
I3.931~~

DISCRETE
APPLIED
MATHEMATICS

Discrete Applied Mathematics 55 (1994) 259-272

Complexity of scheduling multiprocessor tasks
with prespecified processor allocations

J.A. Hoogeveen”, S.L. van de Veldeb, B. Veltmanc3*

Received 24 June 1992: revised 22 January 1993

Abstract

We investigate the computational complexity of scheduling multiprocessor tasks with pres-
pecified processor allocations. We consider two criteria: minimizing schedule length and
minimizing the sum of the task completion times. In addition, we investigate the complexity of
problems when precedence constraints or release dates are involved.

KeJa ~cwd.s: Multiprocessor tasks; Prespecified processor allocations; Makespan; Total comple-
tion time; Release dates; Precedence constraints

1. Introduction

We address a class of multiprocessor scheduling problems. A collection of II tasks

has to be executed by m processors. Task Jj (j = 1, . , n) requires processing during

a given uninterrupted time pj. Each task requires the simultaneous use of a set of

prespecijed processors for its execution; each processor can execute at most one task

at a time. Such tasks are referred to as multiprocessor tusks. Sometimes, for each task

Jj a release date rj on which it becomes available for processing or precedence

constraints, indicating the set of tasks that have to be completed before Jj may start,

are specified; we will state explicitly whether this is the case. We have to determine

a scheduIe, that is, an allocation of each task Jj to a time interval of length pj such that

no two tasks on the same processor overlap. The completion time of task Jj in

schedule 0 is denoted by Cj(a) or shortly by C,, if no confusion is possible as to the

*Corresponding author.

0166-218X/94/$07.00 (0 1994- Elsevier Science B.V. All rights reserved
SD1 0166.218X(93)E0083-B

schedule we refer to. We are interested in two objectives. The first one is to find

a schedule that minimizes the makespan C,,, = maxjCj. The second objective con-

cerns the minimization of the total completion time xCj = Is= 1 Cj.

In this paper, scheduling problems are denoted using the three-field notation scheme

that was proposed by Veltman et al. 1131 as an extension of the terminology of Graham

et al [7]. In the notation scheme r~lPlr, CI specifies the processor environment, /I the task

characteristics, and y the objective function. Accordingly, the value of y of a schedule

o and the minimal value with respect to y are denoted by y(o) and y*, respectively. For

instance, P Ip~j, VjI C,,, refers to the multiprocessor problem of minimizing the make-

span, where for each task a fixed processor allocation and a release date are specified;

Pml3xj, pj = 1 lCCj denotes the multiprocessor problem of minimizing the total com-

pletion time, where all processing times are equal to 1, processor allocations are given,

and the number m of processors is specified as part of the problem type.

In the literature, little attention has been devoted to the complexity of scheduling

multiprocessor tasks. Krawczyk and Kubale [8] show that Pl,fixj, pi = 1 I C,,, is NP-

hard, even if the instances consist of biprocessor tasks only. Kubale [9] presents a similar

proof. Blazewicz et al. [2] show that P3 I_/i.xjl C,,, is strongly NP-hard. As to optimization

algorithms, two hvanch and bound approaches for PljXjl C,,, have been proposed.

Bozoki and Richard [S] concentrate on incompatibility; two tasks are incompatible if they

have at least one processor in common. Bianco et al. [l] follow a graph-theoretical

approach, and they determine a class of polynomially solvable instances that corresponds

to the class of comparability graphs. We will investigate the complexity of a class of

problems related to PlPXjl C,,,. The outline of the paper is as follows.

Section 2 deals with the makespan criterion. The general problem with a fixed

number m of processors is polynomially solvable if m is equal to 2, but NP-hard in the

strong sense for m 3 3. There are two well-solvable cases. The first one concerns the

case of unit processing times; the problem is then solvable in polynomial time through

an integer programming formulation with a fixed number of variables. The second

one concerns the three-processor problem in which all multiprocessor tasks of the

same type are decreed to be executed consecutively, the so-called block-constraint; this

problem is solvable in O(nCpj) time. If the number of processors is part of the

problem instance, then the problem with unit processing times is already NP-hard in

the strong sense. In general, the introduction of precedence constraints or release

dates leads to strong NP-hardness, with one exception: the problem with unit

processing times in which both the number of processors and the number of distinct

release dates are fixed is solvable in polynomial time through an integer programming

formulation with a fixed number of variables. The computational complexity of the

problem Pm(jixj, rj, pj = 1 I C,,, is still open.

