differs between the
nalytical method and the simulation. However, the differences are

elatively small for the average order cycle time. The estimates of

he analytical method typically stay below 10 percent of the esti-

ates of the simulation, except for high arrival rate when R = 2 . As

s evident from the tables, using zones lowers the robot utilization

nd order cycle time. 
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Table 10 

Experiment 3, maximum throughput per hour. 

R = 2 R = 8 n = 14 

Variant No zones Zones No zones Zones No zones Zones 

Configuration 0, 0, 3, 2 252 .0 296 .3 889 .2 986 .1 1171 .2 1191 .1 

Configuration 0, 0, 4, 1 254 .2 299 .5 893 .8 990 .6 1171 .6 1191 .0 

Configuration 0, 0, 5, 0 251 .1 295 .3 886 .6 983 .0 1169 .6 1190 .2 

Configuration 1, 0, 2, 2 249 .8 312 .5 884 .0 1011 .7 1169 .8 1193 .4 

Configuration 1, 0, 3, 1 251 .7 315 .2 887 .9 1015 .3 1170 .1 1193 .3 

Configuration 1, 0, 4, 0 247 .6 309 .6 877 .6 1004 .3 1166 .7 1191 .7 

Configuration 1, 1, 2, 1 249 .5 331 .4 882 .7 1040 .9 1168 .7 1195 .6 

Configuration 1, 1, 3, 0 245 .1 325 .3 871 .6 1029 .0 1165 .2 1193 .9 

Configuration 2, 0, 2, 1 247 .7 326 .9 877 .8 1035 .9 1166 .7 1195 .4 

Configuration 2, 0, 3, 0 243 .3 320 .9 866 .6 1023 .9 1163 .1 1193 .8 

Configuration 2, 1, 1, 1 247 .2 345 .5 875 .9 1064 .5 1165 .4 1197 .5 

Configuration 2, 1, 2, 0 241 .1 337 .0 861 .5 1049 .5 1161 .8 1196 .1 

Configuration 2, 2, 1, 0 238 .8 351 .2 854 .7 1073 .1 1158 .4 1198 .0 

Configuration 3, 0, 1, 1 245 .4 341 .4 871 .0 1059 .3 1163 .2 1197 .3 

Configuration 3, 0, 2, 0 239 .3 332 .8 856 .6 1044 .3 1159 .5 1195 .9 

Configuration 3, 1, 1, 0 238 .8 351 .5 854 .8 1072 .9 1158 .3 1198 .0 

Configuration 3, 2, 0, 0 230 .4 357 .1 833 .6 1081 .5 1151 .3 1198 .5 

Configuration 4, 0, 1, 0 237 .6 348 .6 851 .5 1069 .5 1156 .8 1197 .9 

Configuration 4, 1, 0, 0 231 .1 358 .7 835 .3 1083 .1 1151 .9 1198 .5 

Configuration 5, 0, 0, 0 229 .9 355 .9 832 .0 1079 .7 1150 .5 1198 .4 

Fig. 12. Workstation configurations. 
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For the picker time, the model can also handle Cox- k distribu-

ions with cv 2 lower than 1, but then discrepancies arise between

he analytical and the simulation results, even for robot utilization.

able 8 shows the results for 14 robots with a high arrival rate,

here cv 2 = 0 . 6 . In other words, choosing a cv 2 different from 1

s possible, but the analytical results will no longer be fully reli-

ble. The models M 3 and M 4 assume that processing of multi-line

rders happens sequentially, whereas in practice this may hap-

en simultaneously. In Appendix C simulations are shown where

equential and simultaneous processing of multi-line orders are

ompared. 
.2. Experiment 2: varying the length-to-width ratio of the storage 

rea 

Table 9 shows the maximum throughput in orders per hour of

ll the workstations together. In a system that achieves the max-

mum throughput, robots do not have to wait for an order and

ence a synchronization queue is not needed. For the situation

ithout zones, a CQN is created by removing the synchronization

ueue from model M 1 and similarly for the situation with zones,

 CQN was created based on model M 2 . The throughput per work-

tation was calculated by applying the single class AMVA method
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Table A1 

Notation used in the AMVA. 

Symbol Meaning 

S The total number of stations 

R The total number of robots 

ES rem , s The expected time remaining until the first departure at station s 

ES s The first moment of the service time of station s 

ES 2 s The second moment of the service time of station s 

L s ( r ) The expected robot queue length including robots in service at 

station s when the system contains r robots 
˜ L s (r) The expected queue length excluding robots in service at station 

s when the system contains r robots 

Q s ( r ) The probability that all servers are busy at station s when the 

system contains r robots 

p s ( i | r ) The probability that there are i robots at station s when the 

system contains r robots 

τ ( r ) The throughput when the system contains r robots 

ET s ( r ) The lead time at station s when the system contains r robots 

c s The number of servers at station s 

v s The visit ratio of station s 
in Appendix A to these CQNs. The number of aisles and of cross-

aisles has to be even in each of the variants, because each (cross-

)aisle has a single travel direction. For each aisle going west there

must also be one going east and for each cross-aisle going north

there must be one going south. The variants were chosen such

that the number of storage locations was never more than 4 per-

cent from 1800. As can be seen from Table 9 , the result is rela-

tively insensitive for the length-to-width ratio unless the ratio be-

comes unbalanced by a factor of more than 3 or 4 ( Fig. 11 ). Using

zones increases the maximum throughput by almost 50 percent.

