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Abstract

We present a stochastic dynamic programming algorithm for determining the opti-

mal disassembly and recovery strategy, given the disassembly tree, the process depen-

dent quality distributions of assemblies, and the quality dependent recovery options

and associated profits for assemblies. This algorithm generalizes the one proposed by

Krikke et al. [8] in two ways. First, there can be multiple disassembly processes. Sec-

ond, partial disassembly is allowed. Both generalizations are important for practise.

1 Introduction

Disassembly is a systematic method for separating a product into its constituent mod-

ules, components, parts, etc. (all to be called assemblies from now on). Since assemblies

usually have to be disassembled before they can be recovered, disassembly plays an im-

portant role in product recovery (Jovane et al. [7]). Driven by more rigid environmental

legislation, societal pressure and economical incentives, many firms have started recovery

and disassembly operations in recent years. For instance Air France, Lufthansa, BMW,

Volkswagen, Daimler-Crysler, Nissan, Oce, Xerox, and Philips all operate large-scale dis-

assembly/recovery plants.

Planning disassembly and recovery operations can be divided into three steps.

1. Determine all possible disassembly sequences and processes.
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2. Determine all possible recovery options and the associated profits for each assembly.

3. Determine the optimal disassembly and recovery strategy.

In step 1, the identification of all possible disassembly sequences and disassembly pro-

cesses is based on technical and environmental restrictions. A convenient way to to present

all disassembly options is in a disassembly tree/graph. This tree contains arcs from each

assembly to all its subassemblies (Arai et al. [1], Chen et al. [2], Dutta and Woo [3],

Lambert [9, 10], Penev and de Ron [12], Pnueli and Zussman [13], Spengler et al. [14],

Veerakamolmal et al. [15], Yan and Gu [16], Zussman et al. [17]).

Step 2 is to identify all recovery options (e.g. remanufacturing, recycling, and disposal)

and determine the corresponding profits (revenues minus disassembly costs) for each as-

sembly. The feasibility of a recovery options may depend on the quality of an assembly

and on commercial and ecological feasibility criteria (Krikke et al. [8]).

In this paper, we will not consider these technical steps 1 and 2. It is assumed that

a disassembly tree is given and that the recovery options are known for each assembly.

We focus on step 3: determining the optimal disassembly and recovery strategy. Such a

strategy specifies the disassembly sequence, the disassembly processes, and the recovery

type for the disassembled assemblies.

A number of authors (Erdos et al. [4], Johnson and Wang [5, 6], Krikke et al. [8], Navin-

Chandra [11], Penev and de Ron [12], Zussman et al. [17]) have dealt with the problem

of finding the optimal disassembly and recovery strategy. The most general version of

the problem is analyzed by Krikke et al. [8]. In fact, to the best of our knowledge, they

are the only authors that consider variations in the quality of a returned product and its

assemblies.

In our opinion, including quality considerations is essential for determining an optimal

disassembly and recovery strategy. In most practical situations, the quality of an assem-

bly determines its recovery options. For instance, PC components can typically only be

remanufactured if a returned PC is less than 6 months old. Components of older cores

have to be recycled or disposed of. In general, the quality distribution (over the different

possible states) of an assembly depends on product characteristics such as age and usage

as well as on the type of disassembly processes (e.g. destructive or non-destructive) that
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are used to retrieve it.

In this paper, we therefore take the stochastic dynamic programming (DP) algorithm

for finding the optimal, quality dependent disassembly and recovery strategy proposed

by Krikke et al. [8] as a starting point. We generalize this algorithm in in two ways.

First, there can be multiple disassembly processes. Second, partial disassembly is allowed,

i.e., it is not necessary to disassemble all possible subassemblies from an assembly. Both

generalizations are important for practise. As mentioned before, there are often multiple

processes for disassembly, e.g. non-destructive or destructive. Furthermore, partial disas-

sembly of subassemblies with a high recovery value is often more profitable than complete

disassembly.

The remainder of the paper is organized as follows. In Section 2 we present the DP

algorithm for finding the optimal disassembly and recovery strategy. In Section 3 we

illustrate the algorithm for a specific example. We end with conclusions in Section 4.