Section 3 deals with the total completion time criterion. In general, this criterion

leads to severe computational difficulties. The problem is NP-hard in the ordinary

sense for m = 2 and in the strong sense for m = 3. The weighted version and the

problem with precedence constraints are already NP-hard in the strong sense for

m = 2. The problem with unit time processing times is NP-hard in the strong sense if

Fig. 1. A schedule satisfying the block-constraint

the number of processors is part of the problem instance, but still open in case of

a fixed number of processors. Another open problem is PmljXj, ‘j>pj = 1 ICCj.

2. Makespan

In this section, we investigate the computational complexity of minimizing the make-

span. If no precedence relation is specified, then we may discard the tasks that need all

the processors for execution, since they can be scheduled ahead of the other ones. Hence,

the two-processor problem without precedence constraints is simply solved by schedul-

ing each single-processor task on its processor without causing idle time.

2.1. The block-constraint and pseudopolynomiulity on three processors

The block-constraint decrees that all biprocessor tasks of the same type are

scheduled consecutively. As this boils down to the case that there is at most one

biprocessor task of each type, we replace all biprocessor tasks of the same type by one

task of this type with processing time equal to the sum of the individual processing

times. The biprocessor task that requires M2 and M3 is named a task of type A and its

processing time is denoted by pa. Correspondingly, the biprocessor task that requires

Ml and M, and the biprocessor task that requires M, and M2 are said to be of type

B and C, respectively; their processing times are denoted by pB and pc (Fig. 1).

Theorem 2.1. The problem P3 lpxjl C,,, subject to the block-constraint is NP-hard in

the ordinary sense.

Proof. We will show that P3 lJixjl C,,, subject to the block-constraint is NP-hard by

a reduction from the NP-complete problem Partition.

Partition

Given a multiset N = {a,, a,} of n integers, is it possible to partition N into two

disjoint subsets that have equal sum h = Cj,,aj/2?

Given an instance of Partition, define for each j EN a task Jj that requires Ml for

execution and has processing time pj = aj. In addition, we introduce five separation

262 J.A. Hoogevwn er al. 1 Discrete Applied Mathematics 5.5 (1994) 259-272

0 b 2b 3b 4b

Fig. 2. A schedule with partition sets S and N - S.

tasks that create two time slots of length b on MI. The tasks JA, Js, and J,-, each with

processing time b, are of the type A, B, and C, respectively. The two single-processor

tasks J,+l and J,,+z, each with processing time 2b, have to be executed by M2 and M3,

respectively.

Note that each processor has a load of 4b, which implies that 4b is a lower bound on the

makespan of any feasible schedule. We will show that Partition has a solution if and only

if there exists a schedule for the corresponding instance of P3 I~fiXjI C,,, with C,,, < 4b.

Suppose that there exists a subset S c N such that CjeSaj = CjeN_Saj = b. A sched-

ule of length C,,, = 4b then exists, as is illustrated in Fig. 2.

Conversely, suppose there exists a schedule with makespan at most 4b. Notice that only

four possibilities exist to schedule the tasks J,, + 1, J,, + 2, JA, JB, and Jc in a time interval of

length 4b. Each of these possibilities leaves two separated idle periods of length b on

processor M,, in which the tasks Jj with j EN must be processed. Thus, if there exists

a schedule of length C,,, = 4b, then there is a subset S c N such that Cj~sUj = CjeN_sUj.

We conclude that P3 IJ;XjI C,,, is NP-hard in the ordinary sense. 0

Theorem 2.2. The problem P3~fixj~C,,, subject to the block-constraint is solvable in

pseudopolynomial time.