The length-to-width ratio can be measured in aisles or in meters.

Since a block of storage locations measures 2 storage locations by

5 storage locations, a layout that has x aisles by y cross aisles has

a storage area of 3 x by 6 y + 5 meters. 

4.3. Experiment 3: varying the location of workstations 

Table 10 shows the maximum throughput in orders per hour of

all the workstations together. The throughput per workstation was

calculated by applying the single class AMVA method described

in Appendix A to the same CQNs as in experiment 2. The con-

figurations are named as “Configuration x 1 , x 2 , x 3 , x 4 ” where x 1 
denotes the number of workstations located west of the storage

area, x 2 the number of workstations located east of the storage

area, x 3 the number of workstations located south of the storage

area and x 4 the number of workstations located north of the stor-

age area, see also Fig. 12 for some examples. As can be seen from

Table 10 , the maximum throughput is sensitive to the location of

the workstations. Interestingly, the results with zones are very dif-

ferent from the results without zones. Without zones, the max-

imum throughput tends to be higher if the workstations are lo-

cated north and south of the storage area but if zones are present

the maximum throughput tends to be higher if workstation are lo-

cated west and east of the storage area. The difference between the

best and worst workstation configuration is also higher if zones are

present. The explanation is that without zones the average travel

distance is shorter for workstations north and south of the storage

area, whereas with zones the average travel distance is shorter for

zones west and east of the storage area. 

5. Conclusions 

The main contribution of this paper is that it is one of the

first to model Robotic Mobile Fulfillment System, and includes ac-

curate driving behavior of robots, and multi-line orders. This pa-

per develops queueing models to analyze an RMFS with and with-

out zones and with single-line and multi-line orders, and it shows

how to derive analytical expressions for distributions of the robot

travel times. The aim was to gain insights for system design by

measuring maximum order throughput, robot utilization, and order

cycle time. The first experiment shows that the analytical method

accurately estimates robot utilization, workstation utilization, and

average order cycle time. The second experiment indicates that the

maximum throughput is insensitive to the length-to-width ratio of

the storage area, except if this ratio becomes strongly skewed. The

last experiment shows that the location of workstations around the

storage area matters. If storage zones are used, maximum through-

put tends to be higher if the workstations are located west and

east of the storage area, whereas without storage, it tends to be

higher if workstations are located north and south of the storage

area. 

Two limitations of this study are that congestion and robot

switching between workstations have not been included in the

model. In practice however, congestion should only have a small

effect on the order throughput and workstation utilization, since

the system is designed with the aim that the picker is kept busy
o achieve high pick rates. Congestion may then cause a robot to

nter the queue at the workstation a little later but the bottleneck

n the system is the picker and not transportation. Also, congestion

s unlikely to happen, as the number of robots is typically small

elative to the space in which they drive and robots can travel un-

erneath the racks when they are not carrying a pod. This makes it

nlikely that the robots run into multiple other robots in the adja-

ent space around them. Robot switching could be beneficial if the

orkstations have a low utilization. However, this paper focuses on

esign aspects, whereas robot switching is connected with opera-

ional decisions. For example, the robot may have stored the pod at

 particular location, because it is then close to another pod that

eeds to go to that same workstation. The robot may also have

tored the pod close to a workstation that needs products from it

oon. In other words, robot switching may bring operational bene-

ts and would be interesting to explore in future research on oper-

tional decisions. In addition, Enright and Wurman (2011) mention

everal operational problems that have not yet been solved for an

MFS. As they show, Robotic Mobile Fulfillment Systems still pose

any challenging problems and contain interesting, unexplored

venues. 
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ppendix A. AMVA algorithm 

This appendix shows the single class AMVA algorithm used for

valuating a CQN. It is the AMVA algorithm from Appendix A.2 in

uitenhek et al. (20 0 0) , and it has not been adapted except for step

g where the queue lengths are calculated including the robots in

ervice. The Infinite Servers stations are modeled by setting the

umber of servers c s equal to the number of robots R . The notation

s explained in Table A.11 . Visit ratios are calculated as explained in

olch et al. (2006) . 

Step 1: Initialize: 

p s (0 | 0) = 1 , s = 1 , . . . , S (A.1)

Q s (0) = 0 , s = 1 , . . . , S (A.2)

L s (0) = 0 , s = 1 , . . . , S (A.3)
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Table B1 

Average robot speed for various layouts, with acceleration 

0.75 meters per second square and maximum speed 1.5 

meters per second. 