2 A stochastic dynamic programming algorithm

In this section we present a stochastic dynamic programming (DP) algorithm for calcu-

lating the optimal recovery/disposal strategy. This algorithm is a modified version of the

one presented by Krikke et al. [8]. It allows partial disassembly and multiple disassembly

processes (see Section 1).

The following information is assumed to be given.

• Disassembly tree/graph. The first level, i.e. the root, of the tree is a returned product

(often referred to in practise as a ”core”), and the other levels represent its modules,

components, parts etc. Products as well as modules, components, parts etc. are all

called assemblies. An assembly is called atomic if it can not be disassembled any

further, and non-atomic otherwise. The tree contains arcs from each assembly to all

its subassemblies. An example of a disassembly tree is presented in Figure 1 of the

next section.

• Process dependent quality distribution. For each arc of the disassembly tree, the

quality (distribution) for the subassembly conditional on the quality of the assembly
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is given for each type of disassembly process.

• Quality dependent recovery options and profits. For each assembly, the quality de-

pendent recovery options (remanufacturing, material recycling, energy recycling, dis-

posal) and the associated profits (recovery revenues minus disassembly costs) are

given for the assembly as a whole as well as after disassembling any possible set of

subassemblies.

The notations that are used are listed in Table 1.

INSERT TABLE 1

The DP algorithm starts in the lowest level L of the disassembly tree, which contains

atomic assemblies only. For all those assemblies j (and the corresponding quality classes

q1 ∈ Q(j)), it finds the optimal recovery option and the associated profit fL(j, q1). It

then moves up to level L− 1. Again, for all the atomic assemblies j of that level, it finds

the optimal recovery option and the associated profit fL−1(j, q1). For all the non-atomic

assemblies j of level L − 1, it finds the optimal combination of a disassembly set (the

set S of subassemblies that is disassembled) and a recovery option (after disassembly of

the before mentioned set). This combination maximizes the profit fL−1(j, q1, S), which is

the sum of the profits associated with all the disassembled subassemblies plus the profit

associated with recovery minus the disassembly costs. The algorithm then moves up to

level L− 2. And so on, until the entire recovery/disposal strategy is determined.

In formulas, this means that the profit of an atomic assembly j with quality q1 in

disassembly level l is

f l(j, q1) = C(j, q1), (1)

where

C(j, q1) = max
r∈R(j,q1)

p(j, q1, r) (2)

and the maximizer for r is the optimal recovery option.

The profit of a non-atomic assembly j with quality q1 in disassembly level l is

f l(j, q1) = max

{
C(j, q1), max

d∈D,S⊆S(j)
C(j, q1|d, S)

}
, (3)
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where C(j, q1) is defined in (2) and

C(j, q1|d, S) =
∑
s∈S

∑
q1∈Q(s)

Pr(s, q2|j, q1, d)f l+1(s, q2)

+ max
r∈R(j,q1,S,d)

{p(j, q1, S, r)} − c(j, q1, S, d).

If (3) is maximized by C(j, q1), then it is optimal to recover assembly j as a whole,

and the maximizer for r is the optimal recovery option. Otherwise, the maximizers for d

and S in (3) and for r in C(j, q1|d, S) are the optimal disassembly process, the optimal

disassembly set and the optimal recovery option, respectively.

3 Example

We consider a product with 5 assemblies (including the product itself) and 3 levels. The

disassembly tree is presented in Figure 1.

INSERT FIGURE 1

There are three recovery options: disposal (r = 1), recycling (r = 2), and remanufacturing

(r = 3). However, the recycling and remanufacturing option are not available for all

assemblies and remanufacturing is quality (1 = high, 2 = low) dependent. Table 2 gives

the profits for all available recovery options.

INSERT TABLE 2

There are two types of disassembly for both assembly 1 (the product itself) and for assem-

bly 3: destructive (d = 1) and non-destructive (d = 2). For both disassembly processes,

the quality distribution (high/low) of subassemblies conditional on the quality of the as-

sembly is given in Table 3. The disassemble costs are given in Table 4.

INSERT TABLES 3 and 4
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The results of applying the DP algorithm are given in Table 5.

INSERT TABLE 5

So, the optimal policy is as follows (quality 1=high 2=low; disassembly process 1=destruc-

tive 2=non-destructive; disposal option 1=disposal 2=recycling 3=remanufacturing).