Proof. We propose an algorithm for this problem that requires O(nCj,NPj) time and

space. For i = 1,2,3, let r denote the set of indices of tasks that require only Mi for

processing, and ni = 1 Kl. In addition, we define p(S) = ~jespj.

Using an interchange argument, we can transform any optimal schedule into an

optimal schedule with some biprocessor task scheduled first and some other biproces-

sor task scheduled last. Suppose for the moment that these tasks are of type A and C,

respectively; a B-type task is then scheduled somewhere in between. Any feasible

schedule of this type, referred to as an ABC-schedule, is completely specified by the

subsets Q1 G TI and Q3 5 T, scheduled before the B-type task; see Fig. 3.

For an ABC-schedule with given subsets Q1 and Q3, the earliest start time of the

task of type B is

s,(QI,Q3) = maxIp(Q&pA + P(Q~)).

The earliest start time of the task of type C is then

&(QI,QJ= max{sdQ1,Qd+ P~J+P(T~ - Q1),p,4 + P(Tz)).

J.A. Hoogrwen et al. I Discrete Applied Mathenfatics 55 (1994) 259-272 263

Ql B TI-QI
c

i-2

A
Q3 B T3-Q3

Fig. 3. Structure of an ABC-schedule.

The minimal length of such a schedule is therefore

Gax(Q1,Q3) = max{&(QI,Q3) + P~,S~(Q~,QJ + pe + P(T, - Qd). (1)

Hence, the minimal length of an ABC-schedule is determined by p(Q,) and p(Q3). In

other words, the length of an optimal ABC-schedule is equal to the minimum of

Cmax(Q1, Q3) over all possible values of p(Qi) and p(Q3). Due to symmetry, we can

transform any ABC-schedule into an CBA-schedule of the same length. The only

other types of schedules of interest to us are therefore the BAC- and ACB-schedules.

Similar arguments show that the length of an optimal BAC-schedule is equal to the

minimum of Cmax(Q2,Q3) over all possible values of p(Q2) and p(Q3), and that the

length of an optimal ACB-schedule is equal to the minimum of Cmax(Q1, Q2) over all

possible values of p(Q,) and p(Q2).

For i = 1,2,3, we compute all possible values that p(Qi) can assume in O(nip(r,))

time and space by a standard dynamic programming algorithm of the type also used

for the knapsack and the subset-sum problems; see e.g. 1121. If these values are put in

sorted lists, then all possible values that S,(Qi, Q3) can assume are computed in

O(p(Q,) + p(Q3)) time and space. The minimum of Cmax(Q1, Q3) over p(QJ and p(Q3)

is then determined by evaluating expression (1) for each possible combination of p(Q,)

and p(Q3); this takes O(p(T,) + p(T,)) time.

The lengths of the optimal BAC- and ACB-schedules are determined similarly. The

overall minimum then follows immediately, and an optimal schedule is determined by

backtracing. Since ni < n and p(7J < Cjthipj for each i, it takes O(n~j,,pj) time and

space to find an optimal schedule. 0

2.2. Strong NP-hardness ,for the general 3-processor problem

The computational complexity of P31jixjlC,,, has already been addressed by

Blazewicz et al. [2], but we include our own version of the reduction for sake of

completeness.

Theorem 2.3. The problem P3 IJiXjl C,,, is NP-hard in the strong sense.

Proof. The proof is based upon a reduction from the strongly NP-complete problem

3-Partition.

264 J.A. Hoogevrm et al. J Discwta Applied Mat1wnmtic.v 55 (1994) 259-272

Table 1
Separation tasks for P3I.jx,IC,,,

Number Allocation Processing time

n M, & Ma (type A)
n Ml 8~ Ma (We 4
n M, 8~ M2 (type C)
1 M,
n-l M,
n Ml
n-1 M2
n MI
1 IV3
n-l M3

PA

PS

PC

Pa + h

Pa + b + P:

PI
PZ
Ps + h + Pr

PC + P,

PC + PF + Pz

S-Partition

Given an integer b and a multiset N = {a,,u~.,} of 3n positive integers with

h/4 < aj < b/2 and I$ 1 aj = nb, is there a partition of N into n mutually disjoint

subsets Ni, . . . , N,, such that the elements in Nj add up to b, for j = 1, n?