# aisles # cross-aisles Average robot speed 

2 88 1 .427 

4 44 1 .380 

6 30 1 .362 

8 22 1 .336 

12 14 1 .316 

14 12 1 .321 

16 10 1 .310 

20 8 1 .314 

26 6 1 .330 

36 4 1 .332 

60 2 1 .365 
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˜ L s (0) = 0 , s = 1 , . . . , S (A.4) 

Step 2: Preprocessing. For s = 1 , . . . , S

E S rem,s = 

c s − 1 

c s + 1 

E S s 

c s 
+ 

2 

c s + 1 

1 

c s 

E S 2 s 

2 E S s 
(A.5) 

Step 3: Iteration. For r = 1 , . . . , R 

(a) For s = 1 , . . . , S

ET s (r) = Q s (r − 1) ES rem,s + ̃

 L s (r − 1) 
ES s 

c s 
+ ES s 

(A.6) 

(b) 

τ (r) = 

r 
∑ S 

s =1 v s ET s (r) 
(A.7) 

(c) For s = 1 , . . . , S and for b = 1 , . . . , min (c s − 1 , r) 

p s (b | r) = 

ES s 

b 
v s τ (r) p s (b − 1 | r − 1) (A.8)

(d) For s = 1 , . . . , S, if r < c s , Q s (r) = 0 , otherwise, 

Q s (r) = 

ES s 

c s 
v s τ (r)[ Q s (r − 1) + p s (c s − 1 | r − 1)] 

(A.9) 

(e) For s = 1 , . . . , S

p s (0 | r) = 1 −
min (c s −1 ,r) ∑ 

b=1 

p s (b | r) − Q s (r) (A.10)

(f) For s = 1 , . . . , S, if r < c s , ̃  L s (r) = 0 , otherwise, 

˜ L s (r) = 

ES s 

c s 
v s τ (r)[ ̃ L s (r − 1) + Q s (r − 1)] (A.11)

(g) For s = 1 , . . . , S

L (r) = τ (r) v ET (r) (A.12)
s s s 

Table C1 

experiment with sequential and simultaneous processing of multi-lin

No zones 

a (h −1 ) ρr ( percent ) t oc ( seconds ) ρ

seq. R = 14 , p = 0 . 5 110 .88 0 .914 838 .370 0

sim. R = 14 , p = 0 . 5 110 .88 0 .933 787 .952 0

seq. R = 14 , p = 0 . 2 44 .35 0 .910 2006 .742 0

sim. R = 14 , p = 0 . 2 44 .35 0 .935 1564 .767 0

seq. R = 14 , p = 0 . 5 50 .40 0 .314 313 .167 0

sim. R = 14 , p = 0 . 5 50 .40 0 .340 183 .844 0

seq. R = 14 , p = 0 . 2 20 .16 0 .314 779 .882 0

sim. R = 14 , p = 0 . 2 20 .16 0 .386 261 .163 0
ppendix B. Robot speed 

Given an acceleration and maximum speed, the average robot

peed for a layout can be calculated as follows. Each route con-

ists of straight linear segments that are connected by angles of

0 degrees. Each time a robot turns it starts with a speed of zero

nd increases speed until it hits the maximum speed or until it is

alfway. Then the robot decreases the speed until it is zero again

nd it turns to go on the next segment. The overall average robot

peed is then calculated by averaging across all routes. For the

tandard layout it was found that an average robot speed of 1.3

eters per second, as mentioned in Wulfraat (2012) , corresponds

o an acceleration of 0.75 meters per second square and a max-

mum speed of 1.5 meters per second, which seems realistic. In

able B1 the average robot speed is shown for layouts with varying

umber of aisles and cross-aisles, using this acceleration and max-

mum speed. As can be seen, the average robot speed stays roughly

etween 1.3 and 1.4 meters per second, even as the length-width

atio changes. 

ppendix C. Multi-line orders 

Table C1 shows the results for the standard layout when multi-

ine orders are processed sequentially or simultaneously. Sequen-

ial processing means that only one robot retrieves all the pods for

ll the order lines of an order and is indicated in Table C1 with

seq.”. Simultaneous, indicated with “sim.”, means an order can be

rocessed in parallel and that multiple robots can fetch pods for

he same order. The parameter p is the parameter for the geomet-

ic distribution of the number of order lines, i.e. p = 0 . 2 means

hat orders have on average 5 order lines. Sequential processing

an be modeled analytically by models M 3 and M 4 , but for simul-

aneous processing there is no analytical model, therefore the re-

ults were generated by simulation. The results indicate that robot

tilization is higher and order cycle time lower with simultane-

us processing. However, the workstation utilization remains al-

ost the same under both forms of processing. 
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