• Always disassemble 2 and 3 from 1 (returned product) and dispose of what remains.

Use non-destructive disassembly if 1 has high quality and destructive disassembly

otherwise.

• Always recycle 2.

• If 3 has high quality, disassemble 4 and 5 and recycle the remainder. If 3 has low

quality, recycle it as a whole.

• Remanufacture 4 if its quality is high and recycle it otherwise.

• Remanufacture 5 if its quality is high and dispose of it otherwise.

4 Conclusion

We considered the problem of determining the optimal disassembly and recovery strategy,

given the disassembly tree and information on quality, available disassembly processes,

recovery options and recovery profits. A stochastic dynamic programming algorithm was

presented that generalizes the one proposed by Krikke et al. [8] in two ways. First,

there can be multiple disassembly processes. Second, partial disassembly is allowed. Both

generalizations are important for practise.

When the algorithm is applied in practise, it is important that the input information

is regularly updated. This holds especially for the recovery options and the associated

profits. In the PC industry, for instance, remanufacturing profits decline rapidly with the

age of a core, and remanufacturing is typically no longer a (profitable) option if a core is

more than 6 months old. So, in this case, updates are required at least once a month.
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Figure 1: Example of a disassembly tree with 3 levels and 5 assemblies.



l Disassembly level l = 0, 1, . . . , L,

l = 0 is the root that contains only the product itself

j Assembly identification number j = 0, 1, . . . , J

j = 0 is the product itself

l(j) Disassembly level of assembly j

Q(j) Set of quality classes of assembly j

D(j) Set of processes for disassembling assembly j

S(j) Set of retrievable subassemblies of assembly j

Clearly, S(j) = ∅ for atomic assemblies

R(j, q1) Set of recovery options for assembly j with quality q1 ∈ Q(j)

R(j, q1, S, d) Set of recovery options for assembly j with quality q1 ∈ Q(j)

after disassembly of the non-empty set of subassemblies S ⊆ S(j)

using disassembly process d

c(j, q1, S, d) Cost of disassembling from assembly j

the non-empty set of subassemblies S ⊆ S(j) using disassembly process d

p(j, q1, r) Net profit obtained from recovering assembly j with quality q1 ∈ Q(j)

using recovery option r ∈ R(j, q1)

p(j, q1, S, r) Net profit obtained from recovering assembly j with quality q1 ∈ Q(j)

using recovery option r ∈ R(j, q1, S)

after disassembling the non-empty set of subassemblies S ⊆ S(j),

Pr(s, q2|j, q1, d) Probability that subassembly s ∈ S(j) of assembly j has quality q2

if it is disassembled using process d from an assembly j with quality q1

Table 1: Notations.



q1 = 1 q1 = 2

j S r = 1 r = 2 r = 3 r = 1 r = 2 r = 3

1 -4 – – -4 – –

1 {2} -3 – – -3 – –

1 {3} -3 – – -3 – –

1 {2, 3} -2 – – -2 – –

2 -1 2 – -1 2 –

3 0 5 – 0 5 –

3 {4} 2 4 – 2 4 –

3 {5} -3 3 – -3 3 –

3 {4, 5} -2 1 – -2 1 –

4 -1 1 5 -1 1 –

5 2 1 10 2 1 –

Table 2: Profits p(j, q1, r) (no disassembly) and p(j, q1, S, r) (after disassembly of the set

S of subassemblies) for the numerical example.



q1 = 1 q1 = 2

s q2 j d = 1 d = 2 d = 1 d = 2

2 1 1 0 0.7 0 0.5

2 2 1 1 0.3 0 0.5

3 1 1 0 0.9 0 0.6

3 2 1 1 0.1 0 0.4

4 1 3 0 0.9 0 0.5

4 2 3 1 0.1 0 0.5

5 1 3 0 0.8 0 0.4

5 2 3 1 0.2 0 0.6

Table 3: Probabilities Pr(s, q2|j, q1, d) for the numerical example.



j S d = 1 d = 2

1 {2} 1 2

1 {3} 2 4

1 {2, 3} 3 5

3 {4} 1 3

3 {5} 1 4

3 {4, 5} 2 6

Table 4: Disassembly costs c(j, S, d) for the numerical example.