Given an instance of 3-Partition, we construct the following instance P31jixjIC,,,.

There are 3n single-processor tasks Jj that correspond to the elements of 3-Partition;

these tasks have to be executed by M, and their processing time is equal to aj, for

j=l , . . . ,3n. In addition, there are 3n biprocessor separation tasks and 5n - 1 single-

processor separation tasks; their processing times and processing requirements are

defined in Table 1. Here we define

pB = (n + l)b,

PJ = (n + I)@ + PB),

Pz = (n + l)(b + PB + P,),

PC = (n + l)(b + PS + py + pz),

PA = (n + l)(b + ps + py + pz + PC).

Note that each processor has a processing load equal to y = n(p, + pB +

pc + py + pz + b) - pz, which implies that y is a lower bound on the makespan of any

schedule. Any schedule with makespan y should have the form as displayed in Fig. 4,

or its mirror image. We assert, without proof, that 3-Partition has an affirmative

answer if and only if there exists a schedule with makespan at most y for the

corresponding instance of P3 I,fixjI C,,,. 0

2.3. Unit execution times, release dates, and precedence constraints

In this section, we show that the Pmljixj,pj = 1 IC,,, problem is solvable in

polynomial time by providing an integer linear programming formulation with a fixed

Fig. 4. Structure for P3~fi.~,lC~~~: ABCAE...CABC.

number of variables: a problem that allows such a formulation is solvable in

polynomial time (Lenstra Jr [lo]). A similar approach is given by Blazewicz,

et al. [3].

Consider an arbitrary instance of the problem. There are at most M = 2” - 1 tasks

of a different type; let these types be numbered 1, . . , M. We can denote the instance by

a vector h = (h,, . . , !I,,,,) in which component hj indicates the number of tasks of typej.

A collection of tasks is called compatible if all these tasks can be executed in parallel;

hence, a compatible collection of tasks contains at most one task of each type.

A compatible collection is denoted by a 10, li-vector c of length M with Cj = 1 if the

collection contains a task of typej and zero otherwise. There are at most K = 2M - 1

different compatible collections; this number is fixed, as M is fixed. Let the collections

be numbered 1 , . . . , K; let the vectors indicating the collections be denoted by

c’r , . , cK. The problem of finding a schedule of minimal length is then equivalent to

the problem of finding a decomposition of this instance into a minimum number of

compatible collections. Formally, we wish to minimize CT= 1 Xj subject to

CT= 1 Cj.~j = h, -Yj integer and nonnegative. As the number of variables in this integer

linear programming formulation is fixed, we have proven the following lemma.

Lemma 2.4. The Pm I,fiXj, pj = 11 C,,, problem is soltlahle in polJmomia1 time.

If the number of processors is specified as part of the problem type, implying that

this number is no longer fixed, then things get worse from a complexity point of view.

This is stated in the following theorem.

Theorem 2.5. The problem r,f’deciding whether un instance of PljXj, pj = 1 IC’,,, has

a schedule of length at most 3 is NP-hard in the strong sense.

Proof. The proof is based upon a reduction from the strongly NP-complete problem

Graph 3-Colorability. A similar approach is used by Blazewicz et al. [4].

Graph S-Colorability

Given a graph G = (V, E), does there exist a 3-coloring, that is, a function

.f: v+ (1,2,3i such that/(u) #f(u) whenever {u,u) EE?

266 J.A. Hoogevern et al. / Discrete Applied Matlwmutics 55 (1994) 259-272

Given an arbitrary instance G = (V, E) of Graph 3-Colorability, we construct the

following instance of P Ijxj, pj = 11 C,,, . There are 1 VI tasks Ji , . . . , J, v, and 1 E 1 proces-

sors M 1, . . . , M,E,. A task J, has to be processed by M, if u E e. We claim that there exists

a 3-coloring for G if and only if there exists a schedule of length at most 3. 0

Corollary 2.6. For Pl$xj, pj = 11 C,,,, there exists no polynomial approximation algo-

rithm with performance ratio smaller than 413, unless P = NP.

The introduction of precedence constraints leaves little hope of finding poly-

nomial-time optimization algorithms. Even the two-processor problem with unit

execution times and the simplest possible precedence relation structure, a collection of

vertex-disjoint chains, is already NP-hard in the strong sense.

Theorem 2.7. The P2 I chain, jixj, pj = I I C,,, problem is NP-hard in the strong sense.

Proof. The proof is based upon a reduction from 3-Partition and follows an approach

of Blazewicz et al. [4]. Given an arbitrary instance of 3-Partition, we construct the

following instance of P2 I chain,jxj, pj = 1 I C,,,. Each element aj corresponds to

a chain Kj of 2aj tasks; the first part consists of aj tasks that have to be executed by

MI and the second part also consists of aj tasks that have to be executed by M,. In

addition, there is a chain L of 2nb tasks; groups of b tasks have to be alternately

executed by M2 and MI.

We assert that 3-Partition has an affirmative answer if and only if there exists

a schedule of length at most 2nb for the corresponding instance of P2Ichain,

.hxj>Pj = l Icmax. q

The introduction of release dates has a similar inconvenient effect on the computa-

tional complexity.

Theorem 2.8. The P2 I fixj, rj I C,,, problem is NP-hard in the strong sense.

Proof. The proof is again based upon a reduction from 3-Partition. Given an

arbitrary instance of 3-Partition, we construct the following instance P2 IpXj, rjl C,,,.

For each element aj, we define a task Jj with pj = aj and rj = 0 that has to be executed

by M,. Furthermore, there are n tasks Kk with processing time b and release date

r,, = (k - l)(b + E), for k = 1, n and E sufficiently small; these tasks have to be

executed by MI. Finally, there are n - 1 biprocessor tasks L1 with processing time

E and release date rl = lb + (1 - l)~, for 1 = 1, . . . ,n - 1. It is easy to see that 3-Parti-

tion has an affirmative answer if and only if there exists a feasible schedule for

P2I$xj,rjIC,,, with C,,, < nb + (n - 1)~. 0

Consider the case PmlJixj, rj, pj = 1) C,,, where the number of distinct release dates

is fixed. Analogously to our analysis of Pm I$xj, pj = 1 I C,,,, we can transform any

instance Of Pml$Xj, Yj, pj = 11 C,,, into an integer linear programming problem with

a fixed number of variables. We have proven the following theorem that extends

Lemma 2.4.

Theorem 2.9. The Pm IJixj, rj, pj = 11 C,,, problem with a fixed number of distinct

release dates is solvable in polynomial time.

3. Sum of completion times

In this section, we investigate the computational complexity of our type of schedul-

ing problems when we wish to minimize total completion time. Our main result is

establishing NP-hardness in the ordinary sense for P2 IjXjICCj. The question whether

this problem is solvable in pseudopolynomial time or NP-hard in the strong sense still

has to be resolved. The weighted version, however, is NP-hard in the strong sense. We

start with an easy observation. Given an instance, let the maximal processing time be

denoted by prnax = maxjpj.

Proposition 3.1. There is an optimal schedule for PlJixjlCCj in which the tasks that

require all processors for execution during pmax time are scheduled last, tf they exist.

Proof. Consider a schedule r~ for PlfixjlCCj in which the task J that needs all

processors for execution during time pmax is not scheduled last. The interchange

illustrated in Fig. 5 generates a schedule g* with CCj(o*) < xCj(o) + p(B)

- rp(B)lpmaxlpmax d CCj(o), where p(B) = C.,cspj. 0

3. I. NP-hardness ,for the 2-processor problem

Theorem 3.2. The P2 IfixjI~Cj p ro bl em is NP-hard in the ordinary sense.

Proof. Our proof is based upon a reduction from the NP-complete problem

EvenOdd Partition.

Even-Odd Partition

Given a set of 2n positive integers A = {al, . . . , a2,,} such that a, < a,, 1

.(i = 1, 2n - l), is there a partition of N into two disjoint subsets A, and AZ with

equal sum h = xfi i ai/ and such that AI contains exactly one of {axi_ 1, azi}, for each

i=l n? > ...>

A J B B A B J

0 0*

Fig. 5. The interchange.