C(4, 1) = max{−1, 1, 5} = 5 = f2(4, 1)

C(4, 2) = max{−1, 1, } = 1 = f2(4, 2)

C(5, 1) = max{2, 1, 10} = 10 = f2(5, 1)

C(5, 2) = max{2, 1, } = 2 = f2(5, 2)

C(2, 1) = max{−1, 2, } = 2 = f1(2, 1)

C(2, 2) = max{−1, 2, } = 2 = f1(2, 2)

C(3, 1) = max{0, 5, } = 5

C(3, 1|1, {4}) = 0.0× 5 + 1.0× 1 - 1 + max{2, 4, } = 4

C(3, 1|1, {5}) = 0.0× 10 + 1.0× 2 - 1 + max{−3, 3, } = 4

C(3, 1|1, {4, 5}) = 0.0× 5 + 1.0× 1 + 0.0× 10 + 1.0× 2 - 2 + max{−2, 1, } = 2

C(3, 1|2, {4} =) 0.9× 5 + 0.1× 1 - 3 + max{2, 4, } = 5.6

C(3, 1|2, {5}) = 0.8× 10 + 0.2× 2 - 4 + max{−3, 3, } = 7.4

C(3, 1|2, {4, 5}) = 0.9× 5 + 0.1× 1 + 0.8× 10 + 0.2× 2 - 6 + max{−2, 1, } = 8 = f1(3, 1)

C(3, 2) = max{0, 5, } = 5 = f1(3, 2)

C(3, 2|1, {4}) = 0.0× 5 + 1.0× 1 - 1 + max{2, 4, } = 4

C(3, 2|1, {5}) = 0.0× 10 + 1.0× 2 - 1 + max{−3, 3, } = 4

C(3, 2|1, {4, 5}) = 0.0× 5 + 1.0× 1 + 0.0× 10 + 1.0× 2 - 2 + max{−2, 1, } = 2

C(3, 2|2, {4}) = 0.5× 5 + 0.5× 1 - 3 + max{2, 4, } = 4

C(3, 2|2, {5}) = 0.4× 10 + 0.6× 2 - 4 + max{−3, 3, } = 4.2

C(3, 2|2, {4, 5}) = 0.5× 5 + 0.5× 1 + 0.4× 10 + 0.6× 2 - 6 + max{−2, 1, } = 3.2

C(1, 1) = max{−4, , } = -4

C(1, 1|1, {2}) = 0.0× 2 + 1.0× 2 - 1 + max{−3, , } = -2

C(1, 1|1, {3}) = 0.0× 8 + 1.0× 5 - 2 + max{−3, , } = 0

C(1, 1|1, {2, 3}) = 0.0× 2 + 1.0× 2 + 0.0× 8 + 1.0× 5 - 3 + max{−2, , } = 2

C(1, 1|2, {2} =) 0.7× 2 + 0.3× 2 - 2 + max{−3, , } = -3

C(1, 1|2, {3}) = 0.9× 8 + 0.1× 5 - 4 + max{−3, , } = 0.7

C(1, 1|2, {2, 3}) = 0.7× 2 + 0.3× 2 + 0.9× 8 + 0.1× 5 - 5 + max{−2, , } = 2.7 = f0(1, 1)

C(1, 2) = max{−4, , } = -4

C(1, 2|1, {2}) = 0.0× 2 + 1.0× 2 - 1 + max{−3, , } = -2

C(1, 2|1, {3}) = 0.0× 8 + 1.0× 5 - 2 + max{−3, , } = 0

C(1, 2|1, {2, 3}) = 0.0× 2 + 1.0× 2 + 0.0× 8 + 1.0× 5 - 3 + max{−2, , } = 2 = f0(1, 2)

C(1, 2|2, {2} =) 0.5× 2 + 0.5× 2 - 2 + max{−3, , } = -3

C(1, 2|2, {3}) = 0.6× 8 + 0.4× 5 - 4 + max{−3, , } = -0.2

C(1, 2|2, {2, 3}) = 0.5× 2 + 0.5× 2 + 0.6× 8 + 0.4× 5 - 5 + max{−2, , } = 1.8

Table 5: Results of the DP algorithm for the numerical example.