268 J.A. Hoogeveen et al. 1 Discrete Applied Mathematics 55 (1994) 259-272

k! L pn,+!., Q,l

0 P 2P 3P (2n +4lp

Fig. 6. The schedule O* with partition sets A, and A,

Given an instance of Even-Odd Partition, define p = (n2 + 1)6, q = n2(n2 + 1)

(n + l)p, and r = C;zl(a +j - l)(~,~_~ + a2j) + n2(n + 1)h. We construct the fol-

lowing instance of P2I~xjlCCj. Each element aj corresponds to a partition task

Jj with processing time pj = nh + aj that has to be executed by Ml. In addition, we

define n2 + 3 extra tasks. There are n2 identical tasks Qi (i = 1, . . . , n2) with processing

time 2p(n + 1) that have to be executed by M,, a task K with processing time p that

has to be executed by M,, a biprocessor task L with processing time p, and a task

P with processing time 2p(n + 1) that has to be executed by Ml. We will show that

Even-Odd Partition is answered affirmatively if and only if there exists a schedule for

the corresponding instance of P2(~xj(CCj with total completion time no more than

the threshold

y=(2n2+4n+8)p+q+r.

Suppose that there exist subsets A1 and A, that lead to an affirmative answer to

Even-Odd Partition. Then there exists a schedule (T* with total completion time no

more than y, as is illustrated in Fig. 6. The completion times of the extra tasks add up

to (2n2 + 2n + S)p + q, the sum of the completion times of the partition tasks is equal

to 2np + r.

Conversely, suppose that there exists a schedule 0 with total completion time no

more than y. We first show that the extra tasks in c must be scheduled according to

the pattern of Fig. 6.

A straightforward computation shows that task P and the Q-tasks must be com-

pleted after all other tasks in B. Suppose that task L precedes task K, and that

m partition tasks are completed before L starts. Note that m < n; otherwise, task

K could be scheduled parallel to the m partition tasks, without increasing the

completion time of any other job. If we compare this schedule with g*, then task

L turns out to be the only task with smaller completion time; this gain is more than

offset by the increase of completion time of task K. Hence, in order to satisfy the

threshold, the extra jobs must be scheduled according to the pattern of Fig. 6.

We now show that, if xCj(g) < y, then the partition tasks must constitute an

affirmative answer to Even-Odd Partition. First, suppose that the partition tasks

before L in 0 have total processing time smaller than p, implying that at most

n partition tasks are scheduled before L. Then the total completion time of the

partition jobs amounts to at least r + 2np, the total completion time of the Q-tasks,

J.A. Hoogewm et 01. / Discrete Applied Mathrmatics 55 (1994) 259 -272 269

task K, and task L is equal to the total completion time of these tasks in g*, and the

completion time of task P is greater than 3p + (2n + 2)p, implying that the threshold

is exceeded. Hence, the total processing time of the partition tasks before task

L amounts to at least p.

Now suppose that m partition tasks with total processing time p + x precede task

L. Comparing cr with c* shows that the total completion time of the extra jobs in g is

x(n” + 1) greater and that the difference in total completion time of the partition tasks

is no more than 2p(n - m) + x(2n - m) in favor of 0. If m = n, then the difference in

total completion time between rs* and 0 is at least equal to x(n2 + 1) - x11 in favor of

a*; x > 0 then clearly implies that the threshold will be exceeded. In case m > n, we

wish to show that x(n’ + 1) > 2p(n - m) + x(2n - m), which boils down to showing

that x(n2 + 1 - 2n + m) > 2p(n - m). As the left-hand side of the inequality is posit-

ive and the right-hand side negative, we have that the case m > n leads to an excess of

the threshold. Hence, exactly n partition tasks with total processing time equal to

p must precede task L in cr. The total completion time of the partition tasks is equal to

2np + n(pti, 1 + ~~112) + ... + (pm1 1 + pLn12), where Pril 1 and Pril2 denote the process-

ing time of the [i]th partition task before L and after L, respectively. It is easy to see

that the threshold can only be met if { pli), + pLi12} = { pzi- 1 ,p2;}, for i = 1, n.

Define A 1 and A2 as the set of partition tasks before L and after L in (T, respectively. As

the total processing time of the tasks in Ai amounts to n2h + x4, Uj = p = (n2 + l)h,

we have that the corresponding subset of partition elements has sum equal to h.

Furthermore, A 1 contains exactly one element from every pair {uzi_, , Use}; hence, the

subsets A, and A, lead an affirmative answer to Even-Odd Partition. 0

Theorem 3.3. The P2I~xj/Cwj Cj problem is NP-hard in the strong sense.

Proof. The proof is based upon a reduction from 3-Partition. Given an arbitrary

instance of 3-Partition, we construct the following instance of P21$fixjICWjCcj. Each

element Uj corresponds to a task Jj with processing time aj and unit weight that has to

be executed by Ml. In addition, there are n tasks Kj with processing time b and weight

2G + r - 1)/3 that have to be executed by M2, and nL biprocessor tasks Lj with process-

ing time b and weight (2j - l)p, where 2 = 3n(2n - l), fi = ab, and nL = c(+ n - 1.

Suppose that there exists a partition of N into Ni, N,, that yields an affirm-

ative answer to 3-Partition. A feasible schedule with sum of weighted completion

times no more than y = fi + Ci=iwk(2(n - k) + 1)b + CTzlw,(2n + a - /)b +

Z’,+ 1 w,(2n - 2(1 - a))b is then obtained by scheduling the tasks as illustrated in

Fig. 7.

Conversely, suppose that there exists a schedule c with sum of weighted completion

times no more than y. Straightforward computations show that the K-tasks and the

L-tasks have to be scheduled as indicated in Fig. 7 and that the tasks Jj have to be

scheduled in the time slots parallel to the K-tasks. Let Nj denote the set of J-tasks

that are scheduled parallel to Kj; the sets Ni, N, constitute a solution to

3-Partition. 0

270 J.A. Hoo,pween et al. J Discrete Applied Mathermtics 55 (1994) 259-272

rr .:::..,:, pqqq .:.: .,.. [T

0 b 2b 2nb

Fig. 7. A schedule for P21jxjl~w,C, with cwjCj < p.

3.2. Strong NP-hardness for the general S-processor problem

Theorem 3.4. The P3 IJ;xjl 1 Cj p ro bl em is NP-hard in the strong sense.

Proof. The proof is based upon a reduction from the decision version of the

p3 IJxjl crnax problem, which was shown to be NP-complete in Section 2.2. The

decision version of P3 IJiXjl C,,, is defined as the following question: given an instance

Of p3 Ijxj I Coax and a threshold b, does there exist a schedule 0 with makespan no

more than b?

Given an arbitrary instance of P31Jixjl C,,, and a threshold b, we construct

the decision instance of P315xjlCCj by adding nb + 1 identical triprocessor tasks

Kj with processing time pmax. The corresponding threshold is equal to y =

nb + Cib=i’(b + kp,,,).

Application of Proposition 3.1 shows that there is an optimal schedule with the

K-tasks executed last. The number of K-tasks is such that the threshold will be

exceeded if the first K-task starts later than b. Hence, the decision variant of

P3 IpxjlCCj has an affirmative answer if and only if the decision variant of

p3 IMxjl cmax has an affirmative answer.

Note that, the number of tasks needed in our reduction is pseudopolynomially

bounded. We conclude that P31fixjlzCj is NP-hard in the strong sense. 0

3.3. Unit execution times and precedence constraints

In this section, we address the complexity of minimizing total completion time in

case of unit processing times. We show that Pljxj,pj = 1 lCCj is NP-hard in the

strong sense; the complexity of this problem with a fixed number of processors is still

open.

Theorem 3.5. The Plfixj, pj = 1lCCj problem is NP-hard in the strong sense.

Proof. The proof of this theorem is based upon a reduction from Pljxj, pj = 1 I C,,,;

it proceeds along the same lines as the proof of the previous theorem. Given an

instance Of PljXj,pj = 1 ICY,,,, we add w tasks that require all processors for execu-

tion; application of Proposition 3.1 shows that these tasks can be assumed to be

executed after all other tasks. By choosing w suitably large, we obtain the situation

J.A. Hoo~rcern et al. / Discretr Applied Matlxwufic~s 55 11994) 259-272 271

that the threshold of Plj.xj,pj = 1 lCCj is exceeded if and only if the threshold of

p I.Fxj>Pj= lIcmax is exceeded. As the decision variant of Pl$Xj,Pj = 1 I C,,, is NP-

complete in the strong sense and as w is polynomially bounded, we conclude that

PIj.xj, pj = 1 lCCj is NP-hard in the strong sense. 0

As could be expected, the addition of precedence constraints does not have a posit-

ive effect on the computational complexity. We show that even the mildest non-trivial

problem of this type, with two processors and chain-type precedence constraints, is

NP-hard in the strong sense.

Theorem 3.6. The P21chain,jxj,pj = 1 ICCj problem is NP-hard in the strong sense.

Proof. The proof is based upon the same reduction as used in the proof of Theorem

2.7, only the threshold differs. As the number of tasks is equal to 2nh, and as each task

has unit processing time, an obvious lower bound on the total completion time is

equal to y = 2nh(2nh + 1); this bound can only be attained by a schedule without idle

time in which both processors execute nb tasks. Hence, there exists a schedule with

total completion time no more than y if and only if there exists a schedule with

makespan no more than h. We conclude that P2 I chain, jxj, pj = 1 ICCj is NP-hard in

the strong sense. 0

Acknowledgement

The authors wish to express their gratitude towards Jan Karel Lenstra for his

helpful comments.

References

[I] L. Bianco, P. Dell’Olmo and M.G. Speranza, On scheduling independent tasks with dedicated

resources. Program and Abstracts, 14th International Symposium Mathematical Programming,

Amsterdam (1991).

[Z] J. Blazewicz, P. Dell’Olmo, M. Drozdowski and M.G. Speranza, Scheduling multiprocessor tasks on

three dedicated processors, Inform. Process. Lett. 41 (1992) 275-280.

[3] J. Blazewicz, M. Drabowski and J. Weglarz, Scheduling multiprocessor tasks to minimize schedule

length, IEEE Trans. Comput. 35 (1986) 389-393.

[4] J. Blazewicz, J.K. Lenstra and A.H.G. Rinnooy Kan, Scheduling subject to resource constraints:

classification and complexity, Discrete Appl. Math. 5 (1983) I I-24.
[S] G. Bozoki and J.P. Richard, A branch-and-bound algorithm for the continuous-process task shop

scheduling problem, AllE Trans. 2 (1970) 246-252.

[6] M.R. Garey and D.S. Johnson, Computers and Intractability: a Guide to the Theory of NP-

Completeness (Freeman, San Francisco, CA, 1979).

[7] R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Optimization and approximation
in deterministic sequencing and scheduling: a survey, Ann. Discrete Math. 5 (1979) 287-326.

[S] H. Krawczyk and M. Kubale, An approximation algorithm for diagnostic test scheduling in multi-
processor systems, IEEE Trans. Comput. 34 (1985) 869-872.

212 J.A. Hoogeueen et al. 1 Discrete Applied Mathematics 55 (1994) 259-272

[9] M. Kubale, The complexity of scheduling independent two-processor tasks on dedicated processors,

Inform. Process. Lett. 24 (1987) 141-147.

[lo] H.W. Lenstra Jr, Integer programming with a fixed number of variables, Math. Oper. Res. 8 (1983)

538-548.
[l l] J.K. Lenstra, A.H.G. Rinnooy Kan and P. Brucker, Complexity of machine scheduling problems,

Ann. Discrete Math. I (1977) 343-362.

[12] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer Implementations (Wiley,

Chichester, 1990).
[131 B. Veltman, B.J. Lageweg and J.K. Lenstra, Multiprocessor scheduling with communication delays,

Parallel Comput. 16 (1990) 1733182.